1
|
Coppolino G, Celano M, Musolino M, D’Agostino M, Zicarelli M, Andreucci M, De Caro C, Russo D, Russo E, Bolignano D. Selenoprotein-P1 (SEPP1) Expression in Human Proximal Tubule Cells after Ischemia-Reperfusion Injury: An In Vitro Model. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:875. [PMID: 38929492 PMCID: PMC11205952 DOI: 10.3390/medicina60060875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Selenium deficiency represents a risk factor for the occurrence of severe diseases, such as acute kidney injury (AKI). Recently, selenoprotein-p1 (SEPP1), a selenium transporter, mainly released by the liver, has emerged as a promising plasmatic biomarker of AKI as a consequence of cardio-surgery operations. The aim of the present study was to investigate, on an in vitro model of hypoxia induced in renal tubular cells, HK-2, the effects of sodium selenite (Na2SeO3) and to evaluate the expression of SEPP1 as a marker of injury. Materials and Methods: HK-2 cells were pre-incubated with 100 nM Na2SeO3 for 24 h, and then, treated for 24 h with CoCl2 (500 µM), a chemical hypoxia inducer. The results were derived from an ROS assay, MTT, and Western blot analysis. Results: The pre-treatment determined an increase in cells' viability and a reduction in reactive oxygen species (ROS), as shown by MTT and the ROS assay. Moreover, by Western blot an increase in SEPP1 expression was observed after hypoxic injury as after adding sodium selenite. Conclusions: Our preliminary results shed light on the possible role of selenium supplementation as a means to prevent oxidative damage and to increase SEPP1 after acute kidney injury. In our in vitro model, SEPP1 emerges as a promising biomarker of kidney injury, although further studies in vivo are necessary to validate our findings.
Collapse
Affiliation(s)
- Giuseppe Coppolino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Marilena Celano
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Michela Musolino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mario D’Agostino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy
| | | | - Michele Andreucci
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Carmen De Caro
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Diego Russo
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Davide Bolignano
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Sinha I, Zhu J, Sinha R. Selective Impact of Selenium Compounds on Two Cytokine Storm Players. J Pers Med 2023; 13:1455. [PMID: 37888066 PMCID: PMC10607864 DOI: 10.3390/jpm13101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
COVID-19 patients suffer from the detrimental effects of cytokine storm and not much success has been achieved to overcome this issue. We sought to test the ability of selenium to reduce the impact of two important cytokine storm players: IL-6 and TNF-α. The effects of four selenium compounds on the secretion of these cytokines from THP-1 macrophages were evaluated in vitro following an LPS challenge. Also, the potential impact of methylseleninic acid (MSeA) on Nrf2 and IκBα was determined after a short treatment of THP-1 macrophages. MSeA was found to be the most potent selenium form among the four selenium compounds tested that reduced the levels of IL-6 and TNF-α secreted by THP-1 macrophages. In addition, an increase in Nrf2 and decrease in pIκBα in human macrophages was observed following MSeA treatment. Our data indicate that COVID-19 patients might benefit from the addition of MSeA to the standard therapy due to its ability to suppress the key players in the cytokine storm.
Collapse
Affiliation(s)
- Indu Sinha
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Junjia Zhu
- Department of Public Health Sciences, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
3
|
Gholizadeh M, Khalili A, Roodi PB, Saeedy SAG, Najafi S, Keshavarz Mohammadian M, Djafarian K. Selenium supplementation decreases CRP and IL-6 and increases TNF-alpha: A systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol 2023; 79:127199. [PMID: 37257335 DOI: 10.1016/j.jtemb.2023.127199] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Inflammation is an initiating cause of infectious and non-infectious diseases. Studies have shown that selenium (Se) has anti-inflammatory effects. However, its' effects on serum c-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) plasma concentrations are equivocal. Therefore, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs), evaluating the effects of per oral (PO) and intravenous (IV) Se supplementation on CRP, TNF-α, and IL-6. A systematic search was conducted using four databases, including PubMed, Google Scholar, Cochrane Library, and Scopus to find randomized clinical trials, published up to April 2023. From 19476 papers, after screening and removing duplicate articles, 24 studies were analyzed in the present meta-analysis. In the pooled analysis, PO Se administration showed no significant effect on CRP (WMD: 0.12; 95 % CI -0.11, 0.38; P-value= 0.30). However, IV Se supplementation had a significant negative association with CRP concentration (-2.24; 95 % CI: -4.24, -0.24; p-value: 0.02). Se administration had no significant association with TNF-α plasma concentration (9.64, 95 % CI: -0.59, 19.88, p-value= 0.06; and heterogeneity: 98 %). However, a significant positive association was present between Se and plasma TNF-α concentrations (0.15, 95 % CI: 0.14, 0.17, P-value<0.0001). Moreover, Se supplementation had a significant negative correlation with IL-6 plasma concentration in PO (-0.54; 95 % CI: -1.61, 0.52; P-value = 0.31) and IV administrations (-4.77; 95 % CI: -7.61, -1.93; P-value<0.0001), respectively. This study demonstrated that IV Se administration reduced CRP and IL-6 plasma concentrations. Conversely, IV Se supplementation increased TNF-α plasma concentration. It is evident that further, well-controlled clinical trials are required.
