1
|
Hosen S, Ikeda-Yorifuji I, Yamashita T. Asporin and CD109, expressed in the injured neonatal spinal cord, attenuate axonal re-growth in vitro. Neurosci Lett 2024; 833:137832. [PMID: 38796094 DOI: 10.1016/j.neulet.2024.137832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Axonal regeneration is restricted in adults and causes irreversible motor dysfunction following spinal cord injury (SCI). In contrast, neonates have prominent regenerative potential and can restore their neural function. Although the distinct cellular responses in neonates have been studied, how they contribute to neural recovery remains unclear. To assess whether the secreted molecules in neonatal SCI can enhance neural regeneration, we re-analyzed the previously performed single-nucleus RNA-seq (snRNA-seq) and focused on Asporin and Cd109, the highly expressed genes in the injured neonatal spinal cord. In the present study, we showed that both these molecules were expressed in the injured spinal cords of adults and neonates. We treated the cortical neurons with recombinant Asporin or CD109 to observe their direct effects on neurons in vitro. We demonstrated that these molecules enhance neurite outgrowth in neurons. However, these molecules did not enhance re-growth of severed axons. Our results suggest that Asporin and CD109 influence neurites at the lesion site, rather than promoting axon regeneration, to restore neural function in neonates after SCI.
Collapse
Affiliation(s)
- Sakura Hosen
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iyo Ikeda-Yorifuji
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
2
|
Baek I, Song Y. Development of Combinatorial Therapeutics for Spinal Cord Injury using Stem Cell Delivery. J Vis Exp 2024:10.3791/66872. [PMID: 38912769 PMCID: PMC11292835 DOI: 10.3791/66872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Traumatic spinal cord injury (SCI) induces permanent sensorimotor deficit below the site of injury. It affects approximately a quarter million people in the US, and it represents an immeasurable public health concern. Research has been conducted to provide effective therapy; however, SCI is still considered incurable due to the complex nature of the injury site. A variety of strategies, including drug delivery, cell transplantation, and injectable biomaterials, are investigated, but one strategy alone limits their efficacy for regeneration. As such, combinatorial therapies have recently gained attention that can target multifaceted features of the injury. It has been shown that extracellular matrices (ECM) may increase the efficacy of cell transplantation for SCI. To this end, 3D hydrogels consisting of decellularized spinal cords (dSCs) and sciatic nerves (dSNs) were developed at different ratios and characterized. Histological analysis of dSCs and dSNs confirmed the removal of cellular and nuclear components, and native tissue architectures were retained after decellularization. Afterward, composite hydrogels were created at different volumetric ratios and subjected to analyses of turbidity gelation kinetics, mechanical properties, and embedded human adipose-derived stem cell (hASC) viability. No significant differences in mechanical properties were found among the different ratios of hydrogels and decellularized spinal cord matrices. Human ASCs embedded in the gels remained viable throughout the 14-day culture. This study provides a means of generating tissue-engineered combinatorial hydrogels that present nerve-specific ECM and pro-regenerative mesenchymal stem cells. This platform can provide new insights into neuro-regenerative strategies after SCI with future investigations.
Collapse
Affiliation(s)
- Inha Baek
- Department of Biomedical Engineering, University of Arkansas
| | - Younghye Song
- Department of Biomedical Engineering, University of Arkansas;
| |
Collapse
|
3
|
Du X, Kong D, Guo R, Liu B, He J, Zhang J, Amponsah AE, Cui H, Ma J. Combined transplantation of hiPSC-NSC and hMSC ameliorated neuroinflammation and promoted neuroregeneration in acute spinal cord injury. Stem Cell Res Ther 2024; 15:67. [PMID: 38444003 PMCID: PMC10916262 DOI: 10.1186/s13287-024-03655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious clinical condition that has pathological changes such as increased neuroinflammation and nerve tissue damage, which eventually manifests as fibrosis of the injured segment and the development of a spinal cord cavity leading to loss of function. Cell-based therapy, such as mesenchymal stem cells (MSCs) and neural stem cells (NSCs) are promising treatment strategies for spinal cord injury via immunological regulation and neural replacement respectively. However, therapeutic efficacy is rare reported on combined transplantation of MSC and NSC in acute mice spinal cord injury even the potential reinforcement might be foreseen. Therefore, this study was conducted to investigate the safety and efficacy of co-transplanting of MSC and NSC sheets into an SCI mice model on the locomotor function and pathological changes of injured spinal cord. METHODS To evaluate the therapeutic effects of combination cells, acute SCI mice model were established and combined transplantation of hiPSC-NSCs and hMSCs into the lesion site immediately after the injury. Basso mouse scale was used to perform the open-field tests of hind limb motor function at days post-operation (dpo) 1, 3, 5, and 7 after SCI and every week after surgery. Spinal cord and serum samples were collected at dpo 7, 14, and 28 to detect inflammatory and neurotrophic factors. Hematoxylin-eosin (H&E) staining, masson staining and transmission electron microscopy were used to evaluate the morphological changes, fibrosis area and ultrastructure of the spinal cord. RESULT M&N transplantation reduced fibrosis formation and the inflammation level while promoting the secretion of nerve growth factor and brain-derived neurotrophic factor. We observed significant reduction in damaged tissue and cavity area, with dramatic improvement in the M&N group. Compared with the Con group, the M&N group exhibited significantly improved behaviors, particularly limb coordination. CONCLUSION Combined transplantation of hiPSC-NSC and hMSC could significantly ameliorate neuroinflammation, promote neuroregeneration, and decrease spinal fibrosis degree in safe and effective pattern, which would be indicated as a novel potential cell treatment option.
Collapse
Affiliation(s)
- Xiaofeng Du
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Desheng Kong
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Boxin Liu
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Asiamah Ernest Amponsah
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Huixian Cui
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Jun Ma
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
4
|
Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances. Brain 2024; 147:766-793. [PMID: 37975820 DOI: 10.1093/brain/awad392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a leading cause of lifelong disabilities. Permanent sensory, motor and autonomic impairments after SCI are substantially attributed to degeneration of spinal cord neurons and axons, and disintegration of neural network. To date, minimal regenerative treatments are available for SCI with an unmet need for new therapies to reconstruct the damaged spinal cord neuron-glia network and restore connectivity with the supraspinal pathways. Multipotent neural precursor cells (NPCs) have a unique capacity to generate neurons, oligodendrocytes and astrocytes. Due to this capacity, NPCs have been an attractive cell source for cellular therapies for SCI. Transplantation of NPCs has been extensively tested in preclinical models of SCI in the past two decades. These studies have identified opportunities and challenges associated with NPC therapies. While NPCs have the potential to promote neuroregeneration through various mechanisms, their low long-term survival and integration within the host injured spinal cord limit the functional benefits of NPC-based therapies for SCI. To address this challenge, combinatorial strategies have been developed to optimize the outcomes of NPC therapies by enriching SCI microenvironment through biomaterials, genetic and pharmacological therapies. In this review, we will provide an in-depth discussion on recent advances in preclinical NPC-based therapies for SCI. We will discuss modes of actions and mechanism by which engrafted NPCs contribute to the repair process and functional recovery. We will also provide an update on current clinical trials and new technologies that have facilitated preparation of medical-grade human NPCs suitable for transplantation in clinical studies.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ben Borys
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
5
|
Liu S, Liu B, Li Q, Zheng T, Liu B, Li M, Chen Z. Transplantation of fibrin-thrombin encapsulated human induced neural stem cells promotes functional recovery of spinal cord injury rats through modulation of the microenvironment. Neural Regen Res 2024; 19:440-446. [PMID: 37488909 PMCID: PMC10503599 DOI: 10.4103/1673-5374.379049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/02/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord, with the expectation that differentiated neurons facilitate recovery. Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment. Here, we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury. Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells, and/or thrombin plus fibrinogen, were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model. Basso, Beattie and Bresnahan score, electrophysiological function, and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function, reduces lesion volume, and promotes axonal neurofilament expression at the lesion core. Examination of the graft and niche components revealed that although the graft only survived for a relatively short period (up to 15 days), it still had a crucial impact on the microenvironment. Altogether, induced neural stem cells and human fibrin reduced the number of infiltrated immune cells, biased microglia towards a regenerative M2 phenotype, and changed the cytokine expression profile at the lesion site. Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions, which may have exerted a long-term impact on the functional recovery of spinal cord injury rats.
Collapse
Affiliation(s)
- Sumei Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Baoguo Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Qian Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Tianqi Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Bochao Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Mo Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
6
|
Guo Y, Gao B, Sun S, Li J, Lv X, Yin H, Sun Z, Cai S. Research hotspots and trend analysis of cell transplantation in traumatic spinal cord injury: a bibliometric and visualized analysis. Front Pharmacol 2023; 14:1326583. [PMID: 38161703 PMCID: PMC10755575 DOI: 10.3389/fphar.2023.1326583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Background: A traumatic spinal cord injury (TSCI) can lead to severe nerve damage and disability. Cell transplantation therapy has shown great potential in the reconstruction of damaged spinal cords and promoting functional recovery. However, there is a lack of frontiers and futures analysis in the study of cell transplantation in TSCI. Methods: We used CiteSpace, VOSviewer and biblilometrix R package to perform bibliometric analysis on cell transplantation in TSCI from 2013 to 2023. Bibliometric records were extracted from English articles and reviews from the Web of Science core collection. Results: The bibliometric analysis included 284 papers published in 154 journals by 1,780 authors from 487 institutions in 41 countries and regions. The number of articles published in the past decade has fluctuated slightly, while the number of article citations has steadily increased. Mainland China and the United States are the leading countries and regions in this field, with the National Natural Science Foundation of China being the most funded foundation, and the United States being the country with the most funded articles. The University of Toronto in Canada is a prolific institution. Michael G. Fehlings has published the most articles, and D Michele Basso is the most cited author. Cell transplantation is the most published journal, and the Journal of Neurotrauma is the most cited journal. Cell and tissue engineering and clinical neurology are the basic disciplines in this field, and cutting-edge disciplines include developmental biology, biochemistry and molecular biology, and materials science and multidisciplinary. This study also helps scholars understand the current hotspots and future trends in this field. Marrow stromal cells, glial progenitor, and cell therapy are current research hotspots in this field, while nerve regeneration, cell therapy, and the safety of transplantation of transplantation may be potential research directions in the future. Conclusion: Cell transplantation after TSCI is receiving increasing attention. Cell therapy is both the frontier and a possible future trend in TSCI research. In addition, glial progenitor and marrow stromal cells are also current research hotspots. Meanwhile, nerve regeneration and safety of transplantation may be potential research directions. These findings will help further deepen research on cell transplantation for TSCI in scientific work.
