1
|
Kong L, Xu J, Shen W, Zhang S, Xu Z, Zhu KY. Development and evaluation of RNA microsphere-based RNAi approaches for managing the striped flea beetle (Phyllotreta striolata), a globally destructive pest of Cruciferae crops. PEST MANAGEMENT SCIENCE 2025; 81:1529-1538. [PMID: 39584569 DOI: 10.1002/ps.8557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND RNA interference (RNAi) technology has emerged as a promising strategy for species-specific management of agricultural pests. However, the application of this technology has been significantly hindered by the instability of the interfering RNA molecules in the insect body after ingestion leading to variations in the susceptibility to the RNA triggers across different taxonomic groups of insects. Therefore, it is necessary to develop new approaches that will overcome these challenges associated with the use of RNAi-based insect pest management strategies. This study explored the use of RNA microspheres (RMS) synthesized via rolling-circle transcription (RCT) technology as a potential method for managing striped flea beetle (Phyllotreta striolata), a globally destructive pest of Cruciferae crops. RESULTS The synthesized RMS against the genes encoding reticulocalbin (RMS-PsRCN) and ribosomal RNA (RMS-PsrRNA) were highly effective in both silencing their target genes and causing increased P. striolata adult mortality. Relative expression levels of the target genes RMS-PsRCN and RMS-PsrRNA were decreased by 74.9% and 68.92%, respectively, in RMS fed adults, compared with the control adults fed RMS-EGFP. Consequently, the adult mortalities were 81.7% and 73.3% when fed RMS-PsRCN and RMS-PsrRNA, respectively, compared with 8.3% in the control adults. Furthermore, movements of adults fed RMS-PsRCN and RMS-PsrRNA were decreased by 70.2% and 55.7%, respectively, compared with the control adults. CONCLUSIONS This study shows the potential of using RMS to suppress the expression of target genes and subsequently produce significant mortality rates and behavioral changes in RMS-fed adult P. striolata. These findings underscore the promises and viability of using RMS as an effective strategy for gene function studies and species-specific management of agricultural important insect pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linghao Kong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiazheng Xu
- Laboratory of Artificial Intelligence for Education, School of Computer Science and Technology, East China Normal University, Shanghai, China
| | - Weihong Shen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Songhan Zhang
- Agriculture Technology Extension Service Center of Shanghai, Shanghai, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Han S, Yoo W, Carton O, Joo J, Kwon EJ. PEGylated Multimeric RNA Nanoparticles for siRNA Delivery in Traumatic Brain Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405806. [PMID: 39498752 DOI: 10.1002/smll.202405806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/27/2024] [Indexed: 11/07/2024]
Abstract
Traumatic brain injury (TBI) impacts millions of people globally, however currently there are no approved therapeutics that address long-term brain health. In order to create a technology that is relevant for siRNA delivery in TBI after systemic administration, sub-100 nm nanoparticles with rolling circle transcription (RCT) are synthesized and isolated in order improve payload delivery into the injured brain. Unlike conventional RCT-based RNA particles, in this method, sub-100 nm RNA nanoparticles (RNPs) are isolated. To enhance RNP pharmacokinetics, RNPs are synthesized with modified bases in order to graft polyethylene glycol (PEG) to the RNPs. PEGylated RNPs (PEG-RNPs) do not significantly impact their knockdown activity in vitro and lead to longer blood half-life after systemic administration and greater accumulation into the injured brain in a mouse model of TBI. In order to demonstrate RNA interference (RNAi) activity of RNPs, knockdown of the inflammatory cytokine TNF-α in injured brain tissue after systemic administration of RNPs in a mouse model of TBI is demonstrated. In summary, small sub-100 nm multimeric RNA nanoparticles are synthesized and isolated that can be modified using accessible chemistry in order to create a technology suitable for systemic RNAi therapy for TBI.
Collapse
Affiliation(s)
- Sangwoo Han
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woojung Yoo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Olivia Carton
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Health Science and Technology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
- Materials Research Science and Engineering Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Research Science and Engineering Center, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| |
Collapse
|
3
|
Khairnar P, Kolipaka T, Pandey G, Phatale V, Shah S, Srinivasarao DA, Saraf S, Srivastava S. Nanosponge-mediated oligonucleotide delivery: A cutting-edge technology towards cancer management. J Drug Deliv Sci Technol 2024; 91:105226. [DOI: 10.1016/j.jddst.2023.105226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Chen H, Gu Z, Yang L, Liu F, An R, Ge Y, Liang X. Direct dsRNA preparation by promoter-free RCT and RNase H cleavage using one circular dsDNA template with a mismatched bubble. RNA (NEW YORK, N.Y.) 2023; 29:1691-1702. [PMID: 37536954 PMCID: PMC10578470 DOI: 10.1261/rna.079670.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
Double-stranded RNA (dsRNA) has aroused widespread interest due to its effects on immunity and applications based on RNAi. However, the in vitro preparation of dsRNA is costly and laborious. In this study, we have developed a novel and interesting method designated as pfRCT (promoter-free rolling-circle transcription) for direct, facile, and efficient dsRNA preparation. This method generates equal amounts of sense and antisense strands simultaneously from a single circular dsDNA template. To initiate transcription by T7 RNA polymerase without directional preference, a 9-15-bp bubble (mismatched duplex with strong sequence symmetry) is introduced into the template. During RCT, all the necessary reagents, including the template, NTPs, RNA polymerase, RNase H, and Helpers, are present in one pot; and the just-transcribed RNA is immediately truncated by RNase H to monomers with the desired size. The ends of the dsRNA product can also be simply sealed by T4 RNA ligase 1 after pfRCT. This new approach is expected to promote the applications of dsRNA.
