1
|
Eagle SR, Preszler J, Brunner MN, Manderino L, Zynda AJ, French J, Collins MW, Kontos AP. Identifying the 'Miserable Minority' Among Pediatric Patients Following Concussion. J Pediatr Surg 2024; 60:162006. [PMID: 39461142 DOI: 10.1016/j.jpedsurg.2024.162006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVES To investigate whether there are empirically-detectable subgroups of concussion severity and recovery across three consecutive concussions, as well as to define risk factor and clinical assessment differences across subgroups. METHODS The present study was a retrospective chart review of 202 adolescents 13.17 ± 1.99 years old who presented to a concussion specialty clinic within 30 days of injury for multiple injuries between 2019 and 2020. Participants included patients from a specialty clinic for two (n = 202) or three (n = 68) total concussions. Latent class analysis (LCA) was used to identify subgroups based upon concussion symptom severity and recovery time. Risk factors (sex, age at first injury, and histories of anxiety, depression, migraine, motion sickness, ocular dysfunction, and attention-deficit/hyperactivity disorder [ADHD] or learning disability [LD]) were compared across subgroups. RESULTS A two-class solution yielded one group of 163 participants characterized by lower symptoms and shorter recovery times (80.7%, "normal") and 39 participants (19.3%, "miserable minority") characterized by higher symptoms and longer recovery times. Only female sex (OR = 4.91, p = 0.005) was a significant predictor of class membership. The miserable group presented for treatment nearly 4 days later (9.41 days) compared to the normal group (5.74 days) for the first injury, and almost 2 days later for the second injury (7.33 vs 5.26 days). CONCLUSIONS Approximately 1 in 5 patients who presented to a concussion specialty clinic for a repeat concussion were classified in the miserable minority subgroup. This subgroup was characterized by markedly higher initial symptom burdens and over double the recovery time. LEVEL OF EVIDENCE Retrospective cohort study, Level III evidence.
Collapse
Affiliation(s)
- Shawn R Eagle
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Marina N Brunner
- Department of Psychology, University of North Dakota, Grand Forks, ND, USA
| | | | - Aaron J Zynda
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan French
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Sports Concussion Program, USA
| | - Michael W Collins
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Sports Concussion Program, USA
| | - Anthony P Kontos
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Sports Concussion Program, USA
| |
Collapse
|
2
|
Hogeveen J, Campbell EM, Mullins TS, Robertson-Benta CR, Quinn DK, Mayer AR, Cavanagh JF. Neural response to monetary incentives in acquired adolescent depression after mild traumatic brain injury: Stage 2 Registered Report. Brain Commun 2024; 6:fcae250. [PMID: 39234169 PMCID: PMC11371397 DOI: 10.1093/braincomms/fcae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
Depression is a common consequence of traumatic brain injury. Separately, spontaneous depression-arising without brain injury-has been linked to abnormal responses in motivational neural circuitry to the anticipation or receipt of rewards. It is unknown if post-injury and spontaneously occurring depression share similar phenotypic profiles. This issue is compounded by the fact that nearly all examinations of these psychiatric sequelae are post hoc: there are rarely any prospective assessments of mood and neural functioning before and after a brain injury. In this Stage 2 Registered Report, we used the Adolescent Brain Cognitive Development Consortium dataset to examine if a disruption in functional neural responses to rewards is present in patients with depression after a mild traumatic brain injury. Notably, this study provides an unparalleled opportunity to examine the trajectory of neuropsychiatric symptoms longitudinally within-subjects. This allowed us to isolate mild traumatic brain injury-specific variance independent from pre-existing functioning. Here, we focus on a case-control comparison between 43 youth who experienced a mild traumatic brain injury between MRI visits, and 43 well-matched controls. Contrary to pre-registered predictions (https://osf.io/h5uba/), there was no statistically credible increase in depression in mild traumatic brain injury cases relative to controls. Mild traumatic brain injury was associated with subtle changes in motivational neural circuit recruitment during the anticipation of incentives on the Monetary Incentive Delay paradigm. Specifically, changes in neural recruitment appeared to reflect a failure to deactivate 'task-negative' brain regions (ventromedial prefrontal cortex), alongside blunted recruitment of 'task-positive' regions (anterior cingulate, anterior insula and caudate), during the anticipation of reward and loss in adolescents following mild brain injuries. Critically, these changes in brain activity were not correlated with depressive symptoms at either visit or depression change scores before and after the brain injury. Increased time since injury was associated with a recovery of cognitive functioning-driven primarily by processing speed differences-but depression did not scale with time since injury. These cognitive changes were also uncorrelated with neural changes after mild traumatic brain injury. This report provides evidence that acquired depression may not be observed as commonly after a mild traumatic brain injury in late childhood and early adolescence, relative to findings in adult cases. Several reasons for these differing findings are considered, including sampling enrichment in retrospective cohort studies, under-reporting of depressive symptoms in parent-report data, and neuroprotective factors in childhood and adolescence.
Collapse
Affiliation(s)
- Jeremy Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
- Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ethan M Campbell
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
- Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Teagan S Mullins
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
- Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Cidney R Robertson-Benta
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
- Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Davin K Quinn
- Department of Psychiatry & Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Andrew R Mayer
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Psychiatry & Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM 87106, USA
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
- Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Sicard V, Ledoux AA, Tang K, Yeates KO, Brooks BL, Anderson P, Keightley M, Desire N, Beauchamp MH, Zemek R. The association between symptom burden and processing speed and executive functioning at 4 and 12 weeks following pediatric concussion. J Int Neuropsychol Soc 2024; 30:533-545. [PMID: 38273645 DOI: 10.1017/s1355617724000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
OBJECTIVES Symptoms and cognition are both utilized as indicators of recovery following pediatric concussion, yet their interrelationship is not well understood. This study aimed to investigate: 1) the association of post-concussion symptom burden and cognitive outcomes (processing speed and executive functioning [EF]) at 4 and 12 weeks after pediatric concussion, and 2) the moderating effect of sex on this association. METHODS This prospective, multicenter cohort study included participants aged 5.00-17.99 years with acute concussion presenting to four Emergency Departments of the Pediatric Emergency Research Canada network. Five processing speed and EF tasks and the Post-Concussion Symptom Inventory (PCSI; symptom burden, defined as the difference between post-injury and retrospective [pre-injury] scores) were administered at 4 and 12 weeks post-concussion. Generalized least squares models were conducted with task performances as dependent variables and PCSI and PCSI*sex interaction as the main predictors, with important pre-injury demographic and injury characteristics as covariates. RESULTS 311 children (65.0% males; median age = 11.92 [IQR = 9.14-14.21 years]) were included in the analysis. After adjusting for covariates, higher symptom burden was associated with lower Backward Digit Span (χ2 = 9.85, p = .043) and Verbal Fluency scores (χ2 = 10.48, p = .033) across time points; these associations were not moderated by sex, ps ≥ .20. Symptom burden was not associated with performance on the Coding, Continuous Performance Test, and Color-Word Interference scores, ps ≥ .17. CONCLUSIONS Higher symptom burden is associated with lower working memory and cognitive flexibility following pediatric concussion, yet these associations were not moderated by sex. Findings may inform concussion management by emphasizing the importance of multifaceted assessments of EF.
Collapse
Affiliation(s)
- Veronik Sicard
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Andrée-Anne Ledoux
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ken Tang
- Independent Statistical Consultant, Richmond, BC, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Brian L Brooks
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Neurosciences Program, Alberta Children's Hospital, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Peter Anderson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Mental Health Neuropsychology Program, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Michelle Keightley
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, TorontoON, Canada
- Departments of Occupational Science and Occupational Therapy and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Naddley Desire
- Department of Psychology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- Ste-Justine Hospital Research Center, Montreal, QC, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
- Department of Emergency Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Sicard V, Fang Z, Kardish R, Healey K, Smith AM, Reid S, Cron GO, Melkus G, Abdeen N, Yeates KO, Goldfield G, Reed N, Zemek R, Ledoux AA. Longitudinal Brain Perfusion and Symptom Presentation Following Pediatric Concussion: A Pediatric Concussion Assessment of Rest and Exertion +MRI (PedCARE +MRI) Substudy. J Neurotrauma 2024; 41:552-570. [PMID: 38204176 DOI: 10.1089/neu.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Emerging evidence suggests that advanced neuroimaging modalities such as arterial spin labelling (ASL) might have prognostic utility for pediatric concussion. This study aimed to: 1) examine group differences in global and regional brain perfusion in youth with concussion or orthopedic injury (OI) at 72 h and 4 weeks post-injury; 2) examine patterns of abnormal brain perfusion within both groups and their recovery; 3) investigate the association between perfusion and symptom burden within concussed and OI youths at both time-points; and 4) explore perfusion between symptomatic and asymptomatic concussed and OI youths. Youths ages 10.00-17.99 years presenting to the emergency department with an acute concussion or OI were enrolled. ASL-magnetic resonance imaging scans were conducted at 72 h and 4 weeks post-injury to measure brain perfusion, along with completion of the Health Behavior Inventory (HBI) to measure symptoms. Abnormal perfusion clusters were identified using voxel-based z-score analysis at each visit. First, mixed analyses of covariance (ANCOVAs) investigated the Group*Time interaction on global and regional perfusion. Post hoc region of interest (ROI) analyses were performed on significant regions. Second, within-group generalized estimating equations investigated the recovery of abnormal perfusion at an individual level. Third, multiple regressions at each time-point examined the association between HBI and regional perfusion, and between HBI and abnormal perfusion volumes within the concussion group. Fourth, whole-brain one-way ANCOVAs explored differences in regional and abnormal perfusion based on symptomatic status (symptomatic vs. asymptomatic) and OIs at each time-point. A total of 70 youths with a concussion [median age (interquartile range; IQR) = 12.70 (11.67-14.35), 47.1% female] and 29 with an OI [median age (IQR) = 12.05 (11.18-13.89), 41.4% female] were included. Although no Group effect was found in global perfusion, the concussion group showed greater adjusted perfusion within the anterior cingulate cortex/middle frontal gyrus (MFG) and right MFG compared with the OI group across time-points (ps ≤ 0.004). The concussion group showed lower perfusion within the right superior temporal gyrus at both time-points and bilateral occipital gyrus at 4 weeks, (ps ≤ 0.006). The number of hypoperfused clusters was increased at 72 h compared with 4 weeks in the concussion youths (p < 0.001), but not in the OIs. Moreover, Group moderated the HBI-perfusion association within the left precuneus and superior frontal gyrus at both time-points, (ps ≤ 0.001). No association was found between HBI and abnormal perfusion volume within the concussion group at any visits. At 4 weeks, the symptomatic sub-group (n = 10) showed lower adjusted perfusion within the right cerebellum and lingual gyrus, while the asymptomatic sub-group (n = 59) showed lower adjusted perfusion within the left calcarine, but greater perfusion within the left medial orbitofrontal cortex, right middle frontal gyrus, and bilateral caudate compared with OIs. Yet, no group differences were observed in the number of abnormal perfusion clusters or volumes at any visit. The present study suggests that symptoms may be associated with changes in regional perfusion, but not abnormal perfusion levels.
