1
|
Chiang YTT, Kassotis CD. Molecular Assessment of Proadipogenic Effects for Common-Use Contraceptives and Their Mixtures. Endocrinology 2024; 165:bqae050. [PMID: 38648498 PMCID: PMC11081078 DOI: 10.1210/endocr/bqae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Hormonal contraceptives are widely prescribed due to their effectiveness and convenience and have become an integral part of family planning strategies worldwide. In the United States, approximately 65% of reproductive-aged women are estimated to be using contraceptive options, with approximately 33% using one or a combination of hormonal contraceptives. While these methods have undeniably contributed to improved reproductive health, recent studies have raised concerns regarding their potential effect on metabolic health. Despite widespread anecdotal reports, epidemiological research has been mixed as to whether hormonal contraceptives contribute to metabolic health effects. As such, the goals of this study were to assess the adipogenic activity of common hormonal contraceptive chemicals and their mixtures. Five different models of adipogenesis were used to provide a rigorous assessment of metabolism-disrupting effects. Interestingly, every individual contraceptive (both estrogens and progestins) and each mixture promoted significant adipogenesis (eg, triglyceride accumulation and/or preadipocyte proliferation). These effects appeared to be mediated in part through estrogen receptor signaling, particularly for the contraceptive mixtures, as cotreatment with fulvestrant acted to inhibit contraceptive-mediated proadipogenic effects on triglyceride accumulation. In conclusion, this research provides valuable insights into the complex interactions between hormonal contraceptives and adipocyte development. The results suggest that both progestins and estrogens within these contraceptives can influence adipogenesis, and the specific effects may vary based on the receptor disruption profiles. Further research is warranted to establish translation of these findings to in vivo models and to further assess causal mechanisms underlying these effects.
Collapse
Affiliation(s)
- Yu-Ting Tiffany Chiang
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
2
|
Niemann T, Joneleit J, Storm J, Nacke T, Wähnert D, Kaltschmidt C, Vordemvenne T, Kaltschmidt B. Analyzing Sex-Specific Dimorphism in Human Skeletal Stem Cells. Cells 2023; 12:2683. [PMID: 38067111 PMCID: PMC10705359 DOI: 10.3390/cells12232683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Sex-related differences are a current topic in contemporary science. In addition to hormonal regulation, cell-autonomous mechanisms are important in bone homeostasis and regeneration. In this study, human skeletal stem cells (SSCs) from female and male adults were cultured and analyzed with immunological assays and osteogenic differentiation assessments. Female SSCs exhibited a mean doubling time of 100.6 h, whereas male SSCs displayed a mean doubling time of 168.0 h. Immunophenotyping revealed the expression of the stem cell markers Nestin, CD133, and CD164, accompanied by the neural-crest marker SOX9. Furthermore, multiparameter flow cytometric analyses revealed a substantial population of multipotent SSCs, comprising up to 80% in both sexes. An analysis of the osteogenic differentiation potential demonstrated a strong mineralization in both male and female SSCs under physiological conditions. Recognizing the prevailing association of bone diseases with inflammatory processes, we also analyzed the osteogenic potential of SSCs from both sexes under pro-inflammatory conditions. Upon TNF-α and IL-1β treatment, we observed no sexual dimorphism on osteogenesis. In summary, we demonstrated the successful isolation and characterization of SSCs capable of rapid osteogenic differentiation. Taken together, in vitro cultured SSCs might be a suitable model to study sexual dimorphisms and develop drugs for degenerative bone diseases.
Collapse
Affiliation(s)
- Tarek Niemann
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (J.J.); (T.N.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., 33615 Bielefeld, Germany; (J.S.); (D.W.); (C.K.); (T.V.)
| | - Jonas Joneleit
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (J.J.); (T.N.); (B.K.)
| | - Jonathan Storm
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., 33615 Bielefeld, Germany; (J.S.); (D.W.); (C.K.); (T.V.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Tom Nacke
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (J.J.); (T.N.); (B.K.)
| | - Dirk Wähnert
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., 33615 Bielefeld, Germany; (J.S.); (D.W.); (C.K.); (T.V.)
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, Campus Bielefeld-Bethel, University Hospital OWL of Bielefeld University, Burgsteig 13, 33617 Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., 33615 Bielefeld, Germany; (J.S.); (D.W.); (C.K.); (T.V.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Thomas Vordemvenne
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., 33615 Bielefeld, Germany; (J.S.); (D.W.); (C.K.); (T.V.)
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, Campus Bielefeld-Bethel, University Hospital OWL of Bielefeld University, Burgsteig 13, 33617 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (J.J.); (T.N.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., 33615 Bielefeld, Germany; (J.S.); (D.W.); (C.K.); (T.V.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
3
|
Kuryłowicz A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023; 11:biomedicines11030690. [PMID: 36979669 PMCID: PMC10045924 DOI: 10.3390/biomedicines11030690] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Menopause-related decline in estrogen levels is accompanied by a change in adipose tissue distribution from a gynoid to an android and an increased prevalence of obesity in women. These unfavorable phenomena can be partially restored by hormone replacement therapy, suggesting a significant role for estrogen in the regulation of adipocytes' function. Indeed, preclinical studies proved the involvement of these hormones in adipose tissue development, metabolism, and inflammatory activity. However, the relationship between estrogen and obesity is bidirectional. On the one hand-their deficiency leads to excessive fat accumulation and impairs adipocyte function, on the other-adipose tissue of obese individuals is characterized by altered expression of estrogen receptors and key enzymes involved in their synthesis. This narrative review aims to summarize the role of estrogen in adipose tissue development, physiology, and in obesity-related dysfunction. Firstly, the estrogen classification, synthesis, and modes of action are presented. Next, their role in regulating adipogenesis and adipose tissue activity in health and the course of obesity is described. Finally, the potential therapeutic applications of estrogen and its derivates in obesity treatment are discussed.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland
- Department of General Medicine and Geriatric Cardiology, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland
| |
Collapse
|
4
|
Evaluation of human adipose-derived stromal cell behaviour following exposure to Tamoxifen. Tissue Cell 2022; 77:101858. [DOI: 10.1016/j.tice.2022.101858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
|
5
|
Knewtson KE, Ohl NR, Robinson JL. Estrogen Signaling Dictates Musculoskeletal Stem Cell Behavior: Sex Differences in Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:789-812. [PMID: 34409868 PMCID: PMC9419932 DOI: 10.1089/ten.teb.2021.0094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sexual dimorphisms in humans and other species exist in visually evident features such as body size and less apparent characteristics, including disease prevalence. Current research is adding to a growing understanding of sex differences in stem cell function and response to external stimuli, including sex hormones such as estrogens. These differences are proving significant and directly impact both the understanding of stem cell processes in tissue repair and the clinical implementation of stem cell therapies. Adult stem cells of the musculoskeletal system, including those used for development and repair of muscle, bone, cartilage, fibrocartilage, ligaments, and tendons, are no exception. Both in vitro and in vivo studies have found differences in stem cell number, proliferative and differentiation capabilities, and response to estrogen treatment between males and females of many species. Maintaining the stemness and reducing senescence of adult stem cells is an important topic with implications in regenerative therapy and aging. As such, this review discusses the effect of estrogens on musculoskeletal system stem cell response in multiple species and highlights the research gaps that still need to be addressed. The following evidence from investigations of sex-related phenotypes in adult progenitor and stem cells are pieces to the big puzzle of sex-related effects on aging and disease and critical information for both fundamental tissue repair and regeneration studies and safe and effective clinical use of stem cells. Impact Statement This review summarizes current knowledge of sex differences in and the effects of estrogen treatment on musculoskeletal stem cells in the context of tissue engineering. Specifically, it highlights the impact of sex on musculoskeletal stem cell function and ability to regenerate tissue. Furthermore, it discusses the varying effects of estrogen on stem cell properties, including proliferation and differentiation, important to tissue engineering. This review aims to highlight the potential impact of estrogens and the importance of performing sex comparative studies in the field of tissue engineering.
Collapse
Affiliation(s)
- Kelsey E. Knewtson
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Nathan R. Ohl
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Jennifer L. Robinson
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
- Address correspondence to: Jennifer L. Robinson, PhD, Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 West 15th Street Room 4132, Lawrence, KS 66045, USA
| |
Collapse
|
6
|
Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022; 199:115012. [PMID: 35393120 PMCID: PMC9050949 DOI: 10.1016/j.bcp.2022.115012] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, CA 94143, United States
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Christopher Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States
| | - Troy A Roepke
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Min Ji Kim
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Etienne Blanc
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Robert Barouki
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, United States
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Dominique Lagadic-Gossmann
- Research Institute for Environmental and Occupational Health, University of Rennes, INSERM, EHESP, Rennes, France
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States.
| |
Collapse
|
7
|
Yarmohammadi R, Ghollasi M, Kheirollahzadeh F, Soltanyzadeh M, Heshmati M, Amirkhani MA. Osteogenic differentiation of human induced pluripotent stem cell in the presence of testosterone and 17 β-estradiol in vitro. In Vitro Cell Dev Biol Anim 2022; 58:179-188. [PMID: 35175493 DOI: 10.1007/s11626-022-00652-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Recently, numerous scientific approaches have been explored to treat various diseases using stem cells. In 2006, induced pluripotent stem cell (iPSC) were introduced by Takahashi and Yamanaka and showed the potential of self-renewing and differentiation into all types of targeted cells in vitro. In this investigation, we studied the effect of testosterone (T) individually or in the presence of 17 β-estradiol (E2) on osteogenic differentiation of human iPSC (hiPSC) during 2 wk. The optimal concentrations of sex steroid hormones were examined by MTT assay and acridine orange (AO) staining. The impact of E2 and T either individually or together as a combination was examined by ALP activity; the content of total mineral calcium, by von Kossa and alizarin red staining. Additionally, the expression rate of osteogenic specific markers was studied via real-time RT-PCR and immunocytochemistry analyses at day 14 of differentiation. The obtained results illustrated that the differentiation medium supplemented with T-E2 increased not only the ALP enzyme activity and the content of calcium but also the osteogenic-related gene and protein expressions on the 14th day. Furthermore, the results were confirmed by mineralized matrix staining. In conclusion, these data suggest that T could be used as an effective factor for osteogenic induction of hiPSCs combined with the E2 in bone regeneration.