Collapse
Affiliation(s)
- Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, Shandong, China
| | - Zhenzhu Gu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
| | - Liu Yang
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Feng Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, Shandong, China
| | - Yinlin Ge
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, Shandong, China
| |
Collapse
|
5
|
Ma X, Zhang Y, Huang K, Zhu L, Xu W. Multifunctional rolling circle transcription-based nanomaterials for advanced drug delivery. Biomaterials 2023; 301:122241. [PMID: 37451000 DOI: 10.1016/j.biomaterials.2023.122241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
As the up-and-comer in the development of RNA nanotechnology, RNA nanomaterials based on functionalized rolling circle transcription (RCT) have become promising carriers for drug production and delivery. This is due to RCT technology can self-produce polyvalent tandem nucleic acid prodrugs for intervention in intracellular gene expression and protein production. RNA component strands participating in de novo assembly enable RCT-based nanomaterials to exhibit good mechanical properties, biostability, and biocompatibility as delivery carriers. The biostability makes it to suitable for thermodynamically/kinetically favorable assembly, enzyme resistance and efficient expression in vivo. Controllable RCT system combined with polymers enables customizable and adjustable size, shape, structure, and stoichiometry of RNA building materials, which provide groundwork for the delivery of advanced drugs. Here, we review the assembly strategies and the dynamic regulation of RCT-based nanomaterials, summarize its functional properties referring to the bottom-up design philosophy, and describe its advancements in tumor gene therapy, synergistic chemotherapy, and immunotherapy. Last, we elaborate on the unique and practical value of RCT-based nanomaterials, namely "self-production and self-sale", and their potential challenges in nanotechnology, material science and biomedicine.
Collapse
Affiliation(s)
- Xuan Ma
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
6
|
Kim D, Han S, Ji Y, Moon S, Nam H, Lee JB. Multimeric RNAs for efficient RNA-based therapeutics and vaccines. J Control Release 2022; 345:770-785. [PMID: 35367477 PMCID: PMC8970614 DOI: 10.1016/j.jconrel.2022.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
Abstract
There has been a growing interest in RNA therapeutics globally, and much progress has been made in this area, which has been further accelerated by the clinical applications of RNA-based vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Following these successful clinical trials, various technologies have been developed to improve the efficacy of RNA-based drugs. Multimerization of RNA therapeutics is one of the most attractive approaches to ensure high stability, high efficacy, and prolonged action of RNA-based drugs. In this review, we offer an overview of the representative approaches for generating repetitive functional RNAs by chemical conjugation, structural self-assembly, enzymatic elongation, and self-amplification. The therapeutic and vaccine applications of engineered multimeric RNAs in various diseases have also been summarized. By outlining the current status of multimeric RNAs, the potential of multimeric RNA as a promising treatment strategy is highlighted.
Collapse
Affiliation(s)
- Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Yoonbin Ji
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Hyangsu Nam
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea.
| |
Collapse
|
7
|
Chen K, Zhang Y, Zhu L, Chu H, Huang K, Shao X, Asakiya C, Huang K, Xu W. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. J Control Release 2021; 341:869-891. [PMID: 34952045 DOI: 10.1016/j.jconrel.2021.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Over the past few decades, rapid advances of nucleic acid nanotechnology always drive the development of nanoassemblies with programmable design, powerful functionality, excellent biocompatibility and outstanding biosafety. Nowadays, nucleic acid-based self-assembling nanocarriers (NASNs) play an increasingly greater role in the research and development in biomedical studies, particularly in drug delivery, release and targeting. In this review, NASNs are systematically summarized the strategies cooperated with their broad applications in drug delivery. We first discuss the self-assembling methods of nanocarriers comprised of DNA, RNA and composite materials, and summarize various categories of targeting media, including aptamers, small molecule ligands and proteins. Furthermore, drug release strategies by smart-responding multiple kinds of stimuli are explained, and various applications of NASNs in drug delivery are discussed, including protein drugs, nucleic acid drugs, small molecule drugs and nanodrugs. Lastly, we propose limitations and potential of NASNs in the future development, and expect that NASNs enable facilitate the development of new-generation drug vectors to assist in solving the growing demands on disease diagnosis and therapy or other biomedicine-related applications in the real world.
Collapse
Affiliation(s)
- Keren Chen
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Yangzi Zhang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Huashuo Chu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Xiangli Shao
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Charles Asakiya
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China.
| | - Wentao Xu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China.
| |
Collapse
|
8
|
Kim KR, Kim J, Mao C, Ahn DR. Kissing loop-mediated fabrication of RNA nanoparticles and their potential as cellular and in vivo siRNA delivery platforms. Biomater Sci 2021; 9:8148-8152. [PMID: 34755728 DOI: 10.1039/d1bm01440d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe an efficient method to condense RNAs into tightly packed RNA nanoparticles (RNPs) for biomedical applications without hydrophobic or cationic agents. We embedded kissing loops and siRNA in the RNAs to constrain the size of RNPs to ca. 100 nm, making them suitable not only for cellular uptake but also for passive tumor accumulation. The resulting RNPs were efficiently internalized into cells and downregulated the target gene of siRNAs. When intravenously injected into tumor-bearing mice, RNPs could also accumulate in the tumor. The reported fabrication method could be readily adopted as a platform to prepare RNPs for in vitro and in vivo delivery of bioactive RNAs.
Collapse
Affiliation(s)
- Kyoung-Ran Kim
- Center for Theragnosis, Biomedical Research Research Division, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Junghyun Kim
- Center for Theragnosis, Biomedical Research Research Division, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Dae-Ro Ahn
- Center for Theragnosis, Biomedical Research Research Division, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea. .,Division of Biomedical Science and Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
9
|
Xu L, Duan J, Chen J, Ding S, Cheng W. Recent advances in rolling circle amplification-based biosensing strategies-A review. Anal Chim Acta 2020; 1148:238187. [PMID: 33516384 DOI: 10.1016/j.aca.2020.12.062] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023]
Abstract
Rolling circle amplification (RCA) is an efficient enzymatic isothermal reaction that using circular probe as a template to generate long tandem single-stranded DNA or RNA products under the initiation of short DNA or RNA primers. As a simplified derivative of natural rolling circle replication which synthesizes copies of circular nucleic acids molecules such as plasmids, RCA amplifies the circular template rapidly without thermal cycling and finds various applications in molecular biology. Compared with other amplification strategies, RCA has many obvious advantages. Firstly, because of the strict complementarity required in ligation of a padlock probe, it endows the RCA reaction with high specificity and can even be utilized to distinguish single base mismatches. Secondly, through the introduction of multiple primers, exponential amplification can be achieved easily and leads to a good sensitivity. Thirdly, RCA products can be customized by manipulating circular templates to generate functional nucleic acids such as aptamer, DNAzymes and restriction enzyme sites. Moreover, the RCA has good biocompatibility and is especially suitable for in situ detection. Therefore, RCA has attracted considerable attention as an efficient and potential tool for highly sensitive detection of biomarkers. Herein, we comprehensively introduce the fundamental principles of RCA technology, summarize it from three aspects including initiation mode, amplification mode and signal output mode, and discuss the recent application of RCA-based biosensor in this review.