Collapse
Affiliation(s)
- Veronik Sicard
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Zhuo Fang
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Rachel Kardish
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Katherine Healey
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Andra M Smith
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Reid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Greg O Cron
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Gerd Melkus
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Radiology, Radiation Oncology, and Medical Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Nishard Abdeen
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gary Goldfield
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Nick Reed
- Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrée-Anne Ledoux
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Onicas AI, Deighton S, Yeates KO, Bray S, Graff K, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson B, Craig W, Dehaes M, Deschenes S, Doan Q, Freedman SB, Goodyear BG, Gravel J, Lebel C, Ledoux AA, Zemek R, Ware AL. Longitudinal Functional Connectome in Pediatric Concussion: An Advancing Concussion Assessment in Pediatrics Study. J Neurotrauma 2024; 41:587-603. [PMID: 37489293 DOI: 10.1089/neu.2023.0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
Advanced magnetic resonance imaging (MRI) techniques indicate that concussion (i.e., mild traumatic brain injury) disrupts brain structure and function in children. However, the functional connectivity of brain regions within global and local networks (i.e., functional connectome) is poorly understood in pediatric concussion. This prospective, longitudinal study addressed this gap using data from the largest neuroimaging study of pediatric concussion to date to study the functional connectome longitudinally after concussion as compared with mild orthopedic injury (OI). Children and adolescents (n = 967) 8-16.99 years with concussion or mild OI were recruited from pediatric emergency departments within 48 h post-injury. Pre-injury and 1-month post-injury symptom ratings were used to classify concussion with or without persistent symptoms based on reliable change. Subjects completed a post-acute (2-33 days) and chronic (3 or 6 months via random assignment) MRI scan. Graph theory metrics were derived from 918 resting-state functional MRI scans in 585 children (386 concussion/199 OI). Linear mixed-effects modeling was performed to assess group differences over time, correcting for multiple comparisons. Relative to OI, the global clustering coefficient was reduced at 3 months post-injury in older children with concussion and in females with concussion and persistent symptoms. Time post-injury and sex moderated group differences in local (regional) network metrics of several brain regions, including degree centrality, efficiency, and clustering coefficient of the angular gyrus, calcarine fissure, cuneus, and inferior occipital, lingual, middle occipital, post-central, and superior occipital gyrus. Relative to OI, degree centrality and nodal efficiency were reduced post-acutely, and nodal efficiency and clustering coefficient were reduced chronically after concussion (i.e., at 3 and 6 months post-injury in females; at 6 months post-injury in males). Functional network alterations were more robust and widespread chronically as opposed to post-acutely after concussion, and varied by sex, age, and symptom recovery at 1-month post-injury. Local network segregation reductions emerged globally (across the whole brain network) in older children and in females with poor recovery chronically after concussion. Reduced functioning between neighboring regions could negatively disrupt specialized information processing. Local network metric alterations were demonstrated in several posterior regions that are involved in vision and attention after concussion relative to OI. This indicates that functioning of superior parietal and occipital regions could be particularly susceptibile to the effects of concussion. Moreover, those regional alterations were especially apparent at later time periods post-injury, emerging after post-concussive symptoms resolved in most and persisted up to 6 months post-injury, and differed by biological sex. This indicates that neurobiological changes continue to occur up to 6 months after pediatric concussion, although changes emerge earlier in females than in males. Changes could reflect neural compensation mechanisms.
Collapse
Affiliation(s)
- Adrian I Onicas
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, LU, Italy
- Computer Vision Group, Sano Centre for Computational Medicine, Kraków, Poland. Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie Deighton
- Department of Psychology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Department of Psychology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kirk Graff
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nishard Abdeen
- Department of Radiology, University of Ottawa, and Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Quebec, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Bruce Bjornson
- Division of Neurology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - William Craig
- University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Quebec, Canada
| | - Sylvain Deschenes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Quebec, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Stephen B Freedman
- Departments of Pediatric and Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jocelyn Gravel
- Department of Department of Pediatric Emergency Medicine, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Quebec, Canada
| | - Catherine Lebel
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular and Molecular Medicine, University of Ottawa, and Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, and Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Ashley L Ware
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA, and Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
La PL, Walker R, Bell TK, Craig W, Doan Q, Beauchamp MH, Zemek R, Yeates KO, Harris AD. Longitudinal changes in brain metabolites following pediatric concussion. Sci Rep 2024; 14:3242. [PMID: 38331924 PMCID: PMC10853495 DOI: 10.1038/s41598-024-52744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Concussion is commonly characterized by a cascade of neurometabolic changes following injury. Magnetic Resonance Spectroscopy (MRS) can be used to quantify neurometabolites non-invasively. Longitudinal changes in neurometabolites have rarely been studied in pediatric concussion, and fewer studies consider symptoms. This study examines longitudinal changes of neurometabolites in pediatric concussion and associations between neurometabolites and symptom burden. Participants who presented with concussion or orthopedic injury (OI, comparison group) were recruited. The first timepoint for MRS data collection was at a mean of 12 days post-injury (n = 545). Participants were then randomized to 3 (n = 243) or 6 (n = 215) months for MRS follow-up. Parents completed symptom questionnaires to quantify somatic and cognitive symptoms at multiple timepoints following injury. There were no significant changes in neurometabolites over time in the concussion group and neurometabolite trajectories did not differ between asymptomatic concussion, symptomatic concussion, and OI groups. Cross-sectionally, Choline was significantly lower in those with persistent somatic symptoms compared to OI controls at 3 months post-injury. Lower Choline was also significantly associated with higher somatic symptoms. Although overall neurometabolites do not change over time, choline differences that appear at 3 months and is related to somatic symptoms.
Collapse
Affiliation(s)
- Parker L La
- Department of Radiology, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Robyn Walker
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tiffany K Bell
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - William Craig
- Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, AB, Canada
| | - Quynh Doan
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Miriam H Beauchamp
- Department of Psychology, Ste Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- Childrens' Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
7
|
Ledoux AA, Sicard V, Bijelić V, Barrowman N, Borghese MM, Kuzik N, Tremblay MS, Yeates KO, Davis AL, Sangha G, Reed N, Zemek RL. Optimal Volume of Moderate-to-Vigorous Physical Activity Postconcussion in Children and Adolescents. JAMA Netw Open 2024; 7:e2356458. [PMID: 38363567 PMCID: PMC10873766 DOI: 10.1001/jamanetworkopen.2023.56458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024] Open
Abstract
Importance Determining the optimal volume of early moderate-to-vigorous-intensity physical activity (MVPA) after concussion and its association with subsequent symptom burden is important for early postinjury management recommendations. Objectives To investigate the association between cumulative MVPA (cMVPA) over 2 weeks and subsequent symptom burden at 1 week, 2 weeks, and 4 weeks postinjury in children and examine the association between cMVPA and odds of persisting symptoms after concussion (PSAC) at 2 weeks and 4 weeks postinjury. Design, Setting, and Participants This multicenter cohort study used data from a randomized clinical trial that was conducted from March 2017 to December 2019 at 3 Canadian pediatric emergency departments in participants aged 10.00 to 17.99 years with acute concussion of less than 48 hours. Data were analyzed from July 2022 to December 2023. Exposure cMVPA postinjury was measured with accelerometers worn on the waist for 24 hours per day for 13 days postinjury, with measurements deemed valid if participants had 4 or more days of accelerometer data and 3 or fewer consecutive days of missing data. cMVPA at 1 week and 2 weeks postinjury was defined as cMVPA for 7 days and 13 days postinjury, respectively. Multiple imputations were carried out on missing MVPA days. Main Outcomes and measures Self-reported postconcussion symptom burden at 1 week, 2 weeks, and 4 weeks postinjury using the Health and Behavior Inventory (HBI). PSAC was defined as reliable change on the HBI. A linear mixed-effect model was used for symptom burden at 1 week, 2 weeks, and 4 weeks postinjury with a time × cMVPA interaction. Logistic regressions assessed the association between cMVPA and PSAC. All models were adjusted for prognostically important variables. Results In this study, 267 of 456 children (119 [44.6%] female; median [IQR] age, 12.9 [11.5 to 14.4] years) were included in the analysis. Participants with greater cMVPA had significantly lower HBI scores at 1 week (75th percentile [258.5 minutes] vs 25th percentile [90.0 minutes]; difference, -5.45 [95% CI, -7.67 to -3.24]) and 2 weeks postinjury (75th percentile [565.0 minutes] vs 25th percentile [237.0 minutes]; difference, -2.85 [95% CI, -4.74 to -0.97]) but not at 4 weeks postinjury (75th percentile [565.0 minutes] vs 25th percentile [237.0 minutes]; difference, -1.24 [95% CI, -3.13 to 0.64]) (P = .20). Symptom burden was not lower beyond the 75th percentile for cMVPA at 1 week or 2 weeks postinjury (1 week, 259 minutes; 2 weeks, 565 minutes) of cMVPA. The odds ratio for the association between 75th and 25th percentile of cMVPA and PSAC was 0.48 (95% CI, 0.24 to 0.94) at 2 weeks. Conclusions and Relevance In children and adolescents with acute concussion, 259 minutes of cMVPA during the first week postinjury and 565 minutes of cMVPA during the second week postinjury were associated with lower symptom burden at 1 week and 2 weeks postinjury. At 2 weeks postinjury, higher cMVPA volume was associated with 48% reduced odds of PSAC compared with lower cMVPA volume.
Collapse
Affiliation(s)
- Andrée-Anne Ledoux
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Veronik Sicard
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Vid Bijelić
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Nick Barrowman
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Michael M. Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nicholas Kuzik
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Mark S. Tremblay
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, Children’s Hospital of Eastern, Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Adrienne L. Davis
- Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gurinder Sangha
- Department of Pediatrics, Children’s Hospital London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Nick Reed
- Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Roger Leonard Zemek
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, Children’s Hospital of Eastern, Ontario, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Robertson-Benta CR, Pabbathi Reddy S, Stephenson DD, Sicard V, Hergert DC, Dodd AB, Campbell RA, Phillips JP, Meier TB, Quinn DK, Mayer AR. Cognition and post-concussive symptom status after pediatric mild traumatic brain injury. Child Neuropsychol 2024; 30:203-220. [PMID: 36825526 PMCID: PMC10447629 DOI: 10.1080/09297049.2023.2181946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Cognitive impairment and post-concussive symptoms (PCS) represent hallmark sequelae of pediatric mild traumatic brain injury (pmTBI). Few studies have directly compared cognition as a function of PCS status longitudinally. Cognitive outcomes were therefore compared for asymptomatic pmTBI, symptomatic pmTBI, and healthy controls (HC) during sub-acute (SA; 1-11 days) and early chronic (EC; approximately 4 months) post-injury phases. We predicted worse cognitive performance for both pmTBI groups relative to HC at the SA visit. At the EC visit, we predicted continued impairment from the symptomatic group, but no difference between asymptomatic pmTBI and HCs. A battery of clinical (semi-structured interviews and self-report questionnaires) and neuropsychological measures were administered to 203 pmTBI and 139 HC participants, with greater than 80% retention at the EC visit. A standardized change method classified pmTBI into binary categories of asymptomatic or symptomatic based on PCS scores. Symptomatic pmTBI performed significantly worse than HCs on processing speed, attention, and verbal memory at SA visit, whereas lower performance was only present for verbal memory for asymptomatic pmTBI. Lower performance in verbal memory persisted for both pmTBI groups at the EC visit. Surprisingly, a minority (16%) of pmTBI switched from asymptomatic to symptomatic status at the EC visit. Current findings suggest that PCS and cognition are more closely coupled during the first week of injury but become decoupled several months post-injury. Evidence of lower performance in verbal memory for both asymptomatic and symptomatic pmTBI suggests that cognitive recovery may be a process separate from the resolution of subjective symptomology.