Collapse
Affiliation(s)
- Reyhaneh Yarmohammadi
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box, 15719-14911, Tehran, Iran.
| | | | - Maryam Soltanyzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box, 15719-14911, Tehran, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Bjune JI, Strømland PP, Jersin RÅ, Mellgren G, Dankel SN. Metabolic and Epigenetic Regulation by Estrogen in Adipocytes. Front Endocrinol (Lausanne) 2022; 13:828780. [PMID: 35273571 PMCID: PMC8901598 DOI: 10.3389/fendo.2022.828780] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Sex hormones contribute to differences between males and females in body fat distribution and associated disease risk. Higher concentrations of estrogens are associated with a more gynoid body shape and with more fat storage on hips and thighs rather than in visceral depots. Estrogen-mediated protection against visceral adiposity is shown in post-menopausal women with lower levels of estrogens and the reduction in central body fat observed after treatment with hormone-replacement therapy. Estrogen exerts its physiological effects via the estrogen receptors (ERα, ERβ and GPR30) in target cells, including adipocytes. Studies in mice indicate that estrogen protects against adipose inflammation and fibrosis also before the onset of obesity. The mechanisms involved in estrogen-dependent body fat distribution are incompletely understood, but involve, e.g., increased mTOR signaling and suppression of autophagy and adipogenesis/lipid storage. Estrogen plays a key role in epigenetic regulation of adipogenic genes by interacting with enzymes that remodel DNA methylation and histone tail post-translational modifications. However, more studies are needed to map the differential epigenetic effects of ER in different adipocyte subtypes, including those in subcutaneous and visceral adipose tissues. We here review recent discoveries of ER-mediated transcriptional and epigenetic regulation in adipocytes, which may explain sexual dimorphisms in body fat distribution and obesity-related disease risk.
Collapse
Affiliation(s)
- Jan-Inge Bjune
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pouda Panahandeh Strømland
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Regine Åsen Jersin
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon Nitter Dankel
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- *Correspondence: Simon Nitter Dankel,
| |
Collapse
|
9
|
Autologous mesenchymal stem cells in the treatment of spinal aneurysmal bone cyst. Pathol Res Pract 2021; 229:153722. [PMID: 34952421 DOI: 10.1016/j.prp.2021.153722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE We retrospectively analyzed a cohort of patients treated at our Centre with bone marrow concentrated (BMC) injection for aneurysmal bone cyst (ABC) of the spine, in order to propose this treatment as a valid alternative for the management of ABCs. METHODS Fourteen patients (6 male, 8 female) were treated between June 2014 to December 2019 with BMC injection for ABC of the spine. The mean age was 15.5 years. The mean follow up was 37.4 months (range 12-60 months). The dimension of the cyst and the degree of ossification were measured by Computed Tomography (CT) scans before the treatment and during follow-up visits. RESULTS Six patients received a single dose of BMC, five patients received two doses and in three patients three doses of BMC were administered. The mean ossification of the cyst (expressed in Hounsfield units) increased statistically from 43.48 ± 2.36 HU to 161.71 ± 23.48 HU during follow-up time and the ossification was associated to an improvement of the clinical outcomes. The mean ossification over time was significantly higher in patients treated with a single injection compared to patients treated with multiple injections. No significant difference in ossification was found between cervical and non-cervical localization of the cyst. Moreover, the initial size of the cyst was not statistically associated with the degree of ossification during follow-up CONCLUSIONS: Results of this paper reinforce our previous evidence on the use of BMC as a valid alternative for spinal ABC management when SAE treatment is contraindicated or ineffective.
Collapse
|
10
|
Bitirim CV, Ozer ZB, Akcali KC. Estrogen receptor alpha regulates the expression of adipogenic genes genetically and epigenetically in rat bone marrow-derived mesenchymal stem cells. PeerJ 2021; 9:e12071. [PMID: 34595066 PMCID: PMC8436959 DOI: 10.7717/peerj.12071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Regulation of the efficacy of epigenetic modifiers is regarded as an important control mechanism in the determination and differentiation of stem cell fate. Studies are showing that the effect of estrogen is important in the differentiation of mesenchymal stem cells (MSCs) into adipocytes, osteocytes, and chondrocytes. Activation of certain transcription factors and epigenetic modifications in related genes play an active role in the initiation and completion of adipogenic differentiation. Understanding the role of estrogen in diseases such as obesity, which increases with the onset of menopause, will pave the way for more effective use of estrogen as a therapeutic option. Demonstration of the differentiation tendencies of MSCs change in the presence/absence of estrogen, especially the evaluation of reversible epigenetic changes, will provide valuable information for clinical applications. In this study, the effect of estrogen on the expression of genes involved in adipogenic differentiation of MSCs and accompanying epigenetic modifications was investigated. Our results showed that estrogen affects the expression of adipogenesis-related transcription factors such as PPARy, C/EBPα and Adipsin. In addition, after estrogen treatment, increased accumulation of estrogen receptor alpha (ERα) and repressive epigenetic markers such as H3K27me2 and H3K27me3 were observed on the promoter of given transcription factors. By using co-immunoprecipitation experiments we were also able to show that ERα physically interacts with the zeste homolog 2 (EZH2) H3K27 methyltransferase in MSCs. We propose that the increase of H3K27me2 and H3K27me3 markers on adipogenic genes upon estrogen treatment may be mediated by the direct interaction of ERα and EZH2. Taken together, these findings suggest that estrogen has a role as an epigenetic switcher in the regulation of H3K27 methylation leading to suppression of adipogenic differentiation of MSC.
Collapse
Affiliation(s)
| | - Zeynep B Ozer
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Kamil C Akcali
- Stem Cell Institute, Ankara University, Ankara, Turkey.,Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Kim JY, Park EJ, Kim SM, Lee HJ. Optimization of adipogenic differentiation conditions for canine adipose-derived stem cells. J Vet Sci 2021; 22:e53. [PMID: 34170094 PMCID: PMC8318799 DOI: 10.4142/jvs.2021.22.e53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Canine adipose-derived stem cells (cADSCs) exhibit various differentiation properties and are isolated from the canine subcutaneous fat. Although cADSCs are valuable as tools for research on adipogenic differentiation, studies focusing on adipogenic differentiation methods and the underlying mechanisms are still lacking. OBJECTIVES In this study, we aimed to establish an optimal method for adipogenic differentiation conditions of cADSCs and evaluate the role of peroxisome proliferator-activated receptor gamma (PPARγ) and estrogen receptor (ER) signaling in the adipogenic differentiation. METHODS To induce adipogenic differentiation of cADSCs, 3 different adipogenic medium conditions, MDI, DRI, and MDRI, using 3-isobutyl-1-methylxanthine (M), dexamethasone (D), insulin (I), and rosiglitazone (R) were tested. RESULTS MDRI, addition of PPARγ agonist rosiglitazone to MDI, was the most significantly facilitated cADSC into adipocyte. GW9662, an antagonist of PPARγ, significantly reduced adipogenic differentiation induced by rosiglitazone. Adipogenic differentiation was also stimulated when 17β-estradiol was added to MDI and DRI, and this stimulation was inhibited by the ER antagonist ICI182,780. CONCLUSIONS Taken together, our results suggest that PPARγ and ER signaling are related to the adipogenic differentiation of cADSCs. This study could provide basic information for future research on obesity or anti-obesity mechanisms in dogs.
Collapse
Affiliation(s)
- Jong Yeon Kim
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea
| | - Eun Jung Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Korea
| | - Sung Min Kim
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Korea
| | - Hae Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
12
|
Soltanyzadeh M, Ghollasi M, Halabian R, Shams M. A comparative study of hBM-MSCs' differentiation toward osteogenic lineage in the presence of progesterone and estrogen hormones separately and concurrently in vitro. Cell Biol Int 2020; 44:1701-1713. [PMID: 32339349 DOI: 10.1002/cbin.11364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/12/2020] [Accepted: 04/25/2020] [Indexed: 11/09/2022]
Abstract
Promising cell sources for tissue engineering comprise bone marrow derived-mesenchymal stem cells (BM-MSCs) that have multiple differentiation potentials. Also, sex hormones act as important elements in bone development and maintenance, and the roles of two female sex steroid hormones known as estrogen (17-β estradiol) and progesterone in osteogenic differentiation of human BM-MSCs (hBM-MSCs) are studied. For this purpose, hBM-MSCs were treated with a 1 × 10-6 M concentration of 17-β estradiol and progesterone separately and simultaneously while the optimum concentrations were obtained by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Osteogenic differentiation tests including measurement of alkaline phosphatase (ALP) enzyme activity, the content of total mineral calcium, mineralized matrix staining by Alizarin Red and Von Kossa solutions, real-time reverse transcription polymerase chain reaction (RT-PCR), and immunofluorescence staining were carried out on Days 7 and 14 of differentiation. To exhibit the morphology of the cells, the BM-MSCs were stained with acridine orange (AO) solution. In this study, the results of ALP activity assay, calcium content and real-time RT-PCR assay and also all tests of differentiation staining have shown that 17-β estradiol has been recognized as an enhancing factor of osteogenic differentiation. Furthermore, MTT assay and AO staining revealed progesterone as a factor that seriously improved the proliferation of hBM-MSCs. Generally, the 17-β estradiol individually or in the presence of progesterone has more effects on BM-MSCs' osteogenic differentiation compared to progesterone alone. In this study, it is indicated that the effect of the 17-β estradiol and progesterone concurrently was the same as individual 17-β estradiol on the differentiation of hBM-MSCs.
