1
|
Wang Y, Zhai Y, Wang J. Insight into the early pathogenesis and therapeutic strategies of spinocerebellar ataxia type 3/machado-joseph disease from mouse models. Parkinsonism Relat Disord 2024; 126:106991. [PMID: 38749872 DOI: 10.1016/j.parkreldis.2024.106991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 09/05/2024]
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is the most common subtype of hereditary ataxia (HA), which is characterized by motor deficits and a lack of effective treatments, and imposes a huge physical, mental, and financial burden on patients and their families. Therefore, it is important to study the early pathogenesis of spinal cerebellar ataxia type 3 based on a mouse model for subsequent preventive treatment and seeking new therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - YuYun Zhai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ju Wang
- Department of Rehabilitation, Traditional Chinese Hospital Medicine of Qing Yang District of Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Panda P, Mohapatra R. Herbal nanoparticles: a targeted approach for neurodegenerative disorder treatment. J Drug Target 2024:1-14. [PMID: 39133517 DOI: 10.1080/1061186x.2024.2391913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Nanotechnology has significantly impacted human life, particularly in overcoming the limitations associated with neurodegenerative diseases (NDs). Various nanostructures and vehicle systems, such as polymer nanoparticles, carbon nanotubes (CNTs), nanoliposomes, nano-micelles, lipid nanoparticles, lactoferrin, polybutylcyanoacrylate, and poly lactic-co-glycolic acid, have been shown to enhance drug efficacy, reduce side effects, and improve pharmacokinetics. NDs affect millions worldwide and are challenging to treat due to the blood-brain barrier (BBB), which hinders drug delivery to the central nervous system (CNS). Research suggests that natural ingredients can be formulated into nanoparticles, offering a promising approach for ND treatment. This review examines the advantages and disadvantages of herbal-based nanoformulations, highlighting their potential effectiveness when used alone or in combination with other medications. Herbal nanoparticles provide benefits over synthetic ones due to their biocompatibility, reduced toxicity, and potential for synergistic effects. The study's findings can be applied to develop more efficient drug delivery systems, improving the treatment of NDs by enhancing drug penetration across the BBB and targeting affected CNS areas more precisely.
Collapse
Affiliation(s)
- Pratikeswar Panda
- Department of Pharmaceutics, School of pharmaceutical science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of pharmaceutical science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Barzegar Behrooz A, Latifi‐Navid H, Lotfi J, Khodagholi F, Shojaei S, Ghavami S, Fahanik Babaei J. CSF amino acid profiles in ICV-streptozotocin-induced sporadic Alzheimer's disease in male Wistar rat: a metabolomics and systems biology perspective. FEBS Open Bio 2024; 14:1116-1132. [PMID: 38769074 PMCID: PMC11216934 DOI: 10.1002/2211-5463.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease (AD) is an increasingly important public health concern due to the increasing proportion of older individuals within the general population. The impairment of processes responsible for adequate brain energy supply primarily determines the early features of the aging process. Restricting brain energy supply results in brain hypometabolism prior to clinical symptoms and is anatomically and functionally associated with cognitive impairment. The present study investigated changes in metabolic profiles induced by intracerebroventricular-streptozotocin (ICV-STZ) in an AD-like animal model. To this end, male Wistar rats received a single injection of STZ (3 mg·kg-1) by ICV (2.5 μL into each ventricle for 5 min on each side). In the second week after receiving ICV-STZ, rats were tested for cognitive performance using the Morris Water Maze test and subsequently prepared for positron emission tomography (PET) to confirm AD-like symptoms. Tandem Mass Spectrometry (MS/MS) analysis was used to detect amino acid changes in cerebrospinal fluid (CFS) samples. Our metabolomics study revealed a reduction in the concentrations of various amino acids (alanine, arginine, aspartic acid, glutamic acid, glycine, isoleucine, methionine, phenylalanine, proline, serine, threonine, tryptophane, tyrosine, and valine) in CSF of ICV-STZ-treated animals as compared to controls rats. The results of the current study indicate amino acid levels could potentially be considered targets of nutritional and/or pharmacological interventions to interfere with AD progression.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
- Department of Human Anatomy and Cell Science, College of MedicineUniversity of ManitobaWinnipegCanada
| | - Hamid Latifi‐Navid
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
- Department of Molecular MedicineNational Institute of Genetic Engineering and BiotechnologyTehranIran
- School of Biological SciencesInstitute for Research in Fundamental Sciences (IPM)TehranIran
| | - Jabar Lotfi
- Growth and Development Research CenterTehran University of Medical SciencesIran
| | - Fariba Khodagholi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, College of MedicineUniversity of ManitobaWinnipegCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of MedicineUniversity of ManitobaWinnipegCanada
- Faculty of Medicine in ZabrzeUniversity of Technology in KatowiceZabrzePoland
- Research Institute of Oncology and HematologyCancer Care Manitoba‐University of ManitobaWinnipegCanada
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| |
Collapse
|
4
|
Hameed R, Naseer A, Saxena A, Akbar M, Toppo P, Sarkar A, Shukla SK, Nazir A. Functional implications of NHR-210 enrichment in C. elegans cephalic sheath glia: insights into metabolic and mitochondrial disruptions in Parkinson's disease models. Cell Mol Life Sci 2024; 81:202. [PMID: 38691171 PMCID: PMC11063106 DOI: 10.1007/s00018-024-05179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 05/03/2024]
Abstract
Glial cells constitute nearly half of the mammalian nervous system's cellular composition. The glia in C. elegans perform majority of tasks comparable to those conducted by their mammalian equivalents. The cephalic sheath (CEPsh) glia, which are known to be the counterparts of mammalian astrocytes, are enriched with two nuclear hormone receptors (NHRs)-NHR-210 and NHR-231. This unique enrichment makes the CEPsh glia and these NHRs intriguing subjects of study concerning neuronal health. We endeavored to assess the role of these NHRs in neurodegenerative diseases and related functional processes, using transgenic C. elegans expressing human alpha-synuclein. We employed RNAi-mediated silencing, followed by behavioural, functional, and metabolic profiling in relation to suppression of NHR-210 and 231. Our findings revealed that depleting nhr-210 changes dopamine-associated behaviour and mitochondrial function in human alpha synuclein-expressing strains NL5901 and UA44, through a putative target, pgp-9, a transmembrane transporter. Considering the alteration in mitochondrial function and the involvement of a transmembrane transporter, we performed metabolomics study via HR-MAS NMR spectroscopy. Remarkably, substantial modifications in ATP, betaine, lactate, and glycine levels were seen upon the absence of nhr-210. We also detected considerable changes in metabolic pathways such as phenylalanine, tyrosine, and tryptophan biosynthesis metabolism; glycine, serine, and threonine metabolism; as well as glyoxalate and dicarboxylate metabolism. In conclusion, the deficiency of the nuclear hormone receptor nhr-210 in alpha-synuclein expressing strain of C. elegans, results in altered mitochondrial function, coupled with alterations in vital metabolite levels. These findings underline the functional and physiological importance of nhr-210 enrichment in CEPsh glia.
Collapse
Affiliation(s)
- Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anam Naseer
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ankit Saxena
- Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mahmood Akbar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pranoy Toppo
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arunabh Sarkar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Sanjeev K Shukla
- Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Oliveira NAS, Pinho BR, Pinto J, Guedes de Pinho P, Oliveira JMA. Edaravone counteracts redox and metabolic disruptions in an emerging zebrafish model of sporadic ALS. Free Radic Biol Med 2024; 217:126-140. [PMID: 38531462 DOI: 10.1016/j.freeradbiomed.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which the death of motor neurons leads to loss of muscle function. Additionally, cognitive and circadian disruptions are common in ALS patients, contributing to disease progression and burden. Most ALS cases are sporadic, and environmental exposures contribute to their aetiology. However, animal models of these sporadic ALS cases are scarce. The small vertebrate zebrafish is a leading organism to model neurodegenerative diseases; previous studies have proposed bisphenol A (BPA) or β-methylamino-l-alanine (BMAA) exposure to model sporadic ALS in zebrafish, damaging motor neurons and altering motor responses. Here we characterise the face and predictive validity of sporadic ALS models, showing their potential for the mechanistic study of ALS drugs. We phenotypically characterise the BPA and BMAA-induced models, going beyond motor activity and motor axon morphology, to include circadian, redox, proteostasis, and metabolomic phenotypes, and assessing their predictive validity for ALS modelling. BPA or BMAA exposure induced concentration-dependent activity impairments. Also, exposure to BPA but not BMAA induced motor axonopathy and circadian alterations in zebrafish larvae. Our further study of the BPA model revealed loss of habituation to repetitive startles, increased oxidative damage, endoplasmic reticulum (ER) stress, and metabolome abnormalities. The BPA-induced model shows predictive validity, since the approved ALS drug edaravone counteracted BPA-induced motor phenotypes, ER stress, and metabolic disruptions. Overall, BPA exposure is a promising model of ALS-related redox and ER imbalances, contributing to fulfil an unmet need for validated sporadic ALS models.
Collapse
Affiliation(s)
- Nuno A S Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Brígida R Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Laboratory of Toxicology, University of Porto, 4050-313, Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Laboratory of Toxicology, University of Porto, 4050-313, Porto, Portugal
| | - Jorge M A Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
6
|
Orda MA, Fowler PMPT, Tayo LL. Modular Hub Genes in DNA Microarray Suggest Potential Signaling Pathway Interconnectivity in Various Glioma Grades. BIOLOGY 2024; 13:206. [PMID: 38666818 PMCID: PMC11048586 DOI: 10.3390/biology13040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Gliomas have displayed significant challenges in oncology due to their high degree of invasiveness, recurrence, and resistance to treatment strategies. In this work, the key hub genes mainly associated with different grades of glioma, which were represented by pilocytic astrocytoma (PA), oligodendroglioma (OG), anaplastic astrocytoma (AA), and glioblastoma multiforme (GBM), were identified through weighted gene co-expression network analysis (WGCNA) of microarray datasets retrieved from the Gene Expression Omnibus (GEO) database. Through this, four highly correlated modules were observed to be present across the PA (GSE50161), OG (GSE4290), AA (GSE43378), and GBM (GSE36245) datasets. The functional annotation and pathway enrichment analysis done through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) showed that the modules and hub genes identified were mainly involved in signal transduction, transcription regulation, and protein binding, which collectively deregulate several signaling pathways, mainly PI3K/Akt and metabolic pathways. The involvement of several hub genes primarily linked to other signaling pathways, including the cAMP, MAPK/ERK, Wnt/β-catenin, and calcium signaling pathways, indicates potential interconnectivity and influence on the PI3K/Akt pathway and, subsequently, glioma severity. The Drug Repurposing Encyclopedia (DRE) was used to screen for potential drugs based on the up- and downregulated hub genes, wherein the synthetic progestin hormones norgestimate and ethisterone were the top drug candidates. This shows the potential neuroprotective effect of progesterone against glioma due to its influence on EGFR expression and other signaling pathways. Aside from these, several experimental and approved drug candidates were also identified, which include an adrenergic receptor antagonist, a PPAR-γ receptor agonist, a CDK inhibitor, a sodium channel blocker, a bradykinin receptor antagonist, and a dopamine receptor agonist, which further highlights the gene network as a potential therapeutic avenue for glioma.
Collapse
Affiliation(s)
- Marco A. Orda
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines
| | - Peter Matthew Paul T. Fowler
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| |
Collapse
|
7
|
Abdik E, Çakır T. Transcriptome-based biomarker prediction for Parkinson's disease using genome-scale metabolic modeling. Sci Rep 2024; 14:585. [PMID: 38182712 PMCID: PMC10770157 DOI: 10.1038/s41598-023-51034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Identification of PD biomarkers is crucial for early diagnosis and to develop target-based therapeutic agents. Integrative analysis of genome-scale metabolic models (GEMs) and omics data provides a computational approach for the prediction of metabolite biomarkers. Here, we applied the TIMBR (Transcriptionally Inferred Metabolic Biomarker Response) algorithm and two modified versions of TIMBR to investigate potential metabolite biomarkers for PD. To this end, we mapped thirteen post-mortem PD transcriptome datasets from the substantia nigra region onto Human-GEM. We considered a metabolite as a candidate biomarker if its production was predicted to be more efficient by a TIMBR-family algorithm in control or PD case for the majority of the datasets. Different metrics based on well-known PD-related metabolite alterations, PD-associated pathways, and a list of 25 high-confidence PD metabolite biomarkers compiled from the literature were used to compare the prediction performance of the three algorithms tested. The modified algorithm with the highest prediction power based on the metrics was called TAMBOOR, TrAnscriptome-based Metabolite Biomarkers by On-Off Reactions, which was introduced for the first time in this study. TAMBOOR performed better in terms of capturing well-known pathway alterations and metabolite secretion changes in PD. Therefore, our tool has a strong potential to be used for the prediction of novel diagnostic biomarkers for human diseases.