Collapse
Affiliation(s)
- Cidney R Robertson-Benta
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Sharvani Pabbathi Reddy
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - David D Stephenson
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Veronik Sicard
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Danielle C Hergert
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Richard A Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - John P Phillips
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
- Departments of Psychology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Davin K Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
- Departments of Psychology and Neurology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
9
|
Mayer AR, McQuaid JR, Wick TV, Dodd AB, Robertson-Benta CR, Stephenson DD, van der Horn HJ, Quinn DK, Davis WA, Hittson AK, Sapien RE, Phillips JP, Campbell RA. Sex- and Age-Related Differences in Post-Concussive Symptom Reporting Among Children and Their Parents. J Neurotrauma 2024; 41:209-221. [PMID: 37725586 PMCID: PMC11071089 DOI: 10.1089/neu.2023.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Pediatric mild traumatic brain injury (pmTBI) has received increased public attention over the past decade, especially for children who experience persistent post-concussive symptoms (PCS). Common methods for obtaining pediatric PCS rely on both self- and parental report, exhibit moderate test-retest reliability, and variable child-parent agreement, and may yield high false positives. The current study investigated the impact of age and biological sex on PCS reporting (Post-Concussion Symptom Inventory) in patients with pmTBI (n = 286) at retrospective, 1 week, 4 months, and 1 year post-injury time points, as well as reported symptoms in healthy controls (HC; n = 218) at equivalent assessment times. HC and their parents reported higher PCS for their retrospective rating relative to the other three other study visits. Child-parent agreement was highest for female adolescents, but only approached acceptable ranges (≥ 0.75) immediately post-injury. Poor-to-fair child/parental agreement was observed for most other study visits for pmTBI and at all visits for HC. Parents rated female adolescents as being more symptomatic than their male counterparts in spite of small (pmTBI) or no (HC) sex-related differences in self-reported ratings, suggestive of a potential cultural bias in parental ratings. Test-retest reliability for self-report was typically below acceptable ranges for both pmTBI and HC groups, with reliability decreasing for HC and increasing for pmTBI as a function of time between visits. Parental test-retest reliability was higher for females. Although continued research is needed, current results support the use of child self-report over parental ratings for estimating PCS burden. Results also highlight the perils of relying on symptom self-report for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jessica R. McQuaid
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Tracey V. Wick
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Andrew B. Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Cidney R. Robertson-Benta
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - David D. Stephenson
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Harm J. van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - William A. Davis
- Department of Orthopedics and Rehabilitation, University of New Mexico, Albuquerque, New Mexico, USA
| | - Anne K. Hittson
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Robert E. Sapien
- Department of Emergency Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - John P. Phillips
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Richard A. Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
10
|
van der Horn HJ, Ling JM, Wick TV, Dodd AB, Robertson-Benta CR, McQuaid JR, Zotev V, Vakhtin AA, Ryman SG, Cabral J, Phillips JP, Campbell RA, Sapien RE, Mayer AR. Dynamic Functional Connectivity in Pediatric Mild Traumatic Brain Injury. Neuroimage 2024; 285:120470. [PMID: 38016527 PMCID: PMC10815936 DOI: 10.1016/j.neuroimage.2023.120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
Resting-state fMRI can be used to identify recurrent oscillatory patterns of functional connectivity within the human brain, also known as dynamic brain states. Alterations in dynamic brain states are highly likely to occur following pediatric mild traumatic brain injury (pmTBI) due to the active developmental changes. The current study used resting-state fMRI to investigate dynamic brain states in 200 patients with pmTBI (ages 8-18 years, median = 14 years) at the subacute (∼1-week post-injury) and early chronic (∼ 4 months post-injury) stages, and in 179 age- and sex-matched healthy controls (HC). A k-means clustering analysis was applied to the dominant time-varying phase coherence patterns to obtain dynamic brain states. In addition, correlations between brain signals were computed as measures of static functional connectivity. Dynamic connectivity analyses showed that patients with pmTBI spend less time in a frontotemporal default mode/limbic brain state, with no evidence of change as a function of recovery post-injury. Consistent with models showing traumatic strain convergence in deep grey matter and midline regions, static interhemispheric connectivity was affected between the left and right precuneus and thalamus, and between the right supplementary motor area and contralateral cerebellum. Changes in static or dynamic connectivity were not related to symptom burden or injury severity measures, such as loss of consciousness and post-traumatic amnesia. In aggregate, our study shows that brain dynamics are altered up to 4 months after pmTBI, in brain areas that are known to be vulnerable to TBI. Future longitudinal studies are warranted to examine the significance of our findings in terms of long-term neurodevelopment.
Collapse
Affiliation(s)
| | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | - Tracey V Wick
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | | | | | - Vadim Zotev
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | | | | | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| | | | - Richard A Campbell
- Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Robert E Sapien
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131
| | - Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM 87106; Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131; Department of Psychology, University of New Mexico, Albuquerque, NM 87131; Department of Neurology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
11
|
Lempke LB, Teel EF, Lynall RC, Hoffman NL, Buckley TA, Eckner JT, McCrea MA, McAllister TW, Broglio SP, Schmidt JD. Early Exercise is Associated with Faster Concussion Recovery Among Collegiate Athletes: Findings from the NCAA-DoD CARE Consortium. Sports Med 2023; 53:1987-1999. [PMID: 37209368 DOI: 10.1007/s40279-023-01861-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Growing evidence indicates early exercise may improve symptoms and reduce clinical recovery time after concussion, but research examining collegiate student-athletes is scarce. OBJECTIVE The aim of this study was to compare symptom recovery time, clinical recovery time, and persisting post-concussion symptom (i.e., symptoms ≥ 28 days) prevalence by the timing of light exercise initiation before the graded return to play (RTP) protocol among concussed participants. METHODS Collegiate student-athletes (n = 1228; age 18.4 ± 0.9 years; 56.5% male, 76.3% division I; 33.7% ≥ 1 prior concussion) across 30 institutions enrolled in the CARE Consortium completed post-concussion assessments and were monitored over time. Symptom recovery (days from injury to symptom resolution) and clinical recovery (days from injury to return to play protocol completion) was determined by the student-athletes' clinicians. Student-athletes were categorized by timing of light exercise initiation. Early (< 2 days post-concussion; n = 161), typical (3-7 days post-concussion; n = 281), and late exercise (≥ 8 days post-concussion; n = 169) groups were compared with the no-exercise group (n = 617; i.e., did not exercise prior to beginning the RTP protocol) for all analyses. Multivariable Cox regression models with hazard ratios (HR) and survival curves and a multivariable binomial regression model with prevalence ratios (PR) compared recovery outcomes between exercise groups while accounting for covariates. RESULTS Compared to the no-exercise group, the early exercise group was 92% more probable to experience symptom recovery (HR 1.92; 95% CI 1.57-2.36), 88% more probable to reach clinical recovery (HR 1.88; 95% CI 1.55-2.28) and took a median of 2.4 and 3.2 days less to recover, respectively. The late exercise group relative to the no-exercise group was 57% less probable to reach symptom recovery (HR 0.43; 95% CI 0.35-0.53), 46% less probable to achieve clinical recovery (HR 0.54; 95% CI 0.45-0.66) and took 5.3 days and 5.7 days more to recover, respectively. The typical exercise group did not differ in hazard for symptom or clinical recovery (p ≥ 0.329) compared with the no-exercise group. The prevalence of persisting post-concussion symptoms in the combined sample was 6.6%. Early exercise had 4% lower prevalence (PR 0.96, 95% CI 0.94-0.99) and typical exercise had 3% lower prevalence (PR 0.97, 95% CI 0.94-0.99) of persisting post-concussion symptoms, while the late exercise group had an elevated prevalence (PR 1.11, 95% CI 1.04-1.18) compared with the no-exercise group. CONCLUSION Exercise < 2 days post-concussion was associated with more probable and faster symptom and clinical recovery, and lower persisting post-concussion symptom prevalence. When considering our findings and existing literature, qualified clinicians may implement early exercise into their clinical practice to provide therapeutic treatment and improve student-athlete recovery.
Collapse
Affiliation(s)
- Landon B Lempke
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA.
| | - Elizabeth F Teel
- Department of Health, Kinesiology & Applied Physiology, Concordia University, Montreal, QC, Canada
| | - Robert C Lynall
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Nicole L Hoffman
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Thomas A Buckley
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - James T Eckner
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA
| | - Michael A McCrea
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Julianne D Schmidt
- Department of Health, Kinesiology & Applied Physiology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
12
|
Ware AL, Lebel C, Onicas A, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson BH, Craig W, Dehaes M, Doan Q, Deschenes S, Freedman SB, Goodyear BG, Gravel J, Ledoux AA, Zemek R, Yeates KO. Longitudinal Gray Matter Trajectories in Pediatric Mild Traumatic Brain Injury. Neurology 2023; 101:e728-e739. [PMID: 37353339 PMCID: PMC10437012 DOI: 10.1212/wnl.0000000000207508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/24/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVES This prospective, longitudinal cohort study examined trajectories of brain gray matter macrostructure after pediatric mild traumatic brain injury (mTBI). METHODS Children aged 8-16.99 years with mTBI or mild orthopedic injury (OI) were recruited from 5 pediatric emergency departments. Reliable change between preinjury and 1 month postinjury symptom ratings was used to classify mTBI with or without persistent symptoms. Children completed postacute (2-33 days) and/or chronic (3 or 6 months) postinjury T1-weighted MRI, from which macrostructural metrics were derived using automated segmentation. Linear mixed-effects models were used, with multiple comparisons correction. RESULTS Groups (N = 623; 407 mTBI/216 OI; 59% male; age mean = 12.03, SD = 2.38 years) did not differ in total brain, white, or gray matter volumes or regional subcortical gray matter volumes. However, time postinjury, age at injury, and biological sex-moderated differences among symptom groups in cortical thickness of the angular gyrus, basal forebrain, calcarine cortex, gyrus rectus, medial and posterior orbital gyrus, and the subcallosal area all corrected p < 0.05. Gray matter macrostructural metrics did not differ between groups postacutely. However, cortical thinning emerged chronically after mTBI relative to OI in the angular gyrus in older children (d [95% confidence interval] = -0.61 [-1.15 to -0.08]); and in the basal forebrain (-0.47 [-0.94 to -0.01]), subcallosal area (-0.55 [-1.01 to -0.08]), and the posterior orbital gyrus (-0.55 [-1.02 to -0.08]) in females. Cortical thinning was demonstrated for frontal and occipital regions 3 months postinjury in males with mTBI with persistent symptoms vs without persistent symptoms (-0.80 [-1.55 to -0.05] to -0.83 [-1.56 to -0.10]) and 6 months postinjury in females and younger children with mTBI with persistent symptoms relative to mTBI without persistent symptoms and OI (-1.42 [-2.29 to -0.45] to -0.91 [-1.81 to -0.01]). DISCUSSION These findings signal little diagnostic and prognostic utility of postacute gray matter macrostructure in pediatric mTBI. However, mTBI altered the typical course of cortical gray matter thinning up to 6 months postinjury, even after symptoms typically abate in most children. Collapsing across symptom status obscured the neurobiological heterogeneity of discrete clinical outcomes after pediatric mTBI. The results illustrate the need to examine neurobiology in relation to clinical outcomes and within a neurodevelopmental framework.