Collapse
Affiliation(s)
- Maryam Soltanyzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Shams
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
13
|
Soltanyzadeh M, Salimi A, Halabian R, Ghollasi M. The effect of female sex steroid hormones on osteogenic differentiation of endometrial stem cells. Mol Biol Rep 2020; 47:3663-3674. [PMID: 32335804 DOI: 10.1007/s11033-020-05461-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
Bone regeneration is a significant and crucial health issue worldwide. Tissue bioengineering has shown itself to be the best substitute for common clinical treatment of bone loss. The suitable cell source is human endometrial stem cells (hEnSCs) which have several suitable characteristics for this approach. Since sex steroid hormones are involved in expansion and conservation of the skeleton, the effect of two sex steroid hormones known as estrogen (17-β estradiol) and progesterone on osteogenic differentiation of hEnSCs were examined. For this purpose, hEnSCs were treated with 17-β estradiol and progesterone separately (1 × 10-6 M) and simultaneously (1 × 10-7 M). Osteogenic differentiation tests including measurement of total mineral calcium content, Alizarin Red staining, the quantitative expression levels of some osteogenic markers by Real-time RT-PCR, and immunofluorescence staining were performed at 7 and 14 days of differentiation. To exhibit the morphology of the cells in osteogenic and culture medium, the hEnSCs were stained with Acridine Orange (AO) solution. In this research, MTT assay and AO staining revealed progesterone and 17-β estradiol increase the proliferation of hEnSCs in a dose-dependent manner. Furthermore, the results of calcium content analysis, Real-time RT-PCR assay, and all tests of differentiation staining have shown that 17-β estradiol and progesterone cannot induce hEnSCs' osteogenic differentiation. In conclusion, it is indicated that 17-β estradiol and progesterone do not have positive effects on hEnSCs' osteogenic differentiation in vitro.
Collapse
Affiliation(s)
- Maryam Soltanyzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
14
|
Owen R, Bahmaee H, Claeyssens F, Reilly GC. Comparison of the Anabolic Effects of Reported Osteogenic Compounds on Human Mesenchymal Progenitor-derived Osteoblasts. Bioengineering (Basel) 2020; 7:E12. [PMID: 31972962 PMCID: PMC7148480 DOI: 10.3390/bioengineering7010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/10/2023] Open
Abstract
There is variability in the reported effects of compounds on osteoblasts arising from differences in experimental design and choice of cell type/origin. This makes it difficult to discern a compound's action outside its original study and compare efficacy between compounds. Here, we investigated five compounds frequently reported as anabolic for osteoblasts (17β-estradiol (oestrogen), icariin, lactoferrin, lithium chloride, and menaquinone-4 (MK-4)) on human mesenchymal progenitors to assess their potential for bone tissue engineering with the aim of identifying a potential alternative to expensive recombinant growth factors such as bone morphogenetic protein 2 (BMP-2). Experiments were performed using the same culture conditions to allow direct comparison. The concentrations of compounds spanned two orders of magnitude to encompass the reported efficacious range and were applied continuously for 22 days. The effects on the proliferation (resazurin reduction and DNA quantification), osteogenic differentiation (alkaline phosphatase (ALP) activity), and mineralised matrix deposition (calcium and collagen quantification) were assessed. Of these compounds, only 10 µM MK-4 stimulated a significant anabolic response with 50% greater calcium deposition. Oestrogen and icariin had no significant effects, with the exception of 1 µM icariin, which increased the metabolic activity on days 8 and 22. 1000 µg/mL of lactoferrin and 10 mM lithium chloride both significantly reduced the mineralised matrix deposition in comparison to the vehicle control, despite the ALP activity being higher in lithium chloride-treated cells at day 15. This demonstrates that MK-4 is the most powerful stimulant of bone formation in hES-MPs of the compounds investigated, highlighting its potential in bone tissue engineering as a method of promoting bone formation, as well as its prospective use as an osteoporosis treatment.
Collapse
Affiliation(s)
- Robert Owen
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Hossein Bahmaee
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
| |
Collapse
|
15
|
Glenske K, Schuler G, Arnhold S, Elashry MI, Wagner AS, Barbeck M, Neumann E, Müller-Ladner U, Schnettler R, Wenisch S. Effects of testosterone and 17β-estradiol on osteogenic and adipogenic differentiation capacity of human bone-derived mesenchymal stromal cells of postmenopausal women. Bone Rep 2019; 11:100226. [PMID: 31709277 PMCID: PMC6833309 DOI: 10.1016/j.bonr.2019.100226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/11/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
Progressive bone loss is a predominant symptom of aging and osteoporosis. Therefore, the effects of sex steroids (i.e. testosterone and 17β-estradiol) on the differentiation capacity of human bone-derived mesenchymal stromal cells (hMSCs), as progenitors of osteoblasts and adipocytes, are of particular interest. The objectives of the present study were, thus, to elucidate whether bone-derived hMSCs of postmenopausal women produce aromatase (CYP19A1) and, whether they modulate their differentiation behaviour in response to testosterone and 17β-estradiol (E2), in relation to their steroid receptor expression. Supplementation of testosterone resulted in a considerable formation of E2 under osteogenic and adipogenic culture conditions, whereas E2 synthesis remained minimal in the cells cultured in basal medium. Concomitant with high aromatase expression and 17β-estradiol formation of the cells cultured in osteogenic medium supplemented with testosterone, a distinct promotion of late-stage osteogenesis was found, as shown by significant matrix mineralization and a notable increase in osteogenic markers. These effects were abrogated by the aromatase inhibitor anastrozole. Under adipogenic conditions, testosterone reduced the occurrence of lipid droplets and led to a decrease in PPARγ and AR expression, independent of anastrozole. Regardless of the culture conditions, ERα was detectable whilst ERβ was not. In conclusion, aromatase activity is limited to differentiated hMSCs and the resulting 17β-estradiol enhances late osteogenic differentiation stages via ERα. Adipogenic differentiation, on the other hand, is reduced by both sex steroids: testosterone via AR and 17β-estradiol.
Collapse
Affiliation(s)
- Kristina Glenske
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, 35392, Germany
| | - Gerhard Schuler
- Veterinary Clinic of Obstetrics, Gynecology and Andrology, Justus-Liebig-University of Giessen, Giessen, 35392, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, 35392, Germany
| | - Mohamed I Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, 35392, Germany.,Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, 35516, Egypt
| | - Alena-Svenja Wagner
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, 35392, Germany
| | - Mike Barbeck
- Department of Oral and Maxillofacial Surgery, Division for Regenerative Orofacial Medicine University Hospital Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Elena Neumann
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff-Klinik, Bad Nauheim, 61231, Germany
| | - Ulf Müller-Ladner
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff-Klinik, Bad Nauheim, 61231, Germany
| | - Reinhard Schnettler
- Department of Oral and Maxillofacial Surgery, Division for Regenerative Orofacial Medicine University Hospital Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, 35392, Germany
| |
Collapse
|
16
|
Liu D, Chen L, Dong S, Yang H, Li L, Liu J, Zhou H, Zhou R. Low bone mass is associated with carotid calcification plaque in Chinese postmenopausal women: the Chongqing osteoporosis study. Climacteric 2019; 23:237-244. [PMID: 31612731 DOI: 10.1080/13697137.2019.1671818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: The aim of this study was to examine the relationship between low bone mass and the risk of carotid calcification plaques in Chinese postmenopausal women.Methods: We conducted a 5 years prospective study. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DXA) scanning. Carotid computed tomography angiography (CTA) was conducted using a 64-multidetector row scanner to assess carotid arterial plaque at baseline and during follow-up. Cox proportional hazards analysis was used to evaluate the association of BMD and risk of carotid calcification plaques.Results: Four hundred and eighty-eight women sustained prospective carotid plaques during the follow-up. Women with carotid calcification plaques had low BMD than those with carotid non-calcification plaques. After adjustment for potential confounders, BMD, age, years since menopause, levels of plasma osteoprotegerin and adiponectin, hypertension, diabetes mellitus and hyperlipidemia were independently associated with increased risk of carotid calcification plaques. For carotid calcification plaques, a significant inverse correlation was indicated between BMD and the plaques, and a significant positive correlation was indicated between bone loss and plaques.Conclusions: This study suggested that lower BMD and increased loss rate of BMD were associated with a higher risk of carotid calcification plaques in Chinese postmenopausal women.