Collapse
Affiliation(s)
- Ecehan Abdik
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
8
|
Wittung-Stafshede P. Chemical catalysis by biological amyloids. Biochem Soc Trans 2023; 51:1967-1974. [PMID: 37743793 PMCID: PMC10657172 DOI: 10.1042/bst20230617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Toxic aggregation of proteins and peptides into amyloid fibers is the basis of several human diseases. In each disease, a particular peptide noncovalently assembles into long thin structures with an overall cross-β fold. Amyloids are not only related to disease: functional amyloids are found in many biological systems and artificial peptide amyloids are developed into novel nanomaterials. Amyloid fibers can act as template for the generation of more amyloids but are considered nonreactive in chemical catalysis. The perception of amyloids as chemically inert species was recently challenged by in vitro work on three human amyloid systems. With the use of model substrates, amyloid-β, α-synuclein and glucagon amyloids were found to catalyze biologically relevant chemical reactions. The detected catalytic activity was much less than that of 'real' enzymes, but like that of designed (synthetic) catalytic amyloids. I here describe the current knowledge around this new activity of natural amyloids and the putative connection to metabolic changes in amyloid diseases. These pioneering studies imply that catalytic activity is an unexplored gain-of-function activity of disease amyloids. In fact, all biological amyloids may harbor intrinsic catalytic activity, tuned by each amyloid's particular fold, that await discovery.
Collapse
|
9
|
Kamrani-Sharif R, Hayes AW, Gholami M, Salehirad M, Allahverdikhani M, Motaghinejad M, Emanuele E. Oxytocin as neuro-hormone and neuro-regulator exert neuroprotective properties: A mechanistic graphical review. Neuropeptides 2023; 101:102352. [PMID: 37354708 DOI: 10.1016/j.npep.2023.102352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Neurodegeneration is progressive cell loss in specific neuronal populations, often resulting in clinical consequences with significant medical, societal, and economic implications. Because of its antioxidant, anti-inflammatory, and anti-apoptotic properties, oxytocin has been proposed as a potential neuroprotective and neurobehavioral therapeutic agent, including modulating mood disturbances and cognitive enchantment. METHODS Literature searches were conducted using the following databases Web of Science, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, and Cochrane from January 2000 to February 2023 for articles dealing with oxytocin neuroprotective properties in preventing or treating neurodegenerative disorders and diseases with a focus on oxidative stress, inflammation, and apoptosis/cell death. RESULTS The neuroprotective effects of oxytocin appears to be mediated by its anti-inflammatory properties, inhibition of neuro inflammation, activation of several antioxidant enzymes, inhibition of oxidative stress and free radical formation, activation of free radical scavengers, prevent of mitochondrial dysfunction, and inhibition of apoptosis. CONCLUSION Oxytocin acts as a neuroprotective agent by preventing neuro-apoptosis, neuro-inflammation, and neuronal oxidative stress, and by restoring mitochondrial function.
Collapse
Affiliation(s)
- Roya Kamrani-Sharif
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Allahverdikhani
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
10
|
Ambeskovic M, Hopkins G, Hoover T, Joseph JT, Montina T, Metz GAS. Metabolomic Signatures of Alzheimer's Disease Indicate Brain Region-Specific Neurodegenerative Progression. Int J Mol Sci 2023; 24:14769. [PMID: 37834217 PMCID: PMC10573054 DOI: 10.3390/ijms241914769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Pathological mechanisms contributing to Alzheimer's disease (AD) are still elusive. Here, we identified the metabolic signatures of AD in human post-mortem brains. Using 1H NMR spectroscopy and an untargeted metabolomics approach, we identified (1) metabolomic profiles of AD and age-matched healthy subjects in post-mortem brain tissue, and (2) region-common and region-unique metabolome alterations and biochemical pathways across eight brain regions revealed that BA9 was the most affected. Phenylalanine and phosphorylcholine were mainly downregulated, suggesting altered neurotransmitter synthesis. N-acetylaspartate and GABA were upregulated in most regions, suggesting higher inhibitory activity in neural circuits. Other region-common metabolic pathways indicated impaired mitochondrial function and energy metabolism, while region-unique pathways indicated oxidative stress and altered immune responses. Importantly, AD caused metabolic changes in brain regions with less well-documented pathological alterations that suggest degenerative progression. The findings provide a new understanding of the biochemical mechanisms of AD and guide biomarker discovery for personalized risk prediction and diagnosis.
Collapse
Affiliation(s)
- Mirela Ambeskovic
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.A.); (G.H.); (T.H.)
| | - Giselle Hopkins
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.A.); (G.H.); (T.H.)
| | - Tanzi Hoover
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.A.); (G.H.); (T.H.)
| | - Jeffrey T. Joseph
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A. S. Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.A.); (G.H.); (T.H.)
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
11
|
Zhang X, Han S, Jiang X, Duan S, Gao Y, Ding J, Li X, Sun B, Hu X, Zhang X, Zhang W. Comparative analysis of bile metabolic profile in patients with biliary obstruction complicated by Clonorchis sinensis infection. Front Cell Infect Microbiol 2023; 13:1254016. [PMID: 37868349 PMCID: PMC10585366 DOI: 10.3389/fcimb.2023.1254016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
Background Clonorchiasis is an important foodborne parasitic disease. However, eggs of Clonorchis sinensis (C. sinensis) cannot be detected in feces during biliary obstruction. Moreover, many diseases can cause biliary obstruction, such as gallstones, adenocarcinoma, cholangiocarcinoma and Ascaris lumbricoides infection. Therefore, it is of great significance to distinguish between patients of biliary obstruction and biliary obstruction with C. sinensis infection. Methods A total of 48 biliary obstruction patients were enrolled, including 23 infected with C. sinensis (C. sinensis) (OB+C.s) and 25 non-infected subjects (OB). The bile samples were collected by endoscopic retrograde cholangiopancreatography and analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Additionally, multivariate statistical analysis methods were employed to identify differential metabolites. Next, bile amino acid levels were determined by targeted metabolomics analysis. Result A total of 146 and 132 significant metabolites were identified in electrospray ionization (ESI)+ and ESI- modes, respectively. The levels of amino acids (asparagine, glutamate, ornithine) and polyamines (spermidine and spermine) were significantly changed. Targeted analysis showed that the levels of amino acids (such as L-arginine, L-glutamine, L-lysine, L-propionic, and L-tyrosine) were lower in OB+C.s patients compared to those in OB patients. Marked metabolic pathways were involved in "Glutathione metabolism", "Caffeine metabolism", "Alanine, aspartate and glutamate metabolism", "Arginine and proline metabolism", "Purine metabolism", "Beta-Alanine metabolism", and "D-glutamine and D-glutamate metabolism". Conclusion These results show that there were significant differences between OB+C.s and OB patients, especially in amino acids. The metabolic signature and perturbations in metabolic pathways may help to better distinguish OB+C.s and OB patients.
Collapse
Affiliation(s)
- Xueli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Su Han
- Department of Parasitology, Harbin Medical University, Harbin, China
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xu Jiang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Shanshan Duan
- Beijing Obstetrics and Gynecology Hospital Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yannan Gao
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Ding
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiang Li
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Beibei Sun
- Clinical Laboratory, Zhuhai Maternal and Child Health Hospital, Zhuhai, China
| | - Xinyi Hu
- Department of Stomatology, Laixi People's Hospital, Shandong, China
| | - Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Weizhe Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Vishweswaraiah S, Yilmaz A, Saiyed N, Khalid A, Koladiya PR, Pan X, Macias S, Robinson AC, Mann D, Green BD, Kerševičiūte I, Gordevičius J, Radhakrishna U, Graham SF. Integrative Analysis Unveils the Correlation of Aminoacyl-tRNA Biosynthesis Metabolites with the Methylation of the SEPSECS Gene in Huntington's Disease Brain Tissue. Genes (Basel) 2023; 14:1752. [PMID: 37761892 PMCID: PMC10530570 DOI: 10.3390/genes14091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The impact of environmental factors on epigenetic changes is well established, and cellular function is determined not only by the genome but also by interacting partners such as metabolites. Given the significant impact of metabolism on disease progression, exploring the interaction between the metabolome and epigenome may offer new insights into Huntington's disease (HD) diagnosis and treatment. Using fourteen post-mortem HD cases and fourteen control subjects, we performed metabolomic profiling of human postmortem brain tissue (striatum and frontal lobe), and we performed DNA methylome profiling using the same frontal lobe tissue. Along with finding several perturbed metabolites and differentially methylated loci, Aminoacyl-tRNA biosynthesis (adj p-value = 0.0098) was the most significantly perturbed metabolic pathway with which two CpGs of the SEPSECS gene were correlated. This study improves our understanding of molecular biomarker connections and, importantly, increases our knowledge of metabolic alterations driving HD progression.
Collapse
Affiliation(s)
- Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (S.V.); (U.R.)
| | - Ali Yilmaz
- Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (N.S.); (A.K.); (P.R.K.)
| | - Nazia Saiyed
- Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (N.S.); (A.K.); (P.R.K.)
| | - Abdullah Khalid
- Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (N.S.); (A.K.); (P.R.K.)
| | - Purvesh R. Koladiya
- Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (N.S.); (A.K.); (P.R.K.)
| | - Xiaobei Pan
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK; (X.P.); (S.M.); (B.D.G.)
| | - Shirin Macias
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK; (X.P.); (S.M.); (B.D.G.)
| | - Andrew C. Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford M6 8HD, UK; (A.C.R.); (D.M.)
| | - David Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford M6 8HD, UK; (A.C.R.); (D.M.)
| | - Brian D. Green
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK; (X.P.); (S.M.); (B.D.G.)
| | - Ieva Kerševičiūte
- VUGENE, LLC, 625 Kenmoor Ave Suite 301 PMB 96578, Grand Rapids, MI 49546, USA; (I.K.); (J.G.)
| | - Juozas Gordevičius
- VUGENE, LLC, 625 Kenmoor Ave Suite 301 PMB 96578, Grand Rapids, MI 49546, USA; (I.K.); (J.G.)
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (S.V.); (U.R.)
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (S.V.); (U.R.)
- Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA; (A.Y.); (N.S.); (A.K.); (P.R.K.)
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
13
|
Tomečková V, Tkáčiková S, Talian I, Fabriciová G, Hovan A, Kondrakhova D, Zakutanská K, Skirková M, Komanický V, Tomašovičová N. Experimental Analysis of Tear Fluid and Its Processing for the Diagnosis of Multiple Sclerosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115251. [PMID: 37299978 DOI: 10.3390/s23115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
A pilot analysis of the tear fluid of patients with multiple sclerosis (MS) collected by glass microcapillary was performed using various experimental methods: liquid chromatography-mass spectrometry, Raman spectroscopy, infrared spectroscopy, and atomic-force microscopy. Infrared spectroscopy found no significant difference between the tear fluid of MS patients and the control spectra; all three significant peaks were located at around the same positions. Raman analysis showed differences between the spectra of the tear fluid of MS patients and the spectra of healthy subjects, which indicated a decrease in tryptophan and phenylalanine content and changes in the relative contributions of the secondary structures of the polypeptide chains of tear proteins. Atomic-force microscopy exhibited a surface fern-shaped dendrite morphology of the tear fluid of patients with MS, with less roughness on both oriented silicon (100) and glass substrates compared to the tear fluid of control subjects. The results of liquid chromatography-mass spectrometry showed downregulation of glycosphingolipid metabolism, sphingolipid metabolism, and lipid metabolism. Proteomic analysis identified upregulated proteins in the tear fluid of patients with MS such as cystatine, phospholipid transfer protein, transcobalamin-1, immunoglobulin lambda variable 1-47, lactoperoxidase, and ferroptosis suppressor protein 1; and downregulated proteins such as haptoglobin, prosaposin, cytoskeletal keratin type I pre-mRNA-processing factor 17, neutrophil gelatinase-associated lipocalin, and phospholipase A2. This study showed that the tear proteome in patients with MS is modified and can reflect inflammation. Tear fluid is not a commonly used biological material in clinico-biochemical laboratories. Experimental proteomics has the potential to become a promising contemporary tool for personalized medicine, and it might be applied in clinical practice by providing a detailed analysis of the tear-fluid proteomic profile of patients with MS.
