1
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- Jewish Heritage Fund for Excellence
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- Canadian Insitute's of Health Research Foundation Grant
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
2
|
Gokhan I, Blum TS, Campbell SG. Engineered heart tissue: Design considerations and the state of the art. BIOPHYSICS REVIEWS 2024; 5:021308. [PMID: 38912258 PMCID: PMC11192576 DOI: 10.1063/5.0202724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
Originally developed more than 20 years ago, engineered heart tissue (EHT) has become an important tool in cardiovascular research for applications such as disease modeling and drug screening. Innovations in biomaterials, stem cell biology, and bioengineering, among other fields, have enabled EHT technologies to recapitulate many aspects of cardiac physiology and pathophysiology. While initial EHT designs were inspired by the isolated-trabecula culture system, current designs encompass a variety of formats, each of which have unique strengths and limitations. In this review, we describe the most common EHT formats, and then systematically evaluate each aspect of their design, emphasizing the rational selection of components for each application.
Collapse
Affiliation(s)
| | - Thomas S. Blum
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
3
|
Fischer B, Gwinner F, Gepp MM, Schulz A, Danz K, Dehne A, Katsen-Globa A, Neubauer JC, Gentile L, Zimmermann H. A highly versatile biopolymer-based platform for the maturation of human pluripotent stem cell-derived cardiomyocytes enables functional analysis in vitro and 3D printing of heart patches. J Biomed Mater Res A 2023; 111:1600-1615. [PMID: 37317666 DOI: 10.1002/jbm.a.37558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent a valuable tool for in vitro modeling of the cardiac niche and possess great potential in tissue engineering applications. However, conventional polystyrene-based cell culture substrates have adverse effects on cardiomyocytes in vitro due to the stress applied by a stiff substrate on contractile cells. Ultra-high viscosity alginates offer a unique versatility as tunable substrates for cardiac cell cultures due to their biocompatibility, flexible biofunctionalization, and stability. In this work, we analyzed the effect of alginate substrates on hPSC-CM maturity and functionality. Alginate substrates in high-throughput compatible culture formats fostered a more mature gene expression and enabled the simultaneous assessment of chronotropic and inotropic effects upon beta-adrenergic stimulation. Furthermore, we produced 3D-printed alginate scaffolds with differing mechanical properties and plated hPSC-CMs on the surface of these to create Heart Patches for tissue engineering applications. These exhibited synchronous macro-contractions in concert with more mature gene expression patterns and extensive intracellular alignment of sarcomeric structures. In conclusion, the combination of biofunctionalized alginates and human cardiomyocytes represents a valuable tool for both in vitro modeling and regenerative medicine, due to its beneficial effects on cardiomyocyte physiology, the possibility to analyze cardiac contractility, and its applicability as Heart Patches.
Collapse
Affiliation(s)
- B Fischer
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - F Gwinner
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - M M Gepp
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - A Schulz
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - K Danz
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - A Dehne
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - A Katsen-Globa
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - J C Neubauer
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - L Gentile
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - H Zimmermann
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
- Chair for Molecular and Cellular Biotechnology, Saarland University, Gebäude A, Saarbrücken, Germany
- Faculty of Marine Science, Universidad Católica del Norte, Coquimbo, Chile
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| |
Collapse
|
4
|
Zhang X, Aggarwal P, Broeckel U, Abassi YA. Enhancing the functional maturity of hiPSC-derived cardiomyocytes to assess inotropic compounds. J Pharmacol Toxicol Methods 2023; 123:107282. [PMID: 37419294 DOI: 10.1016/j.vascn.2023.107282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) present an attractive in vitro platform to model safety and toxicity assessments-notably screening pro-arrhythmic compounds. The utility of the platform is stymied by a hiPSC-CM contractile apparatus and calcium handling mechanism akin to fetal phenotypes, evidenced by a negative force-frequency relationship. As such, hiPSC-CMs are limited in their ability to assess compounds that modulate contraction mediated by ionotropic compounds (Robertson, Tran, & George, 2013). To address this limitation, we utilize Agilent's xCELLigence Real-Time Cell Analyzer ePacer (RTCA ePacer) to enhance hiPSC-CM functional maturity. A continuous, progressive increase of electrical pacing is applied to hiPSC-CMs for up to 15 days. Contraction and viability are recorded by measurement of impedance using the RTCA ePacer. Our data confirms hiPSC-CMs inherently demonstrate a negative impedance amplitude frequency that is reversed after long-term electrical pacing. The data also indicate positive inotropic compounds increase the contractility of paced cardiomyocytes and calcium handling machinery is improved. Increased expression of genes critical to cardiomyocyte maturation further underscores the maturity of paced cells. In summary, our data suggest the application of continuous electrical pacing can functionally mature hiPSC-CMs, enhancing cellular response to positive inotropic compounds and improving calcium handling. SUMMARY: Long-term electrical stimulation of hiPSC-CM leads to functional maturation enabling predictive assessment of inotropic compounds.
Collapse
|
5
|
Abstract
Heart disease is a significant burden on global health care systems and is a leading cause of death each year. To improve our understanding of heart disease, high quality disease models are needed. These will facilitate the discovery and development of new treatments for heart disease. Traditionally, researchers have relied on 2D monolayer systems or animal models of heart disease to elucidate pathophysiology and drug responses. Heart-on-a-chip (HOC) technology is an emerging field where cardiomyocytes among other cell types in the heart can be used to generate functional, beating cardiac microtissues that recapitulate many features of the human heart. HOC models are showing great promise as disease modeling platforms and are poised to serve as important tools in the drug development pipeline. By leveraging advances in human pluripotent stem cell-derived cardiomyocyte biology and microfabrication technology, diseased HOCs are highly tuneable and can be generated via different approaches such as: using cells with defined genetic backgrounds (patient-derived cells), adding small molecules, modifying the cells' environment, altering cell ratio/composition of microtissues, among others. HOCs have been used to faithfully model aspects of arrhythmia, fibrosis, infection, cardiomyopathies, and ischemia, to name a few. In this review, we highlight recent advances in disease modeling using HOC systems, describing instances where these models outperformed other models in terms of reproducing disease phenotypes and/or led to drug development.
Collapse
Affiliation(s)
- Omar Mourad
- Toronto General Hospital Research Institute (O.M., R.Y., M.L., S.S.N.), University Health Network, Toronto, Canada.,Institute of Biomedical Engineering (O.M., R.Y., M.L., S.S.N.), University of Toronto, Canada
| | - Ryan Yee
- Toronto General Hospital Research Institute (O.M., R.Y., M.L., S.S.N.), University Health Network, Toronto, Canada.,Institute of Biomedical Engineering (O.M., R.Y., M.L., S.S.N.), University of Toronto, Canada
| | - Mengyuan Li
- Toronto General Hospital Research Institute (O.M., R.Y., M.L., S.S.N.), University Health Network, Toronto, Canada.,Institute of Biomedical Engineering (O.M., R.Y., M.L., S.S.N.), University of Toronto, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute (O.M., R.Y., M.L., S.S.N.), University Health Network, Toronto, Canada.,Ajmera Transplant Center (S.S.N.), University Health Network, Toronto, Canada.,Institute of Biomedical Engineering (O.M., R.Y., M.L., S.S.N.), University of Toronto, Canada.,Department of Laboratory Medicine and Pathobiology (S.S.N.), University of Toronto, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence (S.S.N.), University of Toronto, Canada
| |
Collapse
|
6
|
Béland J, Duverger JE, Comtois P. Novel Analysis Method for Beating Cells Videomicroscopy Data: Functional Characterization of Culture Samples. Front Physiol 2022; 13:733706. [PMID: 35242049 PMCID: PMC8886216 DOI: 10.3389/fphys.2022.733706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cell culture of cardiac tissue analog is becoming increasingly interesting for regenerative medicine (cell therapy and tissue engineering) and is widely used for high throughput cardiotoxicity. As a cost-effective approach to rapidly discard new compounds with high toxicity risks, cardiotoxicity evaluation is firstly done in vitro requiring cells/tissue with physiological/pathological characteristics (close to in vivo properties). Studying multicellular electrophysiological and contractile properties is needed to assess drug effects. Techniques favoring process automation which could help in simplifying screening drug candidates are thus of central importance. A lot of effort has been made to ameliorate in vitro models including several in vitro platforms for engineering neonatal rat cardiac tissues. However, most of the initial evaluation is done by studying the rate of activity. In this study, we present new approaches that use the videomicroscopy video of monolayer activity to study contractile properties of beating cells in culture. Two new variables are proposed which are linked to the contraction dynamics and are dependent on the rhythm of activity. Methods for evaluation of regional synchronicity within the image field of view are also presented that can rapidly determine regions with abnormal activity or heterogeneity in contraction dynamics.
