1
|
Freitas-Ribeiro S, Carvalho AF, Rodrigues DB, Martins L, Pires RA, Mendes VM, Manadas B, Jarnalo M, Horta R, Reis RL, Pirraco RP. Cryogenic, but not hypothermic, preservation disrupts the extracellular matrix of cell sheets. Bioact Mater 2025; 46:301-310. [PMID: 39811467 PMCID: PMC11732602 DOI: 10.1016/j.bioactmat.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/11/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Cell sheet (CS)-based approaches hold significant potential for tissue regeneration, relying on the extracellular matrix (ECM) for success. Like in native tissues, the ECM provides structural and biochemical support for cellular homeostasis and function. Effective preservation strategies that maintain ECM integrity are critical to enhance the therapeutic potential of CS-based approaches. While cryogenic and hypothermic preservation methods offer potential solutions, their impact on CS ECM structure is not fully understood. Therefore, a comprehensive analysis of the ECM of hASCs CS following cryogenic and hypothermic preservation for 3 and 7 days, was conducted. Although proteomic analysis indicated that cryopreservation had no significant effect on the overall composition of the ECM, it induced significant ECM structural alterations, particularly disrupting collagen organization, which was not observed following hypothermic preservation. These structural changes were accompanied by alterations in mechanical properties, including a reduction in elastic modulus. In contrast, hypothermic preservation maintained ECM integrity and mechanical properties similar to the control. The notable ECM structural changes following cryogenic preservation can potentially impact cellular behavior, including adhesion, proliferation, and differentiation, thereby affecting the efficacy of CS therapies in vivo. This suggests that hypothermia may offer a promising alternative to cryopreservation for preserving CS integrity and functionality.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia F. Carvalho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade Do Porto, Porto, Portugal
| | - Daniel B. Rodrigues
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís Martins
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo A. Pires
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vera M. Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal
- Faculty of Medicine - University of Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal
- Faculty of Medicine - University of Porto, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Mousavi S, Khazaee-Nasirabadi MH, Seyedmehdi MS, Bazi A, Mirzaee Khalilabadi R. Natural killer cells: a new promising source for developing chimeric antigen receptor anti-cancer cells in hematological malignancies. Leuk Lymphoma 2024:1-23. [PMID: 39656564 DOI: 10.1080/10428194.2024.2438802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
In recent times, the application of CAR-T cell treatment has significantly progressed, showing auspicious treatment outcomes in hematologic malignancies. However, along with these advances, certain limitations and challenges hurdle the widespread utilization of this technology. Recently, CAR-NK cells have gained attention in cancer treatment, as this approach has an important advantage over CART therapy (i.e. no need for HLA matching) for targeting foreign cells. This review aims to explore the benefits of CAR NK cell therapy, and generation strategies, as well as the challenges and limitations hindering the application of CAR NK cells in experimental studies and trials on hematologic malignancies.
Collapse
Affiliation(s)
- Shahrzad Mousavi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Sadat Seyedmehdi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Islamic Republic of Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Freitas-Ribeiro S, Moreira H, da Silva LP, Noro J, Sampaio-Marques B, Ludovico P, Jarnalo M, Horta R, Marques AP, Reis RL, Pirraco RP. Prevascularized spongy-like hydrogels maintain their angiogenic potential after prolonged hypothermic storage. Bioact Mater 2024; 37:253-268. [PMID: 38585489 PMCID: PMC10997873 DOI: 10.1016/j.bioactmat.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
The chronic shortage of organs and tissues for transplantation represents a dramatic burden on healthcare systems worldwide. Tissue engineering offers a potential solution to address these shortages, but several challenges remain, with prevascularization being a critical factor for in vivo survival and integration of tissue engineering products. Concurrently, a different challenge hindering the clinical implementation of such products, regards their efficient preservation from the fabrication site to the bedside. Hypothermia has emerged as a potential solution for this issue due to its milder effects on biologic systems in comparison with other cold preservation methodologies. Its impact on prevascularization, however, has not been well studied. In this work, 3D prevascularized constructs were fabricated using adipose-derived stromal vascular fraction cells and preserved at 4 °C using Hypothermosol or basal culture media (α-MEM). Hypothermosol efficiently preserved the structural and cellular integrity of prevascular networks as compared to constructs before preservation. In contrast, the use of α-MEM led to a clear reduction in prevascular structures, with concurrent induction of high levels of apoptosis and autophagy at the cellular level. In vivo evaluation using a chorioallantoic membrane model demonstrated that, in opposition to α-MEM, Hypothermosol preservation retained the angiogenic potential of constructs before preservation by recruiting a similar number of blood vessels from the host and presenting similar integration with host tissue. These results emphasize the need of studying the impact of preservation techniques on key properties of tissue engineering constructs such as prevascularization, in order to validate and streamline their clinical application.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Moreira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília P. da Silva
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Paula Ludovico
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal
- Faculty of Medicine - University of Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal
- Faculty of Medicine - University of Porto, Portugal
| | - Alexandra P. Marques
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Isiksacan Z, William N, Senturk R, Boudreau L, Wooning C, Castellanos E, Isiksacan S, Yarmush ML, Acker JP, Usta OB. Extended supercooled storage of red blood cells. Commun Biol 2024; 7:765. [PMID: 38914723 PMCID: PMC11196592 DOI: 10.1038/s42003-024-06463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Red blood cell (RBC) transfusions facilitate many life-saving acute and chronic interventions. Transfusions are enabled through the gold-standard hypothermic storage of RBCs. Today, the demand for RBC units is unfulfilled, partially due to the limited storage time, 6 weeks, in hypothermic storage. This time limit stems from high metabolism-driven storage lesions at +1-6 °C. A recent and promising alternative to hypothermic storage is the supercooled storage of RBCs at subzero temperatures, pioneered by our group. Here, we report on long-term supercooled storage of human RBCs at physiological hematocrit levels for up to 23 weeks. Specifically, we assess hypothermic RBC additive solutions for their ability to sustain supercooled storage. We find that a commercially formulated next-generation solution (Erythro-Sol 5) enables the best storage performance and can form the basis for further improvements to supercooled storage. Our analyses indicate that oxidative stress is a prominent time- and temperature-dependent injury during supercooled storage. Thus, we report on improved supercooled storage of RBCs at -5 °C by supplementing Erythro-Sol 5 with the exogenous antioxidants, resveratrol, serotonin, melatonin, and Trolox. Overall, this study shows the long-term preservation potential of supercooled storage of RBCs and establishes a foundation for further improvement toward clinical translation.
Collapse
Affiliation(s)
- Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
| | - Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Rahime Senturk
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Chemical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Luke Boudreau
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
| | - Celine Wooning
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Human Biology, Scripps College, Claremont, CA, USA
| | - Emily Castellanos
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Psychology, Amherst College, Amherst, MA, USA
| | - Salih Isiksacan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Electrical-Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada.
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Children's, Boston, MA, USA.
| |
Collapse
|
5
|
Hu XH, Chen L, Wu H, Tang YB, Zheng QM, Wei XY, Wei Q, Huang Q, Chen J, Xu X. Cell therapy in end-stage liver disease: replace and remodel. Stem Cell Res Ther 2023; 14:141. [PMID: 37231461 DOI: 10.1186/s13287-023-03370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Liver disease is prevalent worldwide. When it reaches the end stage, mortality rises to 50% or more. Although liver transplantation has emerged as the most efficient treatment for end-stage liver disease, its application has been limited by the scarcity of donor livers. The lack of acceptable donor organs implies that patients are at high risk while waiting for suitable livers. In this scenario, cell therapy has emerged as a promising treatment approach. Most of the time, transplanted cells can replace host hepatocytes and remodel the hepatic microenvironment. For instance, hepatocytes derived from donor livers or stem cells colonize and proliferate in the liver, can replace host hepatocytes, and restore liver function. Other cellular therapy candidates, such as macrophages and mesenchymal stem cells, can remodel the hepatic microenvironment, thereby repairing the damaged liver. In recent years, cell therapy has transitioned from animal research to early human studies. In this review, we will discuss cell therapy in end-stage liver disease treatment, especially focusing on various cell types utilized for cell transplantation, and elucidate the processes involved. Furthermore, we will also summarize the practical obstacles of cell therapy and offer potential solutions.