Collapse
Affiliation(s)
- Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Soňa Tkáčiková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Gabriela Fabriciová
- Department of Biophysics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Andrej Hovan
- Department of Biophysics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Daria Kondrakhova
- Department of Condensed Matter Physics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Katarína Zakutanská
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Miriama Skirková
- Department of Opthalmology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Vladimír Komanický
- Department of Condensed Matter Physics, Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Natália Tomašovičová
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| |
Collapse
|
14
|
Pardo-Moreno T, Mohamed-Mohamed H, Suleiman-Martos S, Ramos-Rodriguez JJ, Rivas-Dominguez A, Melguizo-Rodríguez L, Gómez-Urquiza JL, Bermudez-Pulgarin B, Garcia-Morales V. Amyotrophic Lateral Sclerosis and Serum Lipid Level Association: A Systematic Review and Meta-Analytic Study. Int J Mol Sci 2023; 24:ijms24108675. [PMID: 37240018 DOI: 10.3390/ijms24108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown etiology. Many metabolic alterations occur during ALS progress and can be used as a method of pre-diagnostic and early diagnosis. Dyslipidemia is one of the physiological changes observed in numerous ALS patients. The aim of this study is to analyze the possible relationship between the rate of disease progression (functional rating scale (ALS-FRS)) and the plasma lipid levels at the early stage of ALS. A systematic review was carried out in July 2022. The search equation was "Triglycerides AND amyotrophic lateral sclerosis" and its variants. Four meta-analyses were performed. Four studies were included in the meta-analysis. No significant differences were observed between the lipid levels (total cholesterol, triglycerides, HDL cholesterol, and LDL cholesterol) and the ALS-FRS score at the onset of the disease. Although the number of studies included in this research was low, the results of this meta-analytic study suggest that there is no clear relationship between the symptoms observed in ALS patients and the plasma lipid levels. An increase in research, as well as an expansion of the geographical area, would be of interest.
Collapse
Affiliation(s)
- Teresa Pardo-Moreno
- Department of Physiology, Faculty of Health Sciences-Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Himan Mohamed-Mohamed
- Department of Physiology, Faculty of Health Sciences-Ceuta, University of Granada, 51001 Ceuta, Spain
| | | | - Juan José Ramos-Rodriguez
- Department of Physiology, Faculty of Health Sciences-Ceuta, University of Granada, 51001 Ceuta, Spain
| | | | - Lucía Melguizo-Rodríguez
- Department of Nursery, Faculty of Health Sciences-Ceuta, University of Granada, 51001 Ceuta, Spain
| | - José L Gómez-Urquiza
- Department of Nursery, Faculty of Health Sciences-Ceuta, University of Granada, 51001 Ceuta, Spain
| | | | - Victoria Garcia-Morales
- Physiology Area, Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cádiz, 11003 Cádiz, Spain
| |
Collapse
|
15
|
Rashid F, Dubinkina V, Ahmad S, Maslov S, Irudayaraj JMK. Gut Microbiome-Host Metabolome Homeostasis upon Exposure to PFOS and GenX in Male Mice. TOXICS 2023; 11:281. [PMID: 36977046 PMCID: PMC10051855 DOI: 10.3390/toxics11030281] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Alterations of the normal gut microbiota can cause various human health concerns. Environmental chemicals are one of the drivers of such disturbances. The aim of our study was to examine the effects of exposure to perfluoroalkyl and polyfluoroalkyl substances (PFAS)-specifically, perfluorooctane sulfonate (PFOS) and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic acid (GenX)-on the microbiome of the small intestine and colon, as well as on liver metabolism. Male CD-1 mice were exposed to PFOS and GenX in different concentrations and compared to controls. GenX and PFOS were found to have different effects on the bacterial community in both the small intestine and colon based on 16S rRNA profiles. High GenX doses predominantly led to increases in the abundance of Clostridium sensu stricto, Alistipes, and Ruminococcus, while PFOS generally altered Lactobacillus, Limosilactobacillus, Parabacteroides, Staphylococcus, and Ligilactobacillus. These treatments were associated with alterations in several important microbial metabolic pathways in both the small intestine and colon. Untargeted LC-MS/MS metabolomic analysis of the liver, small intestine, and colon yielded a set of compounds significantly altered by PFOS and GenX. In the liver, these metabolites were associated with the important host metabolic pathways implicated in the synthesis of lipids, steroidogenesis, and in the metabolism of amino acids, nitrogen, and bile acids. Collectively, our results suggest that PFOS and GenX exposure can cause major perturbations in the gastrointestinal tract, aggravating microbiome toxicity, hepatotoxicity, and metabolic disorders.
Collapse
Affiliation(s)
- Faizan Rashid
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Veronika Dubinkina
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Saeed Ahmad
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sergei Maslov
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Maria Kumar Irudayaraj
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Costello SM, Cheney AM, Waldum A, Tripet B, Cotrina-Vidal M, Kaufmann H, Norcliffe-Kaufmann L, Lefcort F, Copié V. A Comprehensive NMR Analysis of Serum and Fecal Metabolites in Familial Dysautonomia Patients Reveals Significant Metabolic Perturbations. Metabolites 2023; 13:metabo13030433. [PMID: 36984872 PMCID: PMC10057143 DOI: 10.3390/metabo13030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Central metabolism has a profound impact on the clinical phenotypes and penetrance of neurological diseases such as Alzheimer’s (AD) and Parkinson’s (PD) diseases, Amyotrophic Lateral Sclerosis (ALS) and Autism Spectrum Disorder (ASD). In contrast to the multifactorial origin of these neurological diseases, neurodevelopmental impairment and neurodegeneration in Familial Dysautonomia (FD) results from a single point mutation in the ELP1 gene. FD patients represent a well-defined population who can help us better understand the cellular networks underlying neurodegeneration, and how disease traits are affected by metabolic dysfunction, which in turn may contribute to dysregulation of the gut–brain axis of FD. Here, 1H NMR spectroscopy was employed to characterize the serum and fecal metabolomes of FD patients, and to assess similarities and differences in the polar metabolite profiles between FD patients and healthy relative controls. Findings from this work revealed noteworthy metabolic alterations reflected in energy (ATP) production, mitochondrial function, amino acid and nucleotide catabolism, neurosignaling molecules, and gut-microbial metabolism. These results provide further evidence for a close interconnection between metabolism, neurodegeneration, and gut microbiome dysbiosis in FD, and create an opportunity to explore whether metabolic interventions targeting the gut–brain–metabolism axis of FD could be used to redress or slow down the progressive neurodegeneration observed in FD patients.
Collapse
Affiliation(s)
- Stephanann M. Costello
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Alexandra M. Cheney
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Annie Waldum
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Brian Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Maria Cotrina-Vidal
- Department of Neurology, New York University School of Medicine, New York, NY 10017, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY 10017, USA
| | | | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
- Correspondence: ; Tel.: +1-406-994-7244
| |
Collapse
|
17
|
Yoon CK, Kim YA, Park UC, Kwon SH, Lee Y, Yoo HJ, Seo JH, Yu HG. Vitreous Fatty Amides and Acyl Carnitines Are Altered in Intermediate Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2023; 64:28. [PMID: 36939720 PMCID: PMC10043506 DOI: 10.1167/iovs.64.3.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Purpose Age-related macular degeneration (AMD) is the leading cause of visual impairment worldwide. In this study, we aimed to investigate the vitreous humor metabolite profiles of patients with intermediate AMD using untargeted metabolomics. Methods We performed metabolomics using high-resolution liquid chromatography mass spectrometry on the vitreous humor of 31 patients with intermediate AMD and 30 controls who underwent vitrectomy for epiretinal membrane with or without cataract surgery. Univariate analyses after false discovery rate correction were performed to discriminate the metabolites and identify the significant metabolites of intermediate AMD. For biologic interpretation, enrichment and pathway analysis were conducted using MetaboAnalyst 5.0. Results Of the 858 metabolites analyzed in the vitreous humor, 258 metabolites that distinguished patients with AMD from controls were identified (P values < 0.05). Ascorbic acid and uric acid levels increased in the AMD group (all P values < 0.05). The acyl carnitines, such as acetyl L-carnitine (1.37-fold), and fatty amides, such as anandamide (0.9-fold) and docosanamide (0.67-fold), were higher in patients with intermediate AMD. In contrast, nicotinamide (-0.55-fold), and succinic acid (-1.69-fold) were lower in patients with intermediate AMD. The metabolic pathway related oxidation of branched chain fatty acids and carnitine synthesis showed enrichment. Conclusions Multiple metabolites related to fatty amides and acyl carnitine were found to be increased in the vitreous humor of patients with intermediate AMD, whereas succinic acid and nicotinamide were reduced, suggesting that altered metabolites related to fatty amides and acyl carnitines and energy metabolism may be implicated in the etiology of AMD.
Collapse
Affiliation(s)
- Chang-Ki Yoon
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Ye An Kim
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Un Chul Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Seung-Hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Korea
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Korea
- https://orcid.org/0000-0003-3127-7160
| | - Hyeong Gon Yu
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
- Retina Center, Sky Eye Institute, Seoul, Korea
| |
Collapse
|
18
|
Maszka P, Kwasniak-Butowska M, Cysewski D, Slawek J, Smolenski RT, Tomczyk M. Metabolomic Footprint of Disrupted Energetics and Amino Acid Metabolism in Neurodegenerative Diseases: Perspectives for Early Diagnosis and Monitoring of Therapy. Metabolites 2023; 13:metabo13030369. [PMID: 36984809 PMCID: PMC10057046 DOI: 10.3390/metabo13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing due to the aging population and improved longevity. They are characterized by a range of pathological hallmarks, including protein aggregation, mitochondrial dysfunction, and oxidative stress. The aim of this review is to summarize the alterations in brain energy and amino acid metabolism in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Based on our findings, we proposed a group of selected metabolites related to disturbed energy or mitochondrial metabolism as potential indicators or predictors of disease. We also discussed the hidden challenges of metabolomics studies in NDs and proposed future directions in this field. We concluded that biochemical parameters of brain energy metabolism disruption (obtained with metabolomics) may have potential application as a diagnostic tool for the diagnosis, prediction, and monitoring of the effectiveness of therapies for NDs. However, more studies are needed to determine the sensitivity of the proposed candidates. We suggested that the most valuable biomarkers for NDs studies could be groups of metabolites combined with other neuroimaging or molecular techniques. To attain clinically applicable results, the integration of metabolomics with other “omic” techniques might be required.
Collapse
Affiliation(s)
- Patrycja Maszka
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Kwasniak-Butowska
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Jaroslaw Slawek
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| |
Collapse
|
19
|
LeWitt PA, Li J, Wu KH, Lu M. Diagnostic metabolomic profiling of Parkinson's disease biospecimens. Neurobiol Dis 2023; 177:105962. [PMID: 36563791 DOI: 10.1016/j.nbd.2022.105962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Reliable and sensitive biomarkers are needed for enhancing and predicting Parkinson's disease (PD) diagnosis. OBJECTIVE To investigate comprehensive metabolomic profiling of biochemicals in CSF and serum for determining diagnostic biomarkers of PD. METHODS Fifty subjects, symptomatic with PD for ≥5 years, were matched to 50 healthy controls (HCs). We used ultrahigh-performance liquid chromatography linked to tandem mass spectrometry (UHPLC-MS/MS) for measuring relative concentrations of ≤1.5 kDalton biochemicals. A reference library created from authentic standards facilitated chemical identifications. Analytes underwent univariate analysis for PD association, with false discovery rate-adjusted p-value (≤0.05) determinations. Multivariate analysis (for identifying a panel of biochemicals discriminating PD from HCs) used several biostatistical methods, including logistic LASSO regression. RESULTS Comparing PD and HCs, strong differentiation was achieved from CSF but not serum specimens. With univariate analysis, 21 CSF compounds exhibited significant differential concentrations. Logistic LASSO regression led to selection of 23 biochemicals (11 shared with those determined by the univariate analysis). The selected compounds, as a group, distinguished PD from HCs, with Area-Under-the-Receiver-Operating-Characteristic (ROC) curve of 0.897. With optimal cutoff, logistic LASSO achieved 100% sensitivity and 96% specificity (and positive and negative predictive values of 96% and 100%). Ten-fold cross-validation gave 84% sensitivity and 82% specificity (and 82% positive and 84% negative predictive values). From the logistic LASSO-chosen regression model, 2 polyamine metabolites (N-acetylcadaverine and N-acetylputrescine) were chosen and had the highest fold-changes in comparing PD to HCs. Another chosen biochemical, acisoga (N-(3-acetamidopropyl)pyrrolidine-2-one), also is a polyamine metabolism derivative. CONCLUSIONS UHPLC-MS/MS assays provided a metabolomic signature highly predictive of PD. These findings provide further evidence for involvement of polyamine pathways in the neurodegeneration of PD.