Collapse
Affiliation(s)
- Mohammad Gholizadeh
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Industries, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atefeh Khalili
- Department of Food Sciences and Technology, Branch, Islamic Azad University, Gonbad Kavoos, Golestan, Iran
| | - Poorya Basafa Roodi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Samaneh Najafi
- Department of Medical Sciences, Islamic Azad University, Arak Branch, Arak, Iran
| | | | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical sciences, Tehran, Iran.
| |
Collapse
|
4
|
Sinha I, Fogle RL, Gulfidan G, Stanley AE, Walter V, Hollenbeak CS, Arga KY, Sinha R. Potential Early Markers for Breast Cancer: A Proteomic Approach Comparing Saliva and Serum Samples in a Pilot Study. Int J Mol Sci 2023; 24:4164. [PMID: 36835577 PMCID: PMC9966955 DOI: 10.3390/ijms24044164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the second leading cause of death for women in the United States, and early detection could offer patients the opportunity to receive early intervention. The current methods of diagnosis rely on mammograms and have relatively high rates of false positivity, causing anxiety in patients. We sought to identify protein markers in saliva and serum for early detection of breast cancer. A rigorous analysis was performed for individual saliva and serum samples from women without breast disease, and women diagnosed with benign or malignant breast disease, using isobaric tags for relative and absolute quantitation (iTRAQ) technique, and employing a random effects model. A total of 591 and 371 proteins were identified in saliva and serum samples from the same individuals, respectively. The differentially expressed proteins were mainly involved in exocytosis, secretion, immune response, neutrophil-mediated immunity and cytokine-mediated signaling pathway. Using a network biology approach, significantly expressed proteins in both biological fluids were evaluated for protein-protein interaction networks and further analyzed for these being potential biomarkers in breast cancer diagnosis and prognosis. Our systems approach illustrates a feasible platform for investigating the responsive proteomic profile in benign and malignant breast disease using saliva and serum from the same women.
Collapse
Affiliation(s)
- Indu Sinha
- Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Rachel L Fogle
- Environmental Science and Sustainability Program, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, Istanbul 34854, Turkey
| | - Anne E Stanley
- Mass Spectrometry Core, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Vonn Walter
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Christopher S Hollenbeak
- Department of Health Policy and Administration, The Pennsylvania State University, University Park, State College, PA 16801, USA
| | - Kazim Y Arga
- Department of Bioengineering, Marmara University, Istanbul 34854, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34854, Turkey
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Zhu H, Bierla K, Jin X, Szpunar J, Chen D, Lobinski R. Identification of γ-Glutamyl-Selenomethionine as the Principal Selenium Metabolite in a Selenium-Enriched Probiotic, Bifidobacterium longum, by Two-Dimensional HPLC-ICP MS and HPLC-ESI Orbitrap MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6726-6736. [PMID: 35607941 DOI: 10.1021/acs.jafc.2c01409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selenium (Se)-enriched probiotics are potential sources of organic Se in the human diet, but their application in food is debated because most selenized probiotics and their metabolites are not well-characterized. We analyzed a Se-enriched probiotic, Bifidobacterium longum DD98, to unveil its Se metabolite profiles by two-dimensional high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP MS) and HPLC-electrospray ionization Orbitrap MS. A major Se metabolite was identified as gamma-glutamyl-selenomethionine (γ-Glu-SeMet), which accounted for 42.5 ± 3.4% of water-soluble Se. Most of the remaining Se was present as SeMet (35.2 ± 0.6%) in a free or protein-bound form. In addition, 11 minor Se metabolites were identified, eight of which had not been reported before in probiotics. Six of the identified compounds contained γ-Glu-SeMet as the core structure, constituting a γ-Glu-SeMet family. This study demonstrates the presence of γ-Glu-SeMet in a probiotic, showing a different selenite metabolite pathway from that of Se-enriched yeast, and it offers an alternative and potentially attractive source of organic Se for food and feed supplementation.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Université de Pau, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials, IPREM-UMR5254, Hélioparc, Pau 64053, France
| | - Katarzyna Bierla
- Université de Pau, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials, IPREM-UMR5254, Hélioparc, Pau 64053, France
| | - Xueli Jin
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Joanna Szpunar
- Université de Pau, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials, IPREM-UMR5254, Hélioparc, Pau 64053, France
| | - Daijie Chen
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Ryszard Lobinski
- Université de Pau, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials, IPREM-UMR5254, Hélioparc, Pau 64053, France
- Chair of Analytical Chemistry, Warsaw University of Technology, Warsaw 00-664, Poland
| |
Collapse
|
6
|
Gawor A, Ruszczyńska A, Konopka A, Wryk G, Czauderna M, Bulska E. Label-Free Mass Spectrometry-Based Proteomic Analysis in Lamb Tissues after Fish Oil, Carnosic Acid, and Inorganic Selenium Supplementation. Animals (Basel) 2022; 12:ani12111428. [PMID: 35681892 PMCID: PMC9179315 DOI: 10.3390/ani12111428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Advances in proteomics and bioinformatics analysis offer the potential to investigate nutrients’ influence on protein expression profiles, and consequently on biological processes, molecular functions, and cellular components. However, knowledge in this area, particular about the exact way selenium modulates protein expression, remains limited. Therefore, in this project, global differential proteomic experiments were carried out in order to identify changes in the expression of proteins in animal tissues obtained from lambs on a specific diet involving the addition of a combination of different supplements, namely, inorganic selenium compounds, fish oil, and carnosic acid. Following inorganic selenium supplementation, a protein-protein interaction network analysis of forty differentially-expressed proteins indicated two significant clusters. Abstract Selenium is an essential nutrient, building twenty five identified selenoproteins in humans known to perform several important biological functions. The small amount of selenium in the earth’s crust in certain regions along with the risk of deficiency in organisms have resulted in increasingly popular dietary supplementation in animals, implemented via, e.g., inorganic selenium compounds. Even though selenium is included in selenoproteins in the form of selenocysteine, the dietary effect of selenium may result in the expression of other proteins or genes. Very little is known about the expression effects modulated by selenium. The present study aimed to examine the significance of protein expression in lamb tissues obtained after dietary supplementation with selenium (sodium selenate) and two other feed additives, fish oil and carnosic acid. Label-free mass spectrometry-based proteomic analysis was successfully applied to examine the animal tissues. Protein-protein interaction network analysis of forty differently-expressed proteins following inorganic selenium supplementation indicated two significant clusters which are involved in cell adhesion, heart development, actin filament-based movement, plasma membrane repair, and establishment of organelle localization.