Collapse
Affiliation(s)
- D Liu
- Trauma Center, Daping Hospital, Army Medical University, Chongqing, China
| | - L Chen
- Postgraduate School, Bengbu Medical College, Anhui, China
| | - S Dong
- Postgraduate School, Bengbu Medical College, Anhui, China
| | - H Yang
- Department of Neurology, Daping hospital, Army Medical University, Chongqing, China
| | - L Li
- Department of Neurology, Daping hospital, Army Medical University, Chongqing, China
| | - J Liu
- Department of Neurology, Daping hospital, Army Medical University, Chongqing, China
| | - H Zhou
- Department of Neurology, Daping hospital, Army Medical University, Chongqing, China
| | - R Zhou
- Department of Orthopedics, The Orthopedic Surgery Center of Chinese PLA, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Okyay MF, Kömürcü H, Bağhaki S, Demiröz A, Aydın Ö, Arslan H. Effects of Insulin, Metoprolol and Deferoxamine on Fat Graft Survival. Aesthetic Plast Surg 2019; 43:845-852. [PMID: 30937476 DOI: 10.1007/s00266-019-01363-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/15/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND The main problem faced with fat grafting is unpredictable resorption rates. Many substances have been reported to increase the survival of fat grafts. The aim of this study was to compare the effects of insulin, metoprolol and deferoxamine on fat graft survival. METHODS Inguinal fat pads of male Sprague-Dawley rats were harvested and split into four parts as grafts. The grafts were placed in subcutaneous pockets in four quadrants on the back area of the rats. The insulin and metoprolol group fat grafts were incubated in regular insulin and metoprolol solutions, until they were placed. Deferoxamine and control group fat grafts were placed without incubation. After surgery, the control group fat grafts were injected with 10 doses of NaCl solution once every 3 days, and the deferoxamine group fat grafts were injected with 10 doses of deferoxamine solution once every 3 days. After a graft maturation period of 3 months, the grafts were harvested for weight measurements and histological and immunohistochemical evaluation. RESULTS According to the rate of perilipin staining, the metoprolol group had 30% more mature viable adipocytes than the control and insulin group fat grafts (p < 0.05 and p < 0.01, respectively). CD31 activation rates were significantly higher in the deferoxamine and insulin group than in the metoprolol group (p < 0.05). CD34 staining rates did not differ between any groups (p > 0.05). CONCLUSIONS In this experimental study, we have shown that there was no significantly increased fat graft survival rate seen in any drug treatment group. Low survival rates of stem cells demonstrated that the adipogenesis period ended at 3 months. Treatment of fat grafts with the selective β1-blocker metoprolol resulted in good quality better graft take with more viable mature adipocytes. However, better viability of adipocytes did not result in increased weight of the fat graft. Studies aiming to compare the effects on fat graft survival of beta-blockers with long or short durations of action, different potencies and different receptor selectivity may be designed in the future. In addition, further studies may be performed, in which immunohistochemical markers used to assess inflammation and fibrosis are added to the study after the completion of the fat graft maturation period at the end of the first year to test the permanence of the results. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors - www.springer.com/00266 .
Collapse
Affiliation(s)
- Mehmet Fatih Okyay
- Plastic, Reconstructive and Aesthetic Surgery Department, Cerrahpaşa Medical Faculty, İstanbul University - Cerrahpaşa, Istanbul, Turkey
| | - Hasan Kömürcü
- Plastic, Reconstructive and Aesthetic Surgery Department, Cerrahpaşa Medical Faculty, İstanbul University - Cerrahpaşa, Istanbul, Turkey
| | - Semih Bağhaki
- Plastic, Reconstructive and Aesthetic Surgery Department, Cerrahpaşa Medical Faculty, İstanbul University - Cerrahpaşa, Istanbul, Turkey
| | - Anıl Demiröz
- Plastic, Reconstructive and Aesthetic Surgery Department, Cerrahpaşa Medical Faculty, İstanbul University - Cerrahpaşa, Istanbul, Turkey
| | - Övgü Aydın
- Pathology Department, Cerrahpaşa Medical Faculty, İstanbul University - Cerrahpaşa, Istanbul, Turkey
| | - Hakan Arslan
- Plastic, Reconstructive and Aesthetic Surgery Department, Cerrahpaşa Medical Faculty, İstanbul University - Cerrahpaşa, Istanbul, Turkey.
| |
Collapse
|
18
|
Kassotis CD, Stapleton HM. Endocrine-Mediated Mechanisms of Metabolic Disruption and New Approaches to Examine the Public Health Threat. Front Endocrinol (Lausanne) 2019; 10:39. [PMID: 30792693 PMCID: PMC6374316 DOI: 10.3389/fendo.2019.00039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/17/2019] [Indexed: 01/29/2023] Open
Abstract
Obesity and metabolic disorders are of great societal concern and generate substantial human health care costs globally. Interventions have resulted in only minimal impacts on disrupting this worsening health trend, increasing attention on putative environmental contributors. Exposure to numerous environmental contaminants have, over decades, been demonstrated to result in increased metabolic dysfunction and/or weight gain in cell and animal models, and in some cases, even in humans. There are numerous mechanisms through which environmental contaminants may contribute to metabolic dysfunction, though certain mechanisms, such as activation of the peroxisome proliferator activated receptor gamma or the retinoid x receptor, have received considerably more attention than less-studied mechanisms such as antagonism of the thyroid receptor, androgen receptor, or mitochondrial toxicity. As such, research on putative metabolic disruptors is growing rapidly, as is our understanding of molecular mechanisms underlying these effects. Concurrent with these advances, new research has evaluated current models of adipogenesis, and new models have been proposed. Only in the last several years have studies really begun to address complex mixtures of contaminants and how these mixtures may disrupt metabolic health in environmentally relevant exposure scenarios. Several studies have begun to assess environmental mixtures from various environments and study the mechanisms underlying their putative metabolic dysfunction; these studies hold real promise in highlighting crucial mechanisms driving observed organismal effects. In addition, high-throughput toxicity databases (ToxCast, etc.) may provide future benefits in prioritizing chemicals for in vivo testing, particularly once the causative molecular mechanisms promoting dysfunction are better understood and expert critiques are used to hone the databases. In this review, we will review the available literature linking metabolic disruption to endocrine-mediated molecular mechanisms, discuss the novel application of environmental mixtures and implications for in vivo metabolic health, and discuss the putative utility of applying high-throughput toxicity databases to answering complex organismal health outcome questions.
Collapse
|
19
|
Wu CH, Chuang HY, Wang CL, Hsu CY, Long CY, Hsieh TH, Tsai EM. Estradiol induces cell proliferation in MCF‑7 mammospheres through HER2/COX‑2. Mol Med Rep 2019; 19:2341-2349. [PMID: 30664162 DOI: 10.3892/mmr.2019.9879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/02/2018] [Indexed: 11/06/2022] Open
Abstract
Cluster of differentiation (CD)44+/CD24- breast cancer cells have stem cell‑like characteristics and are potent initiators of tumorigenesis. Mammosphere cells can partially initiate breast tumorigenesis by inducing estradiol (E2)‑dependent breast cancer cells. However, the mechanisms by which E2 mediates cancer formation in MCF‑7 mammosphere (MS) cells have remained elusive. In the present study, MS cells were isolated by sphere culture. It was possible to maintain these MS cells in culture for long periods of time, while retaining the CD44+/CD24- stem cell marker status. The CD44+/CD24- status was confirmed by flow cytometry. Furthermore, the stem‑cell markers Musashi‑1, cytokeratin (CK)7 and CK19 were identified by immunofluorescence microscopy. It was revealed that treatment of MS cells with E2 increased the expression of CD44, whereas decreased the expression of CD24 on MS cells. In addition, treatment with E2 increased colony formation by MS cells. E2 also induced cyclooxygenase‑2 (COX‑2) expression in MS cells, which promoted their proliferation through the estrogen receptor/human epidermal growth factor receptor 2 (HER2)/mitogen‑activated protein kinase/phosphoinositide‑3 kinase signaling pathway. The results suggested a tumorigenic mechanism by which E2 promotes tumor cell proliferation via HER2/COX‑2 signaling. The present study provided evidence for the molecular impact of E2 on breast tumorigenesis, and suggested possible strategies for preventing and treating human breast cancer.
Collapse
Affiliation(s)
- Chin-Hu Wu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Hui-Yu Chuang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Chiu-Lin Wang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Tsung-Hua Hsieh
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| |
Collapse
|
20
|
Ranjbar M, Pardakhty A, Amanatfard A, Asadipour A. Efficient drug delivery of β-estradiol encapsulated in Zn-metal-organic framework nanostructures by microwave-assisted coprecipitation method. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2635-2643. [PMID: 30214152 PMCID: PMC6118239 DOI: 10.2147/dddt.s173324] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metal–organic frameworks (MOFs) are structures made up of inorganic nodes, which can be either single ions or clusters of ions and organic linkers. This study reports on a novel processing route for producing β-estradiol encapsulated in Zn-MOF nanocomposites by microwave-assisted coprecipitation as a facile and fast method. Zn-MOF nanocomposites were synthesized with the aid of Zn(OAc)2⋅2H2O and 2,6-pyridine dicarboxylic acid ammonium as an organic ligand. Furthermore, we studied encapsulated β-estradiol which is one of the most important classes of estrogenic compounds that are used in the treatment of prostate cancer and breast cancer. The effects of β-estradiol concentration and microwave irradiation on the morphology, particle size, distribution, and in vitro photoluminescence spectroscopy experiments of β-estradiol entrapped in Zn-MOF nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller spectroscopy. These nanostructures can be a good option for thawing hydrophilic and hydrophobic drugs over time. Zn-MOF nanocomposites with high porosity, total pore volume (0.04665 cm3g−1), and nanostructures have provided the platform to load β-estradiol such as low soluble drugs. Maximum of drug release was about 82% at pH 8.9 after 8 h.