Collapse
Affiliation(s)
- Yuhuai Guo
- Department of TCM, Guangzhou Women and Children’s Medical Center of Guangzhou Medical University, Guangzhou, China
| | - Bowen Gao
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shilin Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianuo Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaolin Lv
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongna Yin
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhongren Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Cai
- Department of Emergency, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Li J, Shangguan Z, Ye X, Wang Z, Liu W, Chen G. Modified FGF Hydrogel for Effective Axon Formation by Enhanced Regeneration of Myelin Sheath of Schwann Cells Using Rat Model. Int J Nanomedicine 2023; 18:7225-7236. [PMID: 38076728 PMCID: PMC10710222 DOI: 10.2147/ijn.s417723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction An acute spinal cord injury (SCI) is a debilitating event for which there is no targeted or effective treatment. Previous studies have shown that fibroblast growth factor (bFGF) and Schwann cells (SC) exert a protective effect on the injured tissues. Because of their easy injectability and strength, hydrogels are considered to be ideal candidates for creating loadable tissues. However, the application and mechanism of bFGF-hydrogels have not been explored. Methods We synthesized a new class of bFGF-hydrosol and evaluated its safety and biocompatibility in vitro and in vivo. Next, an SCI rat model was established to evaluate the effect of the hydrosol on an SCI by detecting various pro-inflammatory markers and evaluating the injury. The ability of hydrosol to promote axon formation was evaluated by detecting corresponding indexes, and its ability to promote remyelination was evaluated by detecting the corresponding indexes in Schwann cells. Results A novel in situ injectable hydrogel containing bFGF (HA-bFGF) was synthesized and found to have better biocompatibility than other gels. HA-bFGF helped to repair tissue damage after an SCI in vivo. Our mechanistic investigation also showed that HA-bFGF improved axon formation after an SCI by facilitating the regeneration of myelin sheath of Schwann cells. Conclusion In this study, we found that HA-bFGF could promote neural restoration and tissue recovery after an SCI. Our results indicate that hydrogels loaded with bFGF can alleviate a spinal cord injury by promoting the remyelination of Schwann cells, reducing inflammation at the injured site, and ultimately promoting axon generation.
Collapse
Affiliation(s)
- Jiandong Li
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical College, Fujian Medical University, Fuzhou, China
| | - Zhitao Shangguan
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical College, Fujian Medical University, Fuzhou, China
| | - Xiaoqing Ye
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical College, Fujian Medical University, Fuzhou, China
| | - Zhenyu Wang
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical College, Fujian Medical University, Fuzhou, China
| | - Wenge Liu
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical College, Fujian Medical University, Fuzhou, China
| | - Gang Chen
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Tsai ET, Peng SY, Wu YR, Lin TC, Chen CY, Liu YH, Tseng YH, Hsiao YJ, Tseng HC, Lai WY, Lin YY, Yang YP, Chiou SH, Chen SP, Chien Y. HLA-Homozygous iPSC-Derived Mesenchymal Stem Cells Rescue Rotenone-Induced Experimental Leber's Hereditary Optic Neuropathy-like Models In Vitro and In Vivo. Cells 2023; 12:2617. [PMID: 37998352 PMCID: PMC10670753 DOI: 10.3390/cells12222617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) hold promise for cell-based therapy, yet the sourcing, quality, and invasive methods of MSCs impede their mass production and quality control. Induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) can be infinitely expanded, providing advantages over conventional MSCs in terms of meeting unmet clinical demands. METHODS The potential of MSC therapy for Leber's hereditary optic neuropathy (LHON) remains uncertain. In this study, we used HLA-homozygous induced pluripotent stem cells to generate iMSCs using a defined protocol, and we examined their therapeutic potential in rotenone-induced LHON-like models in vitro and in vivo. RESULTS The iMSCs did not cause any tumorigenic incidence or inflammation-related lesions after intravitreal transplantation, and they remained viable for at least nine days in the mouse recipient's eyes. In addition, iMSCs exhibited significant efficacy in safeguarding retinal ganglion cells (RGCs) from rotenone-induced cytotoxicity in vitro, and they ameliorated CGL+IPL layer thinning and RGC loss in vivo. Optical coherence tomography (OCT) and an electroretinogram demonstrated that iMSCs not only prevented RGC loss and impairments to the retinal architecture, but they also improved retinal electrophysiology performance. CONCLUSION The generation of iMSCs via the HLA homozygosity of iPSCs offers a compelling avenue for overcoming the current limitations of MSC-based therapies. The results underscore the potential of iMSCs when addressing retinal disorders, and they highlight their clinical significance, offering renewed hope for individuals affected by LHON and other inherited retinal conditions.
Collapse
Affiliation(s)
- En-Tung Tsai
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan; (E.-T.T.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Shih-Yuan Peng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - You-Ren Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Tai-Chi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Yu-Hsin Tseng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Huan-Chin Tseng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan; (E.-T.T.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Genomic Research Center, Academia Sinica, Taipei 115024, Taiwan
| | - Shih-Pin Chen
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan; (E.-T.T.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (S.-Y.P.); (Y.-R.W.); (Y.-H.L.); (Y.-J.H.); (Y.-Y.L.); (Y.-P.Y.)
| |
Collapse
|
9
|
Rybachuk O, Nesterenko Y, Pinet É, Medvediev V, Yaminsky Y, Tsymbaliuk V. Neuronal differentiation and inhibition of glial differentiation of murine neural stem cells by pHPMA hydrogel for the repair of injured spinal cord. Exp Neurol 2023; 368:114497. [PMID: 37517459 DOI: 10.1016/j.expneurol.2023.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Currently, several therapeutic methods of treating the effects of spinal cord injury (SCI) are being considered. On the one hand, transplantation of stem cells (SCs), in particular, neural stem/progenitor cells (NSPCs), is promising, as these cells have the potential to differentiate into nervous tissue cells, able to enhance endogenous regeneration and prevent the development of inflammatory processes. On the other hand, it is quite promising to replace the damaged nervous tissue with synthetic matrices, in particular hydrogels, which can create artificial conditions for the regenerative growth of injured nerve fibers through the spinal cord injury area, i.e. stimulate and support axonal regeneration and myelination. In this work, we combined both of these novel approaches by populating (injecting or rehydrating) a heteroporous pHPMA hydrogel (NeuroGel) with murine hippocampal NSPCs. Being inside the hydrogel (10 days of cultivation), NSPCs were more differentiated into neurons: 19.48% ± 1.71% (the NSPCs injection into the hydrogel) and 36.49% ± 4.20% (the hydrogel rehydration in the NSPCs suspension); in control cultures, the level of differentiation in neurons was only 2.40% ± 0.31%. Differentiation of NSPCs into glial cells, in particular into oligodendrocyte progenitor cells, was also observed - 8.89% ± 2.15% and 6.21% ± 0.80% for injection and rehydration variants, respectively; in control - 28.75% ± 2.08%. In the control NSPCs culture, there was a small number of astrocytes - 2.11% ± 0.43%. Inside the hydrogel, NSPCs differentiation in astrocytes was not observed. In vitro data showed that the hydrogel promotes the differentiation of NSPCs into neurons, and inhibits the differentiation into glial cells. And in vivo showed post-traumatic recovery of rat spinal cord tissue after injury followed by implantation of the hydrogel+NSPCs complex (approximately 7 months after SCI). The implant area was closely connected with the recipient tissue, and the recipient cells freely grew into the implant itself. Inside the implant, a formed dense neuronal network was visible. In summary, the results are primarily an experimental ground for further studies of implants based on pHPMA hydrogel with populated different origin SCs, and the data also indicate the feasibility and efficiency of using an integrated approach to reduce possible negative side effects and facilitate the rehabilitation process after a SCI.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv 01601, Ukraine; State Institution National Scientific Center the M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine, NAMS of Ukraine, Kyiv 03680, Ukraine.
| | - Yuliia Nesterenko
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv 01601, Ukraine
| | | | - Volodymyr Medvediev
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv 01601, Ukraine; Bogomolets National Medical University, Kyiv 01601, Ukraine
| | - Yurii Yaminsky
- State Institution "Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine", Kyiv 04050, Ukraine
| | - Vitaliy Tsymbaliuk
- Bogomolets National Medical University, Kyiv 01601, Ukraine; State Institution "Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine", Kyiv 04050, Ukraine
| |
Collapse
|
10
|
Ou YC, Huang CC, Kao YL, Ho PC, Tsai KJ. Stem Cell Therapy in Spinal Cord Injury-Induced Neurogenic Lower Urinary Tract Dysfunction. Stem Cell Rev Rep 2023; 19:1691-1708. [PMID: 37115409 DOI: 10.1007/s12015-023-10547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition that enormously affects an individual's health and quality of life. Neurogenic lower urinary tract dysfunction (NLUTD) is one of the most important sequelae induced by SCI, causing complications including urinary tract infection, renal function deterioration, urinary incontinence, and voiding dysfunction. Current therapeutic methods for SCI-induced NLUTD mainly target on the urinary bladder, but the outcomes are still far from satisfactory. Stem cell therapy has gained increasing attention for years for its ability to rescue the injured spinal cord directly. Stem cell differentiation and their paracrine effects, including exosomes, are the proposed mechanisms to enhance the recovery from SCI. Several animal studies have demonstrated improvement in bladder function using mesenchymal stem cells (MSCs) and neural stem cells (NSCs). Human clinical trials also provide promising results in urodynamic parameters after MSC therapy. However, there is still uncertainty about the ideal treatment window and application protocol for stem cell therapy. Besides, data on the therapeutic effects regarding NSCs and stem cell-derived exosomes in SCI-related NLUTD are scarce. Therefore, there is a pressing need for further well-designed human clinical trials to translate the stem cell therapy into a formal therapeutic option for SCI-induced NLUTD.