Collapse
Affiliation(s)
- Xin-Hao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lan Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hao Wu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yang-Bo Tang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Qiu-Min Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Huang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Lamers-Kok N, Panella D, Georgoudaki AM, Liu H, Özkazanc D, Kučerová L, Duru AD, Spanholtz J, Raimo M. Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J Hematol Oncol 2022; 15:164. [DOI: 10.1186/s13045-022-01382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractNatural killer (NK) cells are unique immune effectors able to kill cancer cells by direct recognition of surface ligands, without prior sensitization. Allogeneic NK transfer is a highly valuable treatment option for cancer and has recently emerged with hundreds of clinical trials paving the way to finally achieve market authorization. Advantages of NK cell therapies include the use of allogenic cell sources, off-the-shelf availability, and no risk of graft-versus-host disease (GvHD). Allogeneic NK cell therapies have reached the clinical stage as ex vivo expanded and differentiated non-engineered cells, as chimeric antigen receptor (CAR)-engineered or CD16-engineered products, or as combination therapies with antibodies, priming agents, and other drugs. This review summarizes the recent clinical status of allogeneic NK cell-based therapies for the treatment of hematological and solid tumors, discussing the main characteristics of the different cell sources used for NK product development, their use in cell manufacturing processes, the engineering methods and strategies adopted for genetically modified products, and the chosen approaches for combination therapies. A comparative analysis between NK-based non-engineered, engineered, and combination therapies is presented, examining the choices made by product developers regarding the NK cell source and the targeted tumor indications, for both solid and hematological cancers. Clinical trial outcomes are discussed and, when available, assessed in comparison with preclinical data. Regulatory challenges for product approval are reviewed, highlighting the lack of specificity of requirements and standardization between products. Additionally, the competitive landscape and business field is presented. This review offers a comprehensive overview of the effort driven by biotech and pharmaceutical companies and by academic centers to bring NK cell therapies to pivotal clinical trial stages and to market authorization.
Collapse
|
7
|
Freitas-Ribeiro S, Reis RL, Pirraco RP. Long-term and short-term preservation strategies for tissue engineering and regenerative medicine products: state of the art and emerging trends. PNAS NEXUS 2022; 1:pgac212. [PMID: 36714838 PMCID: PMC9802477 DOI: 10.1093/pnasnexus/pgac212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
There is an ever-growing need of human tissues and organs for transplantation. However, the availability of such tissues and organs is insufficient by a large margin, which is a huge medical and societal problem. Tissue engineering and regenerative medicine (TERM) represent potential solutions to this issue and have therefore been attracting increased interest from researchers and clinicians alike. But the successful large-scale clinical deployment of TERM products critically depends on the development of efficient preservation methodologies. The existing preservation approaches such as slow freezing, vitrification, dry state preservation, and hypothermic and normothermic storage all have issues that somehow limit the biomedical applications of TERM products. In this review, the principles and application of these approaches will be summarized, highlighting their advantages and limitations in the context of TERM products preservation.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | - Rui L Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | | |
Collapse
|
8
|
Piao Z, Park JK, Park SJ, Jeong B. Hypothermic Stem Cell Storage Using a Polypeptide Thermogel. Biomacromolecules 2021; 22:5390-5399. [PMID: 34855378 DOI: 10.1021/acs.biomac.1c01472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a polypeptide-based thermogel as a new tool for hypothermic storage of stem cells at ambient temperature (25 °C). Stem cells were suspended in the sol state (10 °C) of an aqueous poly(ethylene glycol)-poly(l-alanine) (PEG-PA) solution (4.0 wt %) in phosphate-buffered saline (PBS), which turned into a stem cell-incorporated gel by a heat-induced sol-to-gel transition. The cell harvesting procedure from the thermogels was simply performed through a gel-to-sol transition by diluting and cooling the system. More than 99% of stem cells died in PBS and Pluronic F127 thermogel (control thermogel) when the cells were stored at 25 °C for 7 days. The cell recovery rate from the PEG-PA thermogel (64%) was significantly greater than that from the commercially available HypoThermosol FRS preservation solution (HTS) (26%). Additionally, the surviving stem cells from the PEG-PA thermogel were healthier than those from HTS in terms of (1) expression of stemness biomarkers (NANOG, OCT4, and SOX2), (2) proliferation rate, and (3) differentiation potentials into osteogenic, chondrogenic, and adipogenic lineages. Membrane stabilization was suggested as a cell protection mechanism in the cytocompatible PEG-PA thermogel. The PEG-PA thermogel provides a convenient cytocompatible way for the storage and recovery of cells and thus is a promising tool for the transportation and short-term banking of cells.
Collapse
Affiliation(s)
- Zhengyu Piao
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
9
|
Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater 2021; 131:97-116. [PMID: 34242810 DOI: 10.1016/j.actbio.2021.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cell-based medicine has made great advances in clinical diagnosis and therapy for various refractory diseases, inducing a growing demand for cell preservation as support technology. However, the bottleneck problems in cell preservation include low efficiency and poor biocompatibility of traditional protectants. In this review, cell preservation technologies are categorized according to storage conditions: hypothermic preservation at 1 °C~35 °C to maintain short-term cell viability that is useful in cell diagnosis and transport, while cryopreservation at -196 °C~-80 °C to maintain long-term cell viability that provides opportunities for therapeutic cell product storage. Firstly, the background and developmental history of the protectants used in the two preservation technologies are briefly introduced. Secondly, the progress in different cellular protection mechanisms for advanced biomaterials are discussed in two preservation technologies. In hypothermic preservation, the hypothermia-induced and extracellular matrix-loss injuries to cells are comprehensively summarized, as well as the recent biomaterials dependent on regulation of cellular ATP level, stabilization of cellular membrane, balance of antioxidant defense system, and supply of mimetic ECM to prolong cell longevity are provided. In cryopreservation, cellular injuries and advanced biomaterials that can protect cells from osmotic or ice injury, and alleviate oxidative stress to allow cell survival are concluded. Last, an insight into the perspectives and challenges of this technology is provided. We envision advanced biocompatible materials for highly efficient cell preservation as critical in future developments and trends to support cell-based medicine. STATEMENT OF SIGNIFICANCE: Cell preservation technologies present a critical role in cell-based applications, and more efficient biocompatible protectants are highly required. This review categorizes cell preservation technologies into hypothermic preservation and cryopreservation according to their storage conditions, and comprehensively reviews the recently advanced biomaterials related. The background, development, and cellular protective mechanisms of these two preservation technologies are respectively introduced and summarized. Moreover, the differences, connections, individual demands of these two technologies are also provided and discussed.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Lei Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Yunqing Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
10
|
Ścieżyńska A, Soszyńska M, Szpak P, Krześniak N, Malejczyk J, Kalaszczyńska I. Influence of Hypothermic Storage Fluids on Mesenchymal Stem Cell Stability: A Comprehensive Review and Personal Experience. Cells 2021; 10:cells10051043. [PMID: 33925059 PMCID: PMC8146384 DOI: 10.3390/cells10051043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells have generated a great deal of interest due to their potential use in regenerative medicine and tissue engineering. Examples illustrating their therapeutic value across various in vivo models are demonstrated in the literature. However, some clinical trials have not proved their therapeutic efficacy, showing that translation into clinical practice is considerably more difficult and discrepancies in clinical protocols can be a source of failure. Among the critical factors which play an important role in MSCs’ therapeutic efficiency are the method of preservation of the stem cell viability and various characteristics during their storage and transportation from the GMP production facility to the patient’s bedside. The cell storage medium should be considered a key factor stabilizing the environment and greatly influencing cell viability and potency and therefore the effectiveness of advanced therapy medicinal product (ATMP) based on MSCs. In this review, we summarize data from 826 publications concerning the effect of the most frequently used cell preservation solutions on MSC potential as cell-based therapeutic medicinal products.
Collapse
Affiliation(s)
- Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (P.S.); (J.M.)
- Laboratory of Experimental Immunology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Marta Soszyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (P.S.); (J.M.)
- Laboratory of Experimental Immunology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Patrycja Szpak
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (P.S.); (J.M.)
| | - Natalia Krześniak
- Department of Plastic Surgery, Medical Centre for Postgraduate Education, 00-416 Warsaw, Poland;
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (P.S.); (J.M.)
- Laboratory of Experimental Immunology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (P.S.); (J.M.)