Collapse
Affiliation(s)
- Peter A LeWitt
- Departments of Neurology, Henry Ford Hospital, West Bloomfield, MI, USA; Wayne State University School of Medicine, West Bloomfield, MI, USA.
| | - Jia Li
- The Department of Public Health Science, Henry Ford Health System, Detroit, MI, USA
| | - Kuan-Han Wu
- The Department of Public Health Science, Henry Ford Health System, Detroit, MI, USA
| | - Mei Lu
- The Department of Public Health Science, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
20
|
Yu Z, Ueno K, Funayama R, Sakai M, Nariai N, Kojima K, Kikuchi Y, Li X, Ono C, Kanatani J, Ono J, Iwamoto K, Hashimoto K, Kinoshita K, Nakayama K, Nagasaki M, Tomita H. Sex-Specific Differences in the Transcriptome of the Human Dorsolateral Prefrontal Cortex in Schizophrenia. Mol Neurobiol 2023; 60:1083-1098. [PMID: 36414910 DOI: 10.1007/s12035-022-03109-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
Abstract
Schizophrenia presents clinical and biological differences between males and females. This study investigated transcriptional profiles in the dorsolateral prefrontal cortex (DLPFC) using postmortem data from the largest RNA-sequencing (RNA-seq) database on schizophrenic cases and controls. Data for 154 male and 113 female controls and 160 male and 93 female schizophrenic cases were obtained from the CommonMind Consortium. In the RNA-seq database, the principal component analysis showed that sex effects were small in schizophrenia. After we analyzed the impact of sex-specific differences on gene expression, the female group showed more significantly changed genes compared with the male group. Based on the gene ontology analysis, the female sex-specific genes that changed were overrepresented in the mitochondrion, ATP (phosphocreatine and adenosine triphosphate)-, and metal ion-binding relevant biological processes. An ingenuity pathway analysis revealed that the differentially expressed genes related to schizophrenia in the female group were involved in midbrain dopaminergic and γ-aminobutyric acid (GABA)-ergic neurons and microglia. We used methylated DNA-binding domain-sequencing analyses and microarray to investigate the DNA methylation that potentially impacts the sex differences in gene transcription using a maternal immune activation (MIA) murine model. Among the sex-specific positional genes related to schizophrenia in the PFC of female offspring from MIA, the changes in the methylation and transcriptional expression of loci ACSBG1 were validated in the females with schizophrenia in independent postmortem samples by real-time PCR and pyrosequencing. Our results reveal potential genetic risks in the DLPFC for the sex-dependent prevalence and symptomology of schizophrenia.
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan.
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
| | - Kazuko Ueno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mai Sakai
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoki Nariai
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kaname Kojima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Xue Li
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Junpei Kanatani
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Jiro Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai, Japan
| |
Collapse
|
21
|
Zhang Y, Liang F, Zhang D, Qi S, Liu Y. Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: An emerging field of study to diagnostic and therapeutic purposes. Biomed Pharmacother 2023; 157:114046. [PMID: 36469967 DOI: 10.1016/j.biopha.2022.114046] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular vesicles (EVs) are highly diverse nanoscale membrane-bound structures released from different cell types into the extracellular environment. They play essential functions in cell signaling by transporting their cargo, such as proteins, RNA, DNA, lipids, metabolites, and small molecules, to recipient cells. It has recently been shown that EVs might modulate carcinogenesis by delivering cargo to recipient cells. Furthermore, recent discoveries revealed that changes in plasma-derived EV levels and cargo in subjects with metabolic diseases were documented by many researchers, suggesting that EVs might be a promising source of disease biomarkers. One of the cargos of EVs that has recently attracted the most attention is metabolites. The metabolome of these vesicles introduces a plethora of disease indicators; hence, examining the metabolomics of EVs detected in human biofluids would be an effective approach. On the other hand, metabolites have various roles in biological systems, including the production of energies, synthesizing macromolecules, and serving as signaling molecules and hormones. Metabolome rewiring in cancer and stromal cells is a characteristic of malignancy, but the current understanding of how this affects the metabolite composition and activity of tumor-derived EVs remains in its infancy. Since new findings and studies in the field of exosome biology and metabolism are constantly being published, it is likely that diagnostic and treatment techniques, including the use of exosome metabolites, will be launched in the coming years. Recent years have seen increased interest in the EV metabolome as a possible source for biomarker development. However, our understanding of the role of these molecules in health and disease is still immature. In this work, we have provided the latest findings regarding the role of metabolites as EV cargoes in the pathophysiology of diseases, including cancer, pleural effusion (PE), and cardiovascular disease (CVD). We also discussed the significance of metabolites as EV cargoes of microbiota and their role in host-microbe interaction. In addition, the latest findings on metabolites in the form of EV cargoes as biomarkers for disease diagnosis and treatment are presented in this study.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Feng Liang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Shuang Qi
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
22
|
Verde F, Aiello EN, Adobbati L, Poletti B, Solca F, Tiloca C, Sangalli D, Maranzano A, Muscio C, Ratti A, Zago S, Ticozzi N, Frisoni GB, Silani V. Coexistence of Amyotrophic Lateral Sclerosis and Alzheimer's Disease: Case Report and Review of the Literature. J Alzheimers Dis 2023; 95:1383-1399. [PMID: 37694369 DOI: 10.3233/jad-230562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We describe a case of amyotrophic lateral sclerosis (ALS) associated with Alzheimer's disease (AD) and review the literature about the coexistence of the two entities, highlighting the following: mean age at onset is 63.8 years, with slight female predominance; ALS tends to manifest after cognitive impairment and often begins in the bulbar region; average disease duration is 3 years; cognitive phenotype is mostly amnestic; the pattern of brain involvement is, in most cases, consistent with AD. Our case and the reviewed ones suggest that patients with ALS and dementia lacking unequivocal features of FTD should undergo additional examinations in order to recognize AD.
Collapse
Affiliation(s)
- Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Edoardo Nicolò Aiello
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Laura Adobbati
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Cinzia Tiloca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Davide Sangalli
- Department of Neurology and Stroke Unit, Azienda Socio Sanitaria Territoriale Lecco, Lecco, Italy
| | - Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Cristina Muscio
- Neurology-5 (Neuropathology) Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Stefano Zago
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Battista Frisoni
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
Wei P, He M, Han G. Metabolic Characterization of Ocular Tissues in Relation to Laser-Induced Choroidal Neovascularization in Rats. J Proteome Res 2022; 21:2979-2986. [PMID: 36315600 DOI: 10.1021/acs.jproteome.2c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Age-related macular degeneration is a metabolic compromise disorder whose main pathological feature is choroidal neovascularization (CNV) formation. Using untargeted metabolomics analysis, we determined to assess the metabolomic alterations in a CNV rat model to provide an insight into its pathogenesis. In the CNV model, there were 24 significantly changed metabolites in the plasma and 71 in various ocular tissues. Pathway analysis showed that certain metabolic pathways changed in interrelated tissues: for instance, in terms of the altered urea cycle, arginine and proline metabolism were increased in the plasma, while spermidine and spermine biosynthesis activities were increased in the retinal pigment epithelium (RPE)/choroid. The retina and RPE/choroid shared the same changed metabolites of branched-chain amino acid metabolism. Fatty acid metabolism was found to be the significant altered metabolic pathway in the retina of this CNV model. Although the metabolism pattern of different substances is specific for each ocular tissue, there is also a certain material exchange between different tissues. Dysregulated metabolomic profiles in differential tissues may point to an interconnected pathway, oxidative stress response, which may lead to RPE cell degeneration and, ultimately, CNV development.
Collapse
Affiliation(s)
- Pinghui Wei
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, PR China.,Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, PR China
| | - Meiqin He
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300192, PR China
| | - Guoge Han
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, PR China.,Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, PR China
| |
Collapse
|
24
|
Swaroop RS, Pradhan SS, Darshan VMD, Phalguna KS, Sivaramakrishnan V. Integrated network pharmacology approach shows a potential role of Ginseng catechins and ginsenosides in modulating protein aggregation in Amyotrophic Lateral Sclerosis. 3 Biotech 2022; 12:333. [PMID: 36330377 PMCID: PMC9622974 DOI: 10.1007/s13205-022-03401-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Amyotrophic lateral Sclerosis is an incurable, progressive neurodegenerative motor neuron disease. The disease is characterized by protein aggregates. The symptoms include weakness, denervation of muscles, atrophy and progressive paralysis of bulbar and respiratory muscles and dysphagia. Various secondary metabolites are evaluated for their ability to improve symptoms in ALS. Ginseng has been traditionally used for treating several neurodegenerative diseases. Several studies using model systems have shown a potential role of Ginseng catechins and Ginsenosides in clearing protein aggregation associated with ALS. We focus on Network pharmacology approach to understand the effect of Ginseng catechins or ginsenosides on protein aggregation associated with ALS. A catechin/ginsenoside-protein interaction network was generated and the pathways obtained were compared with those obtained from transcriptomic datasets of ALS from GEO database. Knock out of MAPK14, AKT and GSK from Catechin and BACE 1 from ginsenoside modulated pathways inhibited protein aggregation. Catechins and ginsenosides have potential as therapeutic agents in the management of ALS. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03401-1.
Collapse
Affiliation(s)
- R. Sai Swaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - V. M. Datta Darshan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Kanikaram Sai Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| |
Collapse
|
25
|
Yao Y, Han W. Proline Metabolism in Neurological and Psychiatric Disorders. Mol Cells 2022; 45:781-788. [PMID: 36324271 PMCID: PMC9676987 DOI: 10.14348/molcells.2022.0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.
Collapse
Affiliation(s)
- Yuxiao Yao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138667
| |
Collapse
|
26
|
Gątarek P, Sekulska-Nalewajko J, Bobrowska-Korczaka B, Pawełczyk M, Jastrzębski K, Głąbiński A, Kałużna-Czaplińska J. Plasma Metabolic Disturbances in Parkinson's Disease Patients. Biomedicines 2022; 10:biomedicines10123005. [PMID: 36551761 PMCID: PMC9775245 DOI: 10.3390/biomedicines10123005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Plasma from patients with Parkinson's disease (PD) is a valuable source of information indicating altered metabolites associated with the risk or progression of the disease. Neurotoxicity of dopaminergic neurons, which is triggered by aggregation of α-synuclein, is the main pathogenic feature of PD. However, a growing body of scientific reports indicates that metabolic changes may precede and directly contribute to neurodegeneration. Identification and characterization of the abnormal metabolic pattern in patients' plasma are therefore crucial for the search for potential PD biomarkers. The aims of the present study were (1) to identify metabolic alterations in plasma metabolome in subjects with PD as compared with the controls; (2) to find new potential markers, some correlations among them; (3) to identify metabolic pathways relevant to the pathophysiology of PD. Plasma samples from patients with PD (n = 25) and control group (n = 12) were collected and the gas chromatography-time-of-flight-mass spectrometry GC-TOFMS-based metabolomics approach was used to evaluate the metabolic changes based on the identified 14 metabolites with significantly altered levels using univariate and multivariate statistical analysis. The panel, including 6 metabolites (L-3-methoxytyrosine, aconitic acid, L-methionine, 13-docosenamide, hippuric acid, 9,12-octadecadienoic acid), was identified to discriminate PD from controls with the area under the curve (AUC) of 0.975, with an accuracy of 92%. We also used statistical criteria to identify the significantly altered level of metabolites. The metabolic pathways involved were associated with linoleic acid metabolism, mitochondrial electron transport chain, glycerolipid metabolism, and bile acid biosynthesis. These abnormal metabolic changes in the plasma of patients with PD were mainly related to the amino acid metabolism, TCA cycle metabolism, and mitochondrial function.