Collapse
Affiliation(s)
- Yin-Chien Ou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Lin Kao
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital , College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Jeong SY, Lee HL, Wee S, Lee H, Hwang G, Hwang S, Yoon S, Yang YI, Han I, Kim KN. Co-Administration of Resolvin D1 and Peripheral Nerve-Derived Stem Cell Spheroids as a Therapeutic Strategy in a Rat Model of Spinal Cord Injury. Int J Mol Sci 2023; 24:10971. [PMID: 37446149 DOI: 10.3390/ijms241310971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Spinal cord injury (SCI), primarily caused by trauma, leads to permanent and lasting loss of motor, sensory, and autonomic functions. Current therapeutic strategies are focused on mitigating secondary injury, a crucial aspect of SCI pathophysiology. Among these strategies, stem cell therapy has shown considerable therapeutic potential. This study builds on our previous work, which demonstrated the functional recovery and neuronal regeneration capabilities of peripheral nerve-derived stem cell (PNSC) spheroids, which are akin to neural crest stem cells, in SCI models. However, the limited anti-inflammatory capacity of PNSC spheroids necessitates a combined therapeutic approach. As a result, we investigated the potential of co-administering resolvin D1 (RvD1), known for its anti-inflammatory and neuroprotective properties, with PNSC spheroids. In vitro analysis confirmed RvD1's anti-inflammatory activity and its inhibitory effect on pro-inflammatory cytokines. In vivo studies involving a rat SCI model demonstrated that combined therapy of RvD1 and PNSC spheroids outperformed monotherapies, exhibiting enhanced neuronal regeneration and anti-inflammatory effects as validated through behavior tests, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. Thus, our findings suggest that the combined application of RvD1 and PNSC spheroids may represent a novel therapeutic approach for SCI management.
Collapse
Affiliation(s)
- Seung-Young Jeong
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SungWon Wee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - HyeYeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - GwangYong Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SaeYeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - SolLip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Il Yang
- Paik Imje Memorial Institute for Clinical Research, InJe University College of Medicine, Busan 47392, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Keung-Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Kharouf N, Flanagan TW, Hassan SY, Shalaby H, Khabaz M, Hassan SL, Megahed M, Haikel Y, Santourlidis S, Hassan M. Tumor Microenvironment as a Therapeutic Target in Melanoma Treatment. Cancers (Basel) 2023; 15:3147. [PMID: 37370757 DOI: 10.3390/cancers15123147] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the tumor microenvironment in tumor growth and therapy has recently attracted more attention in research and drug development. The ability of the microenvironment to trigger tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is determined by components of the microenvironment, which include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma, ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of the microenvironment. In the present review, we focus on the role of the tumor microenvironment components in the modulation of tumor progression and treatment resistance as well as the impact of the tumor microenvironment as a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Naji Kharouf
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Sofie-Yasmin Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marla Khabaz
- Department of Production, Beta Factory for Veterinary Pharmaceutical Industries, Damascus 0100, Syria
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany
| | - Youssef Haikel
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Mohamed Hassan
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, Zhang D, Gao C. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 2023; 19:550-568. [PMID: 35600969 PMCID: PMC9108756 DOI: 10.1016/j.bioactmat.2022.04.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 10/29/2022] Open
Abstract
Spinal cord injury (SCI) is an overwhelming and incurable disabling event accompanied by complicated inflammation-related pathological processes, such as excessive reactive oxygen species (ROS) produced by the infiltrated inflammatory immune cells and released to the extracellular microenvironment, leading to the widespread apoptosis of the neuron cells, glial and oligodendroctyes. In this study, a thioketal-containing and ROS-scavenging hydrogel was prepared for encapsulation of the bone marrow derived mesenchymal stem cells (BMSCs), which promoted the neurogenesis and axon regeneration by scavenging the overproduced ROS and re-building a regenerative microenvironment. The hydrogel could effectively encapsulate BMSCs, and played a remarkable neuroprotective role in vivo by reducing the production of endogenous ROS, attenuating ROS-mediated oxidative damage and downregulating the inflammatory cytokines such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), resulting in a reduced cell apoptosis in the spinal cord tissue. The BMSCs-encapsulated ROS-scavenging hydrogel also reduced the scar formation, and improved the neurogenesis of the spinal cord tissue, and thus distinctly enhanced the motor functional recovery of SCI rats. Our work provides a combinational strategy against ROS-mediated oxidative stress, with potential applications not only in SCI, but also in other central nervous system diseases with similar pathological conditions.
Collapse
|
14
|
Zawadzka M, Yeghiazaryan M, Niedziółka S, Miazga K, Kwaśniewska A, Bekisz M, Sławińska U. Forced Remyelination Promotes Axon Regeneration in a Rat Model of Spinal Cord Injury. Int J Mol Sci 2022; 24:ijms24010495. [PMID: 36613945 PMCID: PMC9820536 DOI: 10.3390/ijms24010495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injuries result in the loss of motor and sensory functions controlled by neurons located at the site of the lesion and below. We hypothesized that experimentally enhanced remyelination supports axon preservation and/or growth in the total spinal cord transection in rats. Multifocal demyelination was induced by injection of ethidium bromide (EB), either at the time of transection or twice during transection and at 5 days post-injury. We demonstrated that the number of oligodendrocyte progenitor cells (OPCs) significantly increased 14 days after demyelination. Most OPCs differentiated into mature oligodendrocytes by 60-90 dpi in double-EB-injected rats; however, most axons were remyelinated by Schwann cells. A significant number of axons passed the injury epicenter and entered the distant segments of the spinal cord in the double-EB-injected rats. Moreover, some serotoninergic fibers, not detected in control animals, grew caudally through the injury site. Behavioral tests performed at 60-90 dpi revealed significant improvement in locomotor function recovery in double-EB-injected rats, which was impaired by the blockade of serotonin receptors, confirming the important role of restored serotonergic fibers in functional recovery. Our findings indicate that enhanced remyelination per se, without substantial inhibition of glial scar formation, is an important component of spinal cord injury regeneration.
Collapse
|
15
|
Kitagawa T, Nagoshi N, Okano H, Nakamura M. A Narrative Review of Advances in Neural Precursor Cell Transplantation Therapies for Spinal Cord Injury. Neurospine 2022; 19:935-945. [PMID: 36597632 PMCID: PMC9816589 DOI: 10.14245/ns.2244628.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/11/2022] [Indexed: 12/27/2022] Open
Abstract
A spinal cord injury (SCI) is a destructive event that causes a permanent deficit in neurological function because of poor regenerative potential. Transplantation therapies have attracted attention for restoration of the injured spinal cord, and transplantation of neural precursor cells (NPCs) has been studied worldwide. Several groups have demonstrated functional recovery via this therapeutic intervention due to the multiple beneficial effects of NPC transplantation, such as reconstruction of neuronal circuits, remyelination of axons, and neuroprotection by trophic factors. Our group developed a method to induce NPCs from human induced pluripotent stem cells (hiPSCs) and established a transplantation strategy for SCI. Functional improvement in SCI animals treated with hiPSC-NPCs was observed, and the safety of transplanting these cells was evaluated from multiple perspectives. With selection of a safe cell line and pretreatment of the cells to encourage maturation and differentiation, hiPSC-NPC transplantation therapy is now in the clinical phase of testing for subacute SCI. In addition, a research challenge will be to expand the efficacy of transplantation therapy for chronic SCI. More comprehensive strategies involving combination treatments are required to treat this problematic situation.
Collapse
Affiliation(s)
- Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan,Corresponding Author Narihito Nagoshi Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Chen X, Zhao T, Ke N, Qian Y, Wang W, Liu L, Liu C. In-vitro differentiation of human embryonic stem cells into spinal cord neural stem cells. Neuroreport 2022; 33:518-525. [PMID: 35882016 DOI: 10.1097/wnr.0000000000001812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In-vitro differentiation of human embryonic stem cells into spinal cord neural stem cells (NSCs) can help researchers better understand the cellular processes associated with spinal cord development and regeneration, and provide therapeutic strategies for spinal cord disorders. However, effective and consistent methods for the generation of human spinal cord NSCs are rare. Objective of the study is to establish methods for the in-vitro induction and long-term maintenance of human spinal cord NSCs. H9 cells were treated with neural induction medium for 10 days under single-cell seeding condition, followed by treatment with neural maintenance medium and replacement with NSC medium after five passages. The identity of the generated cells was determined by immunofluorescence, immunoblotting, and cleavage under targets and tagmentation (CUT&Tag) assays. After the neural induction, OCT4, an embryonic stem cell marker, was significantly reduced, whereas NESTIN and PAX6, two NSC markers, were clearly increased. After the neural maintenance, most of the H9-derived cells consistently expressed NESTIN and PAX6 together with SOX1 and HOXC9, two spinal cord markers. The Homer known motif enrichment results of the CUT&Tag assay confirmed the expression of HOXC9 in the H9-derived spinal cord NSCs, which can be maintained for more than 40 days under an in vitro culture system. This study sheds new light on effective induction and maintenance of human spinal cord NSCs.
Collapse
Affiliation(s)
- Xueying Chen
- School of Basic Medical Sciences, Anhui Medical University
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Anhui Medical University
| | - Tianyi Zhao
- School of Basic Medical Sciences, Anhui Medical University
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Anhui Medical University
| | - Naiyu Ke
- The First Clinical Medical College, Anhui Medical University
| | - Yutong Qian
- The First Clinical Medical College, Anhui Medical University
| | - Wanrong Wang
- The First Clinical Medical College, Anhui Medical University
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Chao Liu
- School of Basic Medical Sciences, Anhui Medical University
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Anhui Medical University
| |
Collapse
|
18
|
Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res 2022; 10:35. [PMID: 35396505 PMCID: PMC8993811 DOI: 10.1038/s41413-022-00199-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.