Collapse
Affiliation(s)
- Jonathan Béland
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - James Elber Duverger
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, Canada
| | - Philippe Comtois
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Philippe Comtois,
| |
Collapse
|
7
|
Huethorst E, Mortensen P, Simitev RD, Gao H, Pohjolainen L, Talman V, Ruskoaho H, Burton FL, Gadegaard N, Smith GL. Conventional rigid 2D substrates cause complex contractile signals in monolayers of human induced pluripotent stem cell-derived cardiomyocytes. J Physiol 2021; 600:483-507. [PMID: 34761809 PMCID: PMC9299844 DOI: 10.1113/jp282228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
Abstract Human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CM) in monolayers interact mechanically via cell–cell and cell–substrate adhesion. Spatiotemporal features of contraction were analysed in hiPSC‐CM monolayers (1) attached to glass or plastic (Young's modulus (E) >1 GPa), (2) detached (substrate‐free) and (3) attached to a flexible collagen hydrogel (E = 22 kPa). The effects of isoprenaline on contraction were compared between rigid and flexible substrates. To clarify the underlying mechanisms, further gene expression and computational studies were performed. HiPSC‐CM monolayers exhibited multiphasic contractile profiles on rigid surfaces in contrast to hydrogels, substrate‐free cultures or single cells where only simple twitch‐like time‐courses were observed. Isoprenaline did not change the contraction profile on either surface, but its lusitropic and chronotropic effects were greater in hydrogel compared with glass. There was no significant difference between stiff and flexible substrates in regard to expression of the stress‐activated genes NPPA and NPPB. A computational model of cell clusters demonstrated similar complex contractile interactions on stiff substrates as a consequence of cell‐to‐cell functional heterogeneity. Rigid biomaterial surfaces give rise to unphysiological, multiphasic contractions in hiPSC‐CM monolayers. Flexible substrates are necessary for normal twitch‐like contractility kinetics and interpretation of inotropic interventions.
![]() Key points Spatiotemporal contractility analysis of human induced pluripotent stem cell‐derived cardiomyocyte (hiPSC‐CM) monolayers seeded on conventional, rigid surfaces (glass or plastic) revealed the presence of multiphasic contraction patterns across the monolayer with a high variability, despite action potentials recorded in the same areas being identical. These multiphasic patterns are not present in single cells, in detached monolayers or in monolayers seeded on soft substrates such as a hydrogel, where only ‘twitch’‐like transients are observed. HiPSC‐CM monolayers that display a high percentage of regions with multiphasic contraction have significantly increased contractile duration and a decreased lusotropic drug response. There is no indication that the multiphasic contraction patterns are associated with significant activation of the stress‐activated NPPA or NPPB signalling pathways. A computational model of cell clusters supports the biological findings that the rigid surface and the differential cell–substrate adhesion underly multiphasic contractile behaviour of hiPSC‐CMs.
Collapse
Affiliation(s)
- Eline Huethorst
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Peter Mortensen
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Radostin D Simitev
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Chu X, Wang M, Qiu X, Huang Y, Li T, Otieno E, Li N, Luo L, Xiao X. Strategies for constructing pluripotent stem cell- and progenitor cell-derived three-dimensional cardiac micro-tissues. J Biomed Mater Res A 2021; 110:488-503. [PMID: 34397148 DOI: 10.1002/jbm.a.37298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) cardiac micro-tissue is a promising model for simulating the structural and functional features of heart in vitro. This scientific achievement provides a platform for exploration about the mechanisms on the development, damage, and regeneration of tissue, hence, paving a way toward development of novel therapies for heart diseases. However, 3D micro-tissue technology is still in its infant stages faced with many challenges such as incompleteness of the tissue microarchitecture, loss of the resident immune cells, poor reproducibility, and deficiencies in continuously feeding the nutrients and removing wastes during micro-tissue culturing. There is an urgent need to optimize the construction of 3D cardiac micro-tissue and improve functions of the involved cells. Therefore, scaffolds and cell resources for building 3D cardiac micro-tissues, strategies for inducing the maturation and functionalization of pluripotent stem cell- or cardiac progenitor cell-derived cardiomyocytes, and the major challenges were reviewed in this writing to enable future fabrication of 3D cardiac micro-tissues or organoids for drug screening, disease modeling, regeneration treatment, and so on.
Collapse
Affiliation(s)
- Xinyue Chu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mingyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China.,Institute of Laboratory Animals Science, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiaoyan Qiu
- Department of Animal Husbandry Engineering, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yun Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Tong Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Edward Otieno
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Na Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Li Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Kim MS, Fleres B, Lovett J, Anfinson M, Samudrala SSK, Kelly LJ, Teigen LE, Cavanaugh M, Marquez M, Geurts AM, Lough JW, Mitchell ME, Fitts RH, Tomita-Mitchell A. Contractility of Induced Pluripotent Stem Cell-Cardiomyocytes With an MYH6 Head Domain Variant Associated With Hypoplastic Left Heart Syndrome. Front Cell Dev Biol 2020; 8:440. [PMID: 32656206 PMCID: PMC7324479 DOI: 10.3389/fcell.2020.00440] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease; however, its etiology remains largely unknown. We previously demonstrated that genetic variants in the MYH6 gene are significantly associated with HLHS. Additionally, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from an HLHS-affected family trio (affected parent, unaffected parent, affected proband) carrying an MYH6-R443P head domain variant demonstrated dysmorphic sarcomere structure and increased compensatory MYH7 expression. Analysis of iPSC-CMs derived from the HLHS trio revealed that only beta myosin heavy chain expression was observed in CMs carrying the MYH6-R443P variant after differentiation day 15 (D15). Functional assessments performed between D20-D23 revealed that MYH6-R443P variant CMs contracted more slowly (40 ± 2 vs. 47 ± 2 contractions/min, P < 0.05), shortened less (5.6 ± 0.5 vs. 8.1 ± 0.7% of cell length, P < 0.05), and exhibited slower shortening rates (19.9 ± 1.7 vs. 28.1 ± 2.5 μm/s, P < 0.05) and relaxation rates (11.0 ± 0.9 vs. 19.7 ± 2.0 μm/s, P < 0.05). Treatment with isoproterenol had no effect on iPSC-CM mechanics. Using CRISPR/Cas9 gene editing technology, introduction of the R443P variant into the unaffected parent's iPSCs recapitulated the phenotype of the proband's iPSC-CMs, and conversely, correction of the R443P variant in the proband's iPSCs rescued the cardiomyogenic differentiation, sarcomere organization, slower contraction (P < 0.05) and decreased velocity phenotypes (P < 0.0001). This is the first report to identify that cardiac tissues from HLHS patients with MYH6 variants can exhibit sarcomere disorganization in atrial but not ventricular tissues. This new discovery was not unexpected, since MYH6 is expressed predominantly in the postnatal atria in humans. These findings demonstrate the feasibility of employing patient-derived iPSC-CMs, in combination with patient cardiac tissues, to gain mechanistic insight into how genetic variants can lead to HLHS. Results from this study suggest that decreased contractility of CMs due to sarcomere disorganization in the atria may effect hemodynamic changes preventing development of a normal left ventricle.
Collapse
Affiliation(s)
- Min-Su Kim
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Herma Heart Institute, Milwaukee, WI, United States
| | - Brandon Fleres
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Jerrell Lovett
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Melissa Anfinson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sai Suma K Samudrala
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lauren J Kelly
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Laura E Teigen
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Matthew Cavanaugh
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Maribel Marquez
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John W Lough
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael E Mitchell
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Herma Heart Institute, Milwaukee, WI, United States
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Aoy Tomita-Mitchell
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Herma Heart Institute, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
10
|
Jiang W, Hu X, Li F, Li G, Wang Y. Adrenoceptor Responses in Human Embryonic Stem Cell-Derived Cardiomyocytes: a Special Focus on Electrophysiological Property. J Pharmacol Exp Ther 2020; 373:429-437. [PMID: 32217769 DOI: 10.1124/jpet.120.265686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/19/2020] [Indexed: 01/16/2023] Open
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have become a promising cell source for cardiovascular research. The electrophysiological characteristic of hESC-CMs has been generally studied, but little is known about electrophysiological response to adrenergic receptor (AR) activation. This study aims to characterize electrophysiological response of hESC-CMs to adrenergic stimulation in terms of the conduction velocity (CV) and action potential (AP) shape. The H9 hESC-CMs were acquired by a classic differentiation protocol and cultured to achieve confluent cell monolayers. The AP shape and CV among the monolayers were recorded using optical mapping during electrophysiological and pharmacological stimulation experiments. Quantitative real-time polymerase chain reaction and Western blot were adopted to determine the expression levels of Connexin and ion channel gene and protein. Chronic β-AR stimulation by isoproterenol for 24 hours in hESC-CM monolayers increased CV by approximately 50%, whereas α-AR or acute β-AR stimulation had no significant effect; chronic β-AR stimulation resulted in a significant Connexin (Cx) 43 and Nav1.5 upregulation at both protein and mRNA level. Isoproterenol-induced CV accelerating and Cx43 and Nav1.5 upregulation in hESC-CMs, which was attenuated by selective β1-adrenoceptor antagonist CGP 20712A but not selective β2-antagonist ICI 118551. Moreover, pretreatment with protein kinase A (PKA) inhibitor H89, mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (MEK) inhibitor SB203580, and MAPK inhibitor PD98059 suppressed the isoproterenol-induced CV accelerating and Cx43 upregulation, whereas it had no significant effect on Nav1.5 upregulation. The AP shape in hESC-CM monolayers was less susceptible by either β-AR or α-AR stimulation. It was β1-AR not β2-AR contributing to the modification of conduction velocity among hESC-CM monolayers. Chronic β1-AR stimulation accelerates CV by upregulating Cx43 via PKA/MEK/MAPK pathway. SIGNIFICANCE STATEMENT: These data provide new insight into the electrophysiological characteristics of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and depict a concise signaling pathway in the adrenergic receptor (AR) regulation of action potential shape and electrical propagation across hESC-CM monolayer. It is β1-AR not β2-AR contributing to the modification of conduction velocity in hESC-CMs and accelerating conduction velocity by upregulating Connexin 43 via protein kinase A/ mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase/MAPK pathway.