Collapse
Affiliation(s)
- Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran, .,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran, .,Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezou Amanatfard
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran,
| | - Ali Asadipour
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran, .,Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
21
|
Davis JE, Hastings D. Transcriptional Regulation of TCF/LEF and PPARγ by Daidzein and Genistein in 3T3-L1 Preadipocytes. J Med Food 2018; 21:761-768. [DOI: 10.1089/jmf.2017.0136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jeremy E. Davis
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - Darcie Hastings
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
22
|
The effect of estrogen on diabetic wound healing is mediated through increasing the function of various bone marrow-derived progenitor cells. J Vasc Surg 2018; 68:127S-135S. [PMID: 30064832 DOI: 10.1016/j.jvs.2018.04.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/18/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Endothelial progenitor cells (EPCs) are the key cells of postnatal neovascularization, and mesenchymal stem cells (MSCs) possess pluripotent differentiation capacity and contribute to tissue regeneration and wound healing. Both EPCs and MSCs are critical to the wound repair process, which is hindered in diabetes mellitus. Diabetes has been shown to decrease the function of these progenitor cells, whereas estrogen has beneficial wound healing effects. However, the role of estrogen in modulating EPC and MSC biology in diabetes is unknown. We investigated the effect of estrogen on improving bone marrow (BM)-derived EPC and MSC function using a murine diabetic wound healing model. METHODS Female diabetic db+/db+ and nondiabetic control mice were wounded cutaneously and treated with topical estrogen or placebo cream. On day 5 after wounding, BM cells were harvested to quantify EPC number and colony-forming units of EPCs and MSCs. Wound healing rate was concurrently studied. Vessel density and scar density were then quantified using whole body perfusion and laser confocal microscopy. EPC recruitment was documented by immunohistochemistry to identify CD34- and vascular endothelial growth factor receptor 2-positive cells in the vessel wall. Data were analyzed by analysis of variance. RESULTS Topical estrogen significantly increased colony-forming units of both EPCs and MSCs compared with placebo treatment, indicating improved viability and proliferative ability of these cells. Consistently, increased recruitment of EPCs to diabetic wounds and higher vessel density were observed in estrogen-treated compared with placebo-treated mice. Consequently, topical estrogen significantly accelerated wound healing as early as day 6 after wounding. In addition, scar density resulting from collagen deposition was increased in the estrogen-treated group, reflecting increased MSC activity and differentiation. CONCLUSIONS Estrogen treatment increases wound healing and wound neovascularization in diabetic mice. Our data implicate that these beneficial effects may be mediated through improving the function of BM-derived EPCs and MSCs.
Collapse
|
23
|
Lim RZL, Li L, Yong EL, Chew N. STAT-3 regulation of CXCR4 is necessary for the prenylflavonoid Icaritin to enhance mesenchymal stem cell proliferation, migration and osteogenic differentiation. Biochim Biophys Acta Gen Subj 2018; 1862:1680-1692. [PMID: 29679717 DOI: 10.1016/j.bbagen.2018.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 01/07/2023]
Abstract
Mesenchymal stem cell (MSC) dysfunction has been implicated in the pathogenesis of osteoporosis. MSCs derived from osteoporotic subjects demonstrate significant impairment in proliferation, adhesion and chemotaxis, and osteogenic differentiation, leading to reduced functional bone-forming osteoblasts and ultimately nett bone loss and osteoporosis. Epimedium herbs and its active compound Icaritin (ICT) have been used in Chinese ethnopharmacology for the treatment of metabolic bone diseases. Using an in-vitro cell culture model, we investigated the benefits of ICT treatment in enhancing MSC proliferation, migration and osteogenic differentiation, and provide novel data to describe its mechanism of action. ICT enhances MSC proliferation, chemotaxis to stromal cell-derived factor-1 (SDF-1) and osteogenic differentiation through the activation of signal transduction activator transcription factor 3 (STAT-3), with a consequential up-regulation in the expression and activity of cysteine (C)-X-C motif chemokine receptor 4 (CXCR4). These findings provide a strong basis for future clinical studies to confirm the therapeutic potential of ICT for the prevention and treatment of osteoporosis and fragility fractures.
Collapse
Affiliation(s)
- R Z L Lim
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - L Li
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - E L Yong
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - N Chew
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Infectious Diseases, National University Hospital, Singapore.
| |
Collapse
|
24
|
Zamani Mazdeh D, Mirshokraei P, Emami M, Mirshahi A, Karimi I. 17β-estradiol improves the efficacy of exploited autologous bone marrow-derived mesenchymal stem cells in non-union radial defect healing: A rabbit model. Res Vet Sci 2017; 118:11-18. [PMID: 29334646 DOI: 10.1016/j.rvsc.2017.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/14/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022]
Abstract
Exploiting mesenchymal stem cells (MSCs) appears to be an appealing alternative to the traditional clinical approach in the treatment of non-union bone defects. It has been shown that 17β-estradiol improves the osteogenesis and proliferation potential of the MSCs via estrogen receptors. We investigated the effect of 17β-estradiol on exploiting autologous BMSCs (bone marrow-derived MSCs) for the purpose of healing of radial non-union segmental defect in rabbit. Twenty rabbits were divided into 4 experimental groups: 1. Control group; 2. MSC treatment group; 3. 17β-estradiol (E2) treatment group; and 4. E2+MSC treatment group. Isolated BMSCs were seeded in a critical-sized defect on radial mid-diaphysis that was filled with autologous fibrin clot differently in 4 groups: 1. intact fibrin clot (control); 2. Fibrin clot containing MSCs; 3. Estradiol; and 4. E2 and MSCs. Defect healing was assessed by radiological (week 0, 2, 4, 6, 8 and 10) and histopathological evaluation (week 10). Radiological evaluation data demonstrated that quantities for the E2+MSC group were significantly the greatest in comparison with the other groups at week 4 to 10 inclusive. Moreover, Histopathological evaluation indicated that the E2+MSC group had the highest score which was significantly greater than the E2 group and the control group (P<0.05). In-vivo application of in situ 17β-estradiol provides the seeded BMSCs with improved osteogenic capacity in tandem with an accelerated rate of bone healing. This obviously more qualified approach that yields in a shorter time appears to be promising for the future cell-based clinical treatments of the non-union bone fractures. Exploiting mesenchymal stem cells (MSCs) appears to be an appealing alternative to the traditional clinical approach in the treatment of non-union bone defects. It has been shown that 17β-estradiol improves the osteogenesis and proliferation potential of the MSCs via estrogen receptors. We investigated the effect of 17β-estradiol on exploiting autologous BMSCs (bone marrow-derived MSCs) for the purpose of healing of radial non-union segmental defect in rabbit. Twenty rabbits were divided into 4 experimental groups: 1. Control group; 2. MSC treatment group; 3. 17β-estradiol (E2) treatment group; and 4. E2+MSC treatment group. Isolated BMSCs were seeded in a critical-sized defect on the radial mid-diaphysis that was filled with autologous fibrin clot differently in 4 groups: 1. intact fibrin clot (control); 2. Fibrin clot containing MSCs; 3. Estradiol; and 4. E2 and MSCs. Defect healing was assessed by radiological (week 0, 2, 4, 6, 8 and 10) and histopathological evaluation (week 10). Radiological evaluation data demonstrated that quantities for the E2+MSC group were significantly the greatest in comparison with the other groups at week 4 to 10 inclusive. Moreover, Histopathological evaluation indicated that the E2+MSC group had the highest score which was significantly greater than the E2 group and the control group (P<0.05). In-vivo application of in situ 17β-estradiol provides the seeded BMSCs with improved osteogenic capacity in tandem with an accelerated rate of bone healing. This obviously more efficient approach that yields in a shorter time appears to be promising for future cell-based clinical treatments of the non-union bone fractures.
Collapse
Affiliation(s)
- Delaram Zamani Mazdeh
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pezhman Mirshokraei
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Center of Excellence in Ruminant Abortion and Neonatal Mortality, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammadreza Emami
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Mirshahi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Iraj Karimi
- Department of Clinical Sciences, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
25
|
Liu L, Zhou L, Yang X, Liu Q, Yang L, Zheng C, Zhao Y, Zhang Z, Luo X. 17β-estradiol attenuates ovariectomy‑induced bone deterioration through the suppression of the ephA2/ephrinA2 signaling pathway. Mol Med Rep 2017; 17:1609-1616. [PMID: 29138859 PMCID: PMC5780101 DOI: 10.3892/mmr.2017.8042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 10/31/2017] [Indexed: 11/28/2022] Open
Abstract
The present study aimed to investigate whether 17β-estradiol (E2) exerts protective effects on bone deterioration induced by ovariectomy (OVX) through the ephA2/ephrinA2 signaling pathway in rats. Female rats were subjected to OVX, sham surgeryor OVX+E2 treatment. Levels of biomarkers were measured in serum and urine. Hematoxylin and eosin staining was performed on paraffin-embedded bone sections. Expression of genes and proteins was analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Bone mineral density (BMD) was analyzed by dual-energy X-ray absorptiometry. Trabecular bone microarchitecture was also evaluated. Osteoclastogenesis was induced by in vitro culturing with mouse receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor 1. small interfering RNA was designed to knockdown ehpA2 receptor and its ligand ephrinA2. Results of the present study demonstrated that E2 had suppressive effects on OVX-induced body weight gain and bone turnover factors in serum and urine. E2 inhibited the bone resorption function of osteoclasts by inhibiting the production of tartrate-resistant acid phosphatase-5b and RANKL, and induced bone formation function of osteoblasts by prompting runt-related transcription factor 2, Sp7 transcription factor and collagen alpha-1(I) chain expression in bone marrow cells. E2 treatment significantly increased the tibia BMD and prevented the deterioration of trabecular microarchitecture compared with the OVX group. Moreover, E2 significantly decreased the OVX-stimulated expression of ephA2 and ephrinA2. EphA2 or ephrin A2 knockdown significantly suppressed osteoclastogenesis in vitro. In conclusion, E2 can attenuate OVX-induced bone deterioration partially through the suppression of the ephA2/ephrinA2 signaling pathway. Therefore EphA2/ephrinA2 signaling pathway may be a potential target for osteoporosis treatment.