Collapse
Affiliation(s)
- Lulu Xu
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiaxin Duan
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
10
|
Carli GJD, Rotela AT, Lubini G, Contiliani DF, Candia NB, Depintor TS, Abreu FCPD, Simões ZLP, Ríos DF, Pereira TC. SSD - a free software for designing multimeric mono-, bi- and trivalent shRNAs. Genet Mol Biol 2020; 43:e20190300. [PMID: 32141472 PMCID: PMC7197978 DOI: 10.1590/1678-4685-gmb-2019-0300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
RNA interference (RNAi) is a powerful gene silencing technology, widely used in
analyses of reverse genetics, development of therapeutic strategies and
generation of biotechnological products. Here we present a free software tool
for the rational design of RNAi effectors, named siRNA and shRNA designer (SSD).
SSD incorporates our previously developed software Strand Analysis to construct
template DNAs amenable for the large scale production of mono-, bi- and
trivalent multimeric shRNAs, via in vitro rolling circle
transcription. We tested SSD by creating a trivalent multimeric shRNA against
the vitellogenin gene of Apis mellifera. RT-qPCR analysis
revealed that our molecule promoted a decrease in more than 50% of the target
mRNA, in a dose-dependent manner, when compared to the control group. Thus, SSD
software allows the easy design of multimeric shRNAs, for single or multiple
simultaneous knockdowns, which is especially interesting for studies involving
large amounts of double-stranded molecules.
Collapse
Affiliation(s)
- Gabriel José de Carli
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Abdon Troche Rotela
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, San Lorenzo, Paraguay.,Universidad Nacional de Asunción, Facultad Politécnica, San Lorenzo, Paraguay
| | - Greice Lubini
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Danyel Fernandes Contiliani
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Nidia Benítez Candia
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, San Lorenzo, Paraguay
| | - Thiago S Depintor
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Fabiano Carlos Pinto de Abreu
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Zilá Luz Paulino Simões
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Danilo Fernández Ríos
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, San Lorenzo, Paraguay
| | - Tiago Campos Pereira
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Wang T, Hong S, Luo Y, Lv H, Zhang Y, Pei R. Self-Assembled saRNA Delivery System Based on Rolling Circle Transcription for Aptamer-Targeting Cancer Therapy. ACS APPLIED BIO MATERIALS 2019; 2:4737-4746. [DOI: 10.1021/acsabm.9b00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tengfei Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanni Hong
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yu Luo
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Haiyin Lv
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
12
|
Li J, Lin L, Yu J, Zhai S, Liu G, Tian L. Fabrication and Biomedical Applications of “Polymer-Like” Nucleic Acids Enzymatically Produced by Rolling Circle Amplification. ACS APPLIED BIO MATERIALS 2019; 2:4106-4120. [DOI: 10.1021/acsabm.9b00622] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Shiyao Zhai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Guoyuan Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
13
|
Nam H, Ku SH, Yoon HY, Kim K, Kwon IC, Kim SH, Lee JB. Enhancing Systemic Delivery of Enzymatically Generated RNAi Nanocomplexes for Cancer Therapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hyangsu Nam
- Department of Chemical EngineeringUniversity of Seoul Seoul 02504 South Korea
| | - Sook Hee Ku
- Mechatronics Technology Convergence R&D GroupKorea Institute of Industrial Technology (KITECH) Daegu 42990 South Korea
| | - Hong Yeol Yoon
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST) Seoul 02792 South Korea
| | - Kwangmeyung Kim
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST) Seoul 02792 South Korea
| | - Ick Chan Kwon
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST) Seoul 02792 South Korea
| | - Sun Hwa Kim
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST) Seoul 02792 South Korea
| | - Jong Bum Lee
- Department of Chemical EngineeringUniversity of Seoul Seoul 02504 South Korea
| |
Collapse
|
14
|
Wu C, Li J, Wang W, Hammond PT. Rationally Designed Polycationic Carriers for Potent Polymeric siRNA-Mediated Gene Silencing. ACS NANO 2018; 12:6504-6514. [PMID: 29944833 PMCID: PMC6152829 DOI: 10.1021/acsnano.7b08777] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The delivery of small interfering RNA (siRNA) remains a major hurdle for the clinical translation of RNA interference (RNAi) therapeutics. Because of its low valency and rigid nature, siRNA typically requires high excesses of cationic delivery materials to package it stably and deliver it to the cytoplasm of target cells, resulting in high toxicities and inefficient gene silencing in vivo. To address these challenges, we pair a polymeric form of siRNA, p-shRNA, with optimized biodegradable polycations to form stable complexes that induce far more potent gene silencing than with siRNA complexes. Furthermore, we unveil a set of design rules governing p-shRNA delivery, using degradable polycations containing hydrophobic and stabilizing polyethylene glycol domains that enable both stable condensation and efficient release inside cells. We demonstrate the therapeutic potential of this approach by silencing the oncogene STAT3 in a well-established B16F10 mouse melanoma model to significantly prolong survival. By blending nucleic acid engineering and polymer design, our system provides a potentially translatable platform for RNAi-based therapies.