Collapse
Affiliation(s)
- Weiwei Jiang
- Departments of Cardiovascular Surgery (X.H., F.L., G.L., Y.W.) and Gastroenterology (W.J.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland (Y.W.)
| | - Xingjian Hu
- Departments of Cardiovascular Surgery (X.H., F.L., G.L., Y.W.) and Gastroenterology (W.J.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland (Y.W.)
| | - Fei Li
- Departments of Cardiovascular Surgery (X.H., F.L., G.L., Y.W.) and Gastroenterology (W.J.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland (Y.W.)
| | - Geng Li
- Departments of Cardiovascular Surgery (X.H., F.L., G.L., Y.W.) and Gastroenterology (W.J.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland (Y.W.)
| | - Yin Wang
- Departments of Cardiovascular Surgery (X.H., F.L., G.L., Y.W.) and Gastroenterology (W.J.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland (Y.W.)
| |
Collapse
|
11
|
Zhao Y, Rafatian N, Wang EY, Wu Q, Lai BFL, Lu RX, Savoji H, Radisic M. Towards chamber specific heart-on-a-chip for drug testing applications. Adv Drug Deliv Rev 2020; 165-166:60-76. [PMID: 31917972 PMCID: PMC7338250 DOI: 10.1016/j.addr.2019.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Modeling of human organs has long been a task for scientists in order to lower the costs of therapeutic development and understand the pathological onset of human disease. For decades, despite marked differences in genetics and etiology, animal models remained the norm for drug discovery and disease modeling. Innovative biofabrication techniques have facilitated the development of organ-on-a-chip technology that has great potential to complement conventional animal models. However, human organ as a whole, more specifically the human heart, is difficult to regenerate in vitro, in terms of its chamber specific orientation and its electrical functional complexity. Recent progress with the development of induced pluripotent stem cell differentiation protocols, made recapitulating the complexity of the human heart possible through the generation of cells representative of atrial & ventricular tissue, the sinoatrial node, atrioventricular node and Purkinje fibers. Current heart-on-a-chip approaches incorporate biological, electrical, mechanical, and topographical cues to facilitate tissue maturation, therefore improving the predictive power for the chamber-specific therapeutic effects targeting adult human. In this review, we will give a summary of current advances in heart-on-a-chip technology and provide a comprehensive outlook on the challenges involved in the development of human physiologically relevant heart-on-a-chip.
Collapse
Affiliation(s)
- Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Naimeh Rafatian
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Qinghua Wu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Benjamin F L Lai
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Rick Xingze Lu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
12
|
Notbohm J, Napiwocki B, deLange W, Stempien A, Saraswathibhatla A, Craven R, Salick M, Ralphe J, Crone W. Two-Dimensional Culture Systems to Enable Mechanics-Based Assays for Stem Cell-Derived Cardiomyocytes. EXPERIMENTAL MECHANICS 2019; 59:1235-1248. [PMID: 31680699 PMCID: PMC6824432 DOI: 10.1007/s11340-019-00473-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/09/2019] [Indexed: 06/10/2023]
Abstract
Well-controlled 2D cell culture systems advance basic investigations in cell biology and provide innovative platforms for drug development, toxicity testing, and diagnostic assays. These cell culture systems have become more advanced in order to provide and to quantify the appropriate biomechanical and biochemical cues that mimic the milieu of conditions present in vivo. Here we present an innovative 2D cell culture system to investigate human stem cell-derived cardiomyocytes, the muscle cells of the heart responsible for pumping blood throughout the body. We designed our 2D cell culture platform to control intracellular features to produce adult-like cardiomyocyte organization with connectivity and anisotropic conduction comparable to the native heart, and combined it with optical microscopy to quantify cell-cell and cell-substrate mechanical interactions. We show the measurement of forces and displacements that occur within individual cells, between neighboring cells, and between cells and their surrounding matrix. This system has broad potential to expand our understanding of tissue physiology, with particular advantages for the study of the mechanically active heart. Furthermore, this technique should prove valuable in screening potential drugs for efficacy and testing for toxicity.
Collapse
Affiliation(s)
- J. Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
| | - B.N. Napiwocki
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
| | - W.J. deLange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - A. Stempien
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
| | - A. Saraswathibhatla
- Department of Engineering Physics, University of Wisconsin-Madison, Madison WI, USA
| | - R.J. Craven
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
| | - M.R. Salick
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison WI, USA
| | - J.C. Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - W.C. Crone
- Department of Engineering Physics, University of Wisconsin-Madison, Madison WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison WI, USA
| |
Collapse
|
13
|
Edalat SG, Jang Y, Kim J, Park Y. Collagen Type I Containing Hybrid Hydrogel Enhances Cardiomyocyte Maturation in a 3D Cardiac Model. Polymers (Basel) 2019; 11:polym11040687. [PMID: 30995718 PMCID: PMC6523216 DOI: 10.3390/polym11040687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
In vitro maturation of cardiomyocytes in 3D is essential for the development of viable cardiac models for therapeutic and developmental studies. The method by which cardiomyocytes undergoes maturation has significant implications for understanding cardiomyocytes biology. The regulation of the extracellular matrix (ECM) by changing the composition and stiffness is quintessential for engineering a suitable environment for cardiomyocytes maturation. In this paper, we demonstrate that collagen type I, a component of the ECM, plays a crucial role in the maturation of cardiomyocytes. To this end, embryonic stem-cell derived cardiomyocytes were incorporated into Matrigel-based hydrogels with varying collagen type I concentrations of 0 mg, 3 mg, and 6 mg. Each hydrogel was analyzed by measuring the degree of stiffness, the expression levels of MLC2v, TBX18, and pre-miR-21, and the size of the hydrogels. It was shown that among the hydrogel variants, the Matrigel-based hydrogel with 3 mg of collagen type I facilitates cardiomyocyte maturation by increasing MLC2v expression. The treatment of transforming growth factor β1 (TGF-β1) or fibroblast growth factor 4 (FGF-4) on the hydrogels further enhanced the MLC2v expression and thereby cardiomyocyte maturation.
Collapse
Affiliation(s)
- Sam G Edalat
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea.
| | - Yongjun Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea.
| | - Jongseong Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea.
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea.
| |
Collapse
|
14
|
In vitro analyses of suspected arrhythmogenic thin filament variants as a cause of sudden cardiac death in infants. Proc Natl Acad Sci U S A 2019; 116:6969-6974. [PMID: 30886088 DOI: 10.1073/pnas.1819023116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sudden unexpected death of an infant (SUDI) is a devastating occurrence for families. To investigate the genetic pathogenesis of SUDI, we sequenced >70 genes from 191 autopsy-negative SUDI victims. Ten infants sharing a previously unknown variant in troponin I (TnI) were identified. The mutation (TNNI1 R37C+/-) is in the fetal/neonatal paralog of TnI, a gene thought to be expressed in the heart up to the first 24 months of life. Using phylogenetic analysis and molecular dynamics simulations, it was determined that arginine at residue 37 in TNNI1 may play a critical functional role, suggesting that the variant may be pathogenic. We investigated the biophysical properties of the TNNI1 R37C mutation in human reconstituted thin filaments (RTFs) using fluorometry. RTFs reconstituted with the mutant R37C TnI exhibited reduced Ca2+-binding sensitivity due to an increased Ca2+ off-rate constant. Furthermore, we generated TNNI1 R37C+/- mutants in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) using CRISPR-Cas9. In monolayers of hiPSC-CMs, we simultaneously monitored voltage and Ca2+ transients through optical mapping and compared them to their isogenic controls. We observed normal intrinsic beating patterns under control conditions in TNNI1 R37C+/- at stimulation frequencies of 55 beats/min (bpm), but these cells showed no restitution with increased stimulation frequency to 65 bpm and exhibited alternans at >75 bpm. The WT hiPSC-CMs did not exhibit any sign of arrhythmogenicity even at stimulation frequencies of 120 bpm. The approach used in this study provides critical physiological and mechanistic bases to investigate sarcomeric mutations in the pathogenesis of SUDI.
Collapse
|
15
|
Chen T, Vunjak-Novakovic G. Human Tissue-Engineered Model of Myocardial Ischemia-Reperfusion Injury. Tissue Eng Part A 2018; 25:711-724. [PMID: 30311860 DOI: 10.1089/ten.tea.2018.0212] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT Reducing ischemia-reperfusion injury would significantly improve patient survival. Current preclinical models are inadequate because they rely on animals, which do not emulate human physiology and the clinical setting. We developed a human tissue platform that allowed us to assess the human cardiac response, and demonstrated the platform's utility by measuring injury during ischemia-reperfusion and the effects of cardioprotective strategies. The model provides a foundation for future studies on how patient-specific backgrounds may affect response to therapeutic strategies. These steps will be necessary to help translate therapies into the clinical setting.
Collapse
Affiliation(s)
- Timothy Chen
- 1 Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York
| | - Gordana Vunjak-Novakovic
- 1 Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York.,2 Department of Medicine, Columbia University in the City of New York, New York, New York
| |
Collapse
|
16
|
Cardiomyocytes Derived from Human CardiopoieticAmniotic Fluids. Sci Rep 2018; 8:12028. [PMID: 30104705 PMCID: PMC6089907 DOI: 10.1038/s41598-018-30537-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/01/2018] [Indexed: 02/08/2023] Open
Abstract
Human amniotic fluid (hAF) cells share characteristics of both embryonic and adult stem cells. They proliferate rapidly and can differentiate into cells of all embryonic germ layers but do not form teratomas. Embryoid-bodies obtained from hAF have cardiac differentiation potential, but terminal differentiation to cardiomyocytes (CMs) has not yet been described. Our purpose was to promote cardiac differentiation in hAFcells. Cells were exposed to inducing factors for up to 15 days. Only the subset of hAF cells expressing the multipotency markers SSEA4, OCT4 and CD90 (CardiopoieticAF cells) responded to the differentiation process by increasing the expression of the cardiac transcription factors Nkx2.5 and GATA4, sarcomeric proteins (cTnT, α-MHC, α-SA), Connexin43 and atrial and ventricular markers. Furthermore, differentiated cells were positive for the calcium pumps CACNA1C and SERCA2a, with approximately 30% of CardiopoieticAF-derived CM-like cells responding to caffeine or adrenergic stimulation. Some spontaneous rare beating foci were also observed. In conclusion, we demonstrated that CardiopoieticAF cells might differentiate toward the cardiac lineage giving rise to CM-like cells characterized by several cardiac-specific molecular, structural, and functional properties.