Collapse
Affiliation(s)
- Andrzej Gawor
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Anna Ruszczyńska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Anna Konopka
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Grzegorz Wryk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
- Correspondence:
| |
Collapse
|
7
|
Sinha I, Modesto J, Krebs NM, Stanley AE, Walter VA, Richie JP, Muscat JE, Sinha R. Changes in salivary proteome before and after cigarette smoking in smokers compared to sham smoking in nonsmokers: A pilot study. Tob Induc Dis 2021; 19:56. [PMID: 34239408 PMCID: PMC8240953 DOI: 10.18332/tid/138336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Smoking is the leading cause of preventable disease. Although smoking results in an acute effect of relaxation and positive mood through dopamine release, smoking is thought to increase stress symptoms such as heart rate and blood pressure from nicotine-induced effects on the HPA axis and increased cortisol. Despite the importance in understanding the mechanisms in smoking maintenance, little is known about the overall protein and physiological response to smoking. There may be multiple functions involved that if identified might help in improving methods for behavioral and pharmacological interventions. Therefore, our goal for this pilot study was to identify proteins in the saliva that change in response to an acute smoking event versus acute sham smoking event in smokers and non-smokers, respectively. METHODS We employed the iTRAQ technique followed by Mass Spectrometry to identify differentially expressed proteins in saliva of smokers and non-smokers after smoking cigarettes and sham smoking, respectively. We also validated some of the salivary proteins by ELISA or western blotting. In addition, salivary cortisol and salivary amylase (sAA) activity were measured. RESULTS In all, 484 salivary proteins were identified. Several proteins were elevated as well as decreased in smokers compared to non-smokers. Among these were proteins associated with stress response including fibrinogen alpha, cystatin A and sAA. Our investigation also highlights methodological considerations in study design, sampling and iTRAQ analysis. CONCLUSIONS We suggest further investigation of other differentially expressed proteins in this study including ACBP, A2ML1, APOA4, BPIB1, BPIA2, CAH1, CAH6, CYTA, DSG1, EST1, GRP78, GSTO1, sAA, SAP, STAT, TCO1, and TGM3 that might assist in improving methods for behavioral and pharmacological interventions for smokers.
Collapse
Affiliation(s)
- Indu Sinha
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Hershey, United States
| | - Jennifer Modesto
- Department of Public Health Sciences, Penn State Cancer Institute, Hershey, United States
| | - Nicolle M Krebs
- Department of Public Health Sciences, Penn State Cancer Institute, Hershey, United States
| | - Anne E Stanley
- Mass Spectrometry and Proteomics Core, Penn State University College of Medicine, Hershey, United States
| | - Vonn A Walter
- Department of Public Health Sciences, Penn State Cancer Institute, Hershey, United States
| | - John P Richie
- Department of Public Health Sciences, Penn State Cancer Institute, Hershey, United States
| | - Joshua E Muscat
- Department of Public Health Sciences, Penn State Cancer Institute, Hershey, United States
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Hershey, United States
| |
Collapse
|
8
|
Xia X, Zhang X, Liu M, Duan M, Zhang S, Wei X, Liu X. Toward improved human health: efficacy of dietary selenium on immunity at the cellular level. Food Funct 2021; 12:976-989. [PMID: 33443499 DOI: 10.1039/d0fo03067h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selenium, an essential trace element in the body, participates in various biological processes in the form of selenoproteins. In humans, a suitable concentration of selenium is essential for maintaining normal cellular function. Decreased levels of selenoproteins can lead to obstruction of the normal physiological functions of tissues and cells and even death. In addition, the level of selenium in the body affects cellular immunity, humoral immunity, and the balance between type 2 and type 1 helper T cells. Selenium can affect the immune function of the body through the reactive oxygen species (ROS), NF-κB, ferroptosis and NRF2 pathways. This paper reviews the immune effect of selenium on the body and the process of signal transduction and aims to serve as a reference for follow-up studies of immune function and research on the development of new selenium compounds and active targets.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, Shanxi, PR China
| | - Mingcheng Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Mingyuan Duan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Shanshan Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Xingyou Liu
- Xinxiang University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
9
|
Zhang C, Xu B, Geng W, Shen Y, Xuan D, Lai Q, Shen C, Jin C, Yu C. Comparative proteomic analysis of pepper ( Capsicum annuum L.) seedlings under selenium stress. PeerJ 2019; 7:e8020. [PMID: 31799069 PMCID: PMC6884995 DOI: 10.7717/peerj.8020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Selenium (Se) is an essential trace element for human and animal health. Se fertilizer has been used to increase the Se content in crops to meet the Se requirements in humans and animals. To address the challenge of Se poisoning in plants, the mechanisms underlying Se-induced stress in plants must be understood. Here, to elucidate the effects of Se stress on the protein levels in pepper, we used an integrated approach involving tandem mass tag labeling, high performance liquid chromatography fractionation, and mass spectrometry-based analysis. A total of 4,693 proteins were identified, 3,938 of which yielded quantitative information. Among them, the expression of 172 proteins was up-regulated, and the expression of 28 proteins was down-regulated in the Se/mock treatment comparison. According to the above data, we performed a systematic bioinformatics analysis of all identified proteins and differentially expressed proteins (DEPs). The DEPs were most strongly associated with the terms “metabolic process,” “posttranslational modification, protein turnover, chaperones,” and “protein processing in endoplasmic reticulum” according to Gene Ontology, eukaryotic orthologous groups classification, and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, respectively. Furthermore, several heat shock proteins were identified as DEPs. These results provide insights that may facilitate further studies on the pepper proteome expressed downstream of the Se stress response. Our data revealed that the responses of pepper to Se stress involve various pathways.