Collapse
Affiliation(s)
- Lianyong Liu
- Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lin Zhou
- Department of Endocrinology, Punan Hospital of Pudong New District, Shanghai 200125, P.R. China
| | - Xiaorong Yang
- Department of Endocrinology, Punan Hospital of Pudong New District, Shanghai 200125, P.R. China
| | - Qi Liu
- Department of Endocrinology, Punan Hospital of Pudong New District, Shanghai 200125, P.R. China
| | - Ling Yang
- Department of Endocrinology, Punan Hospital of Pudong New District, Shanghai 200125, P.R. China
| | - Chao Zheng
- Department of Endocrinology, Punan Hospital of Pudong New District, Shanghai 200125, P.R. China
| | - Yongling Zhao
- Department of Endocrinology, Punan Hospital of Pudong New District, Shanghai 200125, P.R. China
| | - Zhenlin Zhang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiaohong Luo
- Department of Endocrinology, Punan Hospital of Pudong New District, Shanghai 200125, P.R. China
| |
Collapse
|
26
|
Sanghani-Kerai A, Coathup M, Samazideh S, Kalia P, Silvio LD, Idowu B, Blunn G. Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by transfection with CXCR4. Bone Joint Res 2017; 6:358-365. [PMID: 28576885 PMCID: PMC5492335 DOI: 10.1302/2046-3758.66.bjr-2016-0259.r1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/01/2017] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. METHODS MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts. RESULTS MSCs from OVX rats migrate significantly (p < 0.05) less towards SDF-1 (9%, sd 5%) compared with MSCs from adult (15%, sd 3%) and young rats (25%, sd 4%). Cells transfected with CXCR4 migrated significantly more towards SDF-1 compared with non-transfected cells, irrespective of whether these cells were from OVX (26.5%, sd 4%), young (47%, sd 17%) or adult (21%, sd 4%) rats. Transfected MSCs differentiated to osteoblasts express CXCR4 but do not migrate towards SDF-1. CONCLUSIONS MSC migration is impaired by age and osteoporosis in rats, and this may be associated with a significant reduction in bone formation in osteoporotic patients. The migration of stem cells can be ameliorated by upregulating CXCR4 levels which could possibly enhance fracture healing in osteoporotic patients.Cite this article: A. Sanghani-Kerai, M. Coathup, S. Samazideh, P. Kalia, L. Di Silvio, B. Idowu, G. Blunn. Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by transfection with CXCR4. Bone Joint Res 2017;6:-365. DOI: 10.1302/2046-3758.66.BJR-2016-0259.R1.
Collapse
Affiliation(s)
- A Sanghani-Kerai
- The John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Sciences, University College London, Stanmore, Middlesex HA7 4LP, UK
| | - M Coathup
- The John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Sciences, University College London, Stanmore, Middlesex HA7 4LP, UK
| | - S Samazideh
- The John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Sciences, University College London, Stanmore, Middlesex HA7 4LP, UK
| | - P Kalia
- Department of Tissue Engineering and Biophotonics, Guy's Hospital, London SE1 9RT, UK
| | - L Di Silvio
- Department of Tissue Engineering and Biophotonics, Guy's Hospital, London SE1 9RT, UK
| | - B Idowu
- Department of Tissue Engineering and Biophotonics, Guy's Hospital, London SE1 9RT, UK
| | - G Blunn
- The John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Sciences, University College London, Stanmore, Middlesex HA7 4LP, UK
| |
Collapse
|
27
|
Lee WJ, Lee SC, Lee JH, Rho GJ, Lee SL. Differential regulation of senescence and in vitro differentiation by 17β-estradiol between mesenchymal stem cells derived from male and female mini-pigs. J Vet Sci 2017; 17:159-70. [PMID: 26645340 PMCID: PMC4921664 DOI: 10.4142/jvs.2016.17.2.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/17/2015] [Accepted: 10/07/2015] [Indexed: 11/26/2022] Open
Abstract
The characterization and potential of mesenchymal stem cells (MSCs) are gender dependent and estrogen influences these properties. This study demonstrated that supplementation with 17β-estradiol (E2) increases the proliferation of bone marrow-MSCs derived from male and female mini-pigs (Mp- and Fp-BMSCs) in a concentration-dependent manner, with 10-12 M E2 suggested as the optimal dose of E2 that led to the greatest improvement in BMSCs proliferation. Supplementation of 10-12 M E2 resulted in down-regulation of β-galactosidase activity and pro-apoptotic activity in both BMSCs, while anti-apoptotic activity was up-regulated in only Fp-BMSCs. Further, E2 increased the osteogenic ability of Fp-BMSCs. Based on these findings, optimal utilization of E2 can improve cellular senescence and apoptosis, as well as in vitro osteogenesis of BMSCs, and could therefore be useful in stem cell therapy, particularly in bone regeneration for adult females.
Collapse
Affiliation(s)
- Won-Jae Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,PWG Genetics Pte. Ltd., 15 Tech Park Crescent, Singapore 638117, Singapore
| | - Seung-Chan Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Jeong-Hyun Lee
- Advanced Therapy Products Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
28
|
Bateman ME, Strong AL, Hunter RS, Bratton MR, Komati R, Sridhar J, Riley KE, Wang G, Hayes DJ, Boue SM, Burow ME, Bunnell BA. Osteoinductive effects of glyceollins on adult mesenchymal stromal/stem cells from adipose tissue and bone marrow. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 27:39-51. [PMID: 28314478 DOI: 10.1016/j.phymed.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/04/2017] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND While current therapies for osteoporosis focus on reducing bone resorption, the development of therapies to regenerate bone may also be beneficial. Promising anabolic therapy candidates include phytoestrogens, such as daidzein, which effectively induce osteogenesis of adipose-derived stromal cells (ASCs) and bone marrow stromal cells (BMSCs). PURPOSE To investigate the effects of glyceollins, structural derivatives of daidzein, on osteogenesis of ASCs and BMSCs. STUDY DESIGN Herein, the osteoinductive effects of glyceollin I and glyceollin II were assessed and compared to estradiol in ASCs and BMSCs. The mechanism by which glyceollin II induces osteogenesis was further examined. METHODS The ability of glyceollins to promote osteogenesis of ASCs and BMSCs was evaluated in adherent and scaffold cultures. Relative deposition of calcium was analyzed using Alizarin Red staining, Bichinchoninic acid Protein Assay, and Alamar Blue Assay. To further explore the mechanism by which glyceollin II exerts its osteoinductive effects, docking studies of glyceollin II, RNA isolation, cDNA synthesis, and quantitative RT-PCR (qPCR) were performed. RESULTS In adherent cultures, ASCs and BMSCs treated with estradiol, glyceollin I, or glyceollin II demonstrated increased calcium deposition relative to vehicle-treated cells. During evaluation on PLGA scaffolds seeded with ASCs and BMSCs, glyceollin II was the most efficacious in inducing ASC and BMSC osteogenesis compared to estradiol and glyceollin I. Dose-response analysis in ASCs and BMSCs revealed that glyceollin II has the highest potency at 10nM in adherent cultures and 1µM in tissue scaffold cultures. At all doses, osteoinductive effects were attenuated by fulvestrant, suggesting that glyceollin II acts at least in part through estrogen receptor-mediated pathways to induce osteogenesis. Analysis of gene expression demonstrated that, similar to estradiol, glyceollin II induces upregulation of genes involved in osteogenic differentiation. CONCLUSION The ability of glyceollin II to induce osteogenic differentiation in ASCs and BMSCs indicates that glyceollins hold the potential for the development of pharmacological interventions to improve clinical outcomes of patients with osteoporosis.
Collapse
Affiliation(s)
- Marjorie E Bateman
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Amy L Strong
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ryan S Hunter
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Melyssa R Bratton
- Cell and Molecular Biology Core Facility, Xavier University of Louisiana, New Orleans, LA, USA
| | - Rajesh Komati
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Jayalakshmi Sridhar
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Kevin E Riley
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Daniel J Hayes
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, USA
| | - Stephen M Boue
- Southern Regional Research Center, US Department of Agriculture, 1100 Robert E. Lee Blvd, New Orleans, LA, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA; Division of Regenerative Medicine, Tulane National Primate Research Center, Tulane University, Covington, LA USA.
| |
Collapse
|
29
|
Khan MP, Khan K, Yadav PS, Singh AK, Nag A, Prasahar P, Mittal M, China SP, Tewari MC, Nagar GK, Tewari D, Trivedi AK, Sanyal S, Bandyopadhyay A, Chattopadhyay N. BMP signaling is required for adult skeletal homeostasis and mediates bone anabolic action of parathyroid hormone. Bone 2016; 92:132-144. [PMID: 27567726 DOI: 10.1016/j.bone.2016.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Bmp2 and Bmp4 genes were ablated in adult mice (KO) using a conditional gene knockout technology. Bones were evaluated by microcomputed tomography (μCT), bone strength tester, histomorphometry and serum biochemical markers of bone turnover. Drill-hole was made at femur metaphysis and bone regeneration in the hole site was measured by calcein binding and μCT. Mice were either sham operated (ovary intact) or ovariectomized (OVX), and treated with human parathyroid hormone (PTH), 17β-estradiol (E2) or vehicle. KO mice displayed trabecular bone loss, diminished osteoid formation and reduced biomechanical strength compared with control (expressing Bmp2 and Bmp4). Both osteoblast and osteoclast functions were impaired in KO mice. Bone histomorphomtery and serum parameters established a low turnover bone loss in KO mice. Bone regeneration at the drill-hole site in KO mice was lower than control. However, deletion of Bmp2 gene alone had no effect on skeleton, an outcome similar to that reported previously for deletion of Bmp4 gene. Both PTH and E2 resulted in skeletal preservation in control-OVX, whereas in KO-OVX, E2 but not PTH was effective which suggested that the skeletal action of PTH required Bmp ligands but E2 did not. To determine cellular effects of Bmp2 and Bmp4, we used bone marrow stromal cells in which PTH but not E2 stimulated both Bmp2 and Bmp4 synthesis leading to increased Smad1/5 phosphorylation. Taken together, we conclude that Bmp2 and Bmp4 are essential for maintaining adult skeletal homeostasis and mediating the anabolic action of PTH.