Collapse
Affiliation(s)
- Ashley L Ware
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada.
| | - Catherine Lebel
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Adrian Onicas
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Nishard Abdeen
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Miriam H Beauchamp
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Christian Beaulieu
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Bruce H Bjornson
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - William Craig
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Mathieu Dehaes
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Quynh Doan
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Sylvain Deschenes
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Stephen B Freedman
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Bradley G Goodyear
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Jocelyn Gravel
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Andrée-Anne Ledoux
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Roger Zemek
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Keith Owen Yeates
- From the Department of Psychology (A.L.W.), Georgia State University, Atlanta; Department of Neurology (A.L.W.), University of Utah, Salt Lake City; Departments of Psychology (A.L.W., A.O., K.O.Y.) and Radiology (C.L., B.G.G.), Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada; Computer Vision Group (A.O.), Sano Centre for Computational Medicine, Kraków 30-054, Poland; Department of Radiology (N.A.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute; Department of Psychology (M.H.B.), University of Montreal & CHU Sainte-Justine Hospital Research Center, Québec; Department of Biomedical Engineering (C.B.), University of Alberta, Edmonton; Division of Neurology (B.H.B.), Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver; University of Alberta and Stollery Children's Hospital (W.C.), Edmonton; Department of Radiology (M.D.), Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Québec; Department of Pediatrics (Q.D.), University of British Columbia, BC Children's Hospital Research Institute, Vancouver; CHU Sainte-Justine Research Center (S.D.), Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Québec; Departments of Pediatrics and Emergency Medicine (S.B.F.), Cumming School of Medicine, University of Calgary, Alberta; Department of Pediatric Emergency Medicine (J.G.); CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Québec; Children's Hospital of Eastern Ontario Research Institute (A.-A.L., R.Z.); Department of Cellular and Molecular Medicine (A.-A.L.) and Pediatrics and Emergency Medicine (R.Z.), University of Ottawa; and Department of Pediatrics and Emergency Medicine (R.Z.), University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| |
Collapse
|
13
|
Ware AL, McLarnon MJW, Lapointe AP, Brooks BL, Bacevice A, Bangert BA, Beauchamp MH, Bigler ED, Bjornson B, Cohen DM, Craig W, Doan Q, Freedman SB, Goodyear BG, Gravel J, Mihalov HLK, Minich NM, Taylor HG, Zemek R, Yeates KO. IQ After Pediatric Concussion. Pediatrics 2023; 152:e2022060515. [PMID: 37455662 PMCID: PMC10389777 DOI: 10.1542/peds.2022-060515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVES This study investigated IQ scores in pediatric concussion (ie, mild traumatic brain injury) versus orthopedic injury. METHODS Children (N = 866; aged 8-16.99 years) were recruited for 2 prospective cohort studies from emergency departments at children's hospitals (2 sites in the United States and 5 in Canada) ≤48 hours after sustaining a concussion or orthopedic injury. They completed IQ and performance validity testing postacutely (3-18 days postinjury; United States) or 3 months postinjury (Canada). Group differences in IQ scores were examined using 3 complementary statistical approaches (linear modeling, Bayesian, and multigroup factor analysis) in children performing above cutoffs on validity testing. RESULTS Linear models showed small group differences in full-scale IQ (d [95% confidence interval] = 0.13 [0.00-0.26]) and matrix reasoning (0.16 [0.03-0.30]), but not in vocabulary scores. IQ scores were not related to previous concussion, acute clinical features, injury mechanism, a validated clinical risk score, pre- or postinjury symptom ratings, litigation, or symptomatic status at 1 month postinjury. Bayesian models provided moderate to very strong evidence against group differences in IQ scores (Bayes factor 0.02-0.23). Multigroup factor analysis further demonstrated strict measurement invariance, indicating group equivalence in factor structure of the IQ test and latent variable means. CONCLUSIONS Across multisite, prospective study cohorts, 3 complementary statistical models provided no evidence of clinically meaningful differences in IQ scores after pediatric concussion. Instead, overall results provided strong evidence against reduced intelligence in the first few weeks to months after pediatric concussion.
Collapse
Affiliation(s)
- Ashley L. Ware
- Department of Psychology, Georgia State University, Atlanta, Georgia
- Department of Neurology, University of Utah, Salt Lake City, Utah
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthew J. W. McLarnon
- Department of General Management and Human Resources, Bissett School of Business, Mount Royal University, Calgary, Alberta, Canada
| | - Andrew P. Lapointe
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Brian L. Brooks
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Neurosciences Program, Alberta Children’s Hospital, Departments of Pediatrics, Clinical Neurosciences, and Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Ann Bacevice
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Barbara A. Bangert
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Miriam H. Beauchamp
- Department of Psychology, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
| | - Erin D. Bigler
- Department of Neurology, University of Utah, Salt Lake City, Utah
- Department of Psychology, Brigham Young University, Provo, Utah
| | - Bruce Bjornson
- Division of Neurology
- Department of Pediatrics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Daniel M. Cohen
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - William Craig
- University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Stephen B. Freedman
- Departments of Pediatrics and Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Jocelyn Gravel
- Department of Pediatric Emergency Medicine; CHU Sainte-Justine, Department of Pediatrics, University of Montréal, Montréal, Québec, Canada
| | - H. Leslie K. Mihalov
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Nori Mercuri Minich
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
- Rainbow Babies & Children’s Hospital, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - H. Gerry Taylor
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Roger Zemek
- Departments of Pediatrics and Emergency Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
14
|
Yeates KO, Räisänen AM, Premji Z, Debert CT, Frémont P, Hinds S, Smirl JD, Barlow K, Davis GA, Echemendia RJ, Feddermann-Demont N, Fuller C, Gagnon I, Giza CC, Iverson GL, Makdissi M, Schneider KJ. What tests and measures accurately diagnose persisting post-concussive symptoms in children, adolescents and adults following sport-related concussion? A systematic review. Br J Sports Med 2023; 57:780-788. [PMID: 37316186 DOI: 10.1136/bjsports-2022-106657] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To determine what tests and measures accurately diagnose persisting post-concussive symptoms (PPCS) in children, adolescents and adults following sport-related concussion (SRC). DESIGN A systematic literature review. DATA SOURCES MEDLINE, Embase, PsycINFO, Cochrane Central Register of Controlled Trials, CINAHL and SPORTDiscus through March 2022. ELIGIBILITY CRITERIA Original, empirical, peer-reviewed findings (cohort studies, case-control studies, cross-sectional studies and case series) published in English and focused on SRC. Studies needed to compare individuals with PPCS to a comparison group or their own baseline prior to concussion, on tests or measures potentially affected by concussion or associated with PPCS. RESULTS Of 3298 records screened, 26 articles were included in the qualitative synthesis, including 1016 participants with concussion and 531 in comparison groups; 7 studies involved adults, 8 involved children and adolescents and 11 spanned both age groups. No studies focused on diagnostic accuracy. Studies were heterogeneous in participant characteristics, definitions of concussion and PPCS, timing of assessment and the tests and measures examined. Some studies found differences between individuals with PPCS and comparison groups or their own pre-injury assessments, but definitive conclusions were not possible because most studies had small convenience samples, cross-sectional designs and were rated high risk of bias. CONCLUSION The diagnosis of PPCS continues to rely on symptom report, preferably using standardised symptom rating scales. The existing research does not indicate that any other specific tool or measure has satisfactory accuracy for clinical diagnosis. Future research drawing on prospective, longitudinal cohort studies could help inform clinical practice.
Collapse
Affiliation(s)
- Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anu M Räisänen
- Department of Physical Therapy Education - Oregon, Western University of Health Sciences, College of Health Sciences - Northwest, Lebanon, Oregon, USA
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | - Chantel T Debert
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pierre Frémont
- Department of Rehabilitation, Laval University, Quebec, Quebec, Canada
| | - Sidney Hinds
- Uniformed Services University, Bethesda, Maryland, USA
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Karen Barlow
- Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
| | - Ruben J Echemendia
- Department of Psychology, University of Missouri, Kansas City, Missouri, USA
- Psychological and Neurobehavioral Associates, Inc, State College, Pennsylvania, USA
| | - Nina Feddermann-Demont
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Sports Neuroscience, University of Zurich, Zurich, Switzerland
| | - Colm Fuller
- College of Medicine and Health, University College Cork, Cork, Ireland
- Sports Medicine Department, Sports Surgery Clinic, Dublin, Ireland
| | - Isabelle Gagnon
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Trauma Center, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| | - Christopher C Giza
- Department of Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, California, USA
- Department of Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, California, USA
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Sports Concussion Program, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - Michael Makdissi
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Ware AL, Onicas AI, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson BH, Craig W, Dehaes M, Deschenes S, Doan Q, Freedman SB, Goodyear BG, Gravel J, Ledoux AA, Zemek R, Yeates KO, Lebel C. Altered longitudinal structural connectome in paediatric mild traumatic brain injury: an Advancing Concussion Assessment in Paediatrics study. Brain Commun 2023; 5:fcad173. [PMID: 37324241 PMCID: PMC10265725 DOI: 10.1093/braincomms/fcad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Advanced diffusion-weighted imaging techniques have increased understanding of the neuropathology of paediatric mild traumatic brain injury (i.e. concussion). Most studies have examined discrete white-matter pathways, which may not capture the characteristically subtle, diffuse and heterogenous effects of paediatric concussion on brain microstructure. This study compared the structural connectome of children with concussion to those with mild orthopaedic injury to determine whether network metrics and their trajectories across time post-injury differentiate paediatric concussion from mild traumatic injury more generally. Data were drawn from of a large study of outcomes in paediatric concussion. Children aged 8-16.99 years were recruited from five paediatric emergency departments within 48 h of sustaining a concussion (n = 360; 56% male) or mild orthopaedic injury (n = 196; 62% male). A reliable change score was used to classify children with concussion into two groups: concussion with or without persistent symptoms. Children completed 3 T MRI at post-acute (2-33 days) and/or chronic (3 or 6 months, via random assignment) post-injury follow-ups. Diffusion-weighted images were used to calculate the diffusion tensor, conduct deterministic whole-brain fibre tractography and compute connectivity matrices in native (diffusion) space for 90 supratentorial regions. Weighted adjacency matrices were constructed using average fractional anisotropy and used to calculate global and local (regional) graph theory metrics. Linear mixed effects modelling was performed to compare groups, correcting for multiple comparisons. Groups did not differ in global network metrics. However, the clustering coefficient, betweenness centrality and efficiency of the insula, cingulate, parietal, occipital and subcortical regions differed among groups, with differences moderated by time (days) post-injury, biological sex and age at time of injury. Post-acute differences were minimal, whereas more robust alterations emerged at 3 and especially 6 months in children with concussion with persistent symptoms, albeit differently by sex and age. In the largest neuroimaging study to date, post-acute regional network metrics distinguished concussion from mild orthopaedic injury and predicted symptom recovery 1-month post-injury. Regional network parameters alterations were more robust and widespread at chronic timepoints than post-acutely after concussion. Results suggest that increased regional and local subnetwork segregation (modularity) and inefficiency occurs across time after concussion, emerging after post-concussive symptom resolve in most children. These differences persist up to 6 months after concussion, especially in children who showed persistent symptoms. While prognostic, the small to modest effect size of group differences and the moderating effects of sex likely would preclude effective clinical application in individual patients.