Collapse
Affiliation(s)
- Chenghao Zhang
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.,Key Labortatory of Creative Agricultrue, Ministry of Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, China
| | - Baoyu Xu
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wei Geng
- Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yunde Shen
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Dongji Xuan
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Qixian Lai
- Key Labortatory of Creative Agricultrue, Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chengwu Jin
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Chenliang Yu
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Kuang A, Erlund I, Herder C, Westerhuis JA, Tuomilehto J, Cornelis MC. Targeted proteomic response to coffee consumption. Eur J Nutr 2019; 59:1529-1539. [PMID: 31154491 DOI: 10.1007/s00394-019-02009-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Coffee is widely consumed and implicated in numerous health outcomes but the mechanisms by which coffee contributes to health is unclear. The purpose of this study was to test the effect of coffee drinking on candidate proteins involved in cardiovascular, immuno-oncological and neurological pathways. METHODS We examined fasting serum samples collected from a previously reported single blinded, three-stage clinical trial. Forty-seven habitual coffee consumers refrained from drinking coffee for 1 month, consumed 4 cups of coffee/day in the second month and 8 cups/day in the third month. Samples collected after each coffee stage were analyzed using three multiplex proximity extension assays that, after quality control, measured a total of 247 proteins implicated in cardiovascular, immuno-oncological and neurological pathways and of which 59 were previously linked to coffee exposure. Repeated measures ANOVA was used to test the relationship between coffee treatment and each protein. RESULTS Two neurology-related proteins including carboxypeptidase M (CPM) and neutral ceramidase (N-CDase or ASAH2), significantly increased after coffee intake (P < 0.05 and Q < 0.05). An additional 46 proteins were nominally associated with coffee intake (P < 0.05 and Q > 0.05); 9, 8 and 29 of these proteins related to cardiovascular, immuno-oncological and neurological pathways, respectively, and the levels of 41 increased with coffee intake. CONCLUSIONS CPM and N-CDase levels increased in response to coffee intake. These proteins have not previously been linked to coffee and are thus novel markers of coffee response worthy of further study. CLINICAL TRIAL REGISTRY: http://www.isrctn.com/ISRCTN12547806.
Collapse
Affiliation(s)
- Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Iris Erlund
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johan A Westerhuis
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Centre for Human Metabolomics, Faculty of Natural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jaakko Tuomilehto
- Disease Risk Unit, National Institute for Health and Welfare, 00271, Helsinki, Finland
- Department of Public Health, University of Helsinki, 00014, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jidda, 21589, Saudi Arabia
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA.
| |
Collapse
|
11
|
Yim SH, Clish CB, Gladyshev VN. Selenium Deficiency Is Associated with Pro-longevity Mechanisms. Cell Rep 2019; 27:2785-2797.e3. [PMID: 31141699 PMCID: PMC6689410 DOI: 10.1016/j.celrep.2019.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 11/21/2018] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Selenium (Se) is an essential trace element because of its presence in selenoproteins in the form of selenocysteine residue. Both Se deficiency, which compromises selenoprotein functions, and excess Se, which is toxic, have been associated with altered redox homeostasis and adverse health conditions. Surprisingly, we found that, although Se deficiency led to a drastic decline in selenoprotein expression, mice subjected to this dietary regimen for their entire life had normal lifespans. To understand the molecular mechanisms involved, we performed systemic analyses at the level of metabolome, transcriptome, and microRNA profiling. These analyses revealed that Se deficiency reduced amino acid levels, elevated mononucleotides, altered metabolism, and activated signaling pathways linked to longevity-related nutrient sensing. The data show that the metabolic control associated with nutrient sensing coordinately responds to suppressed selenoprotein functions, resulting in normal lifespan under Se deficiency.
Collapse
Affiliation(s)
- Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
12
|
Soni C, Sinha I, Fasnacht MJ, Olsen NJ, Rahman ZSM, Sinha R. Selenium supplementation suppresses immunological and serological features of lupus in B6.Sle1b mice. Autoimmunity 2019; 52:57-68. [PMID: 31006265 DOI: 10.1080/08916934.2019.1603297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a debilitating multi-factorial immunological disorder characterized by increased inflammation and development of anti-nuclear autoantibodies. Selenium (Se) is an essential trace element with beneficial anti-cancer and anti-inflammatory immunological functions. In our previous proteomics study, analysis of Se-responsive markers in the circulation of Se-supplemented healthy men showed a significant increase in complement proteins. Additionally, Se supplementation prolonged the life span of lupus prone NZB/NZW-F1 mice. To better understand the protective immunological role of Se in SLE pathogenesis, we have investigated the impact of Se on B cells and macrophages using in vitro Se supplementation assays and the B6.Sle1b mouse model of lupus with an oral Se or placebo supplementation regimen. Analysis of Se-treated B6.Sle1b mice showed reduced splenomegaly and splenic cellularity compared to untreated B6. Sle1b mice. A significant reduction in total B cells and notably germinal center (GC) B cell numbers was observed. However, other cell types including T cells, Tregs, DCs and pDCs were unaffected. Consistent with reduced GC B cells there was a significant reduction in autoantibodies to dsDNA and SmRNP of the IgG2b and IgG2c subclass upon Se supplementation. We found that increased Se availability leads to impaired differentiation and maturation of macrophages from mouse bone marrow derived progenitors in vitro. Additionally, Se treatment during in vitro activation of B cells with anti-CD40L and LPS inhibited optimal B cell activation. Overall our data indicate that Se supplementation inhibits activation, differentiation and maturation of B cells and macrophages. Its specific inhibitory effect on B cell activation and GC B cell differentiation could be explored as a potential therapeutic supplement for SLE patients.