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| |
Collapse
|
11
|
Rosell-Valle C, Antúnez C, Campos F, Gallot N, García-Arranz M, García-Olmo D, Gutierrez R, Hernán R, Herrera C, Jiménez R, Leyva-Fernández L, Maldonado-Sanchez R, Muñoz-Fernández R, Nogueras S, Ortiz L, Piudo I, Ranchal I, Rodríguez-Acosta A, Segovia C, Fernández-Muñoz B. Evaluation of the effectiveness of a new cryopreservation system based on a two-compartment vial for the cryopreservation of cell therapy products. Cytotherapy 2021; 23:740-753. [PMID: 33714705 DOI: 10.1016/j.jcyt.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND AIMS Successful cell cryopreservation and banking remain a major challenge for the manufacture of cell therapy products, particularly in relation to providing a hermetic, sterile cryovial that ensures optimal viability and stability post-thaw while minimizing exposure to toxic cryoprotective agents, typically dimethyl sulfoxide (Me2SO). METHODS In the present study, the authors evaluated the effectiveness and functionality of Limbo technology (Cellulis S.L., Santoña, Spain). This system provides a hermetic vial with two compartments (one for adding cells with the cryoprotective agent solution and the other for the diluent solution) and an automated defrosting device. Limbo technology (Cellulis S.L.) allows reduction of the final amount of Me2SO, sidestepping washing and dilution steps and favoring standardization. The study was performed in several Good Manufacturing Practice laboratories manufacturing diverse cell therapy products (human mesenchymal stromal cells, hematopoietic progenitor cells, leukapheresis products, fibroblasts and induced pluripotent stem cells). Laboratories compared Limbo technology (Cellulis S.L.) with their standard cryopreservation procedure, analyzing cell recovery, viability, phenotype and functionality. RESULTS Limbo technology (Cellulis S.L.) maintained the viability and functionality of most of the cell products and preserved sterility while reducing the final concentration of Me2SO. CONCLUSIONS Results showed that use of Limbo technology (Cellulis S.L.) offers an overall safe alternative for cell banking and direct infusion of cryopreserved cell products into patients.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain.
| | - Cristina Antúnez
- Unidad de Expansión y Terapia Celular. Centro de Transfusión, Tejidos y Células, Málaga, Spain
| | - Fernando Campos
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | | | | | | | - Rosario Gutierrez
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Concha Herrera
- Unidad de Terapia Celular, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Rosario Jiménez
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laura Leyva-Fernández
- Unidad de Producción Celular, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | | | - Sonia Nogueras
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Lourdes Ortiz
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Inmaculada Piudo
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | - Isidora Ranchal
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | | | - Cristina Segovia
- Unidad de Expansión y Terapia Celular. Centro de Transfusión, Tejidos y Células, Málaga, Spain
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain.
| |
Collapse
|
12
|
Pflaum M, Merhej H, Peredo A, De A, Dipresa D, Wiegmann B, Wolkers W, Haverich A, Korossis S. Hypothermic preservation of endothelialized gas-exchange membranes. Artif Organs 2020; 44:e552-e565. [PMID: 32666514 DOI: 10.1111/aor.13776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/02/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Endothelialization of the blood contacting surfaces of blood-contacting medical devices, such as cardiovascular prostheses or biohybrid oxygenators, represents a plausible strategy for increasing their hemocompatibility. Nevertheless, isolation and expansion of autologous endothelial cells (ECs) usually requires multiple processing steps and time to obtain sufficient cell numbers. This excludes endothelialization from application in acute situations. Off-the-shelf availability of cell-seeded biohybrid devices could be potentially facilitated by hypothermic storage. In this study, the survival of cord-blood-derived endothelial colony forming cells (ECFCs) that were seeded onto polymethylpentene (PMP) gas-exchange membranes and stored for up to 2 weeks in different commercially available and commonly used preservation media was measured. While storage at 4°C in normal growth medium (EGM-2) for 3 days resulted in massive disruption of the ECFC monolayer and a significant decline in viability, ECFC monolayers preserved in Chillprotec could recover after up to 14 days with negligible effects on their integrity and viability. ECFC monolayers preserved in Celsior, HTS-FRS, or Rokepie medium showed a significant decrease in viability after 7 days or longer periods. These results demonstrated the feasibility of hypothermic preservation of ECFC monolayers on gas-exchange membranes for up to 2 weeks, with potential application on the preservation of pre-endothelialized oxygenators and further biohybrid cardiovascular devices.
Collapse
Affiliation(s)
- Michael Pflaum
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Hayan Merhej
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ariana Peredo
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Adim De
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Daniele Dipresa
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany
| | - Willem Wolkers
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Institute of Multiphase Processes, Faculty of Mechanical Engineering, Leibniz University Hannover, Hannover, Germany.,Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany
| | - Sotirios Korossis
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany.,Cardiopulmonary Regenerative Engineering (CARE) Group, Centre for Biological Engineering (CBE), Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
13
|
Freitas-Ribeiro S, Carvalho AF, Costa M, Cerqueira MT, Marques AP, Reis RL, Pirraco RP. Strategies for the hypothermic preservation of cell sheets of human adipose stem cells. PLoS One 2019; 14:e0222597. [PMID: 31613935 PMCID: PMC6793945 DOI: 10.1371/journal.pone.0222597] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Cell Sheet (CS) Engineering is a regenerative medicine strategy proposed for the treatment of injured or diseased organs and tissues. In fact, several clinical trials are underway using CS-based methodologies. However, the clinical application of such cell-based methodologies poses several challenges related with the preservation of CS structure and function from the fabrication site to the bedside. Pausing cells at hypothermic temperatures has been suggested as a valuable method for short-term cell preservation. In this study, we tested the efficiency of two preservation strategies, one using culture medium supplementation with Rokepie and the other using the preservation solution Hypothermosol, in preserving human adipose stromal/stem cells (hASC) CS-like confluent cultures at 4°C, during 3 and 7 days. Both preservation strategies demonstrated excellent ability to preserve cell function during the first 3 days in hypothermia, as demonstrated by metabolic activity results and assessment of extracellular matrix integrity and differentiation potential. At the end of the 7th day of hypothermic incubation, the decrease in cell metabolic activity was more evident for all conditions. Nonetheless, hASC incubated with Rokepie and Hypothermosol retained a higher metabolic activity and extracellular matrix integrity in comparison with unsupplemented cells. Differentiation results for the later time point showed that supplementation with both Rokepie and Hypothermosol rescued adipogenic differentiation potential but only Rokepie was able to preserve hASC osteogenic potential.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Filipa Carvalho
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marina Costa
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana Teixeira Cerqueira
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra Pinto Marques
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rogério Pedro Pirraco
- 3B's Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
14
|
Effect of Antifreeze Glycoproteins on Organoid Survival during and after Hypothermic Storage. Biomolecules 2019; 9:biom9030110. [PMID: 30893938 PMCID: PMC6468685 DOI: 10.3390/biom9030110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 11/23/2022] Open
Abstract
We study the effect of antifreeze glycoproteins (AFGPs) on the survival of organoids under hypothermic conditions. We find that the survival of organoids in cold conditions depends on their developmental stage. Mature organoids die within 24 h when being stored at 4 °C, while cystic organoids can survive up to 48 h. We find that in the presence of AFGPs, the organoid survival is prolonged up to 72 h, irrespective of their developmental stage. Fluorescence microscopy experiments reveal that the AFGPs predominately localize at the cell surface and cover the cell membranes. Our findings support a mechanism in which the positive effect of AFGPs on cell survival during hypothermic storage involves the direct interaction of AFGPs with the cell membrane. Our research highlights organoids as an attractive multicellular model system for studying the action of AFGPs that bridges the gap between single-cell and whole-organ studies.