Collapse
|
19
|
Abstract
Traumatic injury of the central nervous system (CNS) is a worldwide health problem affecting millions of people. Trauma of the CNS, that is, traumatic brain injury (TBI) and spinal cord injury (SCI), lead to massive and progressive cell loss and axonal degeneration, usually with very limited regeneration. At present, there are no treatments to protect injured CNS tissue or to replace the lost tissue. Stem cells are a cell type that by definition can self-renew and give rise to multiple cell lineages. In recent years, therapies using stem and progenitor cells have shown promising effects in experimental CNS trauma, particularly in the acute-subacute stage, but also in chronic injuries. However, the therapeutic mechanisms by which transplanted cells achieve the structural and/or functional improvements are often not clear. Stem cell therapies for CNS trauma can be categorized into 2 main concepts, transplantation of exogenous neural stem cells and neural progenitor cells and recruitment of endogenous stem and progenitor cells. In this review, focusing on the advances during the last decade, we will discuss the major cell therapies, the pros and cons of these 2 concepts for TBI and SCI, and the treatment strategies we believe will be successful.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Corresponding author: Erik Sundström, Department of Neurobiology, Care Sciences and Society (NVS), BioClinicum J9:20, Karolinska University Hospital, S17164 Solna, Sweden.
| |
Collapse
|
20
|
Hong J, Dragas R, Khazaei M, Ahuja CS, Fehlings MG. Hepatocyte Growth Factor-Preconditioned Neural Progenitor Cells Attenuate Astrocyte Reactivity and Promote Neurite Outgrowth. Front Cell Neurosci 2021; 15:741681. [PMID: 34955750 PMCID: PMC8695970 DOI: 10.3389/fncel.2021.741681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The astroglial scar is a defining hallmark of secondary pathology following central nervous system (CNS) injury that, despite its role in limiting tissue damage, presents a significant barrier to neuroregeneration. Neural progenitor cell (NPC) therapies for tissue repair and regeneration have demonstrated favorable outcomes, the effects of which are ascribed not only to direct cell replacement but trophic support. Cytokines and growth factors secreted by NPCs aid in modifying the inhibitory and cytotoxic post-injury microenvironment. In an effort to harness and enhance the reparative potential of NPC secretome, we utilized the multifunctional and pro-regenerative cytokine, hepatocyte growth factor (HGF), as a cellular preconditioning agent. We first demonstrated the capacity of HGF to promote NPC survival in the presence of oxidative stress. We then assessed the capacity of this modified conditioned media (CM) to attenuate astrocyte reactivity and promote neurite outgrowth in vitro. HGF pre-conditioned NPCs demonstrated significantly increased levels of tissue inhibitor of metalloproteinases-1 and reduced vascular endothelial growth factor compared to untreated NPCs. In reactive astrocytes, HGF-enhanced NPC-CM effectively reduced glial fibrillary acidic protein (GFAP) expression and chondroitin sulfate proteoglycan deposition to a greater extent than either treatment alone, and enhanced neurite outgrowth of co-cultured neurons. in vivo, this combinatorial treatment strategy might enable tactical modification of the post-injury inhibitory astroglial environment to one that is more conducive to regeneration and functional recovery. These findings have important translational implications for the optimization of current cell-based therapies for CNS injury.
Collapse
Affiliation(s)
- James Hong
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachel Dragas
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mohammad Khazaei
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Christopher S Ahuja
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Spinal Program, University Health Network, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
21
|
Long-Term Effects of Neural Precursor Cell Transplantation on Secondary Injury Processes and Functional Recovery after Severe Cervical Contusion-Compression Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms222313106. [PMID: 34884911 PMCID: PMC8658203 DOI: 10.3390/ijms222313106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/21/2023] Open
Abstract
Cervical spinal cord injury (SCI) remains a devastating event without adequate treatment options despite decades of research. In this context, the usefulness of common preclinical SCI models has been criticized. We, therefore, aimed to use a clinically relevant animal model of severe cervical SCI to assess the long-term effects of neural precursor cell (NPC) transplantation on secondary injury processes and functional recovery. To this end, we performed a clip contusion-compression injury at the C6 level in 40 female Wistar rats and a sham surgery in 10 female Wistar rats. NPCs, isolated from the subventricular zone of green fluorescent protein (GFP) expressing transgenic rat embryos, were transplanted ten days after the injury. Functional recovery was assessed weekly, and FluoroGold (FG) retrograde fiber-labeling, as well as manganese-enhanced magnetic resonance imaging (MEMRI), were performed prior to the sacrifice of the animals eight weeks after SCI. After cryosectioning of the spinal cords, immunofluorescence staining was conducted. Results were compared between the treatment groups (NPC, Vehicle, Sham) and statistically analyzed (p < 0.05 was considered significant). Despite the severity of the injury, leading to substantial morbidity and mortality during the experiment, long-term survival of the engrafted NPCs with a predominant differentiation into oligodendrocytes could be observed after eight weeks. While myelination of the injured spinal cord was not significantly improved, NPC treated animals showed a significant increase of intact perilesional motor neurons and preserved spinal tracts compared to untreated Vehicle animals. These findings were associated with enhanced preservation of intact spinal cord tissue. However, reactive astrogliosis and inflammation where not significantly reduced by the NPC-treatment. While differences in the Basso–Beattie–Bresnahan (BBB) score and the Gridwalk test remained insignificant, animals in the NPC group performed significantly better in the more objective CatWalk XT gait analysis, suggesting some beneficial effects of the engrafted NPCs on the functional recovery after severe cervical SCI.
Collapse
|
22
|
Assunção Silva RC, Pinto L, Salgado AJ. Cell transplantation and secretome based approaches in spinal cord injury regenerative medicine. Med Res Rev 2021; 42:850-896. [PMID: 34783046 DOI: 10.1002/med.21865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/12/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
The axonal growth-restrictive character of traumatic spinal cord injury (SCI) makes finding a therapeutic strategy a very demanding task, due to the postinjury events impeditive to spontaneous axonal outgrowth and regeneration. Considering SCI pathophysiology complexity, it has been suggested that an effective therapy should tackle all the SCI-related aspects and provide sensory and motor improvement to SCI patients. Thus, the current aim of any therapeutic approach for SCI relies in providing neuroprotection and support neuroregeneration. Acknowledging the current SCI treatment paradigm, cell transplantation is one of the most explored approaches for SCI with mesenchymal stem cells (MSCs) being in the forefront of many of these. Studies showing the beneficial effects of MSC transplantation after SCI have been proposing a paracrine action of these cells on the injured tissues, through the secretion of protective and trophic factors, rather than attributing it to the action of cells itself. This manuscript provides detailed information on the most recent data regarding the neuroregenerative effect of the secretome of MSCs as a cell-free based therapy for SCI. The main challenge of any strategy proposed for SCI treatment relies in obtaining robust preclinical evidence from in vitro and in vivo models, before moving to the clinics, so we have specifically focused on the available vertebrate and mammal models of SCI currently used in research and how can SCI field benefit from them.
Collapse
Affiliation(s)
- Rita C Assunção Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
23
|
Shinozaki M, Nagoshi N, Nakamura M, Okano H. Mechanisms of Stem Cell Therapy in Spinal Cord Injuries. Cells 2021; 10:cells10102676. [PMID: 34685655 PMCID: PMC8534136 DOI: 10.3390/cells10102676] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Every year, 0.93 million people worldwide suffer from spinal cord injury (SCI) with irretrievable sequelae. Rehabilitation, currently the only available treatment, does not restore damaged tissues; therefore, the functional recovery of patients remains limited. The pathophysiology of spinal cord injuries is heterogeneous, implying that potential therapeutic targets differ depending on the time of injury onset, the degree of injury, or the spinal level of injury. In recent years, despite a significant number of clinical trials based on various types of stem cells, these aspects of injury have not been effectively considered, resulting in difficult outcomes of trials. In a specialty such as cancerology, precision medicine based on a patient’s characteristics has brought indisputable therapeutic advances. The objective of the present review is to promote the development of precision medicine in the field of SCI. Here, we first describe the multifaceted pathophysiology of SCI, with the temporal changes after injury, the characteristics of the chronic phase, and the subtypes of complete injury. We then detail the appropriate targets and related mechanisms of the different types of stem cell therapy for each pathological condition. Finally, we highlight the great potential of stem cell therapy in cervical SCI.
Collapse
Affiliation(s)
- Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.N.)
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.N.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence:
| |
Collapse
|
24
|
Biktimirov A, Pak O, Bryukhovetskiy I, Sharma A, Sharma HS. Neuromodulation as a basic platform for neuroprotection and repair after spinal cord injury. PROGRESS IN BRAIN RESEARCH 2021; 266:269-300. [PMID: 34689861 DOI: 10.1016/bs.pbr.2021.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) is one of the most challenging medical issues. Spasticity is a major complication of SCI. A combination of spinal cord stimulation, new methods of neuroprotection and biomedical cellular products provides fundamentally new options for SCI treatment and rehabilitation. The paper attempts to critically analyze the effectiveness of using these procedures for patients with SCI, suggesting a protocol for a step-by-step personalized treatment of SCI, based on continuity of modern conservative and surgical methods. The study argues the possibility of using neuromodulation as a basis for rehabilitating patients with SCI.