Collapse
Affiliation(s)
- Chetna Soni
- a Department of Microbiology and Immunology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Indu Sinha
- b Department of Biochemistry and Molecular Biology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Melinda J Fasnacht
- a Department of Microbiology and Immunology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Nancy J Olsen
- c Department of Rheumatology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Raghu Sinha
- b Department of Biochemistry and Molecular Biology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| |
Collapse
|
13
|
Gharipour M, Sadeghi M, Behmanesh M, Salehi M, Roohafza H, Nezafati P, Khosravi E, Hosseini M, Keshvari M, Rouhi-Bourojeni H, Sarrafzadegan N. Proposal of a study protocol of a preliminary double-blind randomized controlled trial. Verifying effects of selenium supplementation on selenoprotein p and s genes expression in protein and mRNA levels in subjects with coronary artery disease: selenegene. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:44-50. [PMID: 30889154 PMCID: PMC6502150 DOI: 10.23750/abm.v90i1.6167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023]
Abstract
Background: Selenium is the component of selenocystein amino acid, which itself is the building block of selenoproteins having diverse effects on various aspects of the human health. Among these proteins, selenoprotein P is the central to the distribution and homeostasis of selenium, and selenoprotein S as a transmembrane protein is associated with a range of inflammatory markers, particularly in the context of cardiovascular disease. It is known that selenium status outside of the normal range is considered to confer different benefits or adverse cardiovascular risk factors. Therefore, for the first time, we aimed to verify effects of Selenium supplementation on Selenoprotein P and S Genes Expression in Protein and mRNA Levels in Subjects with Coronary Artery Disease (CAD). Methods: This is the study protocol of a double blinded randomized clinical trial on 130 subjects with angiographically documented stenosis of more than 75% in one or more coronary artery vessels. In this 60-day study, 65 patients in each group received either a 200mg selenium yeast or placebo tablets once daily. During the study, subjects were followed by phone calls and visited our clinic twice to repeat baseline measurements. We hypothesized that our finding would enable a more basic and confirmed understanding for the effect of selenium supplementation by investigating its effect on gene expression levels in people with CAD. Discussion: Upon confirmation of this hypothesis, the beneficial effect of inflammation regulation by supplementation with micronutrients could be considered for subjects with CVD. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Mojgan Gharipour
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The Preventive Role of Selenium in Inflammatory Response During Coronary Artery Bypass Graft Surgery: A Randomized, Controlled Clinical Trial. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Wang RS, Oldham WM, Maron BA, Loscalzo J. Systems Biology Approaches to Redox Metabolism in Stress and Disease States. Antioxid Redox Signal 2018; 29:953-972. [PMID: 29121773 PMCID: PMC6104248 DOI: 10.1089/ars.2017.7256] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/12/2017] [Accepted: 11/04/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE All cellular metabolic processes are tied to the cellular redox environment. Therefore, maintaining redox homeostasis is critically important for normal cell function. Indeed, redox stress contributes to the pathobiology of many human diseases. The cellular redox response system is composed of numerous interconnected components, including free radicals, redox couples, protein thiols, enzymes, metabolites, and transcription factors. Moreover, interactions between and among these factors are regulated in time and space. Owing to their complexity, systems biology approaches to the characterization of the cellular redox response system may provide insights into novel homeostatic mechanisms and methods of therapeutic reprogramming. Recent Advances: The emergence and development of systems biology has brought forth a set of innovative technologies that provide new avenues for studying redox metabolism. This article will review these systems biology approaches and their potential application to the study of redox metabolism in stress and disease states. CRITICAL ISSUES Clarifying the scope of biological intermediaries affected by dysregulated redox metabolism requires methods that are suitable for analyzing big datasets as classical methods that do not account for multiple interactions are unlikely to portray the totality of perturbed metabolic systems. FUTURE DIRECTIONS Given the diverse redox microenvironments within cells, it will be important to improve the spatial resolution of omic approaches. Futures studies on the integration of multiple systems-based methods and heterogeneous omics data for redox metabolism are required to accelerate the development of the field of redox systems biology. Antioxid. Redox Signal. 29, 953-972.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - William M. Oldham
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bradley A. Maron
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Section of Cardiology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Dammalli M, Dey G, Madugundu AK, Kumar M, Rodrigues B, Gowda H, Siddaiah BG, Mahadevan A, Shankar SK, Prasad TSK. Proteomic Analysis of the Human Olfactory Bulb. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:440-453. [PMID: 28816642 DOI: 10.1089/omi.2017.0084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The importance of olfaction to human health and disease is often underappreciated. Olfactory dysfunction has been reported in association with a host of common complex diseases, including neurological diseases such as Alzheimer's disease and Parkinson's disease. For health, olfaction or the sense of smell is also important for most mammals, for optimal engagement with their environment. Indeed, animals have developed sophisticated olfactory systems to detect and interpret the rich information presented to them to assist in day-to-day activities such as locating food sources, differentiating food from poisons, identifying mates, promoting reproduction, avoiding predators, and averting death. In this context, the olfactory bulb is a vital component of the olfactory system receiving sensory information from the axons of the olfactory receptor neurons located in the nasal cavity and the first place that processes the olfactory information. We report in this study original observations on the human olfactory bulb proteome in healthy subjects, using a high-resolution mass spectrometry-based proteomic approach. We identified 7750 nonredundant proteins from human olfactory bulbs. Bioinformatics analysis of these proteins showed their involvement in biological processes associated with signal transduction, metabolism, transport, and olfaction. These new observations provide a crucial baseline molecular profile of the human olfactory bulb proteome, and should assist the future discovery of biomarker proteins and novel diagnostics associated with diseases characterized by olfactory dysfunction.