Collapse
Affiliation(s)
- Paulina Gątarek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, 90-924 Lodz, Poland
- Correspondence: (P.G.); (J.K.-C.); Tel.: +48-426-313-091 (J.K.-C.); Fax: +48-426-313-128 (J.K.-C.)
| | | | | | - Małgorzata Pawełczyk
- Department of Neurology and Stroke, Medical University of Lodz, 90-549 Lodz, Poland
| | - Karol Jastrzębski
- Department of Neurology and Stroke, Medical University of Lodz, 90-549 Lodz, Poland
| | - Andrzej Głąbiński
- Department of Neurology and Stroke, Medical University of Lodz, 90-549 Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, 90-924 Lodz, Poland
- Correspondence: (P.G.); (J.K.-C.); Tel.: +48-426-313-091 (J.K.-C.); Fax: +48-426-313-128 (J.K.-C.)
| |
Collapse
|
27
|
Sohn AL, Ping L, Glass JD, Seyfried NT, Hector EC, Muddiman DC. Interrogating the Metabolomic Profile of Amyotrophic Lateral Sclerosis in the Post-Mortem Human Brain by Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) Mass Spectrometry Imaging (MSI). Metabolites 2022; 12:1096. [PMID: 36355179 PMCID: PMC9696666 DOI: 10.3390/metabo12111096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 01/03/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an idiopathic, fatal neurodegenerative disease characterized by progressive loss of motor function with an average survival time of 2-5 years after diagnosis. Due to the lack of signature biomarkers and heterogenous disease phenotypes, a definitive diagnosis of ALS can be challenging. Comprehensive investigation of this disease is imperative to discovering unique features to expedite the diagnostic process and improve diagnostic accuracy. Here, we present untargeted metabolomics by mass spectrometry imaging (MSI) for comparing sporadic ALS (sALS) and C9orf72 positive (C9Pos) post-mortem frontal cortex human brain tissues against a control cohort. The spatial distribution and relative abundance of metabolites were measured by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MSI for association to biological pathways. Proteomic studies on the same patients were completed via LC-MS/MS in a previous study, and results were integrated with imaging metabolomics results to enhance the breadth of molecular coverage. Utilizing METASPACE annotation platform and MSiPeakfinder, nearly 300 metabolites were identified across the sixteen samples, where 25 were identified as dysregulated between disease cohorts. The dysregulated metabolites were further examined for their relevance to alanine, aspartate, and glutamate metabolism, glutathione metabolism, and arginine and proline metabolism. The dysregulated pathways discussed are consistent with reports from other ALS studies. To our knowledge, this work is the first of its kind, reporting on the investigation of ALS post-mortem human brain tissue analyzed by multiomic MSI.
Collapse
Affiliation(s)
- Alexandria L. Sohn
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Lingyan Ping
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan D. Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas T. Seyfried
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emily C. Hector
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
28
|
Goncalves VC, Silva da Fonsêca V, de Paula Faria D, Izidoro MA, Berretta AA, de Almeida ACG, Affonso Fonseca FL, Scorza FA, Scorza CA. Propolis induces cardiac metabolism changes in 6-hydroxydopamine animal model: A dietary intervention as a potential cardioprotective approach in Parkinson’s disease. Front Pharmacol 2022; 13:1013703. [PMID: 36313332 PMCID: PMC9606713 DOI: 10.3389/fphar.2022.1013703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
While there is sustained growth of the older population worldwide, ageing is a consistent risk factor for neurodegenerative diseases, such as Parkinson’s-disease (PD). Considered an emblematic movement disorder, PD comprises a miscellany of non-motor symptoms, for which effective management remains an unfulfilled need in clinical practice. Highlighted are the cardiovascular abnormalities, that cause significant burden in PD patients. Evidence suggests that key biological processes underlying PD pathophysiology can be modulated by diet-derived bioactive compounds, such as green propolis, a natural functional food with biological and pharmacological properties. The effects of propolis on cardiac affection associated to PD have received little coverage. In this study, a metabolomics approach and Positron Emission Tomography (PET) imaging were used to assess the metabolic response to diet supplementation with green propolis on heart outcomes of rats with Parkinsonism induced by 6-hydroxydopamine (6-OHDA rats). Untargeted metabolomics approach revealed four cardiac metabolites (2-hydroxybutyric acid, 3-hydroxybutyric acid, monoacylglycerol and alanine) that were significantly modified between animal groups (6-OHDA, 6-OHDA + Propolis and sham). Propolis-induced changes in the level of these cardiac metabolites suggest beneficial effects of diet intervention. From the metabolites affected, functional analysis identified changes in propanoate metabolism (a key carbohydrate metabolism related metabolic pathway), glucose-alanine cycle, protein and fatty acid biosynthesis, energy metabolism, glutathione metabolism and urea cycle. PET imaging detected higher glucose metabolism in the 17 areas of the left ventricle of all rats treated with propolis, substantially contrasting from those rats that did not consume propolis. Our results bring new insights into cardiac metabolic substrates and pathways involved in the mechanisms of the effects of propolis in experimental PD and provide potential novel targets for research in the quest for future therapeutic strategies.
Collapse
Affiliation(s)
- Valeria C. Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- *Correspondence: Valeria C. Goncalves, ; Carla Alessandra Scorza,
| | - Victor Silva da Fonsêca
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Mario Augusto Izidoro
- Laboratório de Espectrometria de Massas—Associação Beneficente de Coleta de Sangue (COLSAN), São Paulo, Brazil
| | | | - Antônio-Carlos G. de Almeida
- Laboratório de Neurociências Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del-Rei (UFSJ), Minas Gerais, Brazil
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina Do ABC, Santo André, São Paulo, Brazil
- Departamento de Ciencias Farmaceuticas da Universidade Federal de Sao Paulo (UNIFESP), Diadema, Brazil
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carla Alessandra Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- *Correspondence: Valeria C. Goncalves, ; Carla Alessandra Scorza,
| |
Collapse
|
29
|
Pradhan SS, Thota SM, Rajaratnam S, Bhagavatham SKS, Pulukool SK, Rathnakumar S, Phalguna KS, Dandamudi RB, Pargaonkar A, Joseph P, Joshy EV, Sivaramakrishnan V. Integrated multi-omics analysis of Huntington disease identifies pathways that modulate protein aggregation. Dis Model Mech 2022; 15:dmm049492. [PMID: 36052548 PMCID: PMC10655815 DOI: 10.1242/dmm.049492] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disease associated with polyglutamine expansion in the protein huntingtin (HTT). Although the length of the polyglutamine repeat correlates with age at disease onset and severity, psychological, cognitive and behavioral complications point to the existence of disease modifiers. Mitochondrial dysfunction and metabolic deregulation are both associated with the HD but, despite multi-omics characterization of patients and model systems, their mechanisms have remained elusive. Systems analysis of multi-omics data and its validation by using a yeast model could help to elucidate pathways that modulate protein aggregation. Metabolomics analysis of HD patients and of a yeast model of HD was, therefore, carried out. Our analysis showed a considerable overlap of deregulated metabolic pathways. Further, the multi-omics analysis showed deregulated pathways common in human, mice and yeast model systems, and those that are unique to them. The deregulated pathways include metabolic pathways of various amino acids, glutathione metabolism, longevity, autophagy and mitophagy. The addition of certain metabolites as well as gene knockouts targeting the deregulated metabolic and autophagy pathways in the yeast model system showed that these pathways do modulate protein aggregation. Taken together, our results showed that the modulation of deregulated pathways influences protein aggregation in HD, and has implications for progression and prognosis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sai S. Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sai M. Thota
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Saiswaroop Rajaratnam
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sai K. S. Bhagavatham
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sujith K. Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Sriram Rathnakumar
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Kanikaram S. Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| | - Rajesh B. Dandamudi
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515 134, India
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru 560048, India
| | - Prasanth Joseph
- Application Division, Agilent Technologies Ltd., Bengaluru 560048, India
| | - E. V. Joshy
- Department of Neurology, Sri Sathya Sai Institute of Higher Medical Sciences, Whitefield, Bengaluru, Karnataka 560066, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India515134
| |
Collapse
|
30
|
Lanznaster D, Dingeo G, Samey RA, Emond P, Blasco H. Metabolomics as a Crucial Tool to Develop New Therapeutic Strategies for Neurodegenerative Diseases. Metabolites 2022; 12:864. [PMID: 36144268 PMCID: PMC9503806 DOI: 10.3390/metabo12090864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's (AD), Parkinson's (PD), and amyotrophic lateral sclerosis (ALS), share common pathological mechanisms, including metabolism alterations. However, their specific neuronal cell types affected and molecular biomarkers suggest that there are both common and specific alterations regarding metabolite levels. In this review, we were interested in identifying metabolite alterations that have been reported in preclinical models of NDs and that have also been documented as altered in NDs patients. Such alterations could represent interesting targets for the development of targeted therapy. Importantly, the translation of such findings from preclinical to clinical studies is primordial for the study of possible therapeutic agents. We found that N-acetyl-aspartate (NAA), myo-inositol, and glutamate are commonly altered in the three NDs investigated here. We also found other metabolites commonly altered in both AD and PD. In this review, we discuss the studies reporting such alterations and the possible pathological mechanism underlying them. Finally, we discuss clinical trials that have attempted to develop treatments targeting such alterations. We conclude that the treatment combination of both common and differential alterations would increase the chances of patients having access to efficient treatments for each ND.
Collapse
|
31
|
Rodrigues JA, Narasimhamurthy RK, Joshi MB, Dsouza HS, Mumbrekar KD. Pesticides Exposure-Induced Changes in Brain Metabolome: Implications in the Pathogenesis of Neurodegenerative Disorders. Neurotox Res 2022; 40:1539-1552. [PMID: 35781222 PMCID: PMC9515138 DOI: 10.1007/s12640-022-00534-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Pesticides have been used in agriculture, public health programs, and pharmaceuticals for many decades. Though pesticides primarily target pests by affecting their nervous system and causing other lethal effects, these chemical entities also exert toxic effects in inadvertently exposed humans through inhalation or ingestion. Mounting pieces of evidence from cellular, animal, and clinical studies indicate that pesticide-exposed models display metabolite alterations of pathways involved in neurodegenerative diseases. Hence, identifying common key metabolites/metabolic pathways between pesticide-induced metabolic reprogramming and neurodegenerative diseases is necessary to understand the etiology of pesticides in the rise of neurodegenerative disorders. The present review provides an overview of specific metabolic pathways, including tryptophan metabolism, glutathione metabolism, dopamine metabolism, energy metabolism, mitochondrial dysfunction, fatty acids, and lipid metabolism that are specifically altered in response to pesticides. Furthermore, we discuss how these metabolite alterations are linked to the pathogenesis of neurodegenerative diseases and to identify novel biomarkers for targeted therapeutic approaches.
Collapse
Affiliation(s)
- Joel Arvin Rodrigues
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
32
|
Zhang Q, Wu S, Liu X, Yang J, Dong X, Zhou Y, Chen J, Li Y, Yang J. An Observation Study of Urinary Biomarkers Exploratory in Alzheimer's Disease using High Resolution Mass Spectrometry. Biomed Chromatogr 2022; 36:e5421. [PMID: 35653409 DOI: 10.1002/bmc.5421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is regarded as a progressive neurodegenerative dementia, characterized by degeneration of distinct neuronal populations. A case-control study was carried out by using high resolution mass spectrometry to explore AD associated urinary metabolic biomarkers from 30 AD patients and 30 cognitively normal (CN) individuals, respectively. In total, 49 metabolites were determined and validated as known compounds by LC/MS analysis. With two sample t-test statistical analysis (p<0.05), 19 metabolites were shown to be significantly differed from AD to CN. A diagnostic model of receiver-operator characteristic (ROC) curve was constructed with a combination of 9 selected metabolites and yielded a separation with an area under the curve value of 0.976 between two groups. This study indicated urinary metabolites showed a significant expression between AD and CN. AD related metabolites enable to satisfy the diagnostic power of disease discrimination. Additionally, as a non-invasive approach, urine collection provides its convenience in clinical diagnosis of AD.