Collapse
Affiliation(s)
- Artur Biktimirov
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.
| | - Oleg Pak
- Department of Neurosurgery, Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
25
|
Miyajima H, Itokazu T, Tanabe S, Yamashita T. Interleukin-17A regulates ependymal cell proliferation and functional recovery after spinal cord injury in mice. Cell Death Dis 2021; 12:766. [PMID: 34344859 PMCID: PMC8333070 DOI: 10.1038/s41419-021-04064-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022]
Abstract
Ependymal cells have been suggested to act as neural stem cells and exert beneficial effects after spinal cord injury (SCI). However, the molecular mechanism underlying ependymal cell regulation after SCI remains unknown. To examine the possible effect of IL-17A on ependymal cell proliferation after SCI, we locally administrated IL-17A neutralizing antibody to the injured spinal cord of a contusion SCI mouse model, and revealed that IL-17A neutralization promoted ependymal cell proliferation, which was paralleled by functional recovery and axonal reorganization of both the corticospinal tract and the raphespinal tract. Further, to test whether ependymal cell-specific manipulation of IL-17A signaling is enough to affect the outcomes of SCI, we generated ependymal cell-specific conditional IL-17RA-knockout mice and analyzed their anatomical and functional response to SCI. As a result, conditional knockout of IL-17RA in ependymal cells enhanced both axonal growth and functional recovery, accompanied by an increase in mRNA expression of neurotrophic factors. Thus, Ependymal cells may enhance the regenerative process partially by secreting neurotrophic factors, and IL-17A stimulation negatively regulates this beneficial effect. Molecular manipulation of ependymal cells might be a viable strategy for improving functional recovery.
Collapse
Affiliation(s)
- Hisao Miyajima
- Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Shogo Tanabe
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Molecular Neuroscience, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Molecular Neuroscience, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|
26
|
Tejeda G, Ciciriello AJ, Dumont CM. Biomaterial Strategies to Bolster Neural Stem Cell-Mediated Repair of the Central Nervous System. Cells Tissues Organs 2021; 211:655-669. [PMID: 34120118 DOI: 10.1159/000515351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/12/2021] [Indexed: 01/25/2023] Open
Abstract
Stem cell therapies have the potential to not only repair, but to regenerate tissue of the central nervous system (CNS). Recent studies demonstrate that transplanted stem cells can differentiate into neurons and integrate with the intact circuitry after traumatic injury. Unfortunately, the positive findings described in rodent models have not been replicated in clinical trials, where the burden to maintain the cell viability necessary for tissue repair becomes more challenging. Low transplant survival remains the greatest barrier to stem cell-mediated repair of the CNS, often with fewer than 1-2% of the transplanted cells remaining after 1 week. Strategic transplantation parameters, such as injection location, cell concentration, and transplant timing achieve only modest improvements in stem cell transplant survival and appear inconsistent across studies. Biomaterials provide researchers with a means to significantly improve stem cell transplant survival through two mechanisms: (1) a vehicle to deliver and protect the stem cells and (2) a substrate to control the cytotoxic injury environment. These biomaterial strategies can alleviate cell death associated with delivery to the injury and can be used to limit cell death after transplantation by limiting cell exposure to cytotoxic signals. Moreover, it is likely that control of the injury environment with biomaterials will lead to a more reliable support for transplanted cell populations. This review will highlight the challenges associated with cell delivery in the CNS and the advances in biomaterial development and deployment for stem cell therapies necessary to bolster stem cell-mediated repair.
Collapse
Affiliation(s)
- Giancarlo Tejeda
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Andrew J Ciciriello
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| |
Collapse
|
27
|
Bonilla P, Hernandez J, Giraldo E, González-Pérez MA, Alastrue-Agudo A, Elkhenany H, Vicent MJ, Navarro X, Edel M, Moreno-Manzano V. Human-Induced Neural and Mesenchymal Stem Cell Therapy Combined with a Curcumin Nanoconjugate as a Spinal Cord Injury Treatment. Int J Mol Sci 2021; 22:5966. [PMID: 34073117 PMCID: PMC8198521 DOI: 10.3390/ijms22115966] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
We currently lack effective treatments for the devastating loss of neural function associated with spinal cord injury (SCI). In this study, we evaluated a combination therapy comprising human neural stem cells derived from induced pluripotent stem cells (iPSC-NSC), human mesenchymal stem cells (MSC), and a pH-responsive polyacetal-curcumin nanoconjugate (PA-C) that allows the sustained release of curcumin. In vitro analysis demonstrated that PA-C treatment protected iPSC-NSC from oxidative damage in vitro, while MSC co-culture prevented lipopolysaccharide-induced activation of nuclear factor-κB (NF-κB) in iPSC-NSC. Then, we evaluated the combination of PA-C delivery into the intrathecal space in a rat model of contusive SCI with stem cell transplantation. While we failed to observe significant improvements in locomotor function (BBB scale) in treated animals, histological analysis revealed that PA-C-treated or PA-C and iPSC-NSC + MSC-treated animals displayed significantly smaller scars, while PA-C and iPSC-NSC + MSC treatment induced the preservation of β-III Tubulin-positive axons. iPSC-NSC + MSC transplantation fostered the preservation of motoneurons and myelinated tracts, while PA-C treatment polarized microglia into an anti-inflammatory phenotype. Overall, the combination of stem cell transplantation and PA-C treatment confers higher neuroprotective effects compared to individual treatments.
Collapse
Affiliation(s)
- Pablo Bonilla
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (P.B.); (E.G.); (M.A.G.-P.); (A.A.-A.); (H.E.)
| | - Joaquim Hernandez
- Neuroplasticity and Regeneration Group, Department Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona and CIBERNED, 08193 Bellaterra, Spain; (J.H.); (X.N.)
| | - Esther Giraldo
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (P.B.); (E.G.); (M.A.G.-P.); (A.A.-A.); (H.E.)
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Miguel A. González-Pérez
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (P.B.); (E.G.); (M.A.G.-P.); (A.A.-A.); (H.E.)
| | - Ana Alastrue-Agudo
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (P.B.); (E.G.); (M.A.G.-P.); (A.A.-A.); (H.E.)
| | - Hoda Elkhenany
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (P.B.); (E.G.); (M.A.G.-P.); (A.A.-A.); (H.E.)
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22785, Egypt
| | - María J. Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain;
| | - Xavier Navarro
- Neuroplasticity and Regeneration Group, Department Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona and CIBERNED, 08193 Bellaterra, Spain; (J.H.); (X.N.)
| | - Michael Edel
- Laboratory of Regenerative Medicine, Institut Barraquer, 08021 Barcelona, Spain;
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (P.B.); (E.G.); (M.A.G.-P.); (A.A.-A.); (H.E.)
| |
Collapse
|
28
|
Ciciriello AJ, Smith DR, Munsell MK, Boyd SJ, Shea LD, Dumont CM. IL-10 lentivirus-laden hydrogel tubes increase spinal progenitor survival and neuronal differentiation after spinal cord injury. Biotechnol Bioeng 2021; 118:2609-2625. [PMID: 33835500 DOI: 10.1002/bit.27781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
A complex cellular cascade characterizes the pathophysiological response following spinal cord injury (SCI) limiting regeneration. Biomaterial and stem cell combination therapies together have shown synergistic effects, compared to the independent benefits of each intervention, and represent a promising approach towards regaining function after injury. In this study, we combine our polyethylene glycol (PEG) cell delivery platform with lentiviral-mediated overexpression of the anti-inflammatory cytokine interleukin (IL)-10 to improve mouse embryonic Day 14 (E14) spinal progenitor transplant survival. Immediately following injury in a mouse SCI hemisection model, five PEG tubes were implanted followed by direct injection into the tubes of lentivirus encoding for IL-10. Two weeks after tube implantation, mouse E14 spinal progenitors were injected directly into the integrated tubes, which served as a soft substrate for cell transplantation. Together, the tubes with the IL-10 encoding lentivirus improved E14 spinal progenitor survival, assessed at 2 weeks posttransplantation (4 weeks postinjury). On average, 8.1% of E14 spinal progenitors survived in mice receiving IL-10 lentivirus-laden tubes compared with 0.7% in mice receiving transplants without tubes, an 11.5-fold difference. Surviving E14 spinal progenitors gave rise to neurons when injected into tubes. Axon elongation and remyelination were observed, in addition to a significant increase in functional recovery in mice receiving IL-10 lentivirus-laden tubes with E14 spinal progenitor delivery compared to the injury only control by 4 weeks postinjury. All other conditions did not exhibit increased stepping until 8 or 12 weeks postinjury. This system affords increased control over the transplantation microenvironment, offering the potential to improve stem cell-mediated tissue regeneration.
Collapse
Affiliation(s)
- Andrew J Ciciriello
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| | - Dominique R Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary K Munsell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Sydney J Boyd
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, Miami, Florida, USA
| |
Collapse
|
29
|
Ma T, Wu J, Mu J, Gao J. Biomaterials reinforced MSCs transplantation for spinal cord injury repair. Asian J Pharm Sci 2021; 17:4-19. [PMID: 35261642 PMCID: PMC8888140 DOI: 10.1016/j.ajps.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Due to the complex pathophysiological mechanism, spinal cord injury (SCI) has become one of the most intractable central nervous system (CNS) diseases to therapy. Stem cell transplantation, mesenchymal stem cells (MSCs) particularly, appeals to more and more attention along with the encouraging therapeutic results for the functional regeneration of SCI. However, traditional cell transplantation strategies have some limitations, including the unsatisfying survival rate of MSCs and their random diffusion from the injection site to ambient tissues. The application of biomaterials in tissue engineering provides a new horizon. Biomaterials can not only confine MSCs in the injured lesions with higher cell viability, but also promote their therapeutic efficacy. This review summarizes the strategies and advantages of biomaterials reinforced MSCs transplantation to treat SCI in recent years, which are clarified in the light of various therapeutic effects in pathophysiological aspects of SCI.