Collapse
Affiliation(s)
- Manjunath Dammalli
- 1 Institute of Bioinformatics , Bangalore, India .,2 Department of Biotechnology, Siddaganga Institute of Technology , Tumakuru, India
| | - Gourav Dey
- 1 Institute of Bioinformatics , Bangalore, India .,3 Department of Biotechnology, Manipal University , Manipal, India
| | - Anil K Madugundu
- 1 Institute of Bioinformatics , Bangalore, India .,4 Centre for Bioinformatics, School of Life Sciences, Pondicherry University , Puducherry, India
| | - Manish Kumar
- 1 Institute of Bioinformatics , Bangalore, India .,3 Department of Biotechnology, Manipal University , Manipal, India
| | | | - Harsha Gowda
- 1 Institute of Bioinformatics , Bangalore, India .,5 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | | | - Anita Mahadevan
- 6 Department of Neuropathology, National Institute of Mental Health and Neurosciences , Bangalore, India .,7 Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences , Bangalore, India
| | - Susarla Krishna Shankar
- 6 Department of Neuropathology, National Institute of Mental Health and Neurosciences , Bangalore, India .,7 Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences , Bangalore, India .,8 NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences , Bangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- 1 Institute of Bioinformatics , Bangalore, India .,5 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India .,8 NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences , Bangalore, India
| |
Collapse
|
17
|
Sevimoglu T, Turanli B, Bereketoglu C, Arga KY, Karadag AS. Systems biomarkers in psoriasis: Integrative evaluation of computational and experimental data at transcript and protein levels. Gene 2018; 647:157-163. [DOI: 10.1016/j.gene.2018.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/06/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
|
18
|
Sun Y, Gao C, Wang X, Yuan Y, Liu Y, Jia J. Serum quantitative proteomic analysis of patients with keshan disease based on iTRAQ labeling technique: A first term study. J Trace Elem Med Biol 2017; 44:331-338. [PMID: 28965596 DOI: 10.1016/j.jtemb.2017.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023]
Abstract
Keshan disease (KD), an endemic myocardiopathy, with unknown etiology, is still threatening human health. Proteomics studies of Keshan disease is rarely known. In the current study, isobaric tags for relative and absolute quantitation (iTRAQ) labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) was firstly used to screen for the differentially expressed proteins (DEPs) in serum between Keshan disease and healthy residents in endemic area. 27 differentially expressed proteins were quantified, 9 of which were significantly altered (fold change > 1.2 or < 0.8) between the two groups. Bioinformatic analysis revealed that a wide variety of biology process played roles in KD pathophysiology. These differentially expressed proteins were mainly involved in complement coagulation pathways. A significant high serum level of LGALS3BP were observed. Our first term study in KD proteomics provided new view into the molecular mechanisms of KD disease.
Collapse
Affiliation(s)
- YuXiao Sun
- Department of Cardiology, Zhengzhou University, People's Hospital, Zhengzhou, Henan, 450003, PR China; Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan,450003, PR China
| | - ChuanYu Gao
- Department of Cardiology, Zhengzhou University, People's Hospital, Zhengzhou, Henan, 450003, PR China; Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan,450003, PR China.
| | - XianQing Wang
- Department of Cardiology, Zhengzhou University, People's Hospital, Zhengzhou, Henan, 450003, PR China; Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan,450003, PR China
| | - YiQiang Yuan
- Department of Cardiology, The Seventh People's Hospital, Zhengzhou, Henan, 450016, PR China
| | - YuHao Liu
- Department of Cardiology, Zhengzhou University, People's Hospital, Zhengzhou, Henan, 450003, PR China; Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan,450003, PR China
| | - JunGe Jia
- Department of Cardiology, The Seventh People's Hospital, Zhengzhou, Henan, 450016, PR China
| |
Collapse
|
19
|
Mirmansouri A, Imantalab V, Mohammadzadeh Jouryabi A, Kanani G, Naderi Nabi B, Farzi F, Biazar G, Ghazanfar Tehran S, Tarbiat M. Effect of Selenium on Stress Response in Coronary Artery Bypass Graft Surgery: A Clinical Trial. Anesth Pain Med 2017; 7:e43864. [PMID: 28920049 PMCID: PMC5554419 DOI: 10.5812/aapm.43864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/25/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
Abstract
Background In spite of significant improvements in surgical and anesthetic techniques, acute stress response to surgery remains a main cause of mortality and morbidity in coronary artery bypass graft (CABG) surgery patients. Therefore, doing research to find safe and effective modalities with more cardio protective properties seems necessary. Objectives In this study, we sought to determine whether intravenous injection of 600 μg Selenium (Se) prior to surgery would limit stress response measured by blood sugar. Methods This double blind clinical trial was conducted at a referral center of cardiac surgery affiliated to Guilan University of Medical Sciences (GUMS) from June 2015 to October 2015. 73 eligible patients candidate for elective isolated CABG surgery were enrolled in the trial. They were randomly allocated to either Se group (n = 36) receiving 600 μg Se prior to surgery or control group (n = 37). Our evaluation was based on blood sugar (BS) which was measured at four point times, including before induction of anesthesia (T0), at the end of CPB (T1), 24 hours (T2) and 48 hours (T3) after surgery. Results The data obtained from 73 patients in group S (n = 36) and group C (n = 37) were analyzed. There was no significant difference between the two groups regarding the baseline characteristics. In both groups, a sharp rise in BS levels was observed following CPB (P = 0.0001). Although the trend of BS changes was remarkable in both groups (P = 0.0001), there was no statistically significant difference between the groups at all point times including T0 (P = 0.45), T1 (P = 0.48), T2 (P = 0.92), and T3 (P = 0.42). Within the study time, our patients were monitored for any adverse effect but nothing was observed. Conclusions This investigation showed that intravenous single dose of 600 μg Se was safe in CABG patients, but had no positive effect on stress response to surgery.