Collapse
|
17
|
Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications. Cells 2018; 7:cells7060048. [PMID: 29799480 PMCID: PMC6025241 DOI: 10.3390/cells7060048] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as sources of cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs; the methods used to improve scalability of throughput assays for functional screening and drug testing in vitro; the phenotypic characteristics of hiPSCs-derived CMs and their ability to rescue injured CMs through paracrine effects; we also cover the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their immunological features and the potential use in biomedical applications.
Collapse
|
18
|
Das S, Jang J. 3D bioprinting and decellularized ECM-based biomaterials for in vitro CV tissue engineering. ACTA ACUST UNITED AC 2018. [DOI: 10.2217/3dp-2018-0002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advanced extrusion-based 3D printing strategies allow the rapid fabrication of complex anatomically relevant architectures. Moreover, they have the potential to fabricate 3D-bioprinted cardiac constructs by depositing cardiac cells with appropriate biomaterials. Heart-derived decellularized extracellular matrices containing a complex mixture of various extracellular molecules provide a comprehensive microenvironmental niche similar to native cardiac tissue. Nonetheless, a major concern persists pertaining to insufficient vascularization and mimicking of the complex 3D architectural features, which can be tackled using 3D printing approaches. In this review, we discuss the advantage and application of decellularized extracellular matrix-based hydrogels for the 3D printing of engineered cardiac tissues. We also briefly talk about the integration of electroactive materials within cardiac patches to improve the myocardium's electrophysiological properties.
Collapse
Affiliation(s)
- Sanskrita Das
- Department of Creative IT Engineering, Pohang University of Science & Technology, Pohang, 37673, Republic of Korea
| | - Jinah Jang
- Department of Creative IT Engineering, Pohang University of Science & Technology, Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (IBIO), Pohang University of Science & Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
19
|
Li RA, Keung W, Cashman TJ, Backeris PC, Johnson BV, Bardot ES, Wong AOT, Chan PKW, Chan CWY, Costa KD. Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells. Biomaterials 2018; 163:116-127. [PMID: 29459321 DOI: 10.1016/j.biomaterials.2018.02.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Tissue engineers and stem cell biologists have made exciting progress toward creating simplified models of human heart muscles or aligned monolayers to help bridge a longstanding gap between experimental animals and clinical trials. However, no existing human in vitro systems provide the direct measures of cardiac performance as a pump. Here, we developed a next-generation in vitro biomimetic model of pumping human heart chamber, and demonstrated its capability for pharmaceutical testing. From human pluripotent stem cell (hPSC)-derived ventricular cardiomyocytes (hvCM) embedded in collagen-based extracellular matrix hydrogel, we engineered a three-dimensional (3D) electro-mechanically coupled, fluid-ejecting miniature human ventricle-like cardiac organoid chamber (hvCOC). Structural characterization showed organized sarcomeres with myofibrillar microstructures. Transcript and RNA-seq analyses revealed upregulation of key Ca2+-handling, ion channel, and cardiac-specific proteins in hvCOC compared to lower-order 2D and 3D cultures of the same constituent cells. Clinically-important, physiologically complex contractile parameters such as ejection fraction, developed pressure, and stroke work, as well as electrophysiological properties including action potential and conduction velocity were measured: hvCOC displayed key molecular and physiological characteristics of the native ventricle, and showed expected mechanical and electrophysiological responses to a range of pharmacological interventions (including positive and negative inotropes). We conclude that such "human-heart-in-a-jar" technology could facilitate the drug discovery process by providing human-specific preclinical data during early stage drug development.
Collapse
Affiliation(s)
- Ronald A Li
- Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sweden; Dr. Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration on Regenerative Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Novoheart Limited, Shatin, Hong Kong.
| | - Wendy Keung
- Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sweden; Dr. Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration on Regenerative Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Timothy J Cashman
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter C Backeris
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bryce V Johnson
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan S Bardot
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andy O T Wong
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration on Regenerative Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Patrick K W Chan
- Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sweden; Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Camie W Y Chan
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Novoheart Limited, Shatin, Hong Kong
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Novoheart Limited, Shatin, Hong Kong.
| |
Collapse
|
20
|
Sheehy SP, Grosberg A, Qin P, Behm DJ, Ferrier JP, Eagleson MA, Nesmith AP, Krull D, Falls JG, Campbell PH, McCain ML, Willette RN, Hu E, Parker KK. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes. Exp Biol Med (Maywood) 2017; 242:1643-1656. [PMID: 28343439 PMCID: PMC5786366 DOI: 10.1177/1535370217701006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In vitro studies of cardiac physiology and drug response have traditionally been performed on individual isolated cardiomyocytes or isotropic monolayers of cells that may not mimic desired physiological traits of the laminar adult myocardium. Recent studies have reported a number of advances to Heart-on-a-Chip platforms for the fabrication of more sophisticated engineered myocardium, but cardiomyocyte immaturity remains a challenge. In the anisotropic musculature of the heart, interactions between cardiac myocytes, the extracellular matrix (ECM), and neighboring cells give rise to changes in cell shape and tissue architecture that have been implicated in both development and disease. We hypothesized that engineered myocardium fabricated from cardiac myocytes cultured in vitro could mimic the physiological characteristics and gene expression profile of adult heart muscle. To test this hypothesis, we fabricated engineered myocardium comprised of neonatal rat ventricular myocytes with laminar architectures reminiscent of that observed in the mature heart and compared their sarcomere organization, contractile performance characteristics, and cardiac gene expression profile to that of isolated adult rat ventricular muscle strips. We found that anisotropic engineered myocardium demonstrated a similar degree of global sarcomere alignment, contractile stress output, and inotropic concentration-response to the β-adrenergic agonist isoproterenol. Moreover, the anisotropic engineered myocardium exhibited comparable myofibril related gene expression to muscle strips isolated from adult rat ventricular tissue. These results suggest that tissue architecture serves an important developmental cue for building in vitro model systems of the myocardium that could potentially recapitulate the physiological characteristics of the adult heart. Impact statement With the recent focus on developing in vitro Organ-on-Chip platforms that recapitulate tissue and organ-level physiology using immature cells derived from stem cell sources, there is a strong need to assess the ability of these engineered tissues to adopt a mature phenotype. In the present study, we compared and contrasted engineered tissues fabricated from neonatal rat ventricular myocytes in a Heart-on-a-Chip platform to ventricular muscle strips isolated from adult rats. The results of this study support the notion that engineered tissues fabricated from immature cells have the potential to mimic mature tissues in an Organ-on-Chip platform.
Collapse
Affiliation(s)
- Sean P Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard Stem Cell Institute, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Anna Grosberg
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard Stem Cell Institute, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Pu Qin
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA 19406, USA
| | - David J Behm
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA 19406, USA
| | - John P Ferrier
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard Stem Cell Institute, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mackenzie A Eagleson
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard Stem Cell Institute, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alexander P Nesmith
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard Stem Cell Institute, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - David Krull
- Safety Assessment Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA 19406, USA
| | - James G Falls
- Safety Assessment Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA 19406, USA
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard Stem Cell Institute, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Megan L McCain
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard Stem Cell Institute, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Robert N Willette
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA 19406, USA
| | - Erding Hu
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA 19406, USA
| | - Kevin K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard Stem Cell Institute, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
21
|
Martewicz S, Serena E, Zatti S, Keller G, Elvassore N. Substrate and mechanotransduction influence SERCA2a localization in human pluripotent stem cell-derived cardiomyocytes affecting functional performance. Stem Cell Res 2017; 25:107-114. [PMID: 29125993 DOI: 10.1016/j.scr.2017.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/08/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Physical cues are major determinants of cellular phenotype and evoke physiological and pathological responses on cell structure and function. Cellular models aim to recapitulate basic functional features of their in vivo counterparts or tissues in order to be of use in in vitro disease modeling or drug screening and testing. Understanding how culture systems affect in vitro development of human pluripotent stem cell (hPSC)-derivatives allows optimization of cellular human models and gives insight in the processes involved in their structural organization and function. In this work, we show involvement of the mechanotransduction pathway RhoA/ROCK in the structural reorganization of hPSC-derived cardiomyocytes after adhesion plating. These structural changes have a major impact on the intracellular localization of SERCA2 pumps and concurrent improvement in calcium cycling. The process is triggered by cell interaction with the culture substrate, which mechanical cues drive sarcomeric alignment and SERCA2a spreading and relocalization from a perinuclear to a whole-cell distribution. This structural reorganization is mediated by the mechanical properties of the substrate, as shown by the process failure in hPSC-CMs cultured on soft 4kPa hydrogels as opposed to physiologically stiff 16kPa hydrogels and glass. Finally, pharmacological inhibition of Rho-associated protein kinase (ROCK) by different compounds identifies this specific signaling pathway as a major player in SERCA2 localization and the associated improvement in hPSC-CMs calcium handling ability in vitro.