Collapse
Affiliation(s)
- Teng Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiafu Mu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author.
| |
Collapse
|
30
|
Gong Z, Xia K, Xu A, Yu C, Wang C, Zhu J, Huang X, Chen Q, Li F, Liang C. Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:321-331. [PMID: 31441733 DOI: 10.2174/1574888x14666190823144424] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 07/21/2019] [Indexed: 12/20/2022]
Abstract
Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chenggui Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Xianpeng Huang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - QiXin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| |
Collapse
|
31
|
Jones I, Novikova LN, Wiberg M, Carlsson L, Novikov LN. Human Embryonic Stem Cell-derived Neural Crest Cells Promote Sprouting and Motor Recovery Following Spinal Cord Injury in Adult Rats. Cell Transplant 2021; 30:963689720988245. [PMID: 33522309 PMCID: PMC7863557 DOI: 10.1177/0963689720988245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury results in irreversible tissue damage and permanent sensorimotor impairment. The development of novel therapeutic strategies that improve the life quality of affected individuals is therefore of paramount importance. Cell transplantation is a promising approach for spinal cord injury treatment and the present study assesses the efficacy of human embryonic stem cell–derived neural crest cells as preclinical cell-based therapy candidates. The differentiated neural crest cells exhibited characteristic molecular signatures and produced a range of biologically active trophic factors that stimulated in vitro neurite outgrowth of rat primary dorsal root ganglia neurons. Transplantation of the neural crest cells into both acute and chronic rat cervical spinal cord injury models promoted remodeling of descending raphespinal projections and contributed to the partial recovery of forelimb motor function. The results achieved in this proof-of-concept study demonstrates that human embryonic stem cell–derived neural crest cells warrant further investigation as cell-based therapy candidates for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Iwan Jones
- 59588Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Mikael Wiberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Leif Carlsson
- 59588Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lev N Novikov
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
Kang J, Zhang C, Zhi Z, Wang Y, Liu J, Wu F, Xu G. Stem-like cells of various origins showed therapeutic effect to improve the recovery of spinal cord injury. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:627-638. [PMID: 32054316 DOI: 10.1080/21691401.2020.1725031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We aimed to evaluate the therapeutic effects of exosomes, which were collected from human neuroepithelial stem cells (HNESCs) treated by miR-29b mimics, on the treatment of spinal cord injury (SCI). Computational analysis, real-time PCR, Western blot analysis and TUNEL assay, a BBB score system, the Nissl staining and IHC assay were conducted to explore the molecular signalling pathway underlying the function of exosomes in SCI. Exosomes isolated from cells treated with HNESC exhibited the strongest inhibitory effect on cell apoptosis while exhibiting the highest level of miR-29b expression and the lowest levels of PTEN and caspase-3 expression. Moreover, PTEN and caspase-3 were identified as the direct target genes of miR-29b. The exosomes isolated from the groups of HNESC and HNESC + miR-29b mimics exhibited in vivo therapeutic effects by restoring the BBB score and apoptosis index of post-SCI neuron cells to those of normal neuron cells, with the exosomes collected from the group of HNESC + miR-29b mimics showing the strongest effect. We suggested that the exosomes derived from the group of HNESC + miR-29b mimics exerted therapeutic effects on SCI by down-regulating the expression of PTEN/caspase-3 and subsequently suppressing the apoptosis of neuron cells.
Collapse
Affiliation(s)
- Jian Kang
- Department of Orthopedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Chenglin Zhang
- Department of Orthopedics, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhongzheng Zhi
- Department of Orthopedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yingjie Wang
- Department of Orthopedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jingdong Liu
- Department of Orthopedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Furong Wu
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guanghui Xu
- Department of Orthopedics, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Abdullah MAA, Amini N, Yang L, Paluh JL, Wang J. Multiplexed analysis of neural cytokine signaling by a novel neural cell-cell interaction microchip. LAB ON A CHIP 2020; 20:3980-3995. [PMID: 32945325 PMCID: PMC7606659 DOI: 10.1039/d0lc00401d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Multipotent neural stem cells (NSCs) are widely applied in pre-clinical and clinical trials as a cell source to promote tissue regeneration in neurodegenerative diseases. Frequently delivered as dissociated cells, aggregates or self-organized rosettes, it is unknown whether disruption of the NSC rosette morphology or method of formation affect signaling profiles of these cells that may impact uniformity of outcomes in cell therapies. Here we generate a neural cell-cell interaction microchip (NCCIM) as an in vitro platform to simultaneously track an informed panel of cytokines and co-evaluate cell morphology and biomarker expression coupled to a sandwich ELISA platform. We apply multiplex in situ tagging technology (MIST) to evaluate ten cytokines (PDGF-AA, GDNF, BDNF, IGF-1, FGF-2, IL-6, BMP-4, CNTF, β-NGF, NT-3) on microchips for EB-derived rosettes, single cell dissociated rosettes and reformed rosette neurospheres. Of the cytokines evaluated, EB-derived rosettes secrete PDGF-AA, GDNF and FGF-2 prominently, whereas this profile is temporarily lost upon dissociation to single cells and in reformed neurospheres two additional cytokines, BDNF and β-NGF, are also secreted. This study on NSC rosettes demonstrates the development, versatility and utility of the NCCIM as a sensitive multiplex detector of cytokine signaling in a high throughput and controlled microenvironment. The NCCIM is expected to provide important new information to refine cell source choices in therapies as well as to support development of informative 2D or 3D in vitro models including areas of neurodegeneration or neuroplasticity.
Collapse
Affiliation(s)
- Mohammed A. A. Abdullah
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222
| | - Nooshin Amini
- Nanobioscience, State University of New York Polytechnic Institute, Albany, NY 12203
| | - Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Janet L. Paluh
- Nanobioscience, State University of New York Polytechnic Institute, Albany, NY 12203
- Corresponding authors. ;
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Corresponding authors. ;
| |
Collapse
|
34
|
Ciciriello AJ, Smith DR, Munsell MK, Boyd SJ, Shea LD, Dumont CM. Acute Implantation of Aligned Hydrogel Tubes Supports Delayed Spinal Progenitor Implantation. ACS Biomater Sci Eng 2020; 6:5771-5784. [DOI: 10.1021/acsbiomaterials.0c00844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Andrew J. Ciciriello
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33156, United States
- Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW Seventh Avenue Suite 475, Miami, Florida 33136, United States
| | - Dominique R. Smith
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
| | - Mary K. Munsell
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
| | - Sydney J. Boyd
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33156, United States
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Courtney M. Dumont
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33156, United States
- Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW Seventh Avenue Suite 475, Miami, Florida 33136, United States
| |
Collapse
|
35
|
Attari F, Ghadiri T, Hashemi M. Combination of curcumin with autologous transplantation of adult neural stem/progenitor cells leads to more efficient repair of damaged cerebral tissue of rat. Exp Physiol 2020; 105:1610-1622. [PMID: 32627273 DOI: 10.1113/ep088697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023]
Abstract
NEW FINDINGS What is the central question of this study? Can the neuroprotective agent curcumin affect restorative action of neural stem/progenitor cells in the injured rat brain? What is the main finding and its importance? In the presence of curcumin, transplantation of neural stem/progenitor cells in the context of PuraMatrix reduced lesion size and reactive inflammatory responses, and boosted survival rate of grafted neurons. In addition it improved the neurological status of injured animals. This could be beneficial in designing new therapeutic approaches for brain injury based on this combination therapy. ABSTRACT Traumatic brain injury (TBI) is catastrophic neurological damage associated with substantial morbidity and mortality. To date, there is no specific treatment for restoring lost brain tissue. In light of the complex pathology of brain injury, the present study evaluated the effects of combination therapy using autologous neural stem/progenitor cells (NS/PCs), PuraMatrix (PM) and curcumin in an animal model of brain injury. After stereotactic biopsy of subventricular zone tissue and culture of NS/PCs, 36 male Wistar rats (150-200 g) were randomly divided into six groups receiving dimethyl sulfoxide (DMSO), curcumin (100 mg kg-1 in DMSO), PM + curcumin (100 mg kg-1 in DMSO), NS/PCs + curcumin (100 mg kg-1 in DMSO), NS/PCs + PM + curcumin (100 mg kg-1 in DMSO) and NS/PCs + PM + curcumin (1 µm) following acute brain injury. The animals were evaluated in term of neurological status for 4 weeks, then decapitated. Nissl and TUNEL staining and immunohistochemistry for bromodeoxyuridine, glial fibrillary acidic protein, doublecortin, Map2, Olig2, Iba1 and CD68 were performed. We found that combination therapy by NS/PCs + PM + curcumin reduced the lesion size, astrogliosis, macrophage and microglial reaction as well as the number of apoptotic cells. Moreover, the transplanted cells were able to survive and differentiate after 4 weeks. Besides these findings, transplantation of NS/PCs in the context of PM and curcumin improved the neurological status of injured animals. In conclusion, our data suggest that this combination therapy can be beneficial in developing future therapeutic approaches for brain injury.
Collapse
Affiliation(s)
- Fatemeh Attari
- Department of Neuroscience, School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mansoureh Hashemi
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Biancotti JC, Walker KA, Jiang G, Di Bernardo J, Shea LD, Kunisaki SM. Hydrogel and neural progenitor cell delivery supports organotypic fetal spinal cord development in an ex vivo model of prenatal spina bifida repair. J Tissue Eng 2020; 11:2041731420943833. [PMID: 32782773 PMCID: PMC7383650 DOI: 10.1177/2041731420943833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Studying how the fetal spinal cord regenerates in an ex vivo model of spina bifida repair may provide insights into the development of new tissue engineering treatment strategies to better optimize neurologic function in affected patients. Here, we developed hydrogel surgical patches designed for prenatal repair of myelomeningocele defects and demonstrated viability of both human and rat neural progenitor donor cells within this three-dimensional scaffold microenvironment. We then established an organotypic slice culture model using transverse lumbar spinal cord slices harvested from retinoic acid–exposed fetal rats to study the effect of fibrin hydrogel patches ex vivo. Based on histology, immunohistochemistry, gene expression, and enzyme-linked immunoabsorbent assays, these experiments demonstrate the biocompatibility of fibrin hydrogel patches on the fetal spinal cord and suggest this organotypic slice culture system as a useful platform for evaluating mechanisms of damage and repair in children with neural tube defects.