Collapse
Affiliation(s)
- Ashley L Ware
- Correspondence to: Ashley L. Ware, PhD Department of Psychology, Georgia State University 140 Decatur Street SE, Atlanta, GA 30303, USA E-mail:
| | - Adrian I Onicas
- Department of Psychology, University of Calgary, Calgary, AB T2N 0V2, Canada
- Computer Vision Group, Sano Centre for Computational Medicine, Kraków 30-054, Poland
| | - Nishard Abdeen
- Department of Radiology, Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa,Ottawa, ON, Canada K1H 8L1
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, QC, Canada H3C 3J7
| | - Christian Beaulieu
- Department of Biomedical Engineering, 1098 Research Transition Facility, University of Alberta, Edmonton, AB, Canada T6G 2V2
| | - Bruce H Bjornson
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada V6H 3V4
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada V6H 3V4
| | - William Craig
- University of Alberta and Stollery Children’s Hospital, Edmonton, AB, Canada T6G 1C9
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada H3T1J4
- CHU Sainte-Justine Research Center, Montréal, QC, Canada H3T1C5
| | - Sylvain Deschenes
- CHU Sainte-Justine Research Center, Montréal, QC, Canada H3T1C5
- Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Montréal, QC, CHU Sainte-Justine Research Center, Montréal, QC, Canada H3T1C5
| | - Quynh Doan
- Department of Pediatrics University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Stephen B Freedman
- Departments of Pediatric and Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T3B 6A8
| | - Bradley G Goodyear
- Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, AB T2N 0V2, Canada
- Department of Radiology, University of Calgary, Calgary, AB T2N 0V2, Canada
| | - Jocelyn Gravel
- Pediatric Emergency Department, CHU Sainte-Justine, Montréal, QC H3T1C5, Canada
- Department of Pediatric, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular Molecular Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada K1H8L1
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada K1H8L1
| | | | | |
Collapse
|
16
|
Sader N, Gobbi D, Goodyear B, Frayne R, Ware AL, Beauchamp MH, Craig WR, Doan Q, Zemek R, Riva-Cambrin J, Yeates KO. Can quantitative susceptibility mapping help diagnose and predict recovery of concussion in children? An A-CAP study. J Neurol Neurosurg Psychiatry 2023; 94:227-235. [PMID: 36517039 DOI: 10.1136/jnnp-2022-329487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is an MRI technique that is a potential biomarker for concussion. We performed QSM in children following concussion or orthopaedic injury (OI), to assess QSM performance as a diagnostic and prognostic biomarker. METHODS Children aged 8-17 years with either concussion (N=255) or OI (N=116) were recruited from four Canadian paediatric emergency departments and underwent QSM postacutely (2-33 days postinjury) using 3 Tesla MRI. QSM Z-scores within nine regions of interest (ROI) were compared between groups. QSM Z-scores were also compared with the 5P score, the current clinical benchmark for predicting persistent postconcussion symptoms (PPCS), at 4 weeks postinjury, with PPCS defined using reliable change methods based on both participant and parent reports. RESULTS Concussion and OI groups did not differ significantly in QSM Z-scores for any ROI. Higher QSM Z-scores within frontal white matter (WM) independently predicted PPCS based on parent ratings of cognitive symptoms (p=0.001). The combination of frontal WM QSM Z-score and 5P score was better at predicting PPCS than 5P score alone (p=0.004). The area under the curve was 0.72 (95% CI 0.63 to 0.81) for frontal WM susceptibility, 0.69 (95% CI 0.59 to 0.79) for the 5P score and 0.74 (95% CI 0.65 to 0.83) for both. CONCLUSION The findings suggest that QSM is a potential MRI biomarker that can help predict PPCS in children with concussion, over and above the current clinical benchmark, and thereby aid in clinical management. They also suggest a frontal lobe substrate for PPCS, highlighting the potential for QSM to clarify the neurophysiology of paediatric concussion.
Collapse
Affiliation(s)
- Nicholas Sader
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - David Gobbi
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre and Calgary Image Processing and Analysis Centre (CIPAC), Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - Brad Goodyear
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre and Calgary Image Processing and Analysis Centre (CIPAC), Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - Richard Frayne
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre and Calgary Image Processing and Analysis Centre (CIPAC), Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada.,Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Ashley L Ware
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, Georgia State University, Atlanta, Georgia, USA.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal & CHU Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - William R Craig
- Department of Pediatrics, University of Alberta, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jay Riva-Cambrin
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
17
|
Mayer AR, Meier TB, Dodd AB, Stephenson DD, Robertson-Benta CR, Ling JM, Pabbathi Reddy S, Zotev V, Vakamudi K, Campbell RA, Sapien RE, Erhardt EB, Phillips JP, Vakhtin AA. Prospective Study of Gray Matter Atrophy Following Pediatric Mild Traumatic Brain Injury. Neurology 2023; 100:e516-e527. [PMID: 36522161 PMCID: PMC9931084 DOI: 10.1212/wnl.0000000000201470] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The clinical and physiologic time course for recovery following pediatric mild traumatic brain injury (pmTBI) remains actively debated. The primary objective of the current study was to prospectively examine structural brain changes (cortical thickness and subcortical volumes) and age-at-injury effects. A priori study hypotheses predicted reduced cortical thickness and hippocampal volumes up to 4 months postinjury, which would be inversely associated with age at injury. METHODS Prospective cohort study design with consecutive recruitment. Study inclusion adapted from American Congress of Rehabilitation Medicine (upper threshold) and Zurich Concussion in Sport Group (minimal threshold) and diagnosed by Emergency Department and Urgent Care clinicians. Major neurologic, psychiatric, or developmental disorders were exclusionary. Clinical (Common Data Element) and structural (3 T MRI) evaluations within 11 days (subacute visit [SA]) and at 4 months (early chronic visit [EC]) postinjury. Age- and sex-matched healthy controls (HC) to control for repeat testing/neurodevelopment. Clinical outcomes based on self-report and cognitive testing. Structural images quantified with FreeSurfer (version 7.1.1). RESULTS A total of 208 patients with pmTBI (age = 14.4 ± 2.9; 40.4% female) and 176 HC (age = 14.2 ± 2.9; 42.0% female) were included in the final analyses (>80% retention). Reduced cortical thickness (right rostral middle frontal gyrus; d = -0.49) and hippocampal volumes (d = -0.24) observed for pmTBI, but not associated with age at injury. Hippocampal volume recovery was mediated by loss of consciousness/posttraumatic amnesia. Significantly greater postconcussive symptoms and cognitive deficits were observed at SA and EC visits, but were not associated with the structural abnormalities. Structural abnormalities slightly improved balanced classification accuracy above and beyond clinical gold standards (∆+3.9%), with a greater increase in specificity (∆+7.5%) relative to sensitivity (∆+0.3%). DISCUSSION Current findings indicate that structural brain abnormalities may persist up to 4 months post-pmTBI and are partially mediated by initial markers of injury severity. These results contribute to a growing body of evidence suggesting prolonged physiologic recovery post-pmTBI. In contrast, there was no evidence for age-at-injury effects or physiologic correlates of persistent symptoms in our sample.
Collapse
Affiliation(s)
- Andrew R Mayer
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque.
| | - Timothy B Meier
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Andrew B Dodd
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - David D Stephenson
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Cidney R Robertson-Benta
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Josef M Ling
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Sharvani Pabbathi Reddy
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Vadim Zotev
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Kishore Vakamudi
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Richard A Campbell
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Robert E Sapien
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Erik B Erhardt
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - John P Phillips
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| | - Andrei A Vakhtin
- From the The Mind Research Network/Lovelace Biomedical Research Institute (A.R.M., A.B.D., D.D.S., C.R.R.-B., J.M.L., S.P.R., V.Z., K.V., J.P.P., A.A.V.); Department of Psychology (A.R.M.), Department of Neurology (A.R.M., J.P.P.), and Department of Psychiatry & Behavioral Sciences (A.R.M., R.A.C.), University of New Mexico, Albuquerque; Department of Neurosurgery (T.B.M.), Department of Cell Biology, Neurobiology and Anatomy (T.B.M.), and Department of Biomedical Engineering (T.B.M.), Medical College of Wisconsin, Milwaukee; and Department of Emergency Medicine (R.E.S.), and Department of Mathematics and Statistics (E.B.E.), University of New Mexico, Albuquerque
| |
Collapse
|
18
|
Mayer AR, Ling JM, Dodd AB, Stephenson DD, Pabbathi Reddy S, Robertson-Benta CR, Erhardt EB, Harms RL, Meier TB, Vakhtin AA, Campbell RA, Sapien RE, Phillips JP. Multicompartmental models and diffusion abnormalities in paediatric mild traumatic brain injury. Brain 2022; 145:4124-4137. [PMID: 35727944 DOI: 10.1093/brain/awac221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 01/23/2023] Open
Abstract
The underlying pathophysiology of paediatric mild traumatic brain injury and the time-course for biological recovery remains widely debated, with clinical care principally informed by subjective self-report. Similarly, clinical evidence indicates that adolescence is a risk factor for prolonged recovery, but the impact of age-at-injury on biomarkers has not been determined in large, homogeneous samples. The current study collected diffusion MRI data in consecutively recruited patients (n = 203; 8-18 years old) and age and sex-matched healthy controls (n = 170) in a prospective cohort design. Patients were evaluated subacutely (1-11 days post-injury) as well as at 4 months post-injury (early chronic phase). Healthy participants were evaluated at similar times to control for neurodevelopment and practice effects. Clinical findings indicated persistent symptoms at 4 months for a significant minority of patients (22%), along with residual executive dysfunction and verbal memory deficits. Results indicated increased fractional anisotropy and reduced mean diffusivity for patients, with abnormalities persisting up to 4 months post-injury. Multicompartmental geometric models indicated that estimates of intracellular volume fractions were increased in patients, whereas estimates of free water fractions were decreased. Critically, unique areas of white matter pathology (increased free water fractions or increased neurite dispersion) were observed when standard assumptions regarding parallel diffusivity were altered in multicompartmental models to be more biologically plausible. Cross-validation analyses indicated that some diffusion findings were more reproducible when ∼70% of the total sample (142 patients, 119 controls) were used in analyses, highlighting the need for large-sample sizes to detect abnormalities. Supervised machine learning approaches (random forests) indicated that diffusion abnormalities increased overall diagnostic accuracy (patients versus controls) by ∼10% after controlling for current clinical gold standards, with each diffusion metric accounting for only a few unique percentage points. In summary, current results suggest that novel multicompartmental models are more sensitive to paediatric mild traumatic brain injury pathology, and that this sensitivity is increased when using parameters that more accurately reflect diffusion in healthy tissue. Results also indicate that diffusion data may be insufficient to achieve a high degree of objective diagnostic accuracy in patients when used in isolation, which is to be expected given known heterogeneities in pathophysiology, mechanism of injury and even criteria for diagnoses. Finally, current results indicate ongoing clinical and physiological recovery at 4 months post-injury.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM 87106, USA.,Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA.,Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM 87106, USA
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM 87106, USA
| | | | | | | | - Erik B Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Richard A Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Robert E Sapien
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - John P Phillips
- The Mind Research Network/LBERI, Albuquerque, NM 87106, USA.,Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
19
|
Riccardi JS, Crook L, Oskowski M, Ciccia A. Speech-Language Pathology Assessment of School-Age Children With Traumatic Brain Injury: A Scoping Review. Lang Speech Hear Serv Sch 2022; 53:1202-1218. [PMID: 35947821 DOI: 10.1044/2022_lshss-22-00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The purpose of this study was to describe evidenced-based assessment practices for school-age children with any severity of traumatic brain injury (TBI) that could inform the practice of speech-language pathologists (SLPs). METHOD A scoping review of the literature was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. Included studies were assigned thematic labels related to the International Classification of Functioning, Disability and Health framework. RESULTS A total of 30 articles met inclusion criteria for this study. Most studies included adolescent or teenage participants with mild TBIs in the acute stages of recovery. Twenty-two different assessments were reported on for children with TBI addressing body structure/function (n = 19 assessments), activities and participation (n = 1 assessment), and contextual factors (n = 3 assessments). CONCLUSIONS Current assessments have a clear focus on body structure/function for adolescents after childhood TBI, with little research evidence to address activities and participation or contextual factors. The limited amount of functional assessments directly related to the SLP scope of practice stresses the need for additional research on ecologically valid and comprehensive assessment approaches for school-age children with TBI. The results of this review could be utilized as a resource in providing theoretical, evidence-based, and person-centered evaluation methods for children with TBI. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.20422170.