Collapse
|
15
|
Clinically Relevant Solution for the Hypothermic Storage and Transportation of Human Multipotent Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:5909524. [PMID: 30805009 PMCID: PMC6360551 DOI: 10.1155/2019/5909524] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/23/2018] [Indexed: 01/27/2023] Open
Abstract
The wide use of human multipotent mesenchymal stromal cells (MSCs) in clinical trials requires a full-scale safety and identity evaluation of the cellular product and subsequent transportation between research/medical centres. This necessitates the prolonged hypothermic storage of cells prior to application. The development of new, nontoxic, and efficient media, providing high viability and well-preserved therapeutic properties of MSCs during hypothermic storage, is highly relevant for a successful clinical outcome. In this study, a simple and effective trehalose-based solution was developed for the hypothermic storage of human bone marrow MSC suspensions for further clinical applications. Human bone marrow MSCs were stored at 4°C for 24, 48, and 72 hrs in the developed buffered trehalose solution and compared to several research and clinical grade media: Plasma-Lyte® 148, HypoThermosol® FRS, and Ringer's solution. After the storage, the preservation of viability, identity, and therapeutically associated properties of MSCs were assessed. The hypothermic storage of MSCs in the new buffered trehalose solution provided significantly higher MSC recovery rates and ability of cells for attachment and further proliferation, compared to Plasma-Lyte® 148 and Ringer's solution, and was comparable to research-grade HypoThermosol® FRS. There were no differences in the immunophenotype, osteogenic, and adipogenic differentiation and the immunomodulatory properties of MSCs after 72 hrs of cold storage in these solutions. The obtained results together with the confirmed therapeutic properties of trehalose previously described provide sufficient evidence that the developed trehalose medium can be applied as a low-cost and efficient solution for the hypothermic storage of MSC suspensions, with a high potential for translation into clinical practice.
Collapse
|
16
|
Beckmann E, Kensah G, Neumann A, Benecke N, Martens A, Martin U, Gruh I, Haverich A. Prolonged myocardial protection during hypothermic storage: potential application for cardiac surgery and myocardial tissue engineering. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Wang W, Penland L, Gokce O, Croote D, Quake SR. High fidelity hypothermic preservation of primary tissues in organ transplant preservative for single cell transcriptome analysis. BMC Genomics 2018; 19:140. [PMID: 29439658 PMCID: PMC5811979 DOI: 10.1186/s12864-018-4512-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 01/31/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND High-fidelity preservation strategies for primary tissues are in great demand in the single cell RNAseq community. A reliable method would greatly expand the scope of feasible multi-site collaborations and maximize the utilization of technical expertise. When choosing a method, standardizability and fidelity are important factors to consider due to the susceptibility of single-cell RNAseq analysis to technical noise. Existing approaches such as cryopreservation and chemical fixation are less than ideal for failing to satisfy either or both of these standards. RESULTS Here we propose a new strategy that leverages preservation schemes developed for organ transplantation. We evaluated the strategy by storing intact mouse kidneys in organ transplant preservative solution at hypothermic temperature for up to 4 days (6 h, 1, 2, 3, and 4 days), and comparing the quality of preserved and fresh samples using FACS and single cell RNAseq. We demonstrate that the strategy effectively maintained cell viability, transcriptome integrity, cell population heterogeneity, and transcriptome landscape stability for samples after up to 3 days of preservation. The strategy also facilitated the definition of the diverse spectrum of kidney resident immune cells, to our knowledge the first time at single cell resolution. CONCLUSIONS Hypothermic storage of intact primary tissues in organ transplant preservative maintains the quality and stability of the transcriptome of cells for single cell RNAseq analysis. The strategy is readily generalizable to primary specimens from other tissue types for single cell RNAseq analysis.
Collapse
Affiliation(s)
- Wanxin Wang
- Department of Bioengineering, Stanford University, James H Clark Center, E300, 318 Campus Drive, Stanford, CA 94305 USA
| | - Lolita Penland
- Department of Bioengineering, Stanford University, James H Clark Center, E300, 318 Campus Drive, Stanford, CA 94305 USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| | - Ozgun Gokce
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305 USA
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians Universität LMU, 81377 Munich, Germany
| | - Derek Croote
- Department of Bioengineering, Stanford University, James H Clark Center, E300, 318 Campus Drive, Stanford, CA 94305 USA
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, James H Clark Center, E300, 318 Campus Drive, Stanford, CA 94305 USA
- Department of Applied Physics, Stanford University, James H Clark Center, E300, 318 Campus Drive, Stanford, CA 94305 USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
18
|
Boyce ST, Lloyd CM, Kleiner MC, Swope VB, Abdel-Malek Z, Supp DM. Restoration of cutaneous pigmentation by transplantation to mice of isogeneic human melanocytes in dermal-epidermal engineered skin substitutes. Pigment Cell Melanoma Res 2017. [PMID: 28640957 DOI: 10.1111/pcmr.12609] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autologous engineered skin substitutes (ESS) containing melanocytes (hM) may restore pigmentation and photoprotection after grafting to full-thickness skin wounds. In this study, normal hM were isolated from discard skin, propagated with or without tyrosinase inhibitors, cryopreserved, recovered into culture, and added to ESS (ESS-P) before transplantation. ESS-P were incubated in either UCMC160/161 or UCDM1 medium, scored for hM densities, and grafted to mice. The results showed that sufficient hM can be propagated to expand donor tissue by 100-fold; incubation of hM in tyrosinase inhibitors reduced pigment levels but did not change hM recovery after cryopreservation; hM densities in ESS-P were greater after incubation in UCDM1 than UCMC160 medium; hM were localized to the dermal-epidermal junction of ESS-P; and UCDM1 medium promoted earlier pigment distribution and density. These results indicate that hM can be incorporated into ESS-P efficiently to restore cutaneous pigmentation and UV photoprotection after full-thickness skin loss conditions.
Collapse
Affiliation(s)
- Steven T Boyce
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA.,Research Department, Shriners Hospitals for Children, Cincinnati, OH, USA
| | - Christopher M Lloyd
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA.,Research Department, Shriners Hospitals for Children, Cincinnati, OH, USA
| | - Mark C Kleiner
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA.,Research Department, Shriners Hospitals for Children, Cincinnati, OH, USA
| | - Viki B Swope
- Department of Dermatology, University of Cincinnati, Cincinnati, OH, USA
| | - Zalfa Abdel-Malek
- Department of Dermatology, University of Cincinnati, Cincinnati, OH, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA.,Research Department, Shriners Hospitals for Children, Cincinnati, OH, USA
| |
Collapse
|
19
|
Amer MH, Rose FRAJ, Shakesheff KM, Modo M, White LJ. Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regen Med 2017; 2:23. [PMID: 29302358 PMCID: PMC5677964 DOI: 10.1038/s41536-017-0028-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made during the past decade towards the clinical adoption of cell-based therapeutics. However, existing cell-delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells persisting at the site of injection within days of transplantation. Although consideration is being increasingly given to clinical trial design, little emphasis has been given to tools and protocols used to administer cells. The different behaviours of various cell types, dosing accuracy, precise delivery, and cell retention and viability post-injection are some of the obstacles facing clinical translation. For efficient injectable cell transplantation, accurate characterisation of cellular health post-injection and the development of standardised administration protocols are required. This review provides an overview of the challenges facing effective delivery of cell therapies, examines key studies that have been carried out to investigate injectable cell delivery, and outlines opportunities for translating these findings into more effective cell-therapy interventions.
Collapse
Affiliation(s)
- Mahetab H. Amer
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | | | | | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA USA
| | - Lisa J. White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
20
|
Woods EJ, Thirumala S, Badhe-Buchanan SS, Clarke D, Mathew AJ. Off the shelf cellular therapeutics: Factors to consider during cryopreservation and storage of human cells for clinical use. Cytotherapy 2017; 18:697-711. [PMID: 27173747 DOI: 10.1016/j.jcyt.2016.03.295] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/28/2022]
Abstract
The field of cellular therapeutics has immense potential, affording an exciting array of applications in unmet medical needs. One of several key issues is an emphasis on getting these therapies from bench to bedside without compromising safety and efficacy. The successful commercialization of cellular therapeutics will require many to extend the shelf-life of these therapies beyond shipping "fresh" at ambient or chilled temperatures for "just in time" infusion. Cryopreservation is an attractive option and offers potential advantages, such as storing and retaining patient samples in case of a relapse, banking large quantities of allogeneic cells for broader distribution and use and retaining testing samples for leukocyte antigen typing and matching. However, cryopreservation is only useful if cells can be reanimated to physiological life with negligible loss of viability and functionality. Also critical is the logistics of storing, processing and transporting cells in clinically appropriate packaging systems and storage devices consistent with quality and regulatory standards. Rationalized approaches to develop commercial-scale cell therapies require an efficient cryopreservation system that provides the ability to inventory standardized products with maximized shelf life for later on-demand distribution and use, as well as a method that is scientifically sound and optimized for the cell of interest. The objective of this review is to bridge this gap between the basic science of cryobiology and its application in this context by identifying several key aspects of cryopreservation science in a format that may be easily integrated into mainstream cell therapy manufacture.