Collapse
Affiliation(s)
- Juan C Biancotti
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Kendal A Walker
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Guihua Jiang
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Julie Di Bernardo
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shaun M Kunisaki
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA.,Fetal Program, Johns Hopkins Children's Center, Baltimore, MD, USA
| |
Collapse
|
37
|
Papa S, Pizzetti F, Perale G, Veglianese P, Rossi F. Regenerative medicine for spinal cord injury: focus on stem cells and biomaterials. Expert Opin Biol Ther 2020; 20:1203-1213. [PMID: 32421405 DOI: 10.1080/14712598.2020.1770725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a dramatic medical pathology consequence of a trauma (primary injury). However, most of the post-traumatic degeneration of the tissue is caused by the so-called secondary injury, which is known to be a multifactorial process. This, indeed, includes a wide spectrum of events: blood-brain barrier dysfunction, local inflammation, neuronal death, demyelination and disconnection of nerve pathways. AREAS COVERED Cell therapy represents a promising cure to target diseases and disorders at the cellular level, by restoring cell population or using cells as carriers of therapeutic cargo. In particular, regenerative medicine with stem cells represents the most appealing category to be used, thanks to their peculiar features. EXPERT OPINION Many preclinical research studies demonstrated that cell treatment can improve animal sensory/motor functions and so demonstrated to be very promising for clinical trials. In particular, recent advances have led to the development of biomaterials aiming to promote in situ cell delivery. This review digs into this topic discussing the possibility of cell treatment to improve medical chances in SCI repair.
Collapse
Affiliation(s)
- Simonetta Papa
- Department of Neuroscience, IRCCS Istituto Di Ricerche Farmacologiche "Mario Negri" , Milan, Italy
| | - Fabio Pizzetti
- Department of Neuroscience, IRCCS Istituto Di Ricerche Farmacologiche "Mario Negri" , Milan, Italy.,Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Milan, Italy
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI) , Lugano, Switzerland.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Pietro Veglianese
- Department of Neuroscience, IRCCS Istituto Di Ricerche Farmacologiche "Mario Negri" , Milan, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Milan, Italy
| |
Collapse
|
38
|
Wu Y, Gao Q, Zhu S, Wu Q, Zhu R, Zhong H, Xing C, Qu H, Wang D, Li B, Ning G, Feng S. Low-intensity pulsed ultrasound regulates proliferation and differentiation of neural stem cells through notch signaling pathway. Biochem Biophys Res Commun 2020; 526:793-798. [PMID: 32268957 DOI: 10.1016/j.bbrc.2020.03.142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is widely used to regulate stem cell proliferation and differentiation. However, the effect of LIPUS stimulation on neural stem cells (NSCs) is not well documented. In this study, we have identified the optimal parameters, and investigated the cellular mechanisms of LIPUS to regulate the proliferation and differentiation of NSCs in vitro. NSCs were obtained and identified by nestin immunostaining. The proliferation of NSCs were measured by using Cell Counting Kit-8 (CCK-8). The expressions of nutritional factors (NTFs) were detected with immunoassay (ELISA). NSCs differentiation were detected by immunofluorescence and immunoblotting analysis. The expression level of proteins involved in the Notch signaling pathway was also measured by immunoblotting assay. Our results showed the intensity of 69.3 mW/cm2 (1 MHz, 8 V) was applicable for LIPUS stimulation. ELISA analysis demonstrated that LIPUS treatment promoted the expression of nutritional factors of NSCs in vitro. Immunofluorescence and immunoblotting analyses suggested that the LIPUS not only reduced the astrocyte differentiation, but also stimulated the differentiation to neurons. Additionally, LIPUS stimulation significantly upregulated expression level of Notch1 and Hes1. Results from our study suggest that LIPUS triggers NSCs proliferation and differentiation by modulating the Notch signaling pathway. This study implies LIPUS as a potential and promising therapeutic platform for the optimization of stem cells and enable noninvasive neuromodulation for central nervous system diseases.
Collapse
Affiliation(s)
- Yu Wu
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Qiang Gao
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Shibo Zhu
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Qiuli Wu
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, China
| | - Hao Zhong
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Cong Xing
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Haodong Qu
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Dawei Wang
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Bo Li
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China
| | - Guangzhi Ning
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
39
|
Schneider L, Reichert E, Faulkner J, Reichert B, Sonnen J, Hawryluk GWJ. CNS inflammation and neurodegeneration: sequelae of peripheral inoculation with spinal cord tissue in rat. J Neurosurg 2020; 132:933-944. [PMID: 30717048 DOI: 10.3171/2018.10.jns181517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Recent research demonstrates that victims of spinal cord injury (SCI) are at increased risk for dementia and that encephalitis can occur as a consequence of isolated SCI. We theorize that autoimmunity to the central nervous system (CNS) could explain these phenomena and undertook this study to determine whether peripheral inoculation with spinal cord homogenate on 1 or 2 occasions is associated with CNS-directed autoimmunity and neurodegeneration in a rat model. METHODS Rats were subcutaneously inoculated with saline or 75 mg of allogeneic spinal cord tissue on 1 or 2 occasions. Animals underwent Morris Water Maze testing, and serial serum samples were collected. Animals were sacrificed 8 weeks following the first inoculation. Autoantibody titers to myelin antigens MAG and GM1 were measured in serum. Immunohistochemistry was used to identify autoantibodies targeting NeuN-labeled neurons and CC1-labeled oligodendrocytes. Quantitative real-time polymerase chain reaction (qPCR) and western blotting were performed for pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 and the cell death marker caspase 3 as well as the neurodegenerative proteins tau and β-amyloid in both brain and spinal cord. Fluoro-Jade B was used to stain degenerating neurons, facilitating counting. RESULTS Animals inoculated with spinal cord homogenate exhibited increased titers of autoantibodies to MAG and GM1 and autoantibodies binding to neurons and oligodendrocytes. Double-inoculated animals demonstrated a significant increase in the expression of pro-inflammatory cytokines in the brain (TNF-α, p = 0.016; IL-6, p = 0.009) as well as the spinal cord (TNF-α, p = 0.024; IL-6, p = 0.002). The number of degenerating neurons was significantly increased in the brain and spinal cord of inoculated animals (p < 0.0001 and p = 0.028, respectively). Elevated expression of tau and β-amyloid was seen in brain of double-inoculated animals (p = 0.003 and p = 0.009, respectively). Inflammatory marker expression in the brain was positively correlated with anti-myelin autoimmune antibody titers and with tau expression in the brain. Inoculated animals showed impaired memory function in Morris Water Maze testing (p = 0.043). CONCLUSIONS The results of these experiments demonstrate that peripheral exposure to spinal cord antigens is associated with CNS-directed autoimmunity and inflammation in the brain and spinal cord as well as degeneration of CNS cells, memory impairment, and production of neurodegenerative proteins particularly when this exposure is repeated. These data support CNS autoimmunity as a candidate mechanism for the dementia that can follow SCI and perhaps other posttraumatic dementias such as chronic traumatic encephalopathy.
Collapse
Affiliation(s)
| | | | | | | | - Joshua Sonnen
- 3Pathology, University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
40
|
Willis CM, Nicaise AM, Peruzzotti-Jametti L, Pluchino S. The neural stem cell secretome and its role in brain repair. Brain Res 2020; 1729:146615. [DOI: 10.1016/j.brainres.2019.146615] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
|
41
|
Hernández R, Jiménez-Luna C, Perales-Adán J, Perazzoli G, Melguizo C, Prados J. Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders. Biomol Ther (Seoul) 2020; 28:34-44. [PMID: 31649208 PMCID: PMC6939692 DOI: 10.4062/biomolther.2019.065] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been proposed as an alternative therapy to be applied into several pathologies of the nervous system. These cells can be obtained from adipose tissue, umbilical cord blood and bone marrow, among other tissues, and have remarkable therapeutic properties. MSCs can be isolated with high yield, which adds to their ability to differentiate into non-mesodermal cell types including neuronal lineage both in vivo and in vitro. They are able to restore damaged neural tissue, thus being suitable for the treatment of neural injuries, and possess immunosuppressive activity, which may be useful for the treatment of neurological disorders of inflammatory etiology. Although the long-term safety of MSC-based therapies remains unclear, a large amount of both pre-clinical and clinical trials have shown functional improvements in animal models of nervous system diseases following transplantation of MSCs. In fact, there are several ongoing clinical trials evaluating the possible benefits this cell-based therapy could provide to patients with neurological damage, as well as their clinical limitations. In this review we focus on the potential of MSCs as a therapeutic tool to treat neurological disorders, summarizing the state of the art of this topic and the most recent clinical studies.
Collapse
Affiliation(s)
- Rosa Hernández
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges 1066, Switzerland
| | - Jesús Perales-Adán
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| |
Collapse
|
42
|
Hachem LD, Mothe AJ, Tator CH. Unlocking the paradoxical endogenous stem cell response after spinal cord injury. Stem Cells 2019; 38:187-194. [PMID: 31648407 DOI: 10.1002/stem.3107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 11/08/2022]
Abstract
Nearly a century ago, the concept of the secondary injury in spinal cord trauma was first proposed to explain the complex cascade of molecular and cellular events leading to widespread neuronal and glial cell death after trauma. In recent years, it has been established that the ependymal region of the adult mammalian spinal cord contains a population of multipotent neural stem/progenitor cells (NSPCs) that are activated after spinal cord injury (SCI) and likely play a key role in endogenous repair and regeneration. How these cells respond to the various components of the secondary injury remains poorly understood. Emerging evidence suggests that many of the biochemical components of the secondary injury cascade which have classically been viewed as deleterious to host neuronal and glial cells may paradoxically trigger NSPC activation, proliferation, and differentiation thus challenging our current understanding of secondary injury mechanisms in SCI. Herein, we highlight new findings describing the response of endogenous NSPCs to spinal cord trauma, redefining the secondary mechanisms of SCI through the lens of the endogenous population of stem/progenitor cells. Moreover, we outline how these insights can fuel novel stem cell-based therapeutic strategies to repair the injured spinal cord.