Collapse
Affiliation(s)
- Qun Zhang
- Shanghai Baoshan Elderly Care Home, Shanghai, China
| | - Shuo Wu
- Clinical research center, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Xinru Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jun Yang
- Shanghai Baoshan Elderly Care Home, Shanghai, China
| | - Xin Dong
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,School of medicine, Shanghai University, Shanghai, China
| | - Yinge Zhou
- School of medicine, Shanghai University, Shanghai, China
| | - Junjie Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yamei Li
- Neurology department, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Jingzhi Yang
- Clinical research center, Shanghai Baoshan Luodian Hospital, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
33
|
Horgusluoglu E, Neff R, Song W, Wang M, Wang Q, Arnold M, Krumsiek J, Galindo‐Prieto B, Ming C, Nho K, Kastenmüller G, Han X, Baillie R, Zeng Q, Andrews S, Cheng H, Hao K, Goate A, Bennett DA, Saykin AJ, Kaddurah‐Daouk R, Zhang B. Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer's disease. Alzheimers Dement 2022; 18:1260-1278. [PMID: 34757660 PMCID: PMC9085975 DOI: 10.1002/alz.12468] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/29/2022]
Abstract
Metabolites, the biochemical products of the cellular process, can be used to measure alterations in biochemical pathways related to the pathogenesis of Alzheimer's disease (AD). However, the relationships between systemic abnormalities in metabolism and the pathogenesis of AD are poorly understood. In this study, we aim to identify AD-specific metabolomic changes and their potential upstream genetic and transcriptional regulators through an integrative systems biology framework for analyzing genetic, transcriptomic, metabolomic, and proteomic data in AD. Metabolite co-expression network analysis of the blood metabolomic data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) shows short-chain acylcarnitines/amino acids and medium/long-chain acylcarnitines are most associated with AD clinical outcomes, including episodic memory scores and disease severity. Integration of the gene expression data in both the blood from the ADNI and the brain from the Accelerating Medicines Partnership Alzheimer's Disease (AMP-AD) program reveals ABCA1 and CPT1A are involved in the regulation of acylcarnitines and amino acids in AD. Gene co-expression network analysis of the AMP-AD brain RNA-seq data suggests the CPT1A- and ABCA1-centered subnetworks are associated with neuronal system and immune response, respectively. Increased ABCA1 gene expression and adiponectin protein, a regulator of ABCA1, correspond to decreased short-chain acylcarnitines and amines in AD in the ADNI. In summary, our integrated analysis of large-scale multiomics data in AD systematically identifies novel metabolites and their potential regulators in AD and the findings pave a way for not only developing sensitive and specific diagnostic biomarkers for AD but also identifying novel molecular mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Emrin Horgusluoglu
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Ryan Neff
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Won‐Min Song
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Minghui Wang
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Qian Wang
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Matthias Arnold
- Institute of Computational BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Jan Krumsiek
- Department of Physiology and BiophysicsWeill Cornell MedicineInstitute for Computational BiomedicineEnglander Institute for Precision MedicineNew YorkNew YorkUSA
| | - Beatriz Galindo‐Prieto
- Department of Physiology and BiophysicsWeill Cornell MedicineInstitute for Computational BiomedicineEnglander Institute for Precision MedicineNew YorkNew YorkUSA
- Helen and Robert Appel Alzheimer's Disease Research InstituteBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNew YorkUSA
| | - Chen Ming
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences; Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gabi Kastenmüller
- Institute of Computational BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
| | - Xianlin Han
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | | | - Qi Zeng
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Shea Andrews
- Department of NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Haoxiang Cheng
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Ke Hao
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Alison Goate
- Department of NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences; Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rima Kaddurah‐Daouk
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- Duke Institute of Brain SciencesDuke UniversityDurhamNorth CarolinaUSA
- Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Bin Zhang
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | | | | |
Collapse
|
34
|
Mallet D, Dufourd T, Decourt M, Carcenac C, Bossù P, Verlin L, Fernagut PO, Benoit-Marand M, Spalletta G, Barbier EL, Carnicella S, Sgambato V, Fauvelle F, Boulet S. A metabolic biomarker predicts Parkinson's disease at the early stages in patients and animal models. J Clin Invest 2022; 132:e146400. [PMID: 34914634 PMCID: PMC8843749 DOI: 10.1172/jci146400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
BackgroundCare management of Parkinson's disease (PD) patients currently remains symptomatic, mainly because diagnosis relying on the expression of the cardinal motor symptoms is made too late. Earlier detection of PD therefore represents a key step for developing therapies able to delay or slow down its progression.MethodsWe investigated metabolic markers in 3 different animal models of PD, mimicking different phases of the disease assessed by behavioral and histological evaluation, and in 3 cohorts of de novo PD patients and matched controls (n = 129). Serum and brain tissue samples were analyzed by nuclear magnetic resonance spectroscopy and data submitted to advanced multivariate statistics.ResultsOur translational strategy reveals common metabolic dysregulations in serum of the different animal models and PD patients. Some of them were mirrored in the tissue samples, possibly reflecting pathophysiological mechanisms associated with PD development. Interestingly, some metabolic dysregulations appeared before motor symptom emergence and could represent early biomarkers of PD. Finally, we built a composite biomarker with a combination of 6 metabolites. This biomarker discriminated animals mimicking PD from controls, even from the first, nonmotor signs and, very interestingly, also discriminated PD patients from healthy subjects.ConclusionFrom our translational study, which included 3 animal models and 3 de novo PD patient cohorts, we propose a promising biomarker exhibiting a high accuracy for de novo PD diagnosis that may possibly predict early PD development, before motor symptoms appear.FundingFrench National Research Agency (ANR), DOPALCOMP, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Association France Parkinson.
Collapse
Affiliation(s)
- David Mallet
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Thibault Dufourd
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Mélina Decourt
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Carole Carcenac
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Paola Bossù
- Dipartimento di Neurologia Clinica e Comportamentale, Laboratorio di Neuropsicobiologia Sperimentale, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Laure Verlin
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Pierre-Olivier Fernagut
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marianne Benoit-Marand
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | | | - Emmanuel L. Barbier
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Sebastien Carnicella
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Véronique Sgambato
- Université de Lyon, CNRS UMR5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France
| | - Florence Fauvelle
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Sabrina Boulet
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
35
|
Mahaman YAR, Embaye KS, Huang F, Li L, Zhu F, Wang JZ, Liu R, Feng J, Wang X. Biomarkers used in Alzheimer's disease diagnosis, treatment, and prevention. Ageing Res Rev 2022; 74:101544. [PMID: 34933129 DOI: 10.1016/j.arr.2021.101544] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), being the number one in terms of dementia burden, is an insidious age-related neurodegenerative disease and is presently considered a global public health threat. Its main histological hallmarks are the Aβ senile plaques and the P-tau neurofibrillary tangles, while clinically it is marked by a progressive cognitive decline that reflects the underlying synaptic loss and neurodegeneration. Many of the drug therapies targeting the two pathological hallmarks namely Aβ and P-tau have been proven futile. This is probably attributed to the initiation of therapy at a stage where cognitive alterations are already obvious. In other words, the underlying neuropathological changes are at a stage where these drugs lack any therapeutic value in reversing the damage. Therefore, there is an urgent need to start treatment in the very early stage where these changes can be reversed, and hence, early diagnosis is of primordial importance. To this aim, the use of robust and informative biomarkers that could provide accurate diagnosis preferably at an earlier phase of the disease is of the essence. To date, several biomarkers have been established that, to a different extent, allow researchers and clinicians to evaluate, diagnose, and more specially exclude other related pathologies. In this study, we extensively reviewed data on the currently explored biomarkers in terms of AD pathology-specific and non-specific biomarkers and highlighted the recent developments in the diagnostic and theragnostic domains. In the end, we have presented a separate elaboration on aspects of future perspectives and concluding remarks.
Collapse
|
36
|
Eldridge RC, Uppal K, Shokouhi M, Smith MR, Hu X, Qin ZS, Jones DP, Hajjar I. Multiomics Analysis of Structural Magnetic Resonance Imaging of the Brain and Cerebrospinal Fluid Metabolomics in Cognitively Normal and Impaired Adults. Front Aging Neurosci 2022; 13:796067. [PMID: 35145393 PMCID: PMC8822333 DOI: 10.3389/fnagi.2021.796067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Integrating brain imaging with large scale omics data may identify novel mechanisms of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). We integrated and analyzed brain magnetic resonance imaging (MRI) with cerebrospinal fluid (CSF) metabolomics to elucidate metabolic mechanisms and create a "metabolic map" of the brain in prodromal AD. METHODS In 145 subjects (85 cognitively normal controls and 60 with MCI), we derived voxel-wise gray matter volume via whole-brain structural MRI and conducted high-resolution untargeted metabolomics on CSF. Using a data-driven approach consisting of partial least squares discriminant analysis, a multiomics network clustering algorithm, and metabolic pathway analysis, we described dysregulated metabolic pathways in CSF mapped to brain regions associated with MCI in our cohort. RESULTS The multiomics network algorithm clustered metabolites with contiguous imaging voxels into seven distinct communities corresponding to the following brain regions: hippocampus/parahippocampal gyrus (three distinct clusters), thalamus, posterior thalamus, parietal cortex, and occipital lobe. Metabolic pathway analysis indicated dysregulated metabolic activity in the urea cycle, and many amino acids (arginine, histidine, lysine, glycine, tryptophan, methionine, valine, glutamate, beta-alanine, and purine) was significantly associated with those regions (P < 0.05). CONCLUSION By integrating CSF metabolomics data with structural MRI data, we linked specific AD-susceptible brain regions to disrupted metabolic pathways involving nitrogen excretion and amino acid metabolism critical for cognitive function. Our findings and analytical approach may extend drug and biomarker research toward more multiomics approaches.
Collapse
Affiliation(s)
- Ronald C. Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Mahsa Shokouhi
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - M. Ryan Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Zhaohui S. Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ihab Hajjar
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
37
|
Wang J, Hu C, Wang YS, Cui H. Chemiluminescent Two-Dimensional Metal-Organic Framework with Multiple Metal Catalytic Centers and Its Peroxidase-like Activity for Sensing of Small Molecules. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3156-3164. [PMID: 34982526 DOI: 10.1021/acsami.1c20092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) porphyrin-based metal-organic frameworks (MOFs) hold great promise in a variety of areas with the merits of large lateral size and abundant functional groups. The chemiluminescent 2D MOF has rarely been reported. In this work, a chemiluminescence (CL) reagent and noble metal nanoparticle dual-functionalized 2D MOF (ABEI/AuNPs/CuTCPP) was developed through the surfactant-assisted and in situ synthetic growth method, exhibiting strong and stable CL property and outstanding peroxidase-mimicking activity. The special nanostructure of ABEI/AuNPs/CuTCPP endowed it with multi-catalytic routes in the CL reaction, which showed a unique pH-regulated and time-resolved CL kinetic curve. A CL mechanism with multi-catalytic centers has been proposed. AuNPs participated in the fast catalytic process and CuTCPP in the slow and strong catalytic reaction. Owing to the impressive structural features and intrinsic enzymatic tandem reaction from natural enzyme to artificial enzyme, a model biosensor was designed for the detection of small metabolic molecules. Employing choline as a model target, the proposed biosensor showed a highly sensitive response to choline in the linear range from 0.3 to 300 μM with a detection limit of 82.6 nM. Significantly, the strategy may be generalized to the monitoring of other biologically important compounds involved in the production of H2O2.