Collapse
Affiliation(s)
- Connie Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiahe Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wade Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence: David H. Koch Professor of Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
15
|
Cheng H, Hong S, Wang Z, Sun N, Wang T, Zhang Y, Chen H, Pei R. Self-assembled RNAi nanoflowers via rolling circle transcription for aptamer-targeted siRNA delivery. J Mater Chem B 2018; 6:4638-4644. [PMID: 32254408 DOI: 10.1039/c8tb00758f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To deliver siRNA efficiently, prevailing conventional lipid or polymer encapsulation often needs multi-step compounding methods, which may inevitably introduce cationic or other components and may lead to cytotoxicity or an immune response. Herein, we present a novel enzymatic synthetic approach to produce tumor-targetable RNAi nanoflowers. The RNAi nanoflowers are mainly composed of multiple tandem copies of siRNA precursors by rolling circle transcription (RCT), and produce large amounts of siRNA to silence Bcl-2 gene expression after cellular uptake, which can overcome the problem of low loading capacity. In particular, the RNAi microspheres (RNAi-MS) were condensed into nanosized complexes (RNAi nanospheres, RNAi-NS) by cholesterol-modified DNA strands without the assistance of polycationic agents. RNAi-NS are entirely composed of nucleic acid, giving them lower cytotoxicity and immunogenicity, which can be caused by synthetic polycationic reagents. In addition, the RNAi nanoflowers can also integrate DNA aptamers that bind specifically to target membrane proteins for cell-targeting. Therefore, thousands of copies of siRNA will be delivered to cells specifically, and this RNAi nanoflower system will have great potential for siRNA delivery and biomedical applications.
Collapse
Affiliation(s)
- Hui Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim H, Kim D, Jeong J, Jeon H, Lee JB. Size-Controllable Enzymatic Synthesis of Short Hairpin RNA Nanoparticles by Controlling the Rate of RNA Polymerization. Polymers (Basel) 2018; 10:polym10060589. [PMID: 30966623 PMCID: PMC6403749 DOI: 10.3390/polym10060589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
Thanks to a wide range of biological functions of RNA, and advancements in nanotechnology, RNA nanotechnology has developed in multiple ways for RNA-based therapeutics. In particular, among RNA engineering techniques, enzymatic self-assembly of RNA structures has gained great attention for its high packing density of RNA, with a low cost and one-pot synthetic process. However, manipulation of the overall size of particles, especially a reduction in size, has not been studied in depth. Here, we reported the enzymatic self-assembly of short hairpin RNA particles for the downregulation of target genes, and a rational approach to the manipulation of the resultant particle size. This is the first report of the size-controllable enzymatic self-assembly of short hairpin RNA nanoparticles. While keeping all the benefits of an enzymatic approach, the overall size of the RNA particles was controlled on a scale of 2 μm to 100 nm, falling within the therapeutically applicable size range.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Korea.
| | - Dajeong Kim
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Korea.
| | - Jaepil Jeong
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Korea.
| | - Hyunsu Jeon
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Korea.
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Korea.
| |
Collapse
|
17
|
Kim H, Lee E, Kang YY, Song J, Mok H, Lee JB. Enzymatically Produced miR34a Nanoparticles for Enhanced Antiproliferation Activity. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyejin Kim
- Department of Chemical Engineering; University of Seoul; Seoul 02504 Republic of Korea
| | - Eunju Lee
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 Republic of Korea
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 Republic of Korea
| | - Jihyun Song
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 Republic of Korea
| | - Jong Bum Lee
- Department of Chemical Engineering; University of Seoul; Seoul 02504 Republic of Korea
| |
Collapse
|
18
|
Han S, Kim H, Lee JB. Library siRNA-generating RNA nanosponges for gene silencing by complementary rolling circle transcription. Sci Rep 2017; 7:10005. [PMID: 28855687 PMCID: PMC5577100 DOI: 10.1038/s41598-017-10219-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/04/2017] [Indexed: 12/23/2022] Open
Abstract
Since the discovery of RNA interference (RNAi), small interfering RNA (siRNA) has been powerful tools for gene downregulation in biomedical applications. Despite the outstanding efficacy of siRNA, the development of a therapeutic delivery system remains a challenge owing to the instability of RNA. In this study, we describe a new method for the design of siRNA-generating nanosponges by using complementary rolling circle transcription (cRCT), a technique that requires two complementary circular DNA. The sequences of one of the circular DNA are designed to have complete complementarity to the target mRNA resulting in double stranded RNA (dsRNA) that can be digested to siRNA by cellular Dicer activity. This siRNA design, called 'library siRNA', could be universally applied to fabricate RNA nanosponges targeting any known mRNA sequence.
Collapse
Affiliation(s)
- Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul, 02504, Republic of Korea
| | - Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul, 02504, Republic of Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
19
|
Lee JH, Ku SH, Kim MJ, Lee SJ, Kim HC, Kim K, Kim SH, Kwon IC. Rolling circle transcription-based polymeric siRNA nanoparticles for tumor-targeted delivery. J Control Release 2017; 263:29-38. [PMID: 28373128 DOI: 10.1016/j.jconrel.2017.03.390] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/09/2017] [Accepted: 03/26/2017] [Indexed: 02/06/2023]
Abstract
RNA, one of the major biological macromolecules, has been considered as an attractive building material for bottom-up fabrication of nanostructures in the past few decades due to advancements in RNA biology, RNA chemistry and RNA nanotechnology. Most recently, an isothermal enzymatic nucleic acid amplification method termed rolling circle transcription (RCT), which achieves a large-scale synthesis of RNA nanostructures, has emerged as one of fascinating techniques for RNAi-based therapies. Herein, we proposed a newly designed RCT method for synthesis of polymeric siRNA nanoflower, referred to 'RCT and annealing-generated polymeric siRNA (RAPSI)': (1) Amplification of the antisense strand of siRNA via RCT process and (2) annealing of chimeric sense strand containing 3'-terminal DNA nucleotides that provide enzyme cleavage sites. To verify its potentials in RNAi-based cancer therapy, the newly designed RAPSI nanoflower was further complexed with glycol chitosan (GC) derivatives, and systemically delivered to PC-3 xenograft tumors. The resultant RAPSI nanoparticles exhibited the improved particle stability against polyanion competition or nuclease attack. When the RAPSI nanoparticles reached to the cytoplasmic region, active mono siRNA was liberated and significantly down-regulated the expression of target VEGF gene in PC-3 cells. Excellent tumor-homing efficacy and anti-tumor effects of the RAPSI nanoparticles were further demonstrated. Overall, the proposed RCT-based polymeric siRNA nanoflower formulation can provide a new platform technology that allows further functional modifications via an advanced annealing method for systemic cancer RNAi therapy.