Collapse
Affiliation(s)
- Erik J Woods
- Cook Regentec, Indianapolis, IN, USA; Indiana University School of Medicine, Indianapolis, IN, USA; Process and Product Development Subcommittee, International Society for Cellular Therapy, Vancouver, BC, Canada.
| | | | | | - Dominic Clarke
- Process and Product Development Subcommittee, International Society for Cellular Therapy, Vancouver, BC, Canada; Charter Medical Ltd, Winston-Salem, NC, USA
| | - Aby J Mathew
- Process and Product Development Subcommittee, International Society for Cellular Therapy, Vancouver, BC, Canada; BioLife Solutions, Bothell, WA, USA
| |
Collapse
|
21
|
Yang J, Pan C, Sui X, Cai N, Zhang J, Zhu Y, Zhang L. The hypothermic preservation of mammalian cells with assembling extracellular-matrix-mimetic microparticles. J Mater Chem B 2017; 5:1535-1541. [DOI: 10.1039/c6tb03206k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reversible assembly of magnetic alginate microparticles could mimic the extracellular matrix for efficient and facile hypothermic cell preservation.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Chao Pan
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xiaojie Sui
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Nana Cai
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Jiamin Zhang
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Yingnan Zhu
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
22
|
Williams LB, Co C, Koenig JB, Tse C, Lindsay E, Koch TG. Response to Intravenous Allogeneic Equine Cord Blood-Derived Mesenchymal Stromal Cells Administered from Chilled or Frozen State in Serum and Protein-Free Media. Front Vet Sci 2016; 3:56. [PMID: 27500136 PMCID: PMC4956649 DOI: 10.3389/fvets.2016.00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023] Open
Abstract
Equine mesenchymal stromal cells (MSC) are commonly transported, chilled or frozen, to veterinary clinics. These MSC must remain viable and minimally affected by culture, transport, or injection processes. The safety of two carrier solutions developed for optimal viability and excipient use were evaluated in ponies, with and without allogeneic cord blood-derived (CB) MSC. We hypothesized that neither the carrier solutions nor CB-MSC would elicit measurable changes in clinical, hematological, or biochemical parameters. In nine ponies (study 1), a bolus of HypoThermosol® FRS (HTS-FRS), CryoStor® CS10 (CS10), or saline was injected IV (n = 3/treatment). Study 2, following a 1-week washout period, 5 × 107 pooled allogeneic CB-MSCs were administered IV in HTS-FRS following 24 h simulated chilled transport. Study 3, following another 1-week washout period 5 × 107 pooled allogeneic CB-MSCs were administered IV in CS10 immediately after thawing. Nine ponies received CB-MSCs in study 2 and 3, and three ponies received the cell carrier media without cells. CB-MSCs were pooled in equal numbers from five unrelated donors. In all studies, ponies were monitored with physical examination, and blood collection for 7 days following injection. CD4 and CD8 lymphocyte populations were also evaluated in each blood sample. In all three studies, physical exam, complete blood cell count, serum biochemistry, and coagulation panel did not deviate from established normal ranges. Proportions of CD4+ and CD8+ lymphocytes increased at 168 h postinjection in CB-MSC treatment groups regardless of the carrier solution. Decreases in CD4+/CD8+ double positive populations were observed at 24 and 72 h in CB-MSC-treated animals. There was no difference in viability between CB-MSCs suspended in HTS-FRS and CS10. HTS-FRS and CS10 used for low volume excipient injection of MSC suspensions were not associated with short-term adverse reactions. HTS-FRS and CS10 both adequately maintain CB-MSC viability following hypothermic or frozen simulated transport, respectively. CB-MSCs do not elicit clinical abnormalities, but allogeneic stimulation of CD4+ and CD8+ lymphocyte populations may occur. Future studies should include in vitro or in vivo evaluation of cell-mediated or adaptive immunity to autologous, identical allogeneic, or MSC originating from additional unrelated individuals in order to better characterize this response.
Collapse
Affiliation(s)
- Lynn B Williams
- Department of Biomedical Sciences, University of Guelph , Guelph, ON , Canada
| | - Carmon Co
- Department of Biomedical Sciences, University of Guelph , Guelph, ON , Canada
| | - Judith B Koenig
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph , Guelph, ON , Canada
| | - Crystal Tse
- Department of Biomedical Sciences, University of Guelph , Guelph, ON , Canada
| | - Emily Lindsay
- Department of Biomedical Sciences, University of Guelph , Guelph, ON , Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, University of Guelph , Guelph, ON , Canada
| |
Collapse
|
23
|
Baust JG, Gage AA, Klossner D, Clarke D, Miller R, Cohen J, Katz A, Polascik T, Clarke H, Baust JM. Issues Critical to the Successful Application of Cryosurgical Ablation of the Prostate. Technol Cancer Res Treat 2016; 6:97-109. [PMID: 17375972 DOI: 10.1177/153303460700600206] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The techniques of present-day cryosurgery performed with multiprobe freezing apparatus and advanced imaging techniques yield predictable and encouraging results in the treatment of prostatic and renal cancers. Nevertheless, and not unique to cryosurgical treatment, the rates of persistent disease demonstrate the need for improvement in technique and emphasize the need for proper management of the therapeutic margin. The causes of persistent disease often relate to a range of factors including selection of patients, understanding of the extent of the tumor, limitations of the imaging techniques, and failure to freeze the tumor periphery in an efficacious manner. Of these diverse factors, the one most readily managed, but subject to therapeutic error, is the technique of freezing the tumor and appropriate margin to a lethal temperature [Baust, J. G., Gage, A. A. The Molecular Basis of Cryosurgery. BJU Int 95, 1187–1191 (2005)]. This article describes the recent experiments that examine the molecular basis of cryosurgery, clarifies the actions of the components of the freeze-thaw cycle, and defines the resultant effect on the cryogenic lesion from a clinical perspective. Further, this review addresses the important issue of management of the margin of the tumor through adjunctive therapy. Accordingly, a goal of this review is to identify the technical and future adjunctive therapeutic practices that should improve the efficacy of cryoablative techniques for the treatment of malignant lesions.
Collapse
Affiliation(s)
- J G Baust
- Institute of Biomedical Technology, SUNY Binghamton, Binghamton, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Correia C, Koshkin A, Carido M, Espinha N, Šarić T, Lima PA, Serra M, Alves PM. Effective Hypothermic Storage of Human Pluripotent Stem Cell-Derived Cardiomyocytes Compatible With Global Distribution of Cells for Clinical Applications and Toxicology Testing. Stem Cells Transl Med 2016; 5:658-69. [PMID: 27025693 DOI: 10.5966/sctm.2015-0238] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. SIGNIFICANCE The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs.
Collapse
Affiliation(s)
- Cláudia Correia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Alexey Koshkin
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Madalena Carido
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Nuno Espinha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Pedro A Lima
- Nova Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Margarida Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Paula M Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
25
|
Rossetti T, Nicholls F, Modo M. Intracerebral Cell Implantation: Preparation and Characterization of Cell Suspensions. Cell Transplant 2015; 25:645-64. [PMID: 26720923 DOI: 10.3727/096368915x690350] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intracerebral cell transplantation is increasingly finding a clinical translation. However, the number of cells surviving after implantation is low (5-10%) compared to the number of cells injected. Although significant efforts have been made with regard to the investigation of apoptosis of cells after implantation, very little optimization of cell preparation and administration has been undertaken. Moreover, there is a general neglect of the biophysical aspects of cell injection. Cell transplantation can only be an efficient therapeutic approach if an optimal transfer of cells from the dish to the brain can be ensured. We therefore focused on the in vitro aspects of cell preparation of a clinical-grade human neural stem cell (NSC) line for intracerebral cell implantation. NSCs were suspended in five different vehicles: phosphate-buffered saline (PBS), Dulbecco's modified Eagle medium (DMEM), artificial cerebral spinal fluid (aCSF), HypoThermosol, and Pluronic. Suspension accuracy, consistency, and cell settling were determined for different cell volume fractions in addition to cell viability, cell membrane damage, and clumping. Maintenance of cells in suspension was evaluated while being stored for 8 h on ice, at room temperature, or physiological normothermia. Significant differences between suspension vehicles and cellular volume fractions were evident. HypoThermosol and Pluronic performed best, with PBS, aCSF, and DMEM exhibiting less consistency, especially in maintaining a suspension and preserving viability under different storage conditions. These results provide the basis to further investigate these preparation parameters during the intracerebral delivery of NSCs to provide an optimized delivery process that can ensure an efficient clinical translation.