Collapse
Affiliation(s)
- Jue Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Hu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi-Sha Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
38
|
Pathak N, Vimal SK, Tandon I, Agrawal L, Hongyi C, Bhattacharyya S. Neurodegenerative Disorders of Alzheimer, Parkinsonism, Amyotrophic Lateral Sclerosis and Multiple Sclerosis: An Early Diagnostic Approach for Precision Treatment. Metab Brain Dis 2022; 37:67-104. [PMID: 34719771 DOI: 10.1007/s11011-021-00800-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases (NDs) are characterised by progressive dysfunction of synapses, neurons, glial cells and their networks. Neurodegenerative diseases can be classified according to primary clinical features (e.g., dementia, parkinsonism, or motor neuron disease), anatomic distribution of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), or principal molecular abnormalities. The most common neurodegenerative disorders are amyloidosis, tauopathies, a-synucleinopathy, and TAR DNA-binding protein 43 (TDP-43) proteopathy. The protein abnormalities in these disorders have abnormal conformational properties along with altered cellular mechanisms, and they exhibit motor deficit, mitochondrial malfunction, dysfunctions in autophagic-lysosomal pathways, synaptic toxicity, and more emerging mechanisms such as the roles of stress granule pathways and liquid-phase transitions. Finally, for each ND, microglial cells have been reported to be implicated in neurodegeneration, in particular, because the microglial responses can shift from neuroprotective to a deleterious role. Growing experimental evidence suggests that abnormal protein conformers act as seed material for oligomerization, spreading from cell to cell through anatomically connected neuronal pathways, which may in part explain the specific anatomical patterns observed in brain autopsy sample. In this review, we mention the human pathology of select neurodegenerative disorders, focusing on how neurodegenerative disorders (i.e., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis) represent a great healthcare problem worldwide and are becoming prevalent because of the increasing aged population. Despite many studies have focused on their etiopathology, the exact cause of these diseases is still largely unknown and until now with the only available option of symptomatic treatments. In this review, we aim to report the systematic and clinically correlated potential biomarker candidates. Although future studies are necessary for their use in early detection and progression in humans affected by NDs, the promising results obtained by several groups leads us to this idea that biomarkers could be used to design a potential therapeutic approach and preclinical clinical trials for the treatments of NDs.
Collapse
Affiliation(s)
- Nishit Pathak
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Ishi Tandon
- Amity University Jaipur, Rajasthan, Jaipur, Rajasthan, India
| | - Lokesh Agrawal
- Graduate School of Comprehensive Human Sciences, Kansei Behavioural and Brain Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Cao Hongyi
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
39
|
Chen H, Qiao J, Wang T, Shao Z, Huang S, Zeng P. Assessing Causal Relationship Between Human Blood Metabolites and Five Neurodegenerative Diseases With GWAS Summary Statistics. Front Neurosci 2021; 15:680104. [PMID: 34955704 PMCID: PMC8695771 DOI: 10.3389/fnins.2021.680104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Neurodegenerative diseases (NDDs) are the leading cause of disability worldwide while their metabolic pathogenesis is unclear. Genome-wide association studies (GWASs) offer an unprecedented opportunity to untangle the relationship between metabolites and NDDs. Methods: By leveraging two-sample Mendelian randomization (MR) approaches and relying on GWASs summary statistics, we here explore the causal association between 486 metabolites and five NDDs including Alzheimer’s Disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Parkinson’s disease (PD), and multiple sclerosis (MS). We validated our MR results with extensive sensitive analyses including MR-PRESSO and MR-Egger regression. We also performed linkage disequilibrium score regression (LDSC) and colocalization analyses to distinguish causal metabolite-NDD associations from genetic correlation and LD confounding of shared causal genetic variants. Finally, a metabolic pathway analysis was further conducted to identify potential metabolite pathways. Results: We detected 164 metabolites which were suggestively associated with the risk of NDDs. Particularly, 2-methoxyacetaminophen sulfate substantially affected ALS (OR = 0.971, 95%CIs: 0.961 ∼ 0.982, FDR = 1.04E-4) and FTD (OR = 0.924, 95%CIs: 0.885 ∼ 0.964, FDR = 0.048), and X-11529 (OR = 1.604, 95%CIs: 1.250 ∼ 2.059, FDR = 0.048) and X-13429 (OR = 2.284, 95%CIs: 1.457 ∼ 3.581, FDR = 0.048) significantly impacted FTD. These associations were further confirmed by the weighted median and maximum likelihood methods, with MR-PRESSO and the MR-Egger regression removing the possibility of pleiotropy. We also observed that ALS or FTD can alter the metabolite levels, including ALS and FTD on 2-methoxyacetaminophen sulfate. The LDSC and colocalization analyses showed that none of the identified associations could be driven by genetic correlation or confounding by LD with common causal loci. Multiple metabolic pathways were found to be involved in NDDs, such as “urea cycle” (P = 0.036), “arginine biosynthesis” (P = 0.004) on AD and “phenylalanine, tyrosine and tryptophan biosynthesis” (P = 0.046) on ALS. Conclusion: our study reveals robust bidirectional causal associations between servaral metabolites and neurodegenerative diseases, and provides a novel insight into metabolic mechanism for pathogenesis and therapeutic strategies of these diseases.
Collapse
Affiliation(s)
- Haimiao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jiahao Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zhonghe Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Shuiping Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
40
|
Ami D, Duse A, Mereghetti P, Cozza F, Ambrosio F, Ponzini E, Grandori R, Lunetta C, Tavazzi S, Pezzoli F, Natalello A. Tear-Based Vibrational Spectroscopy Applied to Amyotrophic Lateral Sclerosis. Anal Chem 2021; 93:16995-17002. [PMID: 34905686 PMCID: PMC8717331 DOI: 10.1021/acs.analchem.1c02546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Biofluid analysis
by optical spectroscopy techniques is attracting
considerable interest due to its potential to revolutionize diagnostics
and precision medicine, particularly for neurodegenerative diseases.
However, the lack of effective biomarkers combined with the unaccomplished
identification of convenient biofluids has drastically hampered optical
advancements in clinical diagnosis and monitoring of neurodegenerative
disorders. Here, we show that vibrational spectroscopy applied to
human tears opens a new route, offering a non-invasive, label-free
identification of a devastating disease such as amyotrophic lateral
sclerosis (ALS). Our proposed approach has been validated using two
widespread techniques, namely, Fourier transform infrared (FTIR) and
Raman microspectroscopies. In conjunction with multivariate analysis,
this vibrational approach made it possible to discriminate between
tears from ALS patients and healthy controls (HCs) with high specificity
(∼97% and ∼100% for FTIR and Raman spectroscopy, respectively)
and sensitivity (∼88% and ∼100% for FTIR and Raman spectroscopy,
respectively). Additionally, the investigation of tears allowed us
to disclose ALS spectroscopic markers related to protein and lipid
alterations, as well as to a reduction of the phenylalanine level,
in comparison with HCs. Our findings show that vibrational spectroscopy
is a new potential ALS diagnostic approach and indicate that tears
are a reliable and non-invasive source of ALS biomarkers.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Alessandro Duse
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy.,COMiB Research Centre in Optics and Optometry, Via R. Cozzi 55, 20125 Milano, Italy
| | | | - Federica Cozza
- COMiB Research Centre in Optics and Optometry, Via R. Cozzi 55, 20125 Milano, Italy.,NEuroMuscular Omnicentre (NEMO), Serena Onlus Foundation, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Francesca Ambrosio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Erika Ponzini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy.,COMiB Research Centre in Optics and Optometry, Via R. Cozzi 55, 20125 Milano, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Serena Onlus Foundation, Piazza Ospedale Maggiore 3, 20162 Milano, Italy.,NEMO Lab, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy.,COMiB Research Centre in Optics and Optometry, Via R. Cozzi 55, 20125 Milano, Italy
| | - Fabio Pezzoli
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
41
|
Scholefield M, Church SJ, Xu J, Patassini S, Roncaroli F, Hooper NM, Unwin RD, Cooper GJS. Severe and Regionally Widespread Increases in Tissue Urea in the Human Brain Represent a Novel Finding of Pathogenic Potential in Parkinson's Disease Dementia. Front Mol Neurosci 2021; 14:711396. [PMID: 34751215 PMCID: PMC8571017 DOI: 10.3389/fnmol.2021.711396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023] Open
Abstract
Widespread elevations in brain urea have, in recent years, been reported in certain types of age-related dementia, notably Alzheimer’s disease (AD) and Huntington’s disease (HD). Urea increases in these diseases are substantive, and approximate in magnitude to levels present in uraemic encephalopathy. In AD and HD, elevated urea levels are widespread, and not only in regions heavily affected by neurodegeneration. However, measurements of brain urea have not hitherto been reported in Parkinson’s disease dementia (PDD), a condition which shares neuropathological and symptomatic overlap with both AD and HD. Here we report measurements of tissue urea from nine neuropathologically confirmed regions of the brain in PDD and post-mortem delay (PMD)-matched controls, in regions including the cerebellum, motor cortex (MCX), sensory cortex, hippocampus (HP), substantia nigra (SN), middle temporal gyrus (MTG), medulla oblongata (MED), cingulate gyrus, and pons, by applying ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Urea concentrations were found to be substantively elevated in all nine regions, with average increases of 3–4-fold. Urea concentrations were remarkably consistent across regions in both cases and controls, with no clear distinction between regions heavily affected or less severely affected by neuronal loss in PDD. These urea elevations mirror those found in uraemic encephalopathy, where equivalent levels are generally considered to be pathogenic, and those previously reported in AD and HD. Increased urea is a widespread metabolic perturbation in brain metabolism common to PDD, AD, and HD, at levels equal to those seen in uremic encephalopathy. This presents a novel pathogenic mechanism in PDD, which is shared with two other neurodegenerative diseases.
Collapse
Affiliation(s)
- Melissa Scholefield
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Stephanie J Church
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jingshu Xu
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Faculty of Science, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Stefano Patassini
- Faculty of Science, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, The University of Manchester, Manchester, United Kingdom
| | - Nigel M Hooper
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Richard D Unwin
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Stoller Biomarker Discovery Centre & Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Garth J S Cooper
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Faculty of Science, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
42
|
Carlomagno C, Bertazioli D, Gualerzi A, Picciolini S, Andrico M, Rodà F, Meloni M, Banfi PI, Verde F, Ticozzi N, Silani V, Messina E, Bedoni M. Identification of the Raman Salivary Fingerprint of Parkinson's Disease Through the Spectroscopic- Computational Combinatory Approach. Front Neurosci 2021; 15:704963. [PMID: 34764849 PMCID: PMC8576466 DOI: 10.3389/fnins.2021.704963] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the wide range of proposed biomarkers for Parkinson's disease (PD), there are no specific molecules or signals able to early and uniquely identify the pathology onset, progression and stratification. Saliva is a complex biofluid, containing a wide range of biological molecules shared with blood and cerebrospinal fluid. By means of an optimized Raman spectroscopy procedure, the salivary Raman signature of PD can be characterized and used to create a classification model. Raman analysis was applied to collect the global signal from the saliva of 23 PD patients and related pathological and healthy controls. The acquired spectra were computed using machine and deep learning approaches. The Raman database was used to create a classification model able to discriminate each spectrum to the correct belonging group, with accuracy, specificity, and sensitivity of more than 97% for the single spectra attribution. Similarly, each patient was correctly assigned with discriminatory power of more than 90%. Moreover, the extracted data were significantly correlated with clinical data used nowadays for the PD diagnosis and monitoring. The preliminary data reported highlight the potentialities of the proposed methodology that, once validated in larger cohorts and with multi-centered studies, could represent an innovative minimally invasive and accurate procedure to determine the PD onset, progression and to monitor therapies and rehabilitation efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mario Meloni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | - Federico Verde
- Laboratory of Neuroscience, Department of Neurology-Stroke Un, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Laboratory of Neuroscience, Department of Neurology-Stroke Un, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Silani
- Laboratory of Neuroscience, Department of Neurology-Stroke Un, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Enza Messina
- Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
43
|
Jia R, Chen Q, Zhou Q, Zhang R, Jin J, Hu F, Liu X, Qin X, Kang L, Zhao S, Dang Y, Dang J. Characteristics of serum metabolites in sporadic amyotrophic lateral sclerosis patients based on gas chromatography-mass spectrometry. Sci Rep 2021; 11:20786. [PMID: 34675267 PMCID: PMC8531355 DOI: 10.1038/s41598-021-00312-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023] Open
Abstract
To identify differential metabolites and metabolic pathways and provide guidance for the novel biomarkers for diagnosis and prognosis of amyotrophic lateral sclerosis (ALS). ALS patients and people without nervous diseases were recruited. Metabolomic analysis was performed using gas chromatography-mass spectrometry (GC/MS). The orthogonal projections to latent structures discriminant analysis (OPLS-DA) were used to identify differential metabolites. Kyoto Encyclopedia of Genes and Genomes and MetaboAnalyst were used to identify metabolic pathways. 75 metabolites were detected and aligned. The OPLS-DA showed the metabolomic profile of ALS patients and those in the fast-progression and slow-progression ALS groups differed from that of CTRL (p < 0.05). The levels of maltose, glyceric acid, lactic acid, beta-alanine, phosphoric acid, glutamic acid, ethanolamine and glycine in ALS were significantly higher, while 2,4,6-tri-tert-butylbenzenethiol was lower. Glycine, serine and threonine metabolism, D-glutamine and D-glutamate metabolism, alanine, aspartate, and glutamate metabolism, beta-alanine metabolism, and pyruvate metabolism were significantly altered metabolic pathways in ALS. ROC was used to discriminate ALS from CTRL with an AUC of 0.898 (p < 0.001) using 2,4,6-tri-tert-butylbenzenethiol, beta-alanine, glycine, and ethanolamine. The serum metabolites and metabolic pathways in ALS patients are significantly altered compared with CTRL. These findings may contribute to the early diagnosis of ALS.