Collapse
Affiliation(s)
- Jessica S Riccardi
- Communication Sciences Program, Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH
| | - Libby Crook
- Communication Sciences Program, Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH
| | - Madeline Oskowski
- Communication Sciences Program, Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH
| | - Angela Ciccia
- Communication Sciences Program, Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
20
|
Hergert DC, Sicard V, Stephenson DD, Reddy SP, Robertson-Benta CR, Dodd AB, Bedrick EJ, Gioia GA, Meier TB, Shaff NA, Quinn DK, Campbell RA, Phillips JP, Vakhtin AA, Sapien RE, Mayer AR. Test-Retest Reliability of a Semi-Structured Interview to Aid in Pediatric Traumatic Brain Injury Diagnosis. J Int Neuropsychol Soc 2022; 28:687-699. [PMID: 34376268 PMCID: PMC8831656 DOI: 10.1017/s1355617721000928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Retrospective self-report is typically used for diagnosing previous pediatric traumatic brain injury (TBI). A new semi-structured interview instrument (New Mexico Assessment of Pediatric TBI; NewMAP TBI) investigated test-retest reliability for TBI characteristics in both the TBI that qualified for study inclusion and for lifetime history of TBI. METHOD One-hundred and eight-four mTBI (aged 8-18), 156 matched healthy controls (HC), and their parents completed the NewMAP TBI within 11 days (subacute; SA) and 4 months (early chronic; EC) of injury, with a subset returning at 1 year (late chronic; LC). RESULTS The test-retest reliability of common TBI characteristics [loss of consciousness (LOC), post-traumatic amnesia (PTA), retrograde amnesia, confusion/disorientation] and post-concussion symptoms (PCS) were examined across study visits. Aside from PTA, binary reporting (present/absent) for all TBI characteristics exhibited acceptable (≥0.60) test-retest reliability for both Qualifying and Remote TBIs across all three visits. In contrast, reliability for continuous data (exact duration) was generally unacceptable, with LOC and PCS meeting acceptable criteria at only half of the assessments. Transforming continuous self-report ratings into discrete categories based on injury severity resulted in acceptable reliability. Reliability was not strongly affected by the parent completing the NewMAP TBI. CONCLUSIONS Categorical reporting of TBI characteristics in children and adolescents can aid clinicians in retrospectively obtaining reliable estimates of TBI severity up to a year post-injury. However, test-retest reliability is strongly impacted by the initial data distribution, selected statistical methods, and potentially by patient difficulty in distinguishing among conceptually similar medical concepts (i.e., PTA vs. confusion).
Collapse
Affiliation(s)
- Danielle C. Hergert
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Veronik Sicard
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - David D. Stephenson
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | | | | | - Andrew B. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Edward J. Bedrick
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Gerard A. Gioia
- Department of Pediatrics and Psychiatry & Behavioral Sciences, George Washington University School of Medicine, Washington, DC, USA
- Division of Pediatric Neuropsychology, Children’s National Hospital, Washington, DC, USA
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicholas A. Shaff
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Richard A. Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - John P. Phillips
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Andrei A. Vakhtin
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Robert E. Sapien
- Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
21
|
Chadwick L, Sharma MJ, Madigan S, Callahan BL, Owen Yeates K. Classification Criteria and Rates of Persistent Postconcussive Symptoms in Children: A Systematic Review and Meta-Analysis. J Pediatr 2022; 246:131-137.e2. [PMID: 35358589 DOI: 10.1016/j.jpeds.2022.03.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To provide a systematic review of studies examining the proportion of children with persistent postconcussive symptoms (PPCS) and to examine potential moderators of prevalence. STUDY DESIGN Searches were conducted in MEDLINE, Embase, PsycINFO, Scopus, and Cochrane Central Register of Controlled Trials on April 16, 2020. Criteria for study inclusion were children aged <18 years with concussion or mild traumatic brain injury, operational definition of PPCS, assessment of postconcussive symptoms at least 4 weeks postinjury, sample sizes and proportion with PPCS available, and study published in English. Definition of PPCS, sample size, proportion of participants identified with PPCS, child sex and age at injury, time postinjury, premorbid symptoms, diagnosis (concussion or mild traumatic brain injury), and study publication year were extracted from each article. Study quality was assessed using the Newcastle-Ottawa Scale. RESULTS Thirteen studies, with a total of 5307 participants, were included in our analysis. The proportion of children identified with PPCS was 35.1% (weighted average; 95% CI, 26.3%-45.0%). The prevalence of PPCS was higher in older and female children who presented for care at concussion clinics, and in more recent publications. CONCLUSIONS Approximately one-third of children with concussion/mild traumatic brain injury will experience PPCS. Age, sex, and point of care could help identify children at high risk for PPCS.
Collapse
Affiliation(s)
- Leah Chadwick
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Manu J Sharma
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sheri Madigan
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Brandy L Callahan
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Ware AL, Yeates KO, Tang K, Shukla A, Onicas AI, Guo S, Goodrich-Hunsaker N, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson B, Craig W, Dehaes M, Doan Q, Deschenes S, Freedman SB, Goodyear BG, Gravel J, Ledoux AA, Zemek R, Lebel C. Longitudinal white matter microstructural changes in pediatric mild traumatic brain injury: An A-CAP study. Hum Brain Mapp 2022; 43:3809-3823. [PMID: 35467058 PMCID: PMC9294335 DOI: 10.1002/hbm.25885] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023] Open
Abstract
In the largest sample studied to date, white matter microstructural trajectories and their relation to persistent symptoms were examined after pediatric mild traumatic brain injury (mTBI). This prospective, longitudinal cohort study recruited children aged 8–16.99 years with mTBI or mild orthopedic injury (OI) from five pediatric emergency departments. Children's pre‐injury and 1‐month post‐injury symptom ratings were used to classify mTBI with or without persistent symptoms. Children completed diffusion‐weighted imaging at post‐acute (2–33 days post‐injury) and chronic (3 or 6 months via random assignment) post‐injury assessments. Mean diffusivity (MD) and fractional anisotropy (FA) were derived for 18 white matter tracts in 560 children (362 mTBI/198 OI), 407 with longitudinal data. Superior longitudinal fasciculus FA was higher in mTBI without persistent symptoms relative to OI, d (95% confidence interval) = 0.31 to 0.37 (0.02, 0.68), across time. In younger children, MD of the anterior thalamic radiations was higher in mTBI with persistent symptoms relative to both mTBI without persistent symptoms, 1.43 (0.59, 2.27), and OI, 1.94 (1.07, 2.81). MD of the arcuate fasciculus, −0.58 (−1.04, −0.11), and superior longitudinal fasciculus, −0.49 (−0.90, −0.09) was lower in mTBI without persistent symptoms relative to OI at 6 months post‐injury. White matter microstructural changes suggesting neuroinflammation and axonal swelling occurred chronically and continued 6 months post injury in children with mTBI, especially in younger children with persistent symptoms, relative to OI. White matter microstructure appears more organized in children without persistent symptoms, consistent with their better clinical outcomes.
Collapse
Affiliation(s)
- Ashley L Ware
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Keith Owen Yeates
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ken Tang
- Independent Statistical Consulting, Richmond, British Columbia, Canada
| | - Ayushi Shukla
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Adrian I Onicas
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Sunny Guo
- Department of Psychology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Nishard Abdeen
- Department of Radiology, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal & CHU Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Bruce Bjornson
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; 2. BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - William Craig
- University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal; CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Quynh Doan
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sylvain Deschenes
- CHU Sainte-Justine Research Center; Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada
| | - Stephen B Freedman
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jocelyn Gravel
- Department of Pediatric Emergency Medicine, Department of Pediatrics, CHU Sainte-Justine, University of Montréal, Montréal, Québec, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular and Molecular Medicine, University of Ottawa, & Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Catherine Lebel
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
23
|
Howell DR, Wingerson MJ, Kirkwood MW, Grubenhoff JA, Wilson JC. Early aerobic exercise among adolescents at moderate/high risk for persistent post-concussion symptoms: A pilot randomized clinical trial. Phys Ther Sport 2022; 55:196-204. [DOI: 10.1016/j.ptsp.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022]
|
24
|
Karaliute M, Saksvik SB, Smevik H, Follestad T, Einarsen C, Vik A, Håberg AK, Iverson GL, Skandsen T, Olsen A. Methodology Matters: Comparing Approaches for Defining Persistent Symptoms after Mild Traumatic Brain Injury. Neurotrauma Rep 2022; 2:603-617. [PMID: 35018362 PMCID: PMC8742292 DOI: 10.1089/neur.2021.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Some people experience persistent post-concussion symptoms (PPCS) after mild traumatic brain injury (mTBI). A meaningful clinical classification and scientific progress are hampered by a lack of consensus regarding the phenomenology, assessment, and operationalization of PPCS. Here we demonstrate and evaluate how the methodology used to assess and define persistent symptoms after mTBI influences PPCS as a binary outcome. We present empirical data from 15 classification methods reflecting procedures found in the literature and clinical practice. In total, 221 patients with mTBI, 73 patients with orthopedic injuries, and 77 community controls were included in the study. The prevalence rate of PPCS in the mTBI group varied between 10% and 47%, depending on the method used to assess and define unfavorable outcome. There was generally low positive agreement between the different methods; even the two methods yielding the most similar prevalence rates (89.2% overall proportion agreement) agreed on less than half (45.5% positive agreement) of the PPCS cases. Using a liberal but not uncommon threshold for symptom severity, there was a considerable misclassification rate of PPCS in both comparison groups. Our results highlight the importance for researchers to be aware of the limitations of using binary approaches for classification of PPCS. The poor agreement between methods should be considered when (1) interpreting the heterogeneity in the existing PPCS literature and (2) developing new improved methods. An empirically informed consensus regarding classification of PPCS should be a priority for the research community.