Collapse
Affiliation(s)
- Mohd Parvez Khan
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kainat Khan
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Prem Swaroop Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur 208016, India
| | - Abhishek Kumar Singh
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Aditi Nag
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur 208016, India
| | - Paritosh Prasahar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur 208016, India
| | - Monika Mittal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shyamsundar Pal China
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mahesh Chandra Tewari
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Geet Kumar Nagar
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Deepshikha Tewari
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Arun Kumar Trivedi
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur 208016, India.
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10 Jankipuram Extension, Sitapur Road, Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
30
|
Ruggiero B, Padwa BL, Christoph KM, Zhou S, Glowacki J. Vitamin D metabolism and regulation in pediatric MSCs. J Steroid Biochem Mol Biol 2016; 164:287-291. [PMID: 26385609 DOI: 10.1016/j.jsbmb.2015.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022]
Abstract
Vitamin D is crucial for mineral homeostasis and contributes to bone metabolism by inducing osteoblast differentiation of marrow stromal cells (MSCs). We recently reported that MSCs from adults demonstrate 1α-hydroxylase activity in vitro and express vitamin D-related genes; this raises a possible autocrine/paracrine role for D activation in pre-osteoblasts. In this studies, we tested the hypotheses that pediatric MSCs have 1α-hydroxylase activity and express vitamin D-related genes. With IRB approval, we isolated MSCs from discarded excess iliac marrow graft from 6 male and 6 female subjects (age 8-12 years) undergoing alveolar cleft repair. 1α-hydroxylation of substrate 25(OH)D3 was measured by ELISA for 1α,25(OH)2D. RT-PCR was used for gene expression. Pediatric MSCs showed a range of 1α-hydroxylase activity in vitro. There was constitutive expression of vitamin D receptor (VDR), megalin, d-hydroxylases (CYP27B1, CYP27A1, CYP2R1, and CYP24A1), and estrogen receptor (ER). There was 2.6-fold greater expression of CYP27B1 and 3.5-fold greater expression of CYP24A1 in MSCs from boys compared with girls. There was 2.4-fold greater expression of ERα and 3.2-fold greater expression of megalin in MSCs from boys. In preliminary studies, treatment of female pediatric MSCs with 10nM 17β-estradiol resulted in upregulation of CYP27B1 and CYP24A1, as well as VDR, megalin, ERα, and ERβ. Treatment with 25(OH)D3 upregulated CYP27B1, VDR, and ERα. Expression and regulation of vitamin D related genes in pediatric hMSCs reinforces an autocrine/paracrine role for vitamin D in hMSCs. Finding striking gender differences in MSCs from children was not seen with MSCs from adults and adds insight to the metabolic environment of bone and presents a research approach for investigating and optimizing pediatric bone health.
Collapse
Affiliation(s)
- B Ruggiero
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - B L Padwa
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA; Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA, USA
| | - K M Christoph
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - S Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - J Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA; Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Feng C, Hu J, Liu C, Liu S, Liao G, Song L, Zeng X. Association of 17-β Estradiol with Adipose-Derived Stem Cells: New Strategy to Produce Functional Myogenic Differentiated Cells with a Nano-Scaffold for Tissue Engineering. PLoS One 2016; 11:e0164918. [PMID: 27783699 PMCID: PMC5081199 DOI: 10.1371/journal.pone.0164918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023] Open
Abstract
The increased incidence of stress urinary incontinence (SUI) in postmenopausal women has been proposed to be associated with a reduction in the level of 17-β estradiol (E2). E2 has also been shown to enhance the multi-differentiation ability of adipose-derived stem cells (ASCs) in vitro. However, studies on the potential value of E2 for tissue engineering in SUI treatment are rare. In the present study, we successfully fabricated myogenically differentiated ASCs (MD-ASCs), which were seeded onto a Poly(l-lactide)/Poly(e-caprolactone) electrospinning nano-scaffold, and incorporated E2 into the system, with the aim of improving the proliferation and myogenic differentiation of ASCs. ASCs were collected from the inguinal subcutaneous fat of rats. The proliferation and myogenic differentiation of ASCs, as well as the nano-scaffold biocompatibility of MD-ASCs, with or without E2 supplementation, were investigated. We demonstrated that E2 incorporation enhanced the proliferation of ASCs in vitro, and the most optimal concentration was 10-9 M. E2 also led to modulation of the MD-ASCs phenotype toward a concentrated type with smooth muscle-inductive medium. The expression of early (alpha-smooth muscle actin), mid (calponin), and late-stage (myosin heavy chain) contractile markers in MD-ASCs was enhanced by E2 during the different differentiation stages. Furthermore, the nano-scaffold was biocompatible with MD-ASCs, and cell proliferation was significantly enhanced by E2. Taken together, these results demonstrate that E2 can enhance the proliferation and myogenic differentiation of ASCs and can be used to construct a biocompatible cell/nano-scaffold. These scaffolds with desirable differentiation cells show promising applications for tissue engineering.
Collapse
Affiliation(s)
- Chunxiang Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinqian Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiliang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guiying Liao
- School of Material Science and Chemistry Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei, China
| | - Linjie Song
- School of Material Science and Chemistry Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei, China
| | - Xiaoyong Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
32
|
Lv YG, Kang L, Wu G. Fluorosis increases the risk of postmenopausal osteoporosis by stimulating interferon γ. Biochem Biophys Res Commun 2016; 479:372-379. [PMID: 27644876 DOI: 10.1016/j.bbrc.2016.09.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
Estrogen deficiency in postmenopausal women frequently activates osteoclasts (OC), accelerates bone resorption, and leads to osteoporosis (OP). Previous studies have demonstrated that interferon γ (IFNγ) could increase bone resorption and may be involved in postmenopausal OP. Fluorosis also increased the risk of fractures and dental fluorosis, and fluoride may enhance osteoclast formation and induce osteoclastic bone destruction in postmenopausal women, but the underlying mechanisms are as yet unknown. Here, we show that serum fluoride and IFNγ levels are negatively correlated with bone mineral density (BMD) in postmenopausal women residing in a fluorotic area. Estrogen suppresses IFNγ, which is elevated by fluoride, playing a pivotal role in triggering bone loss in estrogen-deficient conditions. In vitro, IFNγ is inhibited by estrogen treatment and increased by fluoride in Raw264.7 cell, an osteoclast progenitor cell line. In ovariectomized (Ovx) mice, estrogen loss and IFNγ promote OC activation and subsequent bone loss in vivo. However, IFNγ deficiency prevents bone loss in Ovx mice even in fluoride conditions. Interestingly, fluoride fails to increase IFNγ expression in estrogen receptor α (ERα)-deficient conditions, but not in ERβ-deficient conditions. These findings demonstrate that fluorosis increases the bone loss in postmenopausal OP through an IFNγ-dependent mechanism. IFNγ signaling activates OC and aggravates estrogen deficiency inducing OP. Thus, stimulation of IFNγ production is a pivotal ''upstream'' mechanism by which fluoride promotes bone loss. Suppression of IFNγ levels may constitute a therapeutic approach for preventing bone loss.
Collapse
Affiliation(s)
- Yun-Gang Lv
- Department of Magnetic Resonance Imaging, Zhongnan Hospital, Wuhan University, No. 185 Donghu Road, Wuhan 430071, PR China.
| | - Li Kang
- Department of Interventional Radiology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia 010017, PR China.
| | - Guangyao Wu
- Department of Magnetic Resonance Imaging, Zhongnan Hospital, Wuhan University, No. 185 Donghu Road, Wuhan 430071, PR China.
| |
Collapse
|
33
|
Concise Review: In Vitro Formation of Bone-Like Nodules Sheds Light on the Application of Stem Cells for Bone Regeneration. Stem Cells Transl Med 2016; 5:1587-1593. [PMID: 27458265 DOI: 10.5966/sctm.2015-0413] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
: Harnessing the differentiation of stem cells into bone-forming cells represents an intriguing avenue for the creation of functional skeletal tissues. Therefore, a profound understanding of bone development and morphogenesis sheds light on the regenerative application of stem cells in orthopedics and dentistry. In this concise review, we summarize the studies deciphering the mechanisms that govern osteoblast differentiation in the context of in vitro formation of bone-like nodules, including morphologic and molecular events as well as cellular contributions to mineral nucleation, occurring during osteogenic differentiation of stem cells. This article also highlights the limitations of current translational applications of stem cells and opportunities to use the bone-like nodule model for bone regenerative therapies. SIGNIFICANCE Harnessing the differentiation of stem cells into bone-forming cells represents an intriguing avenue for the creation of functional skeletal tissues. Therefore, a profound understanding of bone development and morphogenesis sheds light on the regenerative application of stem cells in orthopedics and dentistry. In this concise review, studies deciphering the mechanisms that govern osteoblast commitment and differentiation are summarized. This article highlights the limitations of current translational applications of stem cells and the opportunities to use the bone-like nodule model for bone regenerative therapies.