Collapse
Affiliation(s)
- Jae Hyeop Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Sook Hee Ku
- Technology Convergence R&D Group, Korea Institute of Industrial Technology, Daegu, Republic of Korea
| | - Min Ju Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - So Jin Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyun Cheol Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Seyhan AA. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences. MOLECULAR BIOSYSTEMS 2016; 12:295-312. [PMID: 26617199 DOI: 10.1039/c5mb00506j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Knockdown of single or multiple gene targets by RNA interference (RNAi) is necessary to overcome escape mutants or isoform redundancy. It is also necessary to use multiple RNAi reagents to knockdown multiple targets. It is also desirable to express a transgene or positive regulatory elements and inhibit a target gene in a coordinated fashion. This study reports a flexible multiplexed RNAi and transgene platform using endogenous intronic primary microRNAs (pri-miRNAs) as a scaffold located in the green fluorescent protein (GFP) as a model for any functional transgene. The multiplexed intronic miRNA - GFP transgene platform was designed to co-express multiple small RNAs within the polycistronic cluster from a Pol II promoter at more moderate levels to reduce potential vector toxicity. The native intronic miRNAs are co-transcribed with a precursor GFP mRNA as a single transcript and presumably cleaved out of the precursor-(pre) mRNA by the RNA splicing machinery, spliceosome. The spliced intron with miRNA hairpins will be further processed into mature miRNAs or small interfering RNAs (siRNAs) capable of triggering RNAi effects, while the ligated exons become a mature messenger RNA for the translation of the functional GFP protein. Data show that this approach led to robust RNAi-mediated silencing of multiple Renilla Luciferase (R-Luc)-tagged target genes and coordinated expression of functional GFP from a single transcript in transiently transfected HeLa cells. The results demonstrated that this design facilitates the coordinated expression of all mature miRNAs either as individual miRNAs or as multiple miRNAs and the associated protein. The data suggest that, it is possible to simultaneously deliver multiple negative (miRNA or shRNA) and positive (transgene) regulatory elements. Because many cellular processes require simultaneous repression and activation of downstream pathways, this approach offers a platform technology to achieve that dual manipulation efficiently. In conclusion, the current platform technology offers a miRNA/shRNA scaffold for the expression of combinations of native or synthetic intronic miRNAs as singletons or polycistrons for combinatorial multiplexed RNAi silencing or RNA-based gene therapy applications.
Collapse
Affiliation(s)
- Attila A Seyhan
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 E. Princeton, St., Orlando, FL 32804, USA. and The Chemical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Jeong EH, Kim H, Jang B, Cho H, Ryu J, Kim B, Park Y, Kim J, Lee JB, Lee H. Technological development of structural DNA/RNA-based RNAi systems and their applications. Adv Drug Deliv Rev 2016; 104:29-43. [PMID: 26494399 DOI: 10.1016/j.addr.2015.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 01/04/2023]
Abstract
RNA interference (RNAi)-based gene therapy has drawn tremendous attention due to its highly specific gene regulation by selective degradation of any target mRNA. There have been multiple reports regarding the development of various cationic materials for efficient siRNA delivery, however, many studies still suffer from the conventional delivery problems such as suboptimal transfection performance, a lack of tissue specificity, and potential cytotoxicity. Despite the huge therapeutic potential of siRNAs, conventional gene carriers have failed to guarantee successful gene silencing in vivo, thus not warranting clinical trials. The relatively short double-stranded structure of siRNAs has resulted in uncompromising delivery formulations, as well as low transfection efficiency, compared with the conventional nucleic acid drugs such as plasmid DNAs. Recent developments in structural siRNA and RNAi nanotechnology have enabled more refined and reliable in vivo gene silencing with multiple advantages over naked siRNAs. This review focuses on recent progress in the development of structural DNA/RNA-based RNAi systems and their potential therapeutic applications. In addition, an extensive list of prior reports on various RNAi systems is provided and categorized by their distinctive molecular characters.
Collapse
|
22
|
Li Z, Lau C, Lu J. Effect of the Concentration Difference between Magnesium Ions and Total Ribonucleotide Triphosphates in Governing the Specificity of T7 RNA Polymerase-Based Rolling Circle Transcription for Quantitative Detection. Anal Chem 2016; 88:6078-83. [PMID: 27167591 DOI: 10.1021/acs.analchem.6b01460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
T7 RNA polymerase-based rolling circle transcription (RCT) is a more powerful tool than universal runoff transcription and traditional DNA polymerase-based rolling circle amplification (RCA). However, RCT is rarely employed in quantitative detection due to its poor specificity for small single-stranded DNA (ssDNA), which can be transcribed efficiently by T7 RNA polymerase even without a promoter. Herein we show that the concentration difference between Mg(2+) and total ribonucleotide triphosphates (rNTPs) radically governs the specificity of T7 RNA polymerase. Only when the total rNTP concentration is 9 mM greater than the Mg(2+) concentration can T7 RNA polymerase transcribe ssDNA specifically and efficiently. This knowledge improves our traditional understanding of T7 RNA polymerase and makes convenient application of RCT in quantitative detection possible. Subsequently, an RCT-based label-free chemiluminescence method for microRNA detection was designed to test the capability of this sensing platform. Using this simple method, microRNA as low as 20 amol could be quantitatively detected. The results reveal that the developed sensing platform holds great potential for further applications in the quantitative detection of a variety of targets.