Collapse
Affiliation(s)
- Sebastian Martewicz
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova 35131, Italy; Venetian Institute of Molecular Medicine, via Orus 2, Padova 35129, Italy; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Elena Serena
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova 35131, Italy; Venetian Institute of Molecular Medicine, via Orus 2, Padova 35129, Italy
| | - Susi Zatti
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova 35131, Italy; Venetian Institute of Molecular Medicine, via Orus 2, Padova 35129, Italy
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova 35131, Italy; Venetian Institute of Molecular Medicine, via Orus 2, Padova 35129, Italy; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China; Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
22
|
Lee EK, Tran DD, Keung W, Chan P, Wong G, Chan CW, Costa KD, Li RA, Khine M. Machine Learning of Human Pluripotent Stem Cell-Derived Engineered Cardiac Tissue Contractility for Automated Drug Classification. Stem Cell Reports 2017; 9:1560-1572. [PMID: 29033305 PMCID: PMC5829317 DOI: 10.1016/j.stemcr.2017.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 01/07/2023] Open
Abstract
Accurately predicting cardioactive effects of new molecular entities for therapeutics remains a daunting challenge. Immense research effort has been focused toward creating new screening platforms that utilize human pluripotent stem cell (hPSC)-derived cardiomyocytes and three-dimensional engineered cardiac tissue constructs to better recapitulate human heart function and drug responses. As these new platforms become increasingly sophisticated and high throughput, the drug screens result in larger multidimensional datasets. Improved automated analysis methods must therefore be developed in parallel to fully comprehend the cellular response across a multidimensional parameter space. Here, we describe the use of machine learning to comprehensively analyze 17 functional parameters derived from force readouts of hPSC-derived ventricular cardiac tissue strips (hvCTS) electrically paced at a range of frequencies and exposed to a library of compounds. A generated metric is effective for then determining the cardioactivity of a given drug. Furthermore, we demonstrate a classification model that can automatically predict the mechanistic action of an unknown cardioactive drug.
Collapse
Affiliation(s)
- Eugene K Lee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Novoheart LTD, Shatin, Hong Kong
| | | | - Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong; Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Patrick Chan
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong; Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | | | | | - Kevin D Costa
- Novoheart LTD, Shatin, Hong Kong; Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Ronald A Li
- Novoheart LTD, Shatin, Hong Kong; Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong; Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Michelle Khine
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Novoheart LTD, Shatin, Hong Kong.
| |
Collapse
|
23
|
Giacomelli E, Mummery CL, Bellin M. Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2017; 74:3711-3739. [PMID: 28573431 PMCID: PMC5597692 DOI: 10.1007/s00018-017-2546-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current literature clearly shows that hPSC-CMs recapitulate many molecular, cellular, and functional aspects of human heart pathophysiology and their responses to cardioactive drugs. Here, we provide a comprehensive overview of hPSC-CMs models that have been described to date and highlight their most recent and remarkable contributions to research on cardiovascular diseases and disorders with cardiac traits. We conclude discussing immediate challenges, limitations, and emerging solutions.
Collapse
Affiliation(s)
- E Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - C L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Building Zuidhorst, 7500 AE, Enschede, The Netherlands
| | - M Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
24
|
Hansen KJ, Favreau JT, Gershlak JR, Laflamme MA, Albrecht DR, Gaudette GR. Optical Method to Quantify Mechanical Contraction and Calcium Transients of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Eng Part C Methods 2017; 23:445-454. [PMID: 28562232 DOI: 10.1089/ten.tec.2017.0190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Differentiation of human pluripotent stem cells into cardiomyocytes (hPS-CMs) holds promise for myocardial regeneration therapies, drug discovery, and models of cardiac disease. Potential cardiotoxicities may affect hPS-CM mechanical contraction independent of calcium signaling. Herein, a method using an image capture system is described to measure hPS-CM contractility and intracellular calcium concurrently, with high spatial and temporal resolution. The image capture system rapidly alternates between brightfield and epifluorescent illumination of contracting cells. Mechanical contraction is quantified by a speckle tracking algorithm applied to brightfield image pairs, whereas calcium transients are measured by a fluorescent calcium reporter. This technique captured changes in contractile strain, calcium transients, and beat frequency of hPS-CMs over 21 days in culture, as well as acute responses to isoproterenol and Cytochalasin D. The technique described above can be applied without the need to alter the culture platform, allowing for determination of hPS-CM behavior over weeks in culture for drug discovery and myocardial regeneration applications.
Collapse
Affiliation(s)
- Katrina J Hansen
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - John T Favreau
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Joshua R Gershlak
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Michael A Laflamme
- 2 Toronto General Research Institute, McEwen Centre for Regenerative Medicine, University Health Network , Toronto, Canada
| | - Dirk R Albrecht
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Glenn R Gaudette
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| |
Collapse
|
25
|
Sayed N, Liu C, Wu JC. Translation of Human-Induced Pluripotent Stem Cells: From Clinical Trial in a Dish to Precision Medicine. J Am Coll Cardiol 2017; 67:2161-2176. [PMID: 27151349 DOI: 10.1016/j.jacc.2016.01.083] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/14/2022]
Abstract
The prospect of changing the plasticity of terminally differentiated cells toward pluripotency has completely altered the outlook for biomedical research. Human-induced pluripotent stem cells (iPSCs) provide a new source of therapeutic cells free from the ethical issues or immune barriers of human embryonic stem cells. iPSCs also confer considerable advantages over conventional methods of studying human diseases. Since its advent, iPSC technology has expanded with 3 major applications: disease modeling, regenerative therapy, and drug discovery. Here we discuss, in a comprehensive manner, the recent advances in iPSC technology in relation to basic, clinical, and population health.
Collapse
Affiliation(s)
- Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California.
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
26
|
Galdos FX, Guo Y, Paige SL, VanDusen NJ, Wu SM, Pu WT. Cardiac Regeneration: Lessons From Development. Circ Res 2017; 120:941-959. [PMID: 28302741 DOI: 10.1161/circresaha.116.309040] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration.
Collapse
Affiliation(s)
- Francisco X Galdos
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yuxuan Guo
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sharon L Paige
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Nathan J VanDusen
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sean M Wu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| | - William T Pu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
27
|
Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise. EBioMedicine 2017; 16:30-40. [PMID: 28169191 PMCID: PMC5474503 DOI: 10.1016/j.ebiom.2017.01.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and selection of the most suitable stem cell type for cardiac regenerative medicine. Human pluripotent stem cells (PSCs) have emerged as attractive cell source to obtain cardiomyocytes (CMs), with potential applications, including drug discovery and toxicity screening, disease modelling and innovative cell therapies. Lessons from embryology offered important insights into the development of stem cell-derived CMs. However, the generation of a CM population, uniform in cardiac subtype, adult maturation and functional properties, is highly recommended. Moreover, hurdles regarding tumorigenesis, graft cell death, immune rejection and arrhythmogenesis need to be overcome in clinical practice. Here we highlight the recent progression in PSC technologies for the regeneration of injured heart. We review novel strategies that might overcome current obstacles in heart regenerative medicine, aiming at improving cell survival and functional integration after cell transplantation. Human pluripotent stem cells emerge as attractive tool for cardiac regeneration approaches. Plasticity of human pluripotent stem cells towards cardiac-related cell types guarantees repopulation of injured heart. Combination of stem cell and gene editing therapies has potential to become next generation treatment for cardiac diseases.
Data for this Review were identified by searches of MEDLINE and PubMed, and references from relevant articles using the search terms “cardiomyogenesis”, “adult stem cells”, “pluripotent stem cells” and “cardiac regeneration”. Only articles published in English between 1976 and 2017 were included. The majority of the articles reported were published after 2000.
Collapse
|
28
|
Grespan E, Martewicz S, Serena E, Le Houerou V, Rühe J, Elvassore N. Analysis of Calcium Transients and Uniaxial Contraction Force in Single Human Embryonic Stem Cell-Derived Cardiomyocytes on Microstructured Elastic Substrate with Spatially Controlled Surface Chemistries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12190-12201. [PMID: 27643958 DOI: 10.1021/acs.langmuir.6b03138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mechanical activity of cardiomyocytes is the result of a process called excitation-contraction coupling (ECC). A membrane depolarization wave induces a transient cytosolic calcium concentration increase that triggers activation of calcium-sensitive contractile proteins, leading to cell contraction and force generation. An experimental setup capable of acquiring simultaneously all ECC features would have an enormous impact on cardiac drug development and disease study. In this work, we develop a microengineered elastomeric substrate with tailor-made surface chemistry to measure simultaneously the uniaxial contraction force and the calcium transients generated by single human cardiomyocytes in vitro. Microreplication followed by photocuring is used to generate an array consisting of elastomeric micropillars. A second photochemical process is employed to spatially control the surface chemistry of the elastomeric pillar. As result, human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can be confined in rectangular cell-adhesive areas, which induce cell elongation and promote suspended cell anchoring between two adjacent micropillars. In this end-to-end conformation, confocal fluorescence microscopy allows simultaneous detection of calcium transients and micropillar deflection induced by a single-cell uniaxial contraction force. Computational finite elements modeling (FEM) and 3D reconstruction of the cell-pillar interface allow force quantification. The platform is used to follow calcium dynamics and contraction force evolution in hESC-CMs cultures over the course of several weeks. Our results show how a biomaterial-based platform can be a versatile tool for in vitro assaying of cardiac functional properties of single-cell human cardiomyocytes, with applications in both in vitro developmental studies and drug screening on cardiac cultures.