Collapse
Affiliation(s)
- Rui Jia
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Qiaoyi Chen
- Department of Cell Biology and Genetics, Xian Jiaotong University Health Science Center, Xi'an, China
| | - Qingqing Zhou
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Ronghua Zhang
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Jiaoting Jin
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Fangfang Hu
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Xiao Liu
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Xing Qin
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Li Kang
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Songzhen Zhao
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China
| | - Yonghui Dang
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Key Laboratory of the Health Ministry for Forensic Medicine, College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Jingxia Dang
- Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, 277 Western Yanta Rd, Xi'an, 710061, China.
| |
Collapse
|
44
|
Klatt S, Doecke JD, Roberts A, Boughton BA, Masters CL, Horne M, Roberts BR. A six-metabolite panel as potential blood-based biomarkers for Parkinson's disease. NPJ Parkinsons Dis 2021; 7:94. [PMID: 34650080 PMCID: PMC8516864 DOI: 10.1038/s41531-021-00239-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Characterisation and diagnosis of idiopathic Parkinson's disease (iPD) is a current challenge that hampers both clinical assessment and clinical trial development with the potential inclusion of non-PD cases. Here, we used a targeted mass spectrometry approach to quantify 38 metabolites extracted from the serum of 231 individuals. This cohort is currently one of the largest metabolomic studies including iPD patients, drug-naïve iPD, healthy controls and patients with Alzheimer's disease as a disease-specific control group. We identified six metabolites (3-hydroxykynurenine, aspartate, beta-alanine, homoserine, ornithine (Orn) and tyrosine) that are significantly altered between iPD patients and control participants. A multivariate model to predict iPD from controls had an area under the curve (AUC) of 0.905, with an accuracy of 86.2%. This panel of metabolites may serve as a potential prognostic or diagnostic assay for clinical trial prescreening, or for aiding in diagnosing pathological disease in the clinic.
Collapse
Affiliation(s)
- Stephan Klatt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Cooperative Research Centre for Mental Health, Parkville, VIC, 3052, Australia
| | - James D Doecke
- Cooperative Research Centre for Mental Health, Parkville, VIC, 3052, Australia
- Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Anne Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Berin A Boughton
- School of Biosciences, The University of Melbourne, Parkville, VIC, 3052, Australia
- Australian National Phenome Centre, Murdoch University, Murdoch, WA, 6150, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Cooperative Research Centre for Mental Health, Parkville, VIC, 3052, Australia
| | - Malcolm Horne
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Blaine R Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
45
|
Bonilla DA, Moreno Y, Rawson ES, Forero DA, Stout JR, Kerksick CM, Roberts MD, Kreider RB. A Convergent Functional Genomics Analysis to Identify Biological Regulators Mediating Effects of Creatine Supplementation. Nutrients 2021; 13:2521. [PMID: 34444681 PMCID: PMC8397972 DOI: 10.3390/nu13082521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine (Cr) and phosphocreatine (PCr) are physiologically essential molecules for life, given they serve as rapid and localized support of energy- and mechanical-dependent processes. This evolutionary advantage is based on the action of creatine kinase (CK) isozymes that connect places of ATP synthesis with sites of ATP consumption (the CK/PCr system). Supplementation with creatine monohydrate (CrM) can enhance this system, resulting in well-known ergogenic effects and potential health or therapeutic benefits. In spite of our vast knowledge about these molecules, no integrative analysis of molecular mechanisms under a systems biology approach has been performed to date; thus, we aimed to perform for the first time a convergent functional genomics analysis to identify biological regulators mediating the effects of Cr supplementation in health and disease. A total of 35 differentially expressed genes were analyzed. We identified top-ranked pathways and biological processes mediating the effects of Cr supplementation. The impact of CrM on miRNAs merits more research. We also cautiously suggest two dose-response functional pathways (kinase- and ubiquitin-driven) for the regulation of the Cr uptake. Our functional enrichment analysis, the knowledge-based pathway reconstruction, and the identification of hub nodes provide meaningful information for future studies. This work contributes to a better understanding of the well-reported benefits of Cr in sports and its potential in health and disease conditions, although further clinical research is needed to validate the proposed mechanisms.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
46
|
Gupta N, Ramakrishnan S, Wajid S. Emerging role of metabolomics in protein conformational disorders. Expert Rev Proteomics 2021; 18:395-410. [PMID: 34227444 DOI: 10.1080/14789450.2021.1948330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Metabolomics focuses on interactions among different metabolites associated with various cellular functions in cells, tissues, and organs. In recent years, metabolomics has emerged as a powerful tool to identify perturbed metabolites, pathways influenced by the environment, for protein conformational diseases (PCDs) and also offers wide clinical application.Area Covered: This review provides a brief overview of recent advances in metabolomics as applied to identify metabolic variations in PCDs, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, prion disease, and cardiac amyloidosis. The 'PubMed' and 'Google Scholar' database search methods have been used to screen the published reports with key search terms: metabolomics, biomarkers, and protein conformational disorders.Expert opinion: Metabolomics is the large-scale study of metabolites and is deemed to overwhelm other omics. It plays a crucial role in finding variations in diseases due to protein conformational changes. However, many PCDs are yet to be identified. Metabolomics is still an emerging field; there is a need for new high-resolution analytical techniques and more studies need to be carried out to generate new information.
Collapse
Affiliation(s)
- Nimisha Gupta
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, India
| | | | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, India
| |
Collapse
|
47
|
Homocysteine fibrillar assemblies display cross-talk with Alzheimer's disease β-amyloid polypeptide. Proc Natl Acad Sci U S A 2021; 118:2017575118. [PMID: 34099562 DOI: 10.1073/pnas.2017575118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High levels of homocysteine are reported as a risk factor for Alzheimer's disease (AD). Correspondingly, inborn hyperhomocysteinemia is associated with an increased predisposition to the development of dementia in later stages of life. Yet, the mechanistic link between homocysteine accumulation and the pathological neurodegenerative processes is still elusive. Furthermore, despite the clear association between protein aggregation and AD, attempts to develop therapy that specifically targets this process have not been successful. It is envisioned that the failure in the development of efficacious therapeutic intervention may lie in the metabolomic state of affected individuals. We recently demonstrated the ability of metabolites to self-assemble and cross-seed the aggregation of pathological proteins, suggesting a role for metabolite structures in the initiation of neurodegenerative diseases. Here, we provide a report of homocysteine crystal structure and self-assembly into amyloid-like toxic fibrils, their inhibition by polyphenols, and their ability to seed the aggregation of the AD-associated β-amyloid polypeptide. A yeast model of hyperhomocysteinemia indicates a toxic effect, correlated with increased intracellular amyloid staining that could be rescued by polyphenol treatment. Analysis of AD mouse model brain sections indicates the presence of homocysteine assemblies and the interplay between β-amyloid and homocysteine. This work implies a molecular basis for the association between homocysteine accumulation and AD pathology, potentially leading to a paradigm shift in the understanding of AD initial pathological processes.
Collapse
|
48
|
Yu X, Zhang R, Wei C, Gao Y, Yu Y, Wang L, Jiang J, Zhang X, Li J, Chen X. MCT2 overexpression promotes recovery of cognitive function by increasing mitochondrial biogenesis in a rat model of stroke. Anim Cells Syst (Seoul) 2021; 25:93-101. [PMID: 34234890 PMCID: PMC8118516 DOI: 10.1080/19768354.2021.1915379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/07/2021] [Accepted: 03/26/2021] [Indexed: 10/27/2022] Open
Abstract
Monocarboxylate transporter 2 (MCT2) is the predominant monocarboxylate transporter expressed by neurons. MCT2 plays an important role in brain energy metabolism. Stroke survivors are at high risk of cognitive impairment. We reported previously that stroke-induced cognitive impairment was related to impaired energy metabolism. In the present study, we report that cognitive function was impaired after stroke in rats. We found that MCT2 expression, but not that of MCT1 or MCT4, was markedly decreased in the rat hippocampus at 7 and 28 days after transient middle cerebral artery occlusion (tMCAO). Moreover, MCT2 overexpression promoted recovery of cognitive function after stroke. The molecular mechanism underlying these effects may be related to an increase in adenosine monophosphate-activated protein kinase-mediated mitochondrial biogenesis induced by overexpression of MCT2. Our findings suggest that MCT2 activation ameliorates cognitive impairment after stroke.
Collapse
Affiliation(s)
- Xiaorong Yu
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Rui Zhang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Cunsheng Wei
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuanyuan Gao
- Department of General Practice, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yanhua Yu
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Lin Wang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Junying Jiang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuemei Zhang
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuemei Chen
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
49
|
Dejakaisaya H, Harutyunyan A, Kwan P, Jones NC. Altered metabolic pathways in a transgenic mouse model suggest mechanistic role of amyloid precursor protein overexpression in Alzheimer's disease. Metabolomics 2021; 17:42. [PMID: 33876332 DOI: 10.1007/s11306-021-01793-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/11/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The mechanistic role of amyloid precursor protein (APP) in Alzheimer's disease (AD) remains unclear. OBJECTIVES Here, we aimed to identify alterations in cerebral metabolites and metabolic pathways in cortex, hippocampus and serum samples from Tg2576 mice, a widely used mouse model of AD. METHODS Metabolomic profilings using liquid chromatography-mass spectrometry were performed and analysed with MetaboAnalyst and weighted correlation network analysis (WGCNA). RESULTS Expressions of 11 metabolites in cortex, including hydroxyphenyllactate-linked to oxidative stress-and phosphatidylserine-lipid metabolism-were significantly different between Tg2576 and WT mice (false discovery rate < 0.05). Four metabolic pathways from cortex, including glycerophospholipid metabolism and pyrimidine metabolism, and one pathway (sulphur metabolism) from hippocampus, were significantly enriched in Tg2576 mice. Network analysis identified five pathways, including alanine, aspartate and glutamate metabolism, and mitochondria electron transport chain, that were significantly correlated with AD genotype. CONCLUSIONS Changes in metabolite concentrations and metabolic pathways are present in the early stage of APP pathology, and may be important for AD development and progression.
Collapse
Affiliation(s)
- Hattapark Dejakaisaya
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Anna Harutyunyan
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, 3052, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, 3004, Australia.
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, 3004, Australia.
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
50
|
Abstract
Life expectancy, and longevity have been increasing in recent years. However, this is, in most cases, accompanied by age-related diseases. Thus, it became essential to better understand the mechanisms inherent to aging, and to establish biomarkers that characterize this physiological process. Among all biomolecules, lipids appear to be a good target for the study of these biomarkers. In fact, some lipids have already been associated with age-related diseases. With the development of analytical techniques such as Mass Spectrometry, and Nuclear Magnetic Resonance, Lipidomics has been increasingly used to study pathological, and physiological states of an organism. Thus, the study of serum, and plasma lipidome in centenarians, and elderly individuals without age-related diseases can be a useful tool for the identification of aging biomarkers, and to understand physiological aging, and longevity. This review focus on the importance of lipids as biomarkers of aging, and summarize the changes in the lipidome that have been associated with aging, and longevity.
Collapse
|