Collapse
Affiliation(s)
- Tiziana Rossetti
- Departments of Radiology and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
26
|
Xu Y, Mawatari K, Konno T, Kitamori T, Ishihara K. Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23089-23097. [PMID: 26436637 DOI: 10.1021/acsami.5b06796] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Currently, continuous culture/passage and cryopreservation are two major, well-established methods to provide cultivated mammalian cells for experiments in laboratories. Due to the lack of flexibility, however, both laboratory-oriented methods are unable to meet the need for rapidly growing cell-based applications, which require cell supply in a variety of occasions outside of laboratories. Herein, we report spontaneous packaging and hypothermic storage of mammalian cells under refrigerated (4 °C) and ambient conditions (25 °C) using a cell-membrane-mimetic methacryloyloxyethyl phosphorylcholine (MPC) polymer hydrogel incorporated within a glass microchip. Its capability for hypothermic storage of cells was comparatively evaluated over 16 days. The results reveal that the cytocompatible MPC polymer hydrogel, in combination with the microchip structure, enabled hypothermic storage of cells with quite high viability, high intracellular esterase activity, maintained cell membrane integrity, and small morphological change for more than 1 week at 4 °C and at least 4 days at 25 °C. Furthermore, the stored cells could be released from the hydrogel and exhibited the ability to adhere to a surface and achieve confluence under standard cell culture conditions. Both hypothermic storage conditions are ordinary flexible conditions which can be easily established in places outside of laboratories. Therefore, cell packaging and storage using the hydrogel incorporated within the microchip would be a promising miniature and portable solution for flexible supply and delivery of small amounts of cells from bench to bedside.
Collapse
Affiliation(s)
- Yan Xu
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University , 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering, The University of Tokyo , 7-3-1, Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Tomohiro Konno
- Department of Materials Engineering, School of Engineering, The University of Tokyo , 7-3-1, Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering, The University of Tokyo , 7-3-1, Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo , 7-3-1, Hongo, Bunkyo, Tokyo, 113-8656, Japan
| |
Collapse
|
27
|
Duret C, Moreno D, Balasiddaiah A, Roux S, Briolotti P, Raulet E, Herrero A, Ramet H, Biron-Andreani C, Gerbal-Chaloin S, Ramos J, Navarro F, Hardwigsen J, Maurel P, Aldabe R, Daujat-Chavanieu M. Cold Preservation of Human Adult Hepatocytes for Liver Cell Therapy. Cell Transplant 2015; 24:2541-55. [PMID: 25622096 DOI: 10.3727/096368915x687020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte transplantation is a promising alternative therapy for the treatment of hepatic failure, hepatocellular deficiency, and genetic metabolic disorders. Hypothermic preservation of isolated human hepatocytes is potentially a simple and convenient strategy to provide on-demand hepatocytes in sufficient quantity and of the quality required for biotherapy. In this study, first we assessed how cold storage in three clinically safe preservative solutions (UW, HTS-FRS, and IGL-1) affects the viability and in vitro functionality of human hepatocytes. Then we evaluated whether such cold-preserved human hepatocytes could engraft and repopulate damaged livers in a mouse model of liver failure. Human hepatocytes showed comparable viabilities after cold preservation in the three solutions. The ability of fresh and cold-stored hepatocytes to attach to a collagen substratum and to synthesize and secrete albumin, coagulation factor VII, and urea in the medium after 3 days in culture was also equally preserved. Cold-stored hepatocytes were then transplanted in the spleen of immunodeficient mice previously infected with adenoviruses containing a thymidine kinase construct and treated with a single dose of ganciclovir to induce liver injury. Engraftment and liver repopulation were monitored over time by measuring the blood level of human albumin and by assessing the expression of specific human hepatic mRNAs and proteins in the recipient livers by RT-PCR and immunohistochemistry, respectively. Our findings show that cold-stored human hepatocytes in IGL-1 and HTS-FRS preservative solutions can survive, engraft, and proliferate in a damaged mouse liver. These results demonstrate the usefulness of human hepatocyte hypothermic preservation for cell transplantation.
Collapse
Affiliation(s)
- Cedric Duret
- INSERM, U1040, Institut de Recherche en Biothérapie, F-34295 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Veronesi E, Burns JS, Murgia A, Candini O, Rasini V, Mastrolia I, Catani F, Paolucci P, Dominici M. cGMP-compliant transportation conditions for a prompt therapeutic use of marrow mesenchymal stromal/stem cells. Methods Mol Biol 2015; 1283:109-122. [PMID: 25108453 DOI: 10.1007/7651_2014_105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We recently described conditions for safe 18-h manufacturer-to-patient transportation of freshly harvested hBM-MSC expanded under cGMP protocols using human platelet lysate (hPL), that allowed prompt use as an advanced therapeutic medicinal product. Here we outline important considerations when comparing different transportation conditions, highlighting that although cell transportation may involve a reduction in viability, this did not undermine the ultimate bone-forming regenerative potential of the cGMP-hBM-MSC population.
Collapse
Affiliation(s)
- Elena Veronesi
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo, 71, 41100, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Baust JG, Gage AA, Bjerklund Johansen TE, Baust JM. Mechanisms of cryoablation: clinical consequences on malignant tumors. Cryobiology 2013; 68:1-11. [PMID: 24239684 DOI: 10.1016/j.cryobiol.2013.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 02/09/2023]
Abstract
While the destructive actions of a cryoablative freeze cycle are long recognized, more recent evidence has revealed a complex set of molecular responses that provides a path for optimization. The importance of optimization relates to the observation that the cryosurgical treatment of tumors yields success only equivalent to alternative therapies. This is also true of all existing therapies of cancer, which while applied with curative intent; provide only disease suppression for periods ranging from months to years. Recent research has led to an important new understanding of the nature of cancer, which has implications for primary therapies, including cryosurgical treatment. We now recognize that a cancer is a highly organized tissue dependent on other supporting cells for its establishment, growth and invasion. Further, cancer stem cells are now recognized as an origin of disease and prove resistant to many treatment modalities. Growth is dependent on endothelial cells essential to blood vessel formation, fibroblasts production of growth factors, and protective functions of cells of the immune system. This review discusses the biology of cancer, which has profound implications for the diverse therapies of the disease, including cryosurgery. We also describe the cryosurgical treatment of diverse cancers, citing results, types of adjunctive therapy intended to improve clinical outcomes, and comment briefly on other energy-based ablative therapies. With an expanded view of tumor complexity we identify those elements key to effective cryoablation and strategies designed to optimize cancer cell mortality with a consideration of the now recognized hallmarks of cancer.
Collapse
Affiliation(s)
- J G Baust
- Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY 13902, United States; Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, United States.
| | - A A Gage
- Department of Surgery, State University of New York at Buffalo, Medical School, Buffalo, NY 14214, United States
| | | | - J M Baust
- CPSI Biotech, Owego, NY 13827, United States
| |
Collapse
|
30
|
Low temperature cell pausing: an alternative short-term preservation method for use in cell therapies including stem cell applications. Biotechnol Lett 2013; 36:201-9. [PMID: 24062136 DOI: 10.1007/s10529-013-1349-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/10/2013] [Indexed: 01/10/2023]
Abstract
Encouraging advances in cell therapies have produced a requirement for an effective short-term cell preservation method, enabling time for quality assurance testing and transport to their clinical destination. Low temperature pausing of cells offers many advantages over cryopreservation, including the ability to store cells at scale, reduced cost and a simplified procedure with increased reliability. This review will focus on the importance of developing a short-term cell preservation platform as well highlighting the major successes of cell pausing and the key challenges which need addressing, to enable application of the process to therapeutically relevant cells.