Collapse
Affiliation(s)
- Zhiyan Li
- School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, China
| | - Choiwan Lau
- School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, China
| | - Jianzhong Lu
- School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
23
|
Engineering Periodic shRNA for Enhanced Silencing Efficacy. Mol Ther 2016; 24:1070-1077. [PMID: 27053374 DOI: 10.1038/mt.2016.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/26/2016] [Indexed: 12/27/2022] Open
Abstract
RNA interference (RNAi) provides a versatile therapeutic approach via silencing of specific genes, particularly undruggable targets in cancer and other diseases. However, challenges in the delivery of small interfering RNA (siRNA) have hampered clinical translation. Polymeric or periodic short hairpin RNAs (p-shRNAs)-synthesized by enzymatic amplification of circular DNA-are a recent development that can potentially address these delivery barriers by showing improved stability and complexation to enable nanoparticle packaging. Here, we modify these biomacromolecules via structural and sequence engineering coupled with selective enzymatic digestion to generate an open-ended p-shRNA (op-shRNA) that is cleaved over ten times more efficiently to yield siRNA. The op-shRNA induces considerably greater gene silencing than p-shRNA in multiple cancer cell lines up to 9 days. Furthermore, its high valency and flexibility dramatically improve complexation with a low molecular weight polycation compared to monomeric siRNA. Thus, op-shRNA provides an RNAi platform that can potentially be packaged and efficiently delivered to disease sites with higher therapeutic efficacy.
Collapse
|
24
|
Park Y, Kim H, Lee JB. Self-assembled DNA-Guided RNA Nanovector via Step-wise Dual Enzyme Polymerization (SDEP) for Carrier-free siRNA Delivery. ACS Biomater Sci Eng 2016; 2:616-624. [DOI: 10.1021/acsbiomaterials.5b00554] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yongkuk Park
- Department
of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Hyejin Kim
- Department
of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jong Bum Lee
- Department
of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| |
Collapse
|
25
|
Kim H, Park Y, Kim J, Jeong J, Han S, Lee JS, Lee JB. Nucleic Acid Engineering: RNA Following the Trail of DNA. ACS COMBINATORIAL SCIENCE 2016; 18:87-99. [PMID: 26735596 DOI: 10.1021/acscombsci.5b00108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The self-assembly feature of the naturally occurring biopolymer, DNA, has fascinated researchers in the fields of materials science and bioengineering. With the improved understanding of the chemical and structural nature of DNA, DNA-based constructs have been designed and fabricated from two-dimensional arbitrary shapes to reconfigurable three-dimensional nanodevices. Although DNA has been used successfully as a building block in a finely organized and controlled manner, its applications need to be explored. Hence, with the myriad of biological functions, RNA has recently attracted considerable attention to further the application of nucleic acid-based structures. This Review categorizes different approaches of engineering nucleic acid-based structures and introduces the concepts, principles, and applications of each technique, focusing on how DNA engineering is applied as a guide to RNA engineering.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Yongkuk Park
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jieun Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jaepil Jeong
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jae Sung Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| |
Collapse
|
26
|
Shopsowitz KE, Wu C, Liu G, Dreaden EC, Hammond PT. Periodic-shRNA molecules are capable of gene silencing, cytotoxicity and innate immune activation in cancer cells. Nucleic Acids Res 2015; 44:545-57. [PMID: 26704983 PMCID: PMC4737167 DOI: 10.1093/nar/gkv1488] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/04/2015] [Indexed: 12/24/2022] Open
Abstract
Large dsRNA molecules can cause potent cytotoxic and immunostimulatory effects through the activation of pattern recognition receptors; however, synthetic versions of these molecules are mostly limited to simple sequences like poly-I:C and poly-A:U. Here we show that large RNA molecules generated by rolling circle transcription fold into periodic-shRNA (p-shRNA) structures and cause potent cytotoxicity and gene silencing when delivered to cancer cells. We determined structural requirements for the dumbbell templates used to synthesize p-shRNA, and showed that these molecules likely adopt a co-transcriptionally folded structure. The cytotoxicity of p-shRNA was robustly observed across four different cancer cell lines using two different delivery systems. Despite having a considerably different folded structure than conventional dsRNA, the cytotoxicity of p-shRNA was either equal to or substantially greater than that of poly-I:C depending on the delivery vehicle. Furthermore, p-shRNA caused greater NF-κB activation in SKOV3 cells compared to poly-I:C, indicating that it is a powerful activator of innate immunity. The tuneable sequence and combined gene silencing, immunostimulatory and cytotoxic capacity of p-shRNA make it an attractive platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Kevin E Shopsowitz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Connie Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gina Liu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erik C Dreaden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
An S, Jiang X, Shi J, He X, Li J, Guo Y, Zhang Y, Ma H, Lu Y, Jiang C. Single-component self-assembled RNAi nanoparticles functionalized with tumor-targeting iNGR delivering abundant siRNA for efficient glioma therapy. Biomaterials 2015; 53:330-40. [DOI: 10.1016/j.biomaterials.2015.02.084] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 11/26/2022]
|
28
|
Wang X, Li C, Gao X, Wang J, Liang X. Preparation of Small RNAs Using Rolling Circle Transcription and Site-Specific RNA Disconnection. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e215. [PMID: 25584899 PMCID: PMC4272408 DOI: 10.1038/mtna.2014.66] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/17/2014] [Indexed: 01/22/2023]
Abstract
A facile and robust RNA preparation protocol was developed by combining rolling circle transcription (RCT) with RNA cleavage by RNase H. Circular DNA with a complementary sequence was used as the template for promoter-free transcription. With the aid of a 2′-O-methylated DNA, the RCT-generated tandem repeats of the desired RNA sequence were disconnected at the exact end-to-end position to harvest the desired RNA oligomers. Compared with the template DNA, more than 4 × 103 times the amount of small RNA products were obtained when modest cleavage was carried out during transcription. Large amounts of RNA oligomers could easily be obtained by simply increasing the reaction volume.