Collapse
Affiliation(s)
- Laureen D Hachem
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Andrea J Mothe
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charles H Tator
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Zhou P, Guan J, Xu P, Zhao J, Zhang C, Zhang B, Mao Y, Cui W. Cell Therapeutic Strategies for Spinal Cord Injury. Adv Wound Care (New Rochelle) 2019; 8:585-605. [PMID: 31637103 PMCID: PMC6798812 DOI: 10.1089/wound.2019.1046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Significance: Spinal cord injury (SCI) is a neurological disorder that resulted from destroyed long axis of spinal cord, affecting thousands of people every year. With the occurrence of SCI, the lesions can form cystic cavities and produce glial scar, myelin inhibitor, and inflammation that negatively impact repair of spinal cord. Therefore, SCI remains a difficult problem to overcome with present therapeutics. This review of cell therapeutics in SCI provides a systematic review of combinatory therapeutics of SCI and helps the realization of regeneration of spinal cord in the future. Recent Advances: With major breakthroughs in neurobiology in recent years, present therapeutic strategies for SCI mainly aim at nerve regeneration or neuroprotection. For nerve regeneration, the application approaches are tissue engineering and cell transplantation, while drug therapeutics is applied for neuroprotection. Cell therapeutics is a new approach that treats SCI by cell transplantation. Cell therapeutics possesses advantages of neuroprotection, immune regulation, axonal regeneration, neuron relay formation, and remyelination. Critical Issues: Neurons cannot regenerate at the site of injury. Therefore, it is essential to find a repair strategy for remyelination, axon regeneration, and functional recovery. Cell therapeutics is emerging as the most promising approach for treating SCI. Future Directions: The future application of SCI therapy in clinical practice may require a combination of multiple strategies. A comprehensive treatment of injury of spinal cord is the focus of the present research. With the combination of different cell therapy strategies, future experiments will achieve more dramatic success in spinal cord repair.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Jingjing Guan
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Panpan Xu
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Changchun Zhang
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- School of Life Science, Bengbu Medical College, Bengbu, P.R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
44
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|
45
|
Pukos N, Goodus MT, Sahinkaya FR, McTigue DM. Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: What do we know and what still needs to be unwrapped? Glia 2019; 67:2178-2202. [PMID: 31444938 DOI: 10.1002/glia.23702] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) affects over 17,000 individuals in the United States per year, resulting in sudden motor, sensory and autonomic impairments below the level of injury. These deficits may be due at least in part to the loss of oligodendrocytes and demyelination of spared axons as it leads to slowed or blocked conduction through the lesion site. It has long been accepted that progenitor cells form new oligodendrocytes after SCI, resulting in the acute formation of new myelin on demyelinated axons. However, the chronicity of demyelination and the functional significance of remyelination remain contentious. Here we review work examining demyelination and remyelination after SCI as well as the current understanding of oligodendrocyte lineage cell responses to spinal trauma, including the surprisingly long-lasting response of NG2+ oligodendrocyte progenitor cells (OPCs) to proliferate and differentiate into new myelinating oligodendrocytes for months after SCI. OPCs are highly sensitive to microenvironmental changes, and therefore respond to the ever-changing post-SCI milieu, including influx of blood, monocytes and neutrophils; activation of microglia and macrophages; changes in cytokines, chemokines and growth factors such as ciliary neurotrophic factor and fibroblast growth factor-2; glutamate excitotoxicity; and axon degeneration and sprouting. We discuss how these changes relate to spontaneous oligodendrogenesis and remyelination, the evidence for and against demyelination being an important clinical problem and if remyelination contributes to motor recovery.
Collapse
Affiliation(s)
- Nicole Pukos
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio.,Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio
| | - Matthew T Goodus
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| | - Fatma R Sahinkaya
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio
| | - Dana M McTigue
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| |
Collapse
|
46
|
Shao A, Tu S, Lu J, Zhang J. Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res Ther 2019; 10:238. [PMID: 31387621 PMCID: PMC6683526 DOI: 10.1186/s13287-019-1357-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The injured spinal cord is difficult to repair and regenerate. Traditional treatments are not effective. Stem cells are a type of cells that have the potential to differentiate into various cells, including neurons. They exert a therapeutic effect by safely and effectively differentiating into neurons or replacing damaged cells, secreting neurotrophic factors, and inhibiting the inflammatory response. Many types of stem cells have been used for transplantation, and each has its own advantages and disadvantages. This review discusses the possible mechanisms of stem cell therapy for spinal cord injury, and the types of stem cells commonly used in experiments, to provide a reference for basic and clinical research on stem cell therapy for spinal cord injury.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Sheng Tu
- Department of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Brain Research Institute, Zhejiang University, Hangzhou, 310003, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
47
|
Yu C, Xia K, Gong Z, Ying L, Shu J, Zhang F, Chen Q, Li F, Liang C. The Application of Neural Stem/Progenitor Cells for Regenerative Therapy of Spinal Cord Injury. Curr Stem Cell Res Ther 2019; 14:495-503. [PMID: 30924422 DOI: 10.2174/1574888x14666190329095638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/11/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) is a devastating event, and there are still no effective therapies currently
available. Neural stem cells (NSCs) have gained increasing attention as promising regenerative
therapy of SCI. NSCs based therapies of various neural diseases in animal models and clinical trials
have been widely investigated. In this review we aim to summarize the development and recent progress
in the application of NSCs in cell transplantation therapy for SCI. After brief introduction on
sequential genetic steps regulating spinal cord development in vivo, we describe current experimental
approaches for neural induction of NSCs in vitro. In particular, we focus on NSCs induced from pluripotent
stem cells (PSCs). Finally, we highlight recent progress on the NSCs, which show great promise
in the application to regeneration therapy for SCI.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Liwei Ying
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Jiawei Shu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Feng Zhang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Qixin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
48
|
Mesentier-Louro LA, Teixeira-Pinheiro LC, Gubert F, Vasques JF, Silva-Junior AJ, Chimeli-Ormonde L, Nascimento-Dos-Santos G, Mendez-Otero R, Santiago MF. Long-term neuronal survival, regeneration, and transient target reconnection after optic nerve crush and mesenchymal stem cell transplantation. Stem Cell Res Ther 2019; 10:121. [PMID: 30995945 PMCID: PMC6472105 DOI: 10.1186/s13287-019-1226-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
Background Retina and/or optic nerve injury may cause irreversible blindness, due to degeneration of retinal ganglion cells. We and others have previously shown that the intravitreal injection of mesenchymal stem cells (MSCs) protects injured retinal ganglion cells and stimulates their regeneration after optic nerve injury, but the long-term effects of this therapy are still unknown. Methods We injected rat MSC (rMSC) intravitreally in adult (3–5 months) Lister Hooded rats of either sex after optic nerve crush. Retinal ganglion cell survival, axonal regeneration, and reconnection were analyzed 60 and 240 days after crush by immunohistochemistry for Tuj1, anterograde labeling with cholera-toxin B and by immunohistochemistry for nerve growth factor-induced gene A (NGFI-A, driven by light stimulation) in the superior colliculus after a cycle of light deprivation-stimulation. Visual behaviors (optokinetic reflex, looming response, and preference for dark) were analyzed 70 days after crush. Results rMSC treatment doubled the number of surviving retinal ganglion cells, preferentially of a larger subtype, and of axons regenerating up to 0.5 mm. Some axons regenerated to the lateral geniculate nucleus and superior colliculus. NGFI-A+ cells were doubled in rMSC-treated animals 60 days after crush, but equivalent to vehicle-injected animals 240 days after crush, suggesting that newly formed synapses degenerated. Animals did not recover visual behaviors. Conclusions We conclude that rMSC-induced neuroprotection is sustained at longer time points. Although rMSCs promoted long-term neuroprotection and long-distance axon regeneration, the reconnection of retinal ganglion cells with their targets was transitory, indicating that they need additional stimuli to make stable reconnections. Electronic supplementary material The online version of this article (10.1186/s13287-019-1226-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louise A Mesentier-Louro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Leandro C Teixeira-Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Juliana F Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Almir J Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Luiza Chimeli-Ormonde
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Gabriel Nascimento-Dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERE, Rio de Janeiro, Brazil
| | - Marcelo F Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
49
|
Stem cell paracrine effect and delivery strategies for spinal cord injury regeneration. J Control Release 2019; 300:141-153. [PMID: 30851286 DOI: 10.1016/j.jconrel.2019.02.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/29/2022]
Abstract
Spinal cord injury (SCI) is a complicated neuropathological condition that results in functional dysfunction and paralysis. Various treatments have been proposed including drugs, biological factors and cells administered in several ways. Stem cell therapy offers a potentially revolutionary mode to repair the damaged spinal cord after injury. Initially, stem cells were considered promising for replacing cells and tissue lost after SCI. Many studies looked at their differentiation to replace neuronal and glial cells for a better functional outcome. However, it is becoming clear that different functional improvements recognized to stem cells are due to biomolecular activities by the transplanted stem cells rather than cell replacement. This review aimed to discuss the paracrine mechanisms for tissue repair and regeneration after stem cell transplantation in SCI. It focuses on stem cell factor production, effect in tissue restoration, and novel delivery strategies to use them for SCI therapy.
Collapse
|
50
|
Cell Replacement Therapy Improves Pathological Hallmarks in a Mouse Model of Leukodystrophy Vanishing White Matter. Stem Cell Reports 2019; 12:441-450. [PMID: 30799272 PMCID: PMC6411482 DOI: 10.1016/j.stemcr.2019.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/31/2022] Open
Abstract
Stem cell therapy has great prospects for brain white matter disorders, including the genetically determined disorders called leukodystrophies. We focus on the devastating leukodystrophy vanishing white matter (VWM). Patients with VWM show severe disability and early death, and treatment options are lacking. Previous studies showed successful cell replacement therapy in rodent models for myelin defects. However, proof-of-concept studies of allogeneic cell replacement in models representative of human leukodystrophies are lacking. We tested cell replacement in a mouse model representative of VWM. We transplanted different murine glial progenitor cell populations and showed improved pathological hallmarks and motor function. Improved mice showed a higher percentage of transplanted cells that differentiated into GFAP+ astrocytes, suggesting best therapeutic prospects for replacement of astroglial lineage cells. This is a proof-of-concept study for cell transplantation in VWM and suggests that glial cell replacement therapy is a promising therapeutic strategy for leukodystrophy patients. Cell therapy improved pathology and motor skills in vanishing white matter mice Astrocyte differentiation of donor cells was associated with recovery of VWM symptoms
Collapse
|