Collapse
|
31
|
Renzi S, Lombardo T, Dotti S, Dessì SS, De Blasio P, Ferrari M. Mesenchymal Stromal Cell Cryopreservation. Biopreserv Biobank 2012; 10:276-81. [DOI: 10.1089/bio.2012.0005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sabrina Renzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Brescia, Italy
| | - Tina Lombardo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Brescia, Italy
| | - Silvia Dotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Brescia, Italy
| | | | | | - Maura Ferrari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Brescia, Italy
| |
Collapse
|
32
|
Nikolaev NI, Liu Y, Hussein H, Williams DJ. The sensitivity of human mesenchymal stem cells to vibration and cold storage conditions representative of cold transportation. J R Soc Interface 2012; 9:2503-15. [PMID: 22628214 DOI: 10.1098/rsif.2012.0271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the current study, the mechanical and hypothermic damage induced by vibration and cold storage on human mesenchymal stem cells (hMSCs) stored at 2-8°C was quantified by measuring the total cell number and cell viability after exposure to vibration at 50 Hz (peak acceleration 140 m s(-2) and peak displacement 1.4 mm), 25 Hz (peak acceleration 140 m s(-2), peak displacement 5.7 mm), 10 Hz (peak acceleration 20 m s(-2), peak displacement 5.1 mm) and cold storage for several durations. To quantify the viability of the cells, in addition to the trypan blue exclusion method, the combination of annexin V-FITC and propidium iodide was applied to understand the mode of cell death. Cell granularity and a panel of cell surface markers for stemness, including CD29, CD44, CD105 and CD166, were also evaluated for each condition. It was found that hMSCs were sensitive to vibration at 25 Hz, with moderate effects at 50 Hz and no effects at 10 Hz. Vibration at 25 Hz also increased CD29 and CD44 expression. The study further showed that cold storage alone caused a decrease in cell viability, especially after 48 h, and also increased CD29 and CD44 and attenuated CD105 expressions. Cell death would most likely be the consequence of membrane rupture, owing to necrosis induced by cold storage. The sensitivity of cells to different vibrations within the mechanical system is due to a combined effect of displacement and acceleration, and hMSCs with a longer cold storage duration were more susceptible to vibration damage, indicating a coupling between the effects of vibration and cold storage.
Collapse
Affiliation(s)
- N I Nikolaev
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | | | | | | |
Collapse
|
33
|
Ginis I, Grinblat B, Shirvan MH. Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Tissue Eng Part C Methods 2012; 18:453-63. [PMID: 22196031 DOI: 10.1089/ten.tec.2011.0395] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Achievements in tissue engineering using mesenchymal stem cells (MSC) demand a clinically acceptable "off-the-shelf" cell therapy product. Efficacy of cryopreservation of human bone marrow-derived MSC in clinically safe, animal product-free medium containing 2%, 5%, and 10% dimethyl sulfoxide (DMSO) was evaluated by measuring cell recovery, viability, apoptosis, proliferation rate, expression of a broad panel of MSC markers, and osteogenic differentiation. Rate-controlled freezing in CryoStor media was performed in a programmable cell freezer. About 95% of frozen cells were recovered as live cells after freezing in CryoStor solutions with 5% and 10% DMSO followed by storage in liquid nitrogen for 1 month. Cell recovery after 5 months storage was 72% and 80% for 5% and 10% DMSO, respectively. Measurements of caspase 3 activity demonstrated that 15.5% and 12.8% of cells after 1 month and 18.3% and 12.9% of cells after 5 months storage in 5% and 10% DMSO, respectively, were apoptotic. Proliferation of MSC recovered after cryopreservation was measured during 2 weeks post-plating. Proliferation rate was not compromised and was even enhanced. Cryopreservation did not alter expression of MSC markers. Quantitative analysis of alkaline phosphatase (ALP) activity, ALP surface expression and Ca⁺⁺ deposition in previously cryopreserved MSC and then differentiated for 3 weeks in osteogenic medium demonstrated the same degree of osteogenic differentiation as in unfrozen parallel cultures. Cell viability and functional parameters were analyzed in MSC after short-term storage at 4°C in HypoThermosol-FRS solution, also free of animal products. Hypothermic storage for 2 and 4 days resulted in about 100% and 85% cell recovery, respectively, less than 10% of apoptotic cells, and normal proliferation, marker expression, and osteogenic potential. Overall, our results demonstrate that human MSC could be successfully cryopreserved for banking and clinical applications and delivered to the bedside in clinically safe protective reagents.
Collapse
Affiliation(s)
- Irene Ginis
- Cell Therapy Laboratory, Teva Pharmaceutical Industries, Petach Tikva, Israel.
| | | | | |
Collapse
|
34
|
Corwin WL, Baust JM, Baust JG, Van Buskirk RG. The unfolded protein response in human corneal endothelial cells following hypothermic storage: implications of a novel stress pathway. Cryobiology 2011; 63:46-55. [PMID: 21549109 DOI: 10.1016/j.cryobiol.2011.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 04/15/2011] [Accepted: 04/20/2011] [Indexed: 01/22/2023]
Abstract
Human corneal endothelial cells (HCEC) have become increasingly important for a range of eye disease treatment therapies. Accordingly, a more detailed understanding of the processing and preservation associated stresses experienced by corneal cells might contribute to improved therapeutic outcomes. To this end, the unfolded protein response (UPR) pathway was investigated as a potential mediator of corneal cell death in response to hypothermic storage. Once preservation-induced failure had begun in HCECs stored at 4°C, it was noted that necrosis accounted for the majority of cell death but with significant apoptotic involvement, peaking at several hours post-storage (4-8h). Western blot analysis demonstrated changes associated with apoptotic activation (caspase 9, caspase 3, and PARP cleavage). Further, the activation of the UPR pathway was observed through increased and sustained levels of ER folding and chaperone proteins (Bip, PDI, and ERO1-Lα) in samples experiencing significant cell death. Modulation of the UPR pathway using the specific inhibitor, salubrinal, resulted in a 2-fold increase in cell survival in samples experiencing profound cold-induced failure. Furthermore, this increased cell survival was associated with increased membrane integrity, cell attachment, and decreased necrotic cell death populations. Conversely, addition of the UPR inducer, tunicamycin, during cold exposure resulted in a significant decrease in HCEC survival during the recovery period. These data implicate for the first time that this novel cell stress pathway may be activated in HCEC as a result of the complex stresses associated with hypothermic exposure. The data suggest that the targeted control of the UPR pathway during both processing and preservation protocols may improve cell survival and function of HCEC thus improving the clinical utility of these cells as well as whole human corneas.
Collapse
Affiliation(s)
- William L Corwin
- Institute of Biomedical Technology, Binghamton University, NY 13902, USA
| | | | | | | |
Collapse
|
35
|
Improving the long-term storage of a mammalian biosensor cell line via genetic engineering. Biotechnol Bioeng 2010; 106:474-81. [PMID: 20178117 DOI: 10.1002/bit.22700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The unique properties of mammalian cells make them valuable for a variety of applications in medicine, industry, and diagnostics. However, the utility of such cells is restricted due to the difficulty in storing them non-frozen for an extended time and still maintaining their stability and responsiveness. In order to extend the active life span of a mammalian biosensor cell line at room and refrigerated temperatures, we have over expressed genes that are reported to provide protection from apoptosis, stress, or oxidation. We demonstrated that over expression of genes from the extremophile, Artemia franciscana, as well as GADD45beta, extends room-temperature storage of fully active cells 3.5-fold, while over production of several anti-apoptotic proteins extended 4 degrees C storage 2- to 3-fold. Methodologies like these that improve the stability of mammalian-cell-based technologies in the absence of freezers may enable widespread use of these tools in applications that have been considered impractical based solely on limited storage characteristics.
Collapse
|
36
|
Yang Y, Honaramooz A. Effects of medium and hypothermic temperatures on preservation of isolated porcine testis cells. Reprod Fertil Dev 2010; 22:523-32. [PMID: 20188025 DOI: 10.1071/rd09206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 09/14/2009] [Indexed: 12/30/2022] Open
Abstract
The effects of medium and hypothermic temperatures on testis cells were investigated to develop a strategy for their short-term preservation. Testes from 1-week-old piglets were enzymatically dissociated for cell isolation. In Experiment 1, testis cells were stored at either room (RT) or refrigeration (RG) temperature for 6 days in one of 13 different media. Live cell recovery was assayed daily using trypan blue exclusion. In Experiment 2, three media at RG were selected for immunocytochemical and in vitro culture studies. Live cell recovery was also assayed daily for 6 days using both trypan blue exclusion and a fluorochrome assay kit. For all media tested, significantly or numerically more live cells were maintained at RG than RT. On preservation Day 3 at RG (cell isolation day as Day 0), 20% FBS-Leibovitz resulted in the highest live cell recovery (89.5 + or - 1.7%) and DPBS in the lowest (60.3 + or - 1.9%). On Day 6 at RG, 20% FBS- Leibovitz also resulted in the best preservation efficiency with 80.9 + or - 1.8% of Day 0 live cells recovered. There was no difference in live cell recovery detected by the two viability assays. After preservation, the proportion of gonocytes did not change, whereas that of Sertoli and peritubular cells increased and decreased, respectively. After 6 days of hypothermic preservation, testis cells showed similar culture potential to fresh cells. These results show that testis cells can be preserved for 6 days under hypothermic conditions with a live cell recovery of more than 80% and after-storage viability of 88%.