Collapse
Affiliation(s)
- Eleonora Grespan
- CNR Institute of Neuroscience , Corso Stati Uniti 4, 35127 Padova, Italy
| | - Sebastian Martewicz
- Department of Industrial Engineering, University of Padova , Via Marzolo 9, 35131 Padova, Italy
- Venetian Institute of Molecular Medicine , Via Orus 2, 35129 Padua, Italy
| | - Elena Serena
- Department of Industrial Engineering, University of Padova , Via Marzolo 9, 35131 Padova, Italy
- Venetian Institute of Molecular Medicine , Via Orus 2, 35129 Padua, Italy
| | - Vincent Le Houerou
- Institute Charles Sadron, University of Strasbourg , 23 rue du Loess, 84047 Strasbourg, France
| | - Jürgen Rühe
- Department for Microsystems Engineering, University of Freiburg , Georges-Köhler Allee 103, 79110 Freiburg, Germany
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova , Via Marzolo 9, 35131 Padova, Italy
- Venetian Institute of Molecular Medicine , Via Orus 2, 35129 Padua, Italy
| |
Collapse
|
29
|
Le TYL, Thavapalachandran S, Kizana E, Chong JJ. New Developments in Cardiac Regeneration. Heart Lung Circ 2016; 26:316-322. [PMID: 27916592 DOI: 10.1016/j.hlc.2016.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/13/2023]
Abstract
Numerous pharmacological and device therapies have improved adverse cardiac remodelling and mortality in heart failure. However, none are able to regenerate damaged cardiac tissue. Stem cell based therapies using multipotent (adult) stem cells and pluripotent stem cells are new approaches that could potentially achieve the elusive goal of true cardiac regeneration. Over the past two decades, various stem cell based approaches have been shown to improve left ventricular function in pre-clinical animal models. Promising results rapidly led to clinical trials, initially using bone marrow-derived mononuclear cells, then mesenchymal stromal cell populations and, more recently, progenitor cells from the adult heart itself. These have been shown to be safe and have advanced our understanding of potential suitable recipients, cell delivery routes, and possible mechanisms of action. However, efficacy in these trials has been inconsistent. Human pluripotent stem cells (hPSCs) are another potential source of stem cells for cardiac regeneration. They could theoretically provide an unlimited source of cardiomyocytes or cardiac progenitors. Pre-clinical studies in both small and large animal models have shown robust engraftment and improvements in cardiac function. The first clinical trial using hPSC-derived cardiac derivatives has now commenced and others are imminent. In this brief review article, we summarise recent developments in stem cell therapies aimed at cardiac regeneration, including discussion of types of cell and non-cell-based strategies being explored.
Collapse
Affiliation(s)
- Thi Yen Loan Le
- Centre for Heart Research, Westmead Institute for Medical Research, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
| | - Sujitha Thavapalachandran
- Centre for Heart Research, Westmead Institute for Medical Research, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - James Jh Chong
- Centre for Heart Research, Westmead Institute for Medical Research, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Pesl M, Pribyl J, Acimovic I, Vilotic A, Jelinkova S, Salykin A, Lacampagne A, Dvorak P, Meli AC, Skladal P, Rotrekl V. Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing. Biosens Bioelectron 2016; 85:751-757. [DOI: 10.1016/j.bios.2016.05.073] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/11/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
|
31
|
Bielawski KS, Leonard A, Bhandari S, Murry CE, Sniadecki NJ. Real-Time Force and Frequency Analysis of Engineered Human Heart Tissue Derived from Induced Pluripotent Stem Cells Using Magnetic Sensing. Tissue Eng Part C Methods 2016; 22:932-940. [PMID: 27600722 DOI: 10.1089/ten.tec.2016.0257] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Engineered heart tissues made from human pluripotent stem cell-derived cardiomyocytes have been used for modeling cardiac pathologies, screening new therapeutics, and providing replacement cardiac tissue. Current methods measure the functional performance of engineered heart tissue by their twitch force and beating frequency, typically obtained by optical measurements. In this article, we describe a novel method for assessing twitch force and beating frequency of engineered heart tissue using magnetic field sensing, which enables multiple tissues to be measured simultaneously. The tissues are formed as thin structures suspended between two silicone posts, where one post is rigid and another is flexible and contains an embedded magnet. When the tissue contracts it causes the flexible post to bend in proportion to its twitch force. We measured the bending of the post using giant magnetoresistive (GMR) sensors located underneath a 24-well plate containing the tissues. We validated the accuracy of the readings from the GMR sensors against optical measurements. We demonstrated the utility and sensitivity of our approach by testing the effects of three concentrations of isoproterenol and verapamil on twitch force and beating frequency in real-time, parallel experiments. This system should be scalable beyond the 24-well format, enabling greater automation in assessing the contractile function of cardiomyocytes in a tissue-engineered environment.
Collapse
Affiliation(s)
- Kevin S Bielawski
- 1 Department of Mechanical Engineering, University of Washington , Seattle, Washington.,2 Center for Cardiovascular Biology, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington
| | - Andrea Leonard
- 1 Department of Mechanical Engineering, University of Washington , Seattle, Washington.,2 Center for Cardiovascular Biology, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington
| | - Shiv Bhandari
- 2 Center for Cardiovascular Biology, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington.,4 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Chuck E Murry
- 2 Center for Cardiovascular Biology, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington.,4 Department of Bioengineering, University of Washington , Seattle, Washington.,5 Department of Pathology, University of Washington , Seattle, Washington.,6 Department of Medicine/Cardiology, University of Washington , Seattle, Washington
| | - Nathan J Sniadecki
- 1 Department of Mechanical Engineering, University of Washington , Seattle, Washington.,2 Center for Cardiovascular Biology, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington.,4 Department of Bioengineering, University of Washington , Seattle, Washington
| |
Collapse
|
32
|
Zhao Y, Korolj A, Feric N, Radisic M. Human pluripotent stem cell-derived cardiomyocyte based models for cardiotoxicity and drug discovery. Expert Opin Drug Saf 2016; 15:1455-1458. [DOI: 10.1080/14740338.2016.1223624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Feric
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- TARA Biosystems, Inc., New York, NY, USA
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Ravenscroft SM, Pointon A, Williams AW, Cross MJ, Sidaway JE. Cardiac Non-myocyte Cells Show Enhanced Pharmacological Function Suggestive of Contractile Maturity in Stem Cell Derived Cardiomyocyte Microtissues. Toxicol Sci 2016; 152:99-112. [PMID: 27125969 PMCID: PMC4922542 DOI: 10.1093/toxsci/kfw069] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The immature phenotype of stem cell derived cardiomyocytes is a significant barrier to their use in translational medicine and pre-clinical in vitro drug toxicity and pharmacological analysis. Here we have assessed the contribution of non-myocyte cells on the contractile function of co-cultured human embryonic stem cell derived cardiomyocytes (hESC-CMs) in spheroid microtissue format. Microtissues were formed using a scaffold free 96-well cell suspension method from hESC-CM cultured alone (CM microtissues) or in combination with human primary cardiac microvascular endothelial cells and cardiac fibroblasts (CMEF microtissues). Contractility was characterized with fluorescence and video-based edge detection. CMEF microtissues displayed greater Ca2+ transient amplitudes, enhanced spontaneous contraction rate and remarkably enhanced contractile function in response to both positive and negative inotropic drugs, suggesting a more mature contractile phenotype than CM microtissues. In addition, for several drugs the enhanced contractile response was not apparent when endothelial cell or fibroblasts from a non-cardiac tissue were used as the ancillary cells. Further evidence of maturity for CMEF microtissues was shown with increased expression of genes that encode proteins critical in cardiac Ca2+ handling (S100A1), sarcomere assembly (telethonin/TCAP) and β-adrenergic receptor signalling. Our data shows that compared with single cell-type cardiomyocyte in vitro models, CMEF microtissues are superior at predicting the inotropic effects of drugs, demonstrating the critical contribution of cardiac non-myocyte cells in mediating functional cardiotoxicity.
Collapse
Affiliation(s)
- Stephanie M Ravenscroft
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Sherrington Building, the University of Liverpool, Ashton Street, L69 3GE, UK Safety and ADME Translational Sciences, AstraZeneca R&D, Cambridge, CB4 0WG, UK
| | - Amy Pointon
- Safety and ADME Translational Sciences, AstraZeneca R&D, Cambridge, CB4 0WG, UK
| | - Awel W Williams
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Sherrington Building, the University of Liverpool, Ashton Street, L69 3GE, UK
| | - Michael J Cross
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Sherrington Building, the University of Liverpool, Ashton Street, L69 3GE, UK Safety and ADME Translational Sciences, AstraZeneca R&D, Cambridge, CB4 0WG, UK
| | - James E Sidaway
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Sherrington Building, the University of Liverpool, Ashton Street, L69 3GE, UK Safety and ADME Translational Sciences, AstraZeneca R&D, Cambridge, CB4 0WG, UK Safety and ADME Translational Sciences, AstraZeneca R&D, Cambridge, CB4 0WG, UK
| |
Collapse
|
34
|
Han J, Wu Q, Xia Y, Wagner MB, Xu C. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res 2016; 16:740-50. [PMID: 27131761 PMCID: PMC4903921 DOI: 10.1016/j.scr.2016.04.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022] Open
Abstract
Enhancing the maturation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) will facilitate their applications in disease modeling and drug discovery. Previous studies suggest that cell alignment could enhance hPSC-CM maturation; however, the robustness of this approach has not been well investigated. To this end, we examined if the anisotropic orientation of hPSC-CMs imposed by the underlying aligned fibers within a 3D microenvironment could improve the maturation of hPSC-CMs. Enriched hPSC-CMs were cultured for two weeks on Matrigel-coated anisotropic (aligned) and isotropic (random) polycaprolactone (PCL) fibrous scaffolds, as well as tissue culture polystyrenes (TCPs) as a control. As expected, hPSC-CMs grown on the two types of fibrous scaffolds exhibited anisotropic and isotropic orientations, respectively. Similar to cells on TCPs, hPSC-CMs cultured on these scaffolds expressed CM-associated proteins and were pharmacologically responsive to adrenergic receptor agonists, a muscarinic agonist, and a gap junction uncoupler in a dose-dependent manner. Although hPSC-CMs grown on anisotropic fibrous scaffolds displayed the highest expression of genes encoding a number of sarcomere proteins, calcium handling proteins and ion channels, their calcium transient kinetics were slower than cells grown on TCPs. These results suggest that electrospun anisotropic fibrous scaffolds, as a single method, have limited effect on improving the maturation of hPSC-CMs.