Collapse
Affiliation(s)
- Migle Karaliute
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Simen B Saksvik
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, and St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Hanne Smevik
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Turid Follestad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, and Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Cathrine Einarsen
- Department of Physical Medicine and Rehabilitation, and St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School; Spaulding Rehabilitation Hospital and Spaulding Research Institute; MassGeneral Hospital for Children Sports Concussion Program; & Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, Massachusetts, USA
| | - Toril Skandsen
- Department of Physical Medicine and Rehabilitation, and St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, and St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
25
|
Max JE, Judd N, Bigler ED, Wilde EA, Patterson JE, Edwards TM, Calahorra A, De La Garza BG, Vaida F. Three-Month Psychiatric Outcome of Pediatric Mild Traumatic Brain Injury: A Controlled Study. J Neurotrauma 2021; 38:3341-3351. [PMID: 34714155 DOI: 10.1089/neu.2021.0324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The objective was to clarify occurrence, phenomenology, and risk factors for novel psychiatric disorder (NPD) in the first 3 months after mild traumatic brain injury (mTBI) and orthopedic injury (OI). Children aged 8-15 years with mTBI (n = 220) and with OI but no TBI (n = 110) from consecutive admissions to an emergency department were followed prospectively at baseline and 3 months post-injury with semi-structured psychiatric interviews to document the number of NPDs that developed in each participant. Pre-injury child variables (adaptive, cognitive, and academic function, and psychiatric disorder), pre-injury family variables (socioeconomic status, family psychiatric history, and family function), and injury severity were assessed and analyzed as potential confounders and predictors of NPD. NPD occurred at a significantly higher frequency in children with mTBI versus OI in analyses unadjusted (mean ratio [MR] 3.647, 95% confidence interval [CI95] (1.264, 15.405), p = 0.014) and adjusted (MR = 3.724, CI95 (1.264, 15.945), p = 0.015) for potential confounders. In multi-predictor analyses, the factors besides mTBI that were significantly associated with higher NPD frequency after adjustment for each other were pre-injury lifetime psychiatric disorder [MR = 2.284, CI95 (1.026, 5.305), p = 0.043]; high versus low family psychiatric history [MR = 2.748, CI95 (1.201, 6.839), p = 0.016], and worse socio-economic status [MR = 0.618 per additional unit, CI95 (0.383, 0.973), p = 0.037]. These findings demonstrate that mild injury to the brain compared with an OI had a significantly greater deleterious effect on psychiatric outcome in the first 3 months post-injury. This effect was present even after accounting for specific child and family variables, which were themselves independently related to the adverse psychiatric outcome.
Collapse
Affiliation(s)
- Jeffrey E Max
- Department of Psychiatry, Herbert Wertheim School of Public Health, University of California, San Diego, San Diego, California, USA.,Rady Children's Hospital, San Diego, San Diego, California, USA
| | - Nicholas Judd
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Erin D Bigler
- Department of Psychiatry, University of Utah School of Medicine, Provo, Utah, USA.,Department of Neurology, University of Utah School of Medicine, Provo, Utah, USA.,Department of Psychology and Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Provo, Utah, USA
| | - Jo Ellen Patterson
- Marital and Family Therapy Program, University of San Diego, San Diego, California, USA
| | - Todd M Edwards
- Marital and Family Therapy Program, University of San Diego, San Diego, California, USA
| | - Ainara Calahorra
- Department of Psychiatry, Herbert Wertheim School of Public Health, University of California, San Diego, San Diego, California, USA
| | - Bianca G De La Garza
- Department of Psychiatry, Herbert Wertheim School of Public Health, University of California, San Diego, San Diego, California, USA
| | - Florin Vaida
- Division of Biostatistics, Herbert Wertheim School of Public Health, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
26
|
Fisher ER, Montroy JJ, Duque G, Cox CS, Ewing-Cobbs L. Post-Concussion and Post-Traumatic Stress Symptoms after Pediatric Traumatic Brain Injury: Shared Vulnerability Factors? J Neurotrauma 2021; 38:2600-2609. [PMID: 33899522 PMCID: PMC8403207 DOI: 10.1089/neu.2020.7541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Following pediatric traumatic brain injury (TBI), post-concussion symptoms (PCS) and post-traumatic stress symptoms (PTSS) occur commonly; however, it is unknown to what degree they overlap. The study examined PCS and PTSS persisting 7 weeks after injury in children and adolescents ages 8-15 years with TBI (n = 89) or extracranial injury (EI; n = 40) after vehicle collisions. TBI was divided into mild, complicated-mild/moderate, and severe groups. Parents retrospectively rated children's pre-injury symptoms and behavior problems, and children completed self-report measures after injury. PCS and PTSS total scores were significantly correlated in TBI and EI groups, respectively, for child (rs = 0.75; rs = 0.44), and adolescent (rs = 0.61; rs = 0.67) cohorts. Generalized linear models examined whether injury type and severity, age, sex, and pre-injury symptom ratings predicted PCS and PTSS total scores and factor scores. Specific PCS and PTSS factor scores were elevated in different TBI severity groups, with most frequent problems following mild or severe TBI. PCS did not differ by age; however, girls had more emotional symptoms than boys. Only PTSS were predicted by pre-injury externalizing behavior. Significant age by sex interactions indicated that adolescent girls had more total, avoidance, and hyperarousal PTSS symptoms than younger girls or all boys. PCS and PTSS significantly overlapped in both TBI and EI groups, highlighting shared persistent symptoms after injury. Shared vulnerability factors included female sex, milder TBI, and poorer pre-injury adjustment. Older age was a unique vulnerability factor for PTSS. Psychological health interventions after injury should be customized to address comorbid symptoms.
Collapse
Affiliation(s)
- Emily R. Fisher
- Children's Learning Institute and Department of Pediatrics, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Janelle J. Montroy
- Children's Learning Institute and Department of Pediatrics, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Gerardo Duque
- Children's Learning Institute and Department of Pediatrics, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Linda Ewing-Cobbs
- Children's Learning Institute and Department of Pediatrics, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
27
|
Severity of Ongoing Post-Concussive Symptoms as a Predictor of Cognitive Performance Following a Pediatric Mild Traumatic Brain Injury. J Int Neuropsychol Soc 2021; 27:686-696. [PMID: 33243310 DOI: 10.1017/s1355617720001228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study aimed to examine the predictors of cognitive performance in patients with pediatric mild traumatic brain injury (pmTBI) and to determine whether group differences in cognitive performance on a computerized test battery could be observed between pmTBI patients and healthy controls (HC) in the sub-acute (SA) and the early chronic (EC) phases of injury. METHOD 203 pmTBI patients recruited from emergency settings and 159 age- and sex-matched HC aged 8-18 rated their ongoing post-concussive symptoms (PCS) on the Post-Concussion Symptom Inventory and completed the Cogstate brief battery in the SA (1-11 days) phase of injury. A subset (156 pmTBI patients; 144 HC) completed testing in the EC (~4 months) phase. RESULTS Within the SA phase, a group difference was only observed for the visual learning task (One-Card Learning), with pmTBI patients being less accurate relative to HC. Follow-up analyses indicated higher ongoing PCS and higher 5P clinical risk scores were significant predictors of lower One-Card Learning accuracy within SA phase, while premorbid variables (estimates of intellectual functioning, parental education, and presence of learning disabilities or attention-deficit/hyperactivity disorder) were not. CONCLUSIONS The absence of group differences at EC phase is supportive of cognitive recovery by 4 months post-injury. While the severity of ongoing PCS and the 5P score were better overall predictors of cognitive performance on the Cogstate at SA relative to premorbid variables, the full regression model explained only 4.1% of the variance, highlighting the need for future work on predictors of cognitive outcomes.
Collapse
|
28
|
Duan K, Mayer AR, Shaff NA, Chen J, Lin D, Calhoun VD, Jensen DM, Liu J. DNA methylation under the major depression pathway predicts pediatric quality of life four-month post-pediatric mild traumatic brain injury. Clin Epigenetics 2021; 13:140. [PMID: 34247653 PMCID: PMC8274037 DOI: 10.1186/s13148-021-01128-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Major depression has been recognized as the most commonly diagnosed psychiatric complication of mild traumatic brain injury (mTBI). Moreover, major depression is associated with poor outcomes following mTBI; however, the underlying biological mechanisms of this are largely unknown. Recently, genomic and epigenetic factors have been increasingly implicated in the recovery following TBI. RESULTS This study leveraged DNA methylation within the major depression pathway, along with demographic and behavior measures (features used in the clinical model) to predict post-concussive symptom burden and quality of life four-month post-injury in a cohort of 110 pediatric mTBI patients and 87 age-matched healthy controls. The results demonstrated that including DNA methylation markers in the major depression pathway improved the prediction accuracy for quality of life but not persistent post-concussive symptom burden. Specifically, the prediction accuracy (i.e., the correlation between the predicted value and observed value) of quality of life was improved from 0.59 (p = 1.20 × 10-3) (clinical model) to 0.71 (p = 3.89 × 10-5); the identified cytosine-phosphate-guanine sites were mainly in the open sea regions and the mapped genes were related to TBI in several molecular studies. Moreover, depression symptoms were a strong predictor (with large weights) for both post-concussive symptom burden and pediatric quality of life. CONCLUSION This study emphasized that both molecular and behavioral manifestations of depression symptoms played a prominent role in predicting the recovery process following pediatric mTBI, suggesting the urgent need to further study TBI-caused depression symptoms for better recovery outcome.
Collapse
Affiliation(s)
- Kuaikuai Duan
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA, 30303, USA
| | - Andrew R Mayer
- The Mind Research Network, Lovelace Biomedical and Environmental Research Institute, Albuquerque, USA
| | - Nicholas A Shaff
- The Mind Research Network, Lovelace Biomedical and Environmental Research Institute, Albuquerque, USA
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA, 30303, USA
| | - Dongdong Lin
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA, 30303, USA
| | - Vince D Calhoun
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA, 30303, USA.,Department of Computer Science, Georgia State University, Atlanta, USA.,Department of Psychology, Georgia State University, Atlanta, USA
| | - Dawn M Jensen
- The Neuroscience Institute, Georgia State University, Atlanta, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA, 30303, USA. .,Department of Computer Science, Georgia State University, Atlanta, USA.
| |
Collapse
|
29
|
Root JM, Gai J, Sady MD, Vaughan CG, Madati PJ. Identifying Risks for Persistent Postconcussive Symptoms in a Pediatric Emergency Department: An Examination of a Clinical Risk Score. Arch Clin Neuropsychol 2021; 37:30-39. [PMID: 33993203 DOI: 10.1093/arclin/acab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/13/2021] [Accepted: 04/20/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE External examination of a clinical risk score to predict persistent postconcussive symptoms (PPCS) in a pediatric emergency department (ED). METHODS Prospective cohort study of 5- to 18-year-old patients diagnosed with an acute concussion. Risk factors were collected at diagnosis and participants (n = 85) were followed to determine PPCS 30 days postinjury. Univariate logistic regression analyses were completed to examine associations of risk factors with PPCS. RESULTS Headache and total clinical risk score were associated with increased odds of PPCS in the univariate analyses, OR 3.37 (95% CI 1.02, 11.10) and OR 1.25 (95% CI 1.02, 1.52), respectively. Additionally, teenage age group, history of prolonged concussions, and risk group trended toward association with PPCS, OR 4.79 (95% CI 0.93, 24.7), OR 3.41 (95% CI 0.88, 13.20), and OR 2.23 (95% CI 0.88, 5.66), respectively. CONCLUSION Our study supports the use of multiple variables of a clinical risk score to assist with ED risk stratification for pediatric patients at risk for PPCS.