Collapse
Affiliation(s)
- Ali Mirmansouri
- Associate Professor of Anesthesiology, Fellowship of Anesthesia in Cardiac Surgery, Anesthesiology Research Center, Guilan University of Medical Sciences (GUMS), Rasht, Iran
| | - Vali Imantalab
- Associate Professor of Anesthesiology, Fellowship of Anesthesia in Cardiac Surgery, Anesthesiology Research Center, Guilan University of Medical Sciences (GUMS), Rasht, Iran
| | - Ali Mohammadzadeh Jouryabi
- Associate Professor of Anesthesiology, Fellowship of Anesthesia in Cardiac Surgery, Anesthesiology Research Center, Guilan University of Medical Sciences (GUMS), Rasht, Iran
| | - Gholamreza Kanani
- Department of Cardaic Surgery, Assistant Professor of Cardiac Surgery, Guilan University of Medical Sciences, Rasht, Iran
| | - Bahram Naderi Nabi
- Associate Professor of Anesthesiology, Fellowship of Anesthesia and Pain (FIPP), Anesthesiology Department, Anesthesiology Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farnoush Farzi
- Associate Professor of Anesthesiology, Anesthesiology Research Center, Guilan University of Medical Sciences (GUMS), Rasht, Iran
| | - Gelareh Biazar
- Assistant Professor of Anesthesiology, Anesthesiology Research Center, Guilan University of Medical Sciences (GUMS), Rasht, Iran
- Corresponding author: Gelareh Biazar, Assistant Professor of Anesthesiology, Anesthesiology Research Center, Guilan University of Medical Sciences (GUMS), Rasht, Iran, E-mail:
| | - Samaneh Ghazanfar Tehran
- Assistant Professor of Anesthesiology, Anesthesiology Research Center, Guilan University of Medical Sciences (GUMS), Rasht, Iran
| | - Masoud Tarbiat
- Assistant Professor of Anesthesiology, Department of Anesthesiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
20
|
Wu Z, Yin X, Bañuelos GS, Lin ZQ, Liu Y, Li M, Yuan L. Indications of Selenium Protection against Cadmium and Lead Toxicity in Oilseed Rape ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1875. [PMID: 28018407 PMCID: PMC5156728 DOI: 10.3389/fpls.2016.01875] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 11/28/2016] [Indexed: 05/03/2023]
Abstract
The present study investigated the beneficial role of selenium (Se) in protecting oilseed rape (Brassica napus L.) plants from cadmium (Cd+2) and lead (Pb+2) toxicity. Exogenous Se markedly reduced Cd and Pb concentration in both roots and shoots. Supplementation of the medium with Se (5, 10, and 15 mg kg-1) alleviated the negative effect of Cd and Pb on growth and led to a decrease in oxidative damages caused by Cd and Pb. Furthermore, Se-enhanced superoxide free radicals ([Formula: see text]), hydrogen peroxide (H2O2), and lipid peroxidation, as indicated by malondialdehyde accumulation, but decreased superoxide dismutase and glutathione peroxidase activities. Meanwhile, the presence of Cd and Pb in the medium affected Se speciation in shoots. The results suggest that Se could alleviate Cd and Pb toxicity by preventing oxidative stress in oilseed rape plant.
Collapse
Affiliation(s)
- Zhilin Wu
- Key Laboratory of Agri-Food Safety of Anhui Province, Scientific Observing and Experimental Station of Agricultural Environment of the Ministry of Agriculture – Laboratory of Quality and Safty Risk Assessment for Agricultural Products on Storage and Preservation of the Ministry of Agriculture, School of Plant Protection – School of Resources and Environment, Anhui Agricultural UniversityHefei, China
- School of Earth and Space Sciences, University of Science and Technology of ChinaHefei, China
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of ChinaSuzhou, China
| | - Xuebin Yin
- School of Earth and Space Sciences, University of Science and Technology of ChinaHefei, China
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of ChinaSuzhou, China
- Institute of Advanced Technology, University of Science and Technology of ChinaHefei, China
| | - Gary S. Bañuelos
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture – Agricultural Research Service, ParlierCA, USA
| | - Zhi-Qing Lin
- Environmental Sciences Program and Department of Biological Sciences, Southern Illinois University Edwardsville, EdwardsvilleIL, USA
| | - Ying Liu
- School of Earth and Space Sciences, University of Science and Technology of ChinaHefei, China
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of ChinaSuzhou, China
- Institute of Advanced Technology, University of Science and Technology of ChinaHefei, China
| | - Miao Li
- Key Laboratory of Agri-Food Safety of Anhui Province, Scientific Observing and Experimental Station of Agricultural Environment of the Ministry of Agriculture – Laboratory of Quality and Safty Risk Assessment for Agricultural Products on Storage and Preservation of the Ministry of Agriculture, School of Plant Protection – School of Resources and Environment, Anhui Agricultural UniversityHefei, China
- Institute of Advanced Technology, University of Science and Technology of ChinaHefei, China
- The Northwest of Anhui Province Station for Integrative Agriculture, Research Institute for New Rural Development, Anhui Agricultural UniversityHefei, China
| | - Linxi Yuan
- School of Earth and Space Sciences, University of Science and Technology of ChinaHefei, China
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of ChinaSuzhou, China
- Institute of Advanced Technology, University of Science and Technology of ChinaHefei, China
| |
Collapse
|
21
|
Sedighinejad A, Imantalab V, Mirmansouri A, Mohammadzadeh Jouryabi A, Kanani G, Nassiri Sheikhani N, Haghighi M, Atrkarroushan Z, Biazar G. Effects of Low-dose Selenium on the Inflammatory Response in Coronary Artery Bypass Graft Surgery: A Clinical Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e37918. [PMID: 27795837 PMCID: PMC5070486 DOI: 10.5812/ircmj.37918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/16/2016] [Accepted: 06/18/2016] [Indexed: 01/06/2023]
Abstract