Collapse
Affiliation(s)
- Xingyu Wang
- College of Food Science and Engineering, Ocean University of China, Shandong, China
| | - Can Li
- College of Food Science and Engineering, Ocean University of China, Shandong, China
| | - Xiaomeng Gao
- College of Food Science and Engineering, Ocean University of China, Shandong, China
| | - Jing Wang
- College of Food Science and Engineering, Ocean University of China, Shandong, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Shandong, China
| |
Collapse
|
29
|
Colombo S, Zeng X, Ragelle H, Foged C. Complexity in the therapeutic delivery of RNAi medicines: an analytical challenge. Expert Opin Drug Deliv 2014; 11:1481-95. [DOI: 10.1517/17425247.2014.927439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Shopsowitz KE, Roh YH, Deng ZJ, Morton SW, Hammond PT. RNAi-microsponges form through self-assembly of the organic and inorganic products of transcription. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1623-33. [PMID: 24851252 PMCID: PMC4031615 DOI: 10.1002/smll.201302676] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inorganic nanostructures have been used extensively to package nucleic acids into forms useful for therapeutic applications. Here we report that the two products of transcription, RNA and inorganic pyrophosphate, can self-assemble to form composite microsponge structures composed of nanocrystalline magnesium pyrophosphate sheets (Mg₂P₂O₇•3.5H₂O) with RNA adsorbed to their surfaces. The microsponge particles contain high loadings of RNA (15-21 wt.%) that are protected from degradation and can be obtained through a rolling circle mechanism as large concatemers capable of mediating RNAi. The morphology of the RNAi microsponges is influenced by the time-course of the transcription reaction and interactions between RNA and the inorganic phase. Previous work demonstrated that polycations can be used to condense RNAi microsponges into nanoparticles capable of efficient transfection with low toxicity. Our new findings suggest that the formation of these nanoparticles is mediated by the gradual dissolution of magnesium pyrophosphate that occurs in the presence of polycations. The simple one-pot approach for assembling RNAi microsponges along with their unique properties could make them useful for RNA-based therapeutics.
Collapse
Affiliation(s)
- Kevin E. Shopsowitz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Rm 76-553, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Rm 76-553, Cambridge, MA 02139, USA
| | - Young Hoon Roh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Rm 76-553, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Rm 76-553, Cambridge, MA 02139, USA
| | - Zhou J. Deng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Rm 76-553, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Rm 76-553, Cambridge, MA 02139, USA
| | - Stephen W. Morton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Rm 76-553, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Rm 76-553, Cambridge, MA 02139, USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Rm 76-553, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Rm 76-553, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Lee SJ, Son S, Yhee JY, Choi K, Kwon IC, Kim SH, Kim K. Structural modification of siRNA for efficient gene silencing. Biotechnol Adv 2012; 31:491-503. [PMID: 22985697 DOI: 10.1016/j.biotechadv.2012.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 11/16/2022]
Abstract
Small interfering RNA (siRNA) holds a great promise for the future of genomic medicine because of its highly sequence-specific gene silencing and universality in therapeutic target. The medical use of siRNA, however, has been severely hampered by the inherent physico-chemical properties of siRNA itself, such as low charge density, high structural stiffness and rapid enzymatic degradation; therefore, the establishment of efficient and safe siRNA delivery methodology is an essential prerequisite, particularly for systemic administration. For an efficient systemic siRNA delivery, it is a critical issue to obtain small and compact siRNA polyplexes with cationic condensing reagents including cationic polymers, because the size and surface properties of the polyplexes are major determinants for achieving desirable in vivo fate. Unfortunately, synthetic siRNA is not easily condensed with cationic polymers due to its intrinsic rigid structure and low spatial charge density. Accordingly, the loose siRNA polyplexes inevitably expose siRNA to the extracellular environment during systemic circulation, resulting in low therapeutic efficiency and poor biodistribution. In this review, we highlight the innovative approaches to increase the size of siRNA via structural modification of the siRNA itself. The attempts include several methodologies such as hybridization, chemical polymerization, and micro- and nano-structurization of siRNA. Due to its increased charge density and flexibility, the structured siRNA can produce highly condensed and homogenous polyplexes compared to the classical monomeric siRNA. As a result, stable and compact siRNA polyplexes can enhance serum stability and target delivery efficiency in vivo with desirable biodistribution. The review specifically aims to provide the recent progress of structural modification of siRNA. In addition, the article also briefly and concisely explains the improved physico-chemical properties of structured siRNA with respect to stability, condensation ability and gene silencing efficiency.
Collapse
Affiliation(s)
- So Jin Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Rolling Circle Transcription of Tandem siRNA to Generate Spherulitic RNA Nanoparticles for Cell Entry. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e36. [PMID: 23344178 PMCID: PMC3437802 DOI: 10.1038/mtna.2012.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT. Self-assembled RNA interference microsponges for efficient siRNA delivery. NATURE MATERIALS 2012; 11:316-22. [PMID: 22367004 PMCID: PMC3965374 DOI: 10.1038/nmat3253] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 01/20/2012] [Indexed: 05/19/2023]
Abstract
The encapsulation and delivery of short interfering RNA (siRNA) has been realized using lipid nanoparticles, cationic complexes, inorganic nanoparticles, RNA nanoparticles and dendrimers. Still, the instability of RNA and the relatively ineffectual encapsulation process of siRNA remain critical issues towards the clinical translation of RNA as a therapeutic. Here we report the synthesis of a delivery vehicle that combines carrier and cargo: RNA interference (RNAi) polymers that self-assemble into nanoscale pleated sheets of hairpin RNA, which in turn form sponge-like microspheres. The RNAi-microsponges consist entirely of cleavable RNA strands, and are processed by the cell's RNA machinery to convert the stable hairpin RNA to siRNA only after cellular uptake, thus inherently providing protection for siRNA during delivery and transport to the cytoplasm. More than half a million copies of siRNA can be delivered to a cell with the uptake of a single RNAi-microsponge. The approach could lead to novel therapeutic routes for siRNA delivery.
Collapse
Affiliation(s)
- Jong Bum Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts 02139, USA
| | - Jinkee Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts 02139, USA
| | - Daniel K. Bonner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts 02139, USA
| | - Zhiyong Poon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Paula T. Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts 02139, USA
- Correspondence and requests for materials should be addressed to P.T.H.,
| |
Collapse
|
34
|
Seidl CI, Ryan K. Circular single-stranded synthetic DNA delivery vectors for microRNA. PLoS One 2011; 6:e16925. [PMID: 21359172 PMCID: PMC3040211 DOI: 10.1371/journal.pone.0016925] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/06/2011] [Indexed: 01/30/2023] Open
Abstract
Single-stranded (ss) circular oligodeoxynucleotides were previously found to undergo rolling circle transcription (RCT) by phage and bacterial RNA polymerases (RNAPs) into tandemly repetitive RNA multimers. Here, we redesign them to encode minimal primary miRNA mimics, with the long term aim of intracellular transcription followed by RNA processing and maturation via endogenous pathways. We describe an improved method for circularizing ss synthetic DNA for RCT by using a recently described thermostable RNA ligase, which does not require a splint oligonucleotide to juxtapose the ligating ends. In vitro transcription of four templates demonstrates that the secondary structure inherent in miRNA-encoding vectors does not impair their RCT by RNAPs previously shown to carry out RCT. A typical primary-miRNA rolling circle transcript was accurately processed by a human Drosha immunoprecipitate, indicating that if human RNAPs prove to be capable of RCT, the resulting transcripts should enter the endogenous miRNA processing pathway in human cells. Circular oligonucleotides are therefore candidate vectors for small RNA delivery in human cells, which express RNAPs related to those tested here.