Collapse
Affiliation(s)
- J M Root
- Division of Emergency Medicine, Children's National Health System, Washington, DC, USA
| | - J Gai
- Children's Research Institute, Children's National Health System, Washington, DC, USA
| | - M D Sady
- Division of Pediatric Neuropsychology, Children's National Health System, Washington, DC, USA
| | - C G Vaughan
- Division of Pediatric Neuropsychology, Children's National Health System, Washington, DC, USA
| | - P J Madati
- Division of Emergency Medicine, Children's National Health System, Washington, DC, USA
| |
Collapse
|
30
|
Riemann L, Voormolen DC, Rauen K, Zweckberger K, Unterberg A, Younsi A. Persistent postconcussive symptoms in children and adolescents with mild traumatic brain injury receiving initial head computed tomography. J Neurosurg Pediatr 2021; 27:538-547. [PMID: 33636701 DOI: 10.3171/2020.9.peds20421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/08/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this paper was to evaluate the prevalence of postconcussive symptoms and their relation to health-related quality of life (HRQOL) in pediatric and adolescent patients with mild traumatic brain injury (mTBI) who received head CT imaging during initial assessment. METHODS Patients aged between 5 and 21 years with mTBI (Glasgow Coma Scale scores 13-15) and available Rivermead Post Concussion Questionnaire (RPQ) at 6 months of follow-up in the multicenter, prospectively collected CENTER-TBI (Collaborative European NeuroTrauma Effectiveness Research in TBI) study were included. The prevalence of postconcussive symptoms was assessed, and the occurrence of postconcussive syndrome (PSC) based on the ICD-10 criteria, was analyzed. HRQOL was compared in patients with and without PCS using the Quality of Life after Brain Injury (QOLIBRI) questionnaire. RESULTS A total of 196 adolescent or pediatric mTBI patients requiring head CT imaging were included. High-energy trauma was prevalent in more than half of cases (54%), abnormalities on head CT scans were detected in 41%, and admission to the regular ward or intensive care unit was necessary in 78%. Six months postinjury, 36% of included patients had experienced at least one moderate or severe symptom on the RPQ. PCS was present in 13% of adolescents and children when considering symptoms of at least moderate severity, and those patients had significantly lower QOLIBRI total scores, indicating lower HRQOL, compared with young patients without PCS (57 vs 83 points, p < 0.001). CONCLUSIONS Adolescent and pediatric mTBI patients requiring head CT imaging show signs of increased trauma severity. Postconcussive symptoms are present in up to one-third of those patients, and PCS can be diagnosed in 13% 6 months after injury. Moreover, PCS is significantly associated with decreased HRQOL.
Collapse
Affiliation(s)
- Lennart Riemann
- 1Department of Neurosurgery, University Hospital Heidelberg, Germany
| | - Daphne C Voormolen
- 2Department of Public Health, Erasmus MC-University Medical Center Rotterdam, The Netherlands; and
| | - Katrin Rauen
- 3University Hospital of Psychiatry Zurich, Department of Geriatric Psychiatry and Institute for Regenerative Medicine, University of Zurich, Switzerland
| | - Klaus Zweckberger
- 1Department of Neurosurgery, University Hospital Heidelberg, Germany
| | - Andreas Unterberg
- 1Department of Neurosurgery, University Hospital Heidelberg, Germany
| | - Alexander Younsi
- 1Department of Neurosurgery, University Hospital Heidelberg, Germany
| |
Collapse
|
31
|
Stephenson DD, Meier TB, Pabbathi Reddy S, Robertson-Benta CR, Hergert DC, Dodd AB, Shaff NA, Ling JM, Oglesbee SJ, Campbell RA, Phillips JP, Sapien RE, Mayer AR. Resting-State Power and Regional Connectivity After Pediatric Mild Traumatic Brain Injury. J Magn Reson Imaging 2020; 52:1701-1713. [PMID: 32592270 DOI: 10.1002/jmri.27249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Physiological recovery from pediatric mild traumatic brain injury (pmTBI) as a function of age remains actively debated, with the majority of studies relying on subjective symptom report rather than objective markers of brain physiology. PURPOSE To examine potential abnormalities in fractional amplitude of low-frequency fluctuations (fALFF) or regional homogeniety (ReHo) during resting-state fMRI following pmTBI. STUDY TYPE Prospective cohort. POPULATION Consecutively recruited pmTBI (N = 105; 8-18 years old) and age- and sex-matched healthy controls (HC; N = 113). FIELD STRENGTH/SEQUENCE 3T multiecho gradient T1 -weighted and single-shot gradient-echo echo-planar imaging. ASSESSMENT All pmTBI participants were assessed 1 week and 4 months postinjury (HC assessed at equivalent timepoints after the first visit). Comprehensive demographic, clinical, and cognitive batteries were performed in addition to primary investigation of fALFF and ReHo. All pmTBI were classified as "persistent" or "recovered" based on both assessment periods. STATISTICAL TESTS Chi-square, nonparametric, and generalized linear models for demographic data. Generalized estimating equations for clinical and cognitive data. Voxelwise general linear models (AFNI's 3dMVM) for fALFF and ReHo assessment. RESULTS Evidence of recovery was observed for some, but not all, clinical and cognitive measures at 4 months postinjury. fALFF was increased in the left striatum for pmTBI relative to HC both at 1 week and 4 months postinjury; whereas no significant group differences (P > 0.001) were observed for ReHo. Age-at-injury did not moderate either resting-state metric across groups. In contrast to analyses of pmTBI as a whole, there were no significant (P > 0.001) differences in either fALFF or ReHo in patients with persistent postconcussive symptoms compared to recovered patients and controls at 4 months postinjury. DATA CONCLUSIONS Our findings suggest prolonged clinical recovery and alterations in the relative amplitude of resting-state fluctuations up to 4 months postinjury, but no clear relationship with age-at-injury or subjective symptom report. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: 2 J. MAGN. RESON. IMAGING 2020;52:1701-1713.
Collapse
Affiliation(s)
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, New Mexico, USA
| | | | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, New Mexico, USA
| | - Scott J Oglesbee
- Emergency Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Richard A Campbell
- Departments of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - John P Phillips
- The Mind Research Network/LBERI, Albuquerque, New Mexico, USA
- Departments of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Robert E Sapien
- Emergency Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, New Mexico, USA
- Departments of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico, USA
- Departments of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
32
|
Rosenbaum PE, Locandro C, Chrisman SPD, Choe MC, Richards R, Pacchia C, Cook LJ, Rivara FP, Gioia GA, Giza CC. Characteristics of Pediatric Mild Traumatic Brain Injury and Recovery in a Concussion Clinic Population. JAMA Netw Open 2020; 3:e2021463. [PMID: 33196804 PMCID: PMC7670312 DOI: 10.1001/jamanetworkopen.2020.21463] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IMPORTANCE Pediatric mild traumatic brain injury (TBI) and concussion are a public health challenge with up to 30% of patients experiencing prolonged recovery. Pediatric patients presenting to concussion clinics often have ongoing impairments and may be at increased risk for persistent symptoms. Understanding this population is critical for improved prognostic estimates and optimal treatment. OBJECTIVE To describe pediatric patients presenting to concussion clinics and characterize factors associated with their recovery. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study included patients enrolled at multicenter concussion specialty clinics from the Four Corners Youth Consortium from December 2017 to July 2019, with up to 12-month follow-up. Patients were eligible if they were aged 5 to 18.99 years with a diagnosis of mild TBI or concussion presenting to participating clinics within 8 weeks of injury. Patients were excluded if the patient or their parents were unable to read or sign the consent document, or if the patient had a Glasgow Coma Scale score less than 13 or a penetrating injury. Data were analyzed from February 2019 to April 2020. EXPOSURES Diagnosis of mild TBI or concussion. MAIN OUTCOMES AND MEASURES This study used National Institute of Neurological Disorders and Stroke common data elements, including data on demographic characteristics, injury details, history, neurological and neuropsychological assessments, and treatment. RESULTS A total of 600 patients were consecutively enrolled, among whom 324 (54.0%) were female and 435 (72.5%) were adolescents (ie, aged 13-18 years). A higher proportion of girls and women (248 patients [76.5%]) were adolescents compared with boys and men (187 patients [67.8%]) (P = .02), and girls and women reported significantly more preexisting anxiety compared with boys and men (80 patients [26.7%] vs 46 patients [18.7%]; P = .03). Significantly more adolescents reported preexisting migraines compared with preadolescents (82 patients [20.9%] vs 15 patients [10.9%]; P = .01). Girls and women recovered more slowly than boys and men (persistent symptoms after injury: week 4, 217 patients [81.6%] vs 156 patients [71.2%]; week 8, 146 patients [58.9%] vs 89 patients [44.3%]; week 12, 103 patients [42.6%] vs 58 patients [30.2%]; P = .01). Patients with history of migraine or anxiety or depression recovered more slowly than those without, regardless of sex. CONCLUSIONS AND RELEVANCE These findings suggest that identification of subgroups of pediatric patients with mild TBI or concussion at risk for prolonged recovery could aid in better prognostic estimates and more targeted treatment interventions.
Collapse
Affiliation(s)
- Philip E. Rosenbaum
- David Geffen School of Medicine, Department of Neurosurgery, University of California, Los Angeles
- Steve Tisch BrainSPORT Program, University of California, Los Angeles
| | | | - Sara P. D. Chrisman
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle
- Harborview Injury Prevention and Research Center, Seattle, Washington
| | - Meeryo C. Choe
- Steve Tisch BrainSPORT Program, University of California, Los Angeles
- David Geffen School of Medicine, Department of Pediatrics, UCLA Mattel Children’s Hospital, Los Angeles, California
| | | | | | | | - Frederick P. Rivara
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle
- Harborview Injury Prevention and Research Center, Seattle, Washington
| | - Gerard A. Gioia
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, George Washington University School of Medicine, Washington, District of Columbia
- Children’s National Hospital, Rockville, Maryland
| | - Christopher C. Giza
- David Geffen School of Medicine, Department of Neurosurgery, University of California, Los Angeles
- Steve Tisch BrainSPORT Program, University of California, Los Angeles
- David Geffen School of Medicine, Department of Pediatrics, UCLA Mattel Children’s Hospital, Los Angeles, California
| |
Collapse
|