Background Coronary artery bypass graft (CABG) surgery with cardiopulmonary bypass (CPB) triggers an inflammatory reaction, leading to the development of myocardial damage and dysfunction. It is suggested that selenium (Se), an essential trace element, has a protective role against oxidative stress. Decreased intraoperative Se levels might be an independent predictive factor for postoperative multiorgan failure. In spite of its proposed advantages, however, the optimal timing and dosage are not well known. Objectives To determine whether 600 µg of intravenous Se administration before induction of anesthesia for CABG surgery could attenuate inflammatory reactions in an Iranian population. Methods This randomized triple-blind clinical trial took place in the department of cardiac surgery of an academic hospital affiliated with Guilan University of Medical Sciences (GUMS) from May 2015 to September 2015. Eighty-eight eligible patients scheduled for elective on-pump CABG surgery were divided into two groups using randomized fixed quadripartite blocks. They received either an intravenous bolus of 600 µg Se before induction of anesthesia, or normal saline as a placebo. We had four measurement time-points: just before induction of anesthesia (T0), immediately after the end of CPB (T1), 24 hours after surgery (T2), and 48 hours after surgery (T3). Interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP) serum levels were measured using the enzyme-linked immunosorbent assay (ELISA). Results Data from a total of 81 patients were analyzed: group S (n = 41) and group C (n = 40). There was no significant difference between the two groups with regard to baseline characteristics. In both groups, CPB caused markedly increased IL-6, TNF-α, and CRP plasma concentrations compared with baseline (P = 0.0001). However, the pattern of changes was not significantly different between group S (P = 0.068) and group C (P = 0.26). The IL-6 and TNF-α change trends were significant in each group (P=0.0001). However, comparing the two groups showed no significant difference. With regard to IL-6, there was no significant difference between the two groups at the time-points of T1 (P = 0.34), T2 (P = 0.17), and T3 (P = 0.056), and the same was found for TNF-α at T1 (P = 0.34), T2 (P = 0.17), and T3 (P = 0.056). With regard to CRP, the trend of the changes was significant in each group (P = 0.0001). However, comparing two groups showed a borderline significant difference between them at T1 (P = 0.039), but not at T2 (P = 0.075) or T3 (P = 0.11). Conclusions This study revealed that the administration of 600 μg of intravenous Se immediately before induction of anesthesia was safe, but when compared to a placebo, no predominant clinical effects or modifications in the systemic inflammatory response induced by on-pump CABG were observed.
Collapse
Affiliation(s)
- Abbas Sedighinejad
- MD, Associate Professor of Anesthesiology, Fellowship of Anesthesia in Cardiac Surgery, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Vali Imantalab
- MD, Associate Professor of Anesthesiology, Fellowship of Anesthesia in Cardiac Surgery, Guilan University of Medical Sciences, Rasht, IR Iran
- Corresponding Author: Vali Imantalab, Anesthesiology Research Center, Guilan University of Medical Sciences (GUMS), Rasht, IR Iran. Tel: +98-9111316138, E-mail:
| | - Ali Mirmansouri
- MD, Associate Professor of Anesthesiology, Fellowship of Anesthesia in Cardiac Surgery, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Ali Mohammadzadeh Jouryabi
- MD, Associate Professor of Anesthesiology, Fellowship of Anesthesia in Cardiac Surgery, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Gholamreza Kanani
- MD, Assistant Professor of Cardiac Surgery, Department of Cardaic Surgery, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Nassir Nassiri Sheikhani
- MD, Assistant Professor of Cardiac Surgery, Department of Cardaic Surgery, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Mohammad Haghighi
- MD, Associate Professor of Anesthesiology, Anesthesiology Research Center, Guilan University of Medical Sciences (GUMS), Rasht, IR Iran
| | - Zahra Atrkarroushan
- PhD, Assistant Professor of Biostatistic, Guilan University of Medical Sciences (GUMS), Rasht, IR Iran
| | - Gelareh Biazar
- MD, Assistant Professor of Anesthesiology, Anesthesiology Research Center, Guilan University of Medical Sciences (GUMS), Rasht, IR Iran
| |
Collapse
|
22
|
Integration of multiple biological features yields high confidence human protein interactome. J Theor Biol 2016; 403:85-96. [PMID: 27196966 DOI: 10.1016/j.jtbi.2016.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/01/2016] [Accepted: 05/11/2016] [Indexed: 01/05/2023]
Abstract
The biological function of a protein is usually determined by its physical interaction with other proteins. Protein-protein interactions (PPIs) are identified through various experimental methods and are stored in curated databases. The noisiness of the existing PPI data is evident, and it is essential that a more reliable data is generated. Furthermore, the selection of a set of PPIs at different confidence levels might be necessary for many studies. Although different methodologies were introduced to evaluate the confidence scores for binary interactions, a highly reliable, almost complete PPI network of Homo sapiens is not proposed yet. The quality and coverage of human protein interactome need to be improved to be used in various disciplines, especially in biomedicine. In the present work, we propose an unsupervised statistical approach to assign confidence scores to PPIs of H. sapiens. To achieve this goal PPI data from six different databases were collected and a total of 295,288 non-redundant interactions between 15,950 proteins were acquired. The present scoring system included the context information that was assigned to PPIs derived from eight biological attributes. A high confidence network, which included 147,923 binary interactions between 13,213 proteins, had scores greater than the cutoff value of 0.80, for which sensitivity, specificity, and coverage were 94.5%, 80.9%, and 82.8%, respectively. We compared the present scoring method with others for evaluation. Reducing the noise inherent in experimental PPIs via our scoring scheme increased the accuracy significantly. As it was demonstrated through the assessment of process and cancer subnetworks, this study allows researchers to construct and analyze context-specific networks via valid PPI sets and one can easily achieve subnetworks around proteins of interest at a specified confidence level.
Collapse
|