Collapse
Affiliation(s)
- Christine I. Seidl
- Department of Chemistry, City College of New York, New York, New York, United States of America
| | - Kevin Ryan
- Department of Chemistry, City College of New York, New York, New York, United States of America
- The Graduate Center, City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ge Q, Ilves H, Dallas A, Kumar P, Shorenstein J, Kazakov SA, Johnston BH. Minimal-length short hairpin RNAs: the relationship of structure and RNAi activity. RNA (NEW YORK, N.Y.) 2010; 16:106-17. [PMID: 19952116 PMCID: PMC2802021 DOI: 10.1261/rna.1894510] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Small hairpin RNAs (shRNAs) are widely used in RNAi studies and typically consist of a stem of 19-29 base pairs (bp), a loop of at least 4 nucleotides (nt), and a dinucleotide overhang at the 3' end. Compared with shRNAs with 21-29 bp stems, we have found that shRNAs with 19-bp or shorter stems (sshRNAs) possess some unique structure-activity features that depend on whether the antisense strand is positioned 5' or 3' to the loop (L- or R-type sshRNAs, respectively). L sshRNAs can have IC(50)s in the very low picomolar range, and sshRNAs with nominal loop sizes of 1 or 4 nt were at least as active as those with longer loops. L sshRNAs remained highly potent even when the 3' end of the antisense strand was directly linked with the 5' end of the sense strand. In this case, the sense strand can be shorter than the antisense strand, and the loop can be formed entirely by the 3' end of the antisense strand. Monomer sshRNAs are not processed by recombinant Dicers in vitro. Although they can form dimers that are sometimes Dicer substrates, their RNAi activity is not dependent on the formation of such structures. Our findings have implications for the mechanism of action of sshRNAs, and the ability to design highly potent shRNAs with minimal length is encouraging for the prospects of the therapeutic use of direct-delivered shRNAs.
Collapse
Affiliation(s)
- Qing Ge
- SomaGenics, Inc., Santa Cruz, California 95060, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Belotserkovskii BP, Liu R, Hanawalt PC. Peptide nucleic acid (PNA) binding and its effect on in vitro transcription in friedreich's ataxia triplet repeats. Mol Carcinog 2009; 48:299-308. [PMID: 19306309 DOI: 10.1002/mc.20486] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peptide nucleic acids (PNAs) are DNA mimics in which peptide-like linkages are substituted for the phosphodiester backbone. Homopyrimidine PNAs can invade double-stranded DNA containing the homologous sequence by displacing the homopyrimidine strand from the DNA duplex and forming a PNA/DNA/PNA triplex with the complementary homopurine strand. Among biologically interesting targets for triplex-forming PNA are (GAA/CTT)(n) repeats. Expansion of these repeats results in partial inhibition of transcription in the frataxin gene, causing Friedreich's ataxia. We have studied PNA binding and its effect on T7 RNA polymerase transcription in vitro for short repeats (n = 3) and for long repeats (n = 39), placed in both possible orientations relative to the T7 promoter such that either the GAA-strand, or the CTT-strand serves as the template for transcription. In all cases PNA bound specifically and efficiently to its target sequence. For the short insert, PNA binding to the template strand caused partial transcription blockage with well-defined sites of RNA product truncation in the region of the PNA-binding sequence, whereas binding to the nontemplate strand did not block transcription. However, PNA binding to long repeats, whether in the template or the nontemplate strand, resulted in a dramatic reduction of the amount of full-length transcription product, although in the case of the nontemplate strand there were no predominant truncation sites. Biological implications of these results are discussed.
Collapse
|
37
|
Bogdanov AA. Merging molecular imaging and RNA interference: early experience in live animals. J Cell Biochem 2008; 104:1113-23. [PMID: 18247325 DOI: 10.1002/jcb.21689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapid development of non-invasive imaging techniques and imaging reporters coincided with the enthusiastic response that the introduction of RNA interference (RNAi) techniques created in the research community. Imaging in experimental animals provides quantitative or semi-quantitative information regarding the biodistribution of small interfering RNAs and the levels of gene interference (i.e., knockdown of the target mRNA) in living animals. In this review we give a brief summary of the first imaging findings that have potential for accelerating the development and testing of new approaches that explore RNAi as a method for achieving loss-of-function effects in vivo and as a promising therapeutic tool.
Collapse
Affiliation(s)
- Alexei A Bogdanov
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| |
Collapse
|
38
|
Furukawa K, Abe H, Abe N, Harada M, Tsuneda S, Ito Y. Fluorescence generation from tandem repeats of a malachite green RNA aptamer using rolling circle transcription. Bioorg Med Chem Lett 2008; 18:4562-5. [PMID: 18667307 DOI: 10.1016/j.bmcl.2008.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 11/19/2022]
Abstract
We demonstrate a generation of tandem repeats of a malachite green (MG) RNA aptamer using rolling circle transcription. To keep the higher-order structure of each aptamer on long RNA, we designed a sequence of circular DNA with a 14-base linker. T7 RNA polymerase was superior to Escherichia coli RNA polymerase in the specific transcription of the MG RNA aptamer. Finally, the generation of the fluorescence signal was confirmed from aptamer repeats with MG.
Collapse
Affiliation(s)
- Kazuhiro Furukawa
- Nano Medical Engineering Laboratory, Advanced Science Institute, RIKEN 2-1, Hirosawa, Wako-Shi, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|