Collapse
Affiliation(s)
- Jingjia Han
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Parker H. Petit Institute for Biotechnology and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- Parker H. Petit Institute for Biotechnology and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mary B Wagner
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Parker H. Petit Institute for Biotechnology and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
35
|
Feric NT, Radisic M. Strategies and Challenges to Myocardial Replacement Therapy. Stem Cells Transl Med 2016; 5:410-6. [PMID: 26933042 PMCID: PMC4798743 DOI: 10.5966/sctm.2015-0288] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
Cardiac cell-based regenerative therapies include application of a cell suspension and the implantation of an in vitro engineered tissue construct to the damaged area of the heart. Both strategies have their advantages and challenges. This review discusses the current state of the art in myocardial regeneration, the challenges to success, and the future direction of the field. Cardiovascular diseases account for the majority of deaths globally and are a significant drain on economic resources. Although heart transplants and left-ventricle assist devices are the solution for some, the best chance for many patients who suffer because of a myocardial infarction, heart failure, or a congenital heart disease may be cell-based regenerative therapies. Such therapies can be divided into two categories: the application of a cell suspension and the implantation of an in vitro engineered tissue construct to the damaged area of the heart. Both strategies have their advantages and challenges, and in this review, we discuss the current state of the art in myocardial regeneration, the challenges to success, and the future direction of the field.
Collapse
Affiliation(s)
- Nicole T Feric
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
|
37
|
Liu J, Laksman Z, Backx PH. The electrophysiological development of cardiomyocytes. Adv Drug Deliv Rev 2016; 96:253-73. [PMID: 26788696 DOI: 10.1016/j.addr.2015.12.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/23/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023]
Abstract
The generation of human cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs) has become an important resource for modeling human cardiac disease and for drug screening, and also holds significant potential for cardiac regeneration. Many challenges remain to be overcome however, before innovation in this field can translate into a change in the morbidity and mortality associated with heart disease. Of particular importance for the future application of this technology is an improved understanding of the electrophysiologic characteristics of CMs, so that better protocols can be developed and optimized for generating hPSC-CMs. Many different cell culture protocols are currently utilized to generate CMs from hPSCs and all appear to yield relatively “developmentally” immature CMs with highly heterogeneous electrical properties. These hPSC-CMs are characterized by spontaneous beating at highly variable rates with a broad range of depolarization-repolarization patterns, suggestive of mixed populations containing atrial, ventricular and nodal cells. Many recent studies have attempted to introduce approaches to promote maturation and to create cells with specific functional properties. In this review, we summarize the studies in which the electrical properties of CMs derived from stem cells have been examined. In order to place this information in a useful context, we also review the electrical properties of CMs as they transition from the developing embryo to the adult human heart. The signal pathways involved in the regulation of ion channel expression during development are also briefly considered.
Collapse
|
38
|
Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 2016; 96:110-34. [PMID: 25956564 DOI: 10.1016/j.addr.2015.04.019] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/19/2022]
Abstract
Engineering functional human cardiac tissue that mimics the native adult morphological and functional phenotype has been a long held objective. In the last 5 years, the field of cardiac tissue engineering has transitioned from cardiac tissues derived from various animal species to the production of the first generation of human engineered cardiac tissues (hECTs), due to recent advances in human stem cell biology. Despite this progress, the hECTs generated to date remain immature relative to the native adult myocardium. In this review, we focus on the maturation challenge in the context of hECTs, the present state of the art, and future perspectives in terms of regenerative medicine, drug discovery, preclinical safety testing and pathophysiological studies.
Collapse
|
39
|
Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate. PLoS One 2015; 10:e0127977. [PMID: 26035822 PMCID: PMC4452796 DOI: 10.1371/journal.pone.0127977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/21/2015] [Indexed: 11/27/2022] Open
Abstract
In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS) is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog.
Collapse
|
40
|
Stancescu M, Molnar P, McAleer CW, McLamb W, Long CJ, Oleaga C, Prot JM, Hickman JJ. A phenotypic in vitro model for the main determinants of human whole heart function. Biomaterials 2015; 60:20-30. [PMID: 25978005 DOI: 10.1016/j.biomaterials.2015.04.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 11/24/2022]
Abstract
This article details the construction and testing of a phenotypic assay system that models in vivo cardiac function in a parallel in vitro environment with human stem cell derived cardiomyocytes. The major determinants of human whole-heart function were experimentally modeled by integrating separate 2D cellular systems with BioMicroelectromechanical Systems (BioMEMS) constructs. The model features a serum-free defined medium to enable both acute and chronic evaluation of drugs and toxins. The integration of data from both systems produced biologically relevant predictions of cardiac function in response to varying concentrations of selected drugs. Sotalol, norepinephrine and verapamil were shown to affect the measured parameters according to their specific mechanism of action, in agreement with clinical data. This system is applicable for cardiac side effect assessment, general toxicology, efficacy studies, and evaluation of in vitro cellular disease models in body-on-a-chip systems.
Collapse
Affiliation(s)
- Maria Stancescu
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Peter Molnar
- Department of Zoology, University of West Hungary, Szombathely H-9700, Hungary; Biomedical Engineering, Cornell University, Department of Biomedical Engineering, 115 Weill Hall, Ithaca, NY 14853, USA
| | - Christopher W McAleer
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - William McLamb
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Christopher J Long
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Carlota Oleaga
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Jean-Matthieu Prot
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; Biomedical Engineering, Cornell University, Department of Biomedical Engineering, 115 Weill Hall, Ithaca, NY 14853, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA.
| |
Collapse
|
41
|
Veerman CC, Kosmidis G, Mummery CL, Casini S, Verkerk AO, Bellin M. Immaturity of Human Stem-Cell-Derived Cardiomyocytes in Culture: Fatal Flaw or Soluble Problem? Stem Cells Dev 2015; 24:1035-52. [DOI: 10.1089/scd.2014.0533] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Christiaan C. Veerman
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Georgios Kosmidis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Simona Casini
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arie O. Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
42
|
Li G, Plonowska K, Kuppusamy R, Sturzu A, Wu SM. Identification of cardiovascular lineage descendants at single-cell resolution. Development 2015; 142:846-57. [PMID: 25633351 DOI: 10.1242/dev.116897] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transcriptional profiles of cardiac cells derived from murine embryos and from mouse embryonic stem cells (mESCs) have primarily been studied within a cell population. However, the characterization of gene expression in these cells at a single-cell level might demonstrate unique variations that cannot be appreciated within a cell pool. In this study, we aimed to establish a single-cell quantitative PCR platform and perform side-by-side comparison between cardiac progenitor cells (CPCs) and cardiomyocytes (CMs) derived from mESCs and mouse embryos. We first generated a reference map for cardiovascular single cells through quantifying lineage-defining genes for CPCs, CMs, smooth muscle cells (SMCs), endothelial cells (EDCs), fibroblasts and mESCs. This panel was then applied against single embryonic day 10.5 heart cells to demonstrate its ability to identify each endocardial cell and chamber-specific CM. In addition, we compared the gene expression profile of embryo- and mESC-derived CPCs and CMs at different developmental stages and showed that mESC-derived CMs are phenotypically similar to embryo-derived CMs up to the neonatal stage. Furthermore, we showed that single-cell expression assays coupled with time-lapse microscopy can resolve the identity and the lineage relationships between progenies of single cultured CPCs. With this approach, we found that mESC-derived Nkx2-5(+) CPCs preferentially become SMCs or CMs, whereas single embryo-derived Nkx2-5(+) CPCs represent two phenotypically distinct subpopulations that can become either EDCs or CMs. These results demonstrate that multiplex gene expression analysis in single cells is a powerful tool for examining the unique behaviors of individual embryo- or mESC-derived cardiac cells.
Collapse
Affiliation(s)
- Guang Li
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karolina Plonowska
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rajarajan Kuppusamy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anthony Sturzu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA Cardiovascular Medicine Division, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA Cardiovascular Medicine Division, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Image-based evaluation of contraction–relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology. J Mol Cell Cardiol 2014; 77:178-91. [DOI: 10.1016/j.yjmcc.2014.09.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023]
|
44
|
Abstract
OPINION STATEMENT Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a powerful new model system to study the basic mechanisms of inherited cardiomyopathies. hiPSC-CMs have been utilized to model several cardiovascular diseases, achieving the most success in the inherited arrhythmias, including long QT and Timothy syndromes (Moretti et al. N Engl J Med. 363:1397-409, 2010; Yazawa et al. Nature. 471:230-4, 2011) and arrhythmogenic right ventricular dysplasia (ARVD) (Ma et al. Eur Heart J. 34:1122-33, 2013). Recently, studies have applied hiPSC-CMs to the study of both dilated (DCM) (Sun et al. Sci Transl Med. 4:130ra47, 2012) and hypertrophic (HCM) cardiomyopathies (Lan et al. Cell Stem Cell. 12:101-13, 2013; Carvajal-Vergara et al. Nature. 465:808-12, 2010), providing new insights into basic mechanisms of disease. However, hiPSC-CMs do not recapitulate many of the structural and functional aspects of mature human cardiomyocytes, instead mirroring an immature - embryonic or fetal - phenotype. Much work remains in order to better understand these differences, as well as to develop methods to induce hiPSC-CMs into a fully mature phenotype. Despite these limitations, hiPSC-CMs represent the best current in vitro correlate of the human heart and an invaluable tool in the search for mechanisms underlying cardiomyopathy and for screening new pharmacologic therapies.