Collapse
Affiliation(s)
- Yanfei Yang
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To describe the response of prostate cancer to thermal therapies with an emphasis on cryoablative techniques. RECENT FINDINGS Long-term follow-up studies demonstrate clearly the effectiveness of the use of modern cryoablative techniques in the management of prostate cancer. Recently published American Urology Association Best Practice Guidelines identify prostate cryoablation as both primary and salvage therapies. Recent findings demonstrate the effectiveness of -40 degrees C exposure as lethal to prostate cancer genotypes following a double freeze-thaw encounter. In addition, the use of adjunctive agents to sensitize the cancer to freezing is reported. SUMMARY Thermal therapeutic options, especially cryoablation, are of growing interest for the treatment of prostatic and renal cancers. The methods of application of cryoablative therapy and the mechanisms of cell death that are attendant to the freezing-thaw encounter are clearly understood. Research focused on the development of freeze sensitizing agents that work adjunctively is of central interest in furthering the efficacy of this therapy.
Collapse
|
38
|
Ostrowska A, Gu K, Bode DC, Van Buskirk RG. Hypothermic storage of isolated human hepatocytes: a comparison between University of Wisconsin solution and a hypothermosol platform. Arch Toxicol 2009; 83:493-502. [PMID: 19296088 DOI: 10.1007/s00204-009-0419-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 03/03/2009] [Indexed: 12/11/2022]
Abstract
Until now little is known about the functional integrity of human hepatocytes after hypothermic storage. In order to address this limitation, we evaluated several commercially available hypothermic preservation media for their abilities to protect freshly isolated hepatocytes during prolonged cold storage. Human hepatocytes were isolated from non-transplantable/rejected donor livers and resuspended in ice-cold University of Wisconsin solution (UW), HypoThermosol-Base (HTS-Base), or HypoThermosol-FRS (HTS-FRS) with or without the addition of fetal bovine serum. Cells were stored at 4 degrees C for 24-72 h, and evaluated for hepatocyte viability (trypan blue exclusion, or labeling with fluorochromes), cell attachment, and function. The energy status of hepatocytes was evaluated by measurement of intracellular adenosine 5'-triphosphate. To determine whether the test cells expressed metabolic functions of freshly isolated cells, the activities of major phase I (cytochromes P450, FMO) and phase II (UGT, ST) drug-metabolizing enzymes were examined. Although hepatocytes are shown to be satisfactory after 24 h storage in all of the tested solutions, the cell viability, energy status, and xenobiotic metabolism following cold preservation in HTS-FRS was consistently and, in some cases, markedly higher when compared with other systems. The same metabolites for each of the tested substrates were detected in all groups of cells. Moreover, the use of HTS-FRS eliminates the need for serum in preservation solutions. HTS-FRS represents an improved solution compared to HTS-Base and UW for extending the shipping/storage time of human hepatocytes.
Collapse
Affiliation(s)
- Alina Ostrowska
- Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| | | | | | | |
Collapse
|
39
|
Baust JM, Snyder KK, VanBuskirk RG, Baust JG. Changing Paradigms in Biopreservation. Biopreserv Biobank 2009; 7:3-12. [DOI: 10.1089/bio.2009.0701.jmb] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- John M. Baust
- Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, New York
- Department of Biological Sciences, Binghamton University, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - Kristi K. Snyder
- Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, New York
- Department of Biological Sciences, Binghamton University, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - Robert G. VanBuskirk
- Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, New York
- Department of Biological Sciences, Binghamton University, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - John G. Baust
- Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, New York
- Department of Biological Sciences, Binghamton University, Binghamton, New York
| |
Collapse
|
40
|
Tovar H, Navarrete F, Rodríguez L, Skewes O, Castro FO. Cold storage of biopsies from wild endangered native Chilean species in field conditions and subsequent isolation of primary culture cell lines. In Vitro Cell Dev Biol Anim 2008; 44:309-20. [DOI: 10.1007/s11626-008-9124-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/16/2008] [Indexed: 10/21/2022]
|
41
|
Klossner DP, Robilotto AT, Clarke DM, VanBuskirk RG, Baust JM, Gage AA, Baust JG. Cryosurgical technique: assessment of the fundamental variables using human prostate cancer model systems. Cryobiology 2007; 55:189-99. [PMID: 17888898 DOI: 10.1016/j.cryobiol.2007.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 07/24/2007] [Indexed: 11/18/2022]
Abstract
Cryosurgery offers a promising therapeutic alternative for the treatment of prostate cancer. While often successful, complete cryoablation of cancerous tissues sometimes fails due to technical challenges. Factors such as the end temperature, cooling rate, duration of the freezing episode, and repetition of the freezing cycle have been reported to influence cryosurgical outcome. Accordingly, we investigated the effects of these variables in an in vitro prostate cancer model. Human prostate cancer PC-3 and LNCaP cultures were exposed to a range of sub-zero temperatures (-5 to -40 degrees C), and cells were thawed followed by return to 37 degrees C. Post-thaw viability was assessed using a variety of fluorescent probes including alamarBlue (metabolic activity), calceinAM (membrane integrity), and propidium iodide (necrosis). Freeze duration following ice nucleation was investigated using single and double freezing cycles (5, 10, and 20 min). The results demonstrated that lower freezing temperatures yielded greater cell death, and that LNCaP cells were more susceptible to freezing than PC-3 cells. At -15 degrees C, PC-3 yielded approximately 55% viability versus approximately 20% viability for LNCaP. Double freezing cycles were found to be more than twice as destructive versus a single freeze-thaw cycle. Both cell types experienced increased cell death when exposed to freezing temperatures for longer durations. When thawing rates were considered, passive (slower) thawing following freezing yielded greater cell death than active (faster) thawing. A 20% difference in viability between passive and active thawing was observed for PC-3 for a 10 min freeze. Finally, the results demonstrate that just reaching -40 degrees C in vitro may not be sufficient to obtain complete cell death. The data support the use of extended freeze times, multiple freeze-thaw cycles, and passive thawing to provide maximum cell destruction.
Collapse
Affiliation(s)
- Daniel P Klossner
- Institute of Biomedical Technology, Science 3 Suite 144, State University of New York, Binghamton, NY 13902, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Robilotto A, Baust J, Buskirk RV, Baust J. Involvement of the Cysteine Protease Calpain Family in Cell Death After Cryopreservation. ACTA ACUST UNITED AC 2006. [DOI: 10.1089/cpt.2006.4.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- A.T. Robilotto
- Institute of Biomedical Technologies, State University of New York, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - J.M. Baust
- Institute of Biomedical Technologies, State University of New York, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - R. Van Buskirk
- Institute of Biomedical Technologies, State University of New York, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - J.G. Baust
- Institute of Biomedical Technologies, State University of New York, Binghamton, New York
- Biolife Solutions, Inc., Owego, New York
| |
Collapse
|
43
|
Snyder KK, Baust JM, Van Buskirk RG, Baust JG. Enhanced Hypothermic Storage of Neonatal Cardiomyocytes. ACTA ACUST UNITED AC 2005. [DOI: 10.1089/cpt.2005.3.61] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kristi K. Snyder
- Department of Biological Sciences and Institute of Biomedical Technology, State University of New York, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - John M. Baust
- Department of Biological Sciences and Institute of Biomedical Technology, State University of New York, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - Robert G. Van Buskirk
- Department of Biological Sciences and Institute of Biomedical Technology, State University of New York, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - John G. Baust
- Department of Biological Sciences and Institute of Biomedical Technology, State University of New York, Binghamton, New York
- BioLife Solutions, Inc., Owego, New York
| |
Collapse
|