Collapse
|
45
|
Abstract
The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.
Collapse
|
46
|
Keung W, Boheler KR, Li RA. Developmental cues for the maturation of metabolic, electrophysiological and calcium handling properties of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2014; 5:17. [PMID: 24467782 PMCID: PMC4055054 DOI: 10.1186/scrt406] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including embryonic and induced pluripotent stem cells, are abundant sources of cardiomyocytes (CMs) for cell replacement therapy and other applications such as disease modeling, drug discovery and cardiotoxicity screening. However, hPSC-derived CMs display immature structural, electrophysiological, calcium-handling and metabolic properties. Here, we review various biological as well as physical and topographical cues that are known to associate with the development of native CMs in vivo to gain insights into the development of strategies for facilitated maturation of hPSC-CMs.
Collapse
|
47
|
The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials 2014; 35:2798-808. [PMID: 24424206 DOI: 10.1016/j.biomaterials.2013.12.052] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 01/19/2023]
Abstract
The goal of cardiac tissue engineering is to restore function to the damaged myocardium with regenerative constructs. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can produce viable, contractile, three-dimensional grafts that function in vivo. We sought to enhance the viability and functional maturation of cardiac tissue constructs by cyclical stretch. hESC-CMs seeded onto gelatin-based scaffolds underwent cyclical stretching. Histological analysis demonstrated a greater proportion of cardiac troponin T-expressing cells in stretched than non-stretched constructs, and flow sorting demonstrated a higher proportion of cardiomyocytes. Ultrastructural assessment showed that cells in stretched constructs had a more mature phenotype, characterized by greater cell elongation, increased gap junction expression, and better contractile elements. Real-time PCR revealed enhanced mRNA expression of genes associated with cardiac maturation as well as genes encoding cardiac ion channels. Calcium imaging confirmed that stretched constructs contracted more frequently, with shorter calcium cycle duration. Epicardial implantation of constructs onto ischemic rat hearts demonstrated the feasibility of this platform, with enhanced survival and engraftment of transplanted cells in the stretched constructs. This uniaxial stretching system may serve as a platform for the production of cardiac tissue-engineered constructs for translational applications.
Collapse
|
48
|
Joshi-Mukherjee R, Dick IE, Liu T, O'Rourke B, Yue DT, Tung L. Structural and functional plasticity in long-term cultures of adult ventricular myocytes. J Mol Cell Cardiol 2013; 65:76-87. [PMID: 24076394 PMCID: PMC4219275 DOI: 10.1016/j.yjmcc.2013.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/20/2013] [Accepted: 09/16/2013] [Indexed: 11/25/2022]
Abstract
Cultured heart cells have long been valuable for characterizing biological mechanism and disease pathogenesis. However, these preparations have limitations, relating to immaturity in key properties like excitation-contraction coupling and β-adrenergic stimulation. Progressive attenuation of the latter is intimately related to pathogenesis and therapy in heart failure. Highly valuable would be a long-term culture system that emulates the structural and functional changes that accompany disease and development, while concurrently permitting ready access to underlying molecular events. Accordingly, we here produce functional monolayers of adult guinea-pig ventricular myocytes (aGPVMs) that can be maintained in long-term culture for several weeks. At baseline, these monolayers exhibit considerable myofibrillar organization and a significant contribution of sarcoplasmic reticular (SR) Ca(2+) release to global Ca(2+) transients. In terms of electrical signaling, these monolayers support propagated electrical activity and manifest monophasic restitution of action-potential duration and conduction velocity. Intriguingly, β-adrenergic stimulation increases chronotropy but not inotropy, indicating selective maintenance of β-adrenergic signaling. It is interesting that this overall phenotypic profile is not fixed, but can be readily enhanced by chronic electrical stimulation of cultures. This simple environmental cue significantly enhances myofibrillar organization as well as β-adrenergic sensitivity. In particular, the chronotropic response increases, and an inotropic effect now emerges, mimicking a reversal of the progression seen in heart failure. Thus, these aGPVM monolayer cultures offer a valuable platform for clarifying long elusive features of β-adrenergic signaling and its plasticity.
Collapse
Affiliation(s)
- Rosy Joshi-Mukherjee
- Department of Biomedical Engineering The Johns Hopkins University School of Medicine Baltimore, MD 21205
| | - Ivy E. Dick
- Department of Biomedical Engineering The Johns Hopkins University School of Medicine Baltimore, MD 21205
| | - Ting Liu
- Division of Cardiology The Johns Hopkins University School of Medicine Baltimore, MD 21205
| | - Brian O'Rourke
- Division of Cardiology The Johns Hopkins University School of Medicine Baltimore, MD 21205
| | - David T. Yue
- Department of Biomedical Engineering The Johns Hopkins University School of Medicine Baltimore, MD 21205
- Center for Cell Dynamics The Johns Hopkins University School of Medicine Baltimore, MD 21205
| | - Leslie Tung
- Department of Biomedical Engineering The Johns Hopkins University School of Medicine Baltimore, MD 21205
| |
Collapse
|
49
|
Turnbull IC, Karakikes I, Serrao GW, Backeris P, Lee JJ, Xie C, Senyei G, Gordon RE, Li RA, Akar FG, Hajjar RJ, Hulot JS, Costa KD. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J 2013; 28:644-54. [PMID: 24174427 DOI: 10.1096/fj.13-228007] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cardiac experimental biology and translational research would benefit from an in vitro surrogate for human heart muscle. This study investigated structural and functional properties and interventional responses of human engineered cardiac tissues (hECTs) compared to human myocardium. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs, >90% troponin-positive) were mixed with collagen and cultured on force-sensing elastomer devices. hECTs resembled trabecular muscle and beat spontaneously (1.18 ± 0.48 Hz). Microstructural features and mRNA expression of cardiac-specific genes (α-MHC, SERCA2a, and ACTC1) were comparable to human myocardium. Optical mapping revealed cardiac refractoriness with loss of 1:1 capture above 3 Hz, and cycle length dependence of the action potential duration, recapitulating key features of cardiac electrophysiology. hECTs reconstituted the Frank-Starling mechanism, generating an average maximum twitch stress of 660 μN/mm(2) at Lmax, approaching values in newborn human myocardium. Dose-response curves followed exponential pharmacodynamics models for calcium chloride (EC50 1.8 mM) and verapamil (IC50 0.61 μM); isoproterenol elicited a positive chronotropic but negligible inotropic response, suggesting sarcoplasmic reticulum immaturity. hECTs were amenable to gene transfer, demonstrated by successful transduction with Ad.GFP. Such 3-D hECTs recapitulate an early developmental stage of human myocardium and promise to offer an alternative preclinical model for cardiology research.
Collapse
Affiliation(s)
- Irene C Turnbull
- 2Cardiovascular Cell and Tissue Engineering Laboratory, Cardiovascular Research Center, Icahn School of Medicine at Mt. Sinai, One Gustave L. Levy Pl., P.O. Box 1030, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Poon E, Yan B, Zhang S, Rushing S, Keung W, Ren L, Lieu DK, Geng L, Kong CW, Wang J, Wong HS, Boheler KR, Li RA. Transcriptome-guided functional analyses reveal novel biological properties and regulatory hierarchy of human embryonic stem cell-derived ventricular cardiomyocytes crucial for maturation. PLoS One 2013; 8:e77784. [PMID: 24204964 PMCID: PMC3804624 DOI: 10.1371/journal.pone.0077784] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/12/2013] [Indexed: 12/26/2022] Open
Abstract
Human (h) embryonic stem cells (ESC) represent an unlimited source of cardiomyocytes (CMs); however, these differentiated cells are immature. Thus far, gene profiling studies have been performed with non-purified or non-chamber specific CMs. Here we took a combinatorial approach of using systems biology to guide functional discoveries of novel biological properties of purified hESC-derived ventricular (V) CMs. We profiled the transcriptomes of hESCs, hESC-, fetal (hF) and adult (hA) VCMs, and showed that hESC-VCMs displayed a unique transcriptomic signature. Not only did a detailed comparison between hESC-VCMs and hF-VCMs confirm known expression changes in metabolic and contractile genes, it further revealed novel differences in genes associated with reactive oxygen species (ROS) metabolism, migration and cell cycle, as well as potassium and calcium ion transport. Following these guides, we functionally confirmed that hESC-VCMs expressed IKATP with immature properties, and were accordingly vulnerable to hypoxia/reoxygenation-induced apoptosis. For mechanistic insights, our coexpression and promoter analyses uncovered a novel transcriptional hierarchy involving select transcription factors (GATA4, HAND1, NKX2.5, PPARGC1A and TCF8), and genes involved in contraction, calcium homeostasis and metabolism. These data highlight novel expression and functional differences between hESC-VCMs and their fetal counterparts, and offer insights into the underlying cell developmental state. These findings may lead to mechanism-based methods for in vitro driven maturation.
Collapse
Affiliation(s)
- Ellen Poon
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Bin Yan
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong, China
| | - Shaohong Zhang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, Guangzhou University, Guangzhou, China
| | - Stephanie Rushing
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
| | - Wendy Keung
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Lihuan Ren
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Deborah K. Lieu
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California Davis, Davis, California, United States of America
| | - Lin Geng
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Chi-Wing Kong
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Jiaxian Wang
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
| | - Hau San Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Kenneth R. Boheler
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ronald A. Li
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
- * E-mail:
| |
Collapse
|