Collapse
|
34
|
17β-estradiol differently affects osteogenic differentiation of mesenchymal stem/stromal cells from adipose tissue and bone marrow. Differentiation 2016; 92:291-297. [PMID: 27087652 DOI: 10.1016/j.diff.2016.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/14/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Adipose-derived and bone marrow stem/stromal cells (ASCs and BMSCs) have been often compared for their application in regenerative medicine, and several factors sustaining their differentiation and efficacy have been investigated. 17 β-estradiol (E2) has been reported to influence some functions of progenitor cells. Here we studied the effects of 10 and 100nM E2 on ASC and BMSC vitality, proliferation and differentiation towards osteogenic and adipogenic lineages. E2 did not modulate ASC and BMSC vitality and growth rate, while the hormone produced a pro-adipogenic effect on both mesenchymal stem/stromal cells (MSCs). In particular, the synergy between 7-day pre-treatment and 100nM E2 led to the most evident result, increasing lipid vacuoles formation in ASCs and BMSCs of +44% and +82%, respectively. Despite the fact that E2 did not alter collagen deposition of osteo-induced MSCs, we observed a different modulation of ASC and BMSC alkaline phosphatase (ALP) activity. Indeed, this osteogenic marker was always enhanced by 17 β-estradiol in BMSCs, and 7-day pre-treatment with 100nM E2 increased it of about 70%. In contrast, E2 weakened ASC osteogenic potential, reducing their ALP activity of about 20%, with the most evident effect on ASCs isolated from pre-menopausal women (-30%). Finally, we identified an estrogen receptor α (ERα) variant of about 37kDa expressed in both MSCs. Interestingly, adipogenic stimuli drastically reduced its expression, while osteogenic ones mildly increased this isoform in BMSCs only. In conclusion, E2 positively affected the adipogenic process of both MSCs while it favored osteogenic induction in BMSCs only, and both mesenchymal progenitors expressed a novel 37kDa ER-α variant whose expression was modulated during differentiation.
Collapse
|
35
|
Gui Y, Chu N, Qiu X, Tang W, Gober HJ, Li D, Wang L. 17-β-estradiol up-regulates apolipoprotein genes expression during osteoblast differentiation in vitro. Biosci Trends 2016; 10:140-51. [PMID: 27074899 DOI: 10.5582/bst.2016.01007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Apolipoproteins are of great physiological importance and are associated with different diseases. Many independent studies of patterns of gene expression during osteoblast differentiation have been described, and some apolipoproteins have been induced during this process. 17-β-estradiol (E2) may enhance osteoblast physiological function. However, no studies have indicated whether E2 can modulate the expression of apolipoproteins during osteoblast differentiation in vitro. The aim of the current study was to observe the regulation of apolipoprotein mRNA expression by E2 during this process. Primary osteoblasts were collected from the calvaria of newborn mice and were subjected to osteoblast differentiation in vitro with serial concentrations of E2. RNA was isolated on days 0, 5, and 25 of differentiation. Real-time PCR was performed to analyze the levels of apolipoprotein mRNA. Results showed that during osteoblast differentiation all of the apolipoprotein genes were up-regulated by E2 in a dose-dependent manner. Moreover, only ApoE was strongly induced during the mineralization of cultured osteoblasts. This result suggests that ApoE might be involved in osteoblast differentiation. The hypothesis is that E2 promotes osteoblast differentiation by up-regulating ApoE gene expression, though further study is needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Yuyan Gui
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
| | | | | | | | | | | | | |
Collapse
|
36
|
Gui Y, Duan Z, Qiu X, Tang W, Gober HJ, Li D, Wang L. Multifarious effects of 17-β-estradiol on apolipoprotein E receptors gene expression during osteoblast differentiation in vitro . Biosci Trends 2016; 10:54-66. [DOI: 10.5582/bst.2016.01006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuyan Gui
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Zhongliang Duan
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Xuemin Qiu
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Wei Tang
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo
| | - Hans-Jürgen Gober
- Department of Pharmacy, Wagner Jauregg Hospital and Children's Hospital
| | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|
37
|
Bateman ME, Strong AL, McLachlan JA, Burow ME, Bunnell BA. The Effects of Endocrine Disruptors on Adipogenesis and Osteogenesis in Mesenchymal Stem Cells: A Review. Front Endocrinol (Lausanne) 2016; 7:171. [PMID: 28119665 PMCID: PMC5220052 DOI: 10.3389/fendo.2016.00171] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are prevalent in the environment, and epidemiologic studies have suggested that human exposure is linked to chronic diseases, such as obesity and diabetes. In vitro experiments have further demonstrated that EDCs promote changes in mesenchymal stem cells (MSCs), leading to increases in adipogenic differentiation, decreases in osteogenic differentiation, activation of pro-inflammatory cytokines, increases in oxidative stress, and epigenetic changes. Studies have also shown alteration in trophic factor production, differentiation ability, and immunomodulatory capacity of MSCs, which have significant implications to the current studies exploring MSCs for tissue engineering and regenerative medicine applications and the treatment of inflammatory conditions. Thus, the consideration of the effects of EDCs on MSCs is vital when determining potential therapeutic uses of MSCs, as increased exposure to EDCs may cause MSCs to be less effective therapeutically. This review focuses on the adipogenic and osteogenic differentiation effects of EDCs as these are most relevant to the therapeutic uses of MSCs in tissue engineering, regenerative medicine, and inflammatory conditions. This review will highlight the effects of EDCs, including organophosphates, plasticizers, industrial surfactants, coolants, and lubricants, on MSC biology.
Collapse
Affiliation(s)
- Marjorie E. Bateman
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Amy L. Strong
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - John A. McLachlan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E. Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- *Correspondence: Bruce A. Bunnell,
| |
Collapse
|
38
|
Noh MJ, Lee KH. Orthopedic cellular therapy: An overview with focus on clinical trials. World J Orthop 2015; 6:754-61. [PMID: 26601056 PMCID: PMC4644862 DOI: 10.5312/wjo.v6.i10.754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/22/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023] Open
Abstract
In this editorial, the authors tried to evaluate the present state of cellular therapy in orthopedic field. The topics the authors try to cover include not only the clinical trials but the various research areas as well. Both the target diseases for cellular therapy and the target cells were reviewed. New methods to activate the cells were interesting to review. Most advanced clinical trials were also included because several of them have advanced to phase III clinical trials. In the orthopedic field, there are many diseases with a definite treatment gap at this time. Because cellular therapies can regenerate damaged tissues, there is a possibility for cellular therapies to become disease modifying drugs. It is not clear whether cellular therapies will become the standard of care in any of the orthopedic disorders, however the amount of research being performed and the number of clinical trials that are on-going make the authors believe that cellular therapies will become important treatment modalities within several years.
Collapse
|
39
|
Wang Y, Zhu G, Li N, Song J, Wang L, Shi X. Small molecules and their controlled release that induce the osteogenic/chondrogenic commitment of stem cells. Biotechnol Adv 2015; 33:1626-40. [PMID: 26341834 DOI: 10.1016/j.biotechadv.2015.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/17/2022]
Abstract
Stem cell-based tissue engineering plays a significant role in skeletal system repair and regenerative therapies. However, stem cells must be differentiated into specific mature cells prior to implantation (direct implantation may lead to tumour formation). Natural or chemically synthesised small molecules provide an efficient, accurate, reversible, and cost-effective way to differentiate stem cells compared with bioactive growth factors and gene-related methods. Thus, investigating the influences of small molecules on the differentiation of stem cells is of great significance. Here, we review a series of small molecules that can induce or/and promote the osteogenic/chondrogenic commitment of stem cells. The controlled release of these small molecules from various vehicles for stem cell-based therapies and tissue engineering applications is also discussed. The extensive studies in this field represent significant contributions to stem cell-based tissue engineering research and regenerative medicine.
Collapse
Affiliation(s)
- Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Guanglin Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Nanying Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Juqing Song
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
40
|
Parivar K, Baharara J, Sheikholeslami A. Neural differentiation of mouse bone marrow-derived mesenchymal stem cells treated with sex steroid hormones and basic fibroblast growth factor. CELL JOURNAL 2015; 17:27-36. [PMID: 25870832 PMCID: PMC4393669 DOI: 10.22074/cellj.2015.509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 12/21/2013] [Indexed: 12/21/2022]
Abstract
Objective There are several factors, like environmental agents, neurotrophic factors,
serotonin and some hormones such as estrogen, affecting neurogenesis and neural differentiation. Regarding to importance of proliferation and regeneration in central nervous
system, and a progressive increase in neurodegenerative diseases, cell therapy is an
attractive approach in neuroscience. The aim of the present study was to investigate the
effects of sex steroid hormones and basic fibroblast growth factor (bFGF) on neuronal differentiation of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs).
Materials and Methods This experimental study was established in Kharazmi Univer-
sity. BM was isolated from the bones of femur and tibia of 4-6-week old Naval Medical
Research Institute (NMRI) mice, and the cells were cultured. The cells were divided into
following 4 groups based on the applied treatments: I. control (no treatment), II. steroid
hormones (β-estradiol, progesterone and testosterone), III. bFGF and IV. combination of
steroid hormones and bFGF. Immunocytochemistry and flow cytometery analyses were
applied for beta III-tubulin (β-III tubulin) and microtubule-associated proteins-2 (MAP-2) in
4 days of treatment for all groups.
Results The cells treated with combination of bFGF and steroid hormones represented
more expressions of neural markers as compared to control and to other two groups
treated with either bFGF or steroid hormones.
Conclusion This study showed that BM-MSCs can express specific neural markers after
receiving bFGF pretreatment that was followed by sex steroid hormones treatment. More
investigations are necessary to specify whether steroid hormones and bFGF can be considered for treatment of CNS diseases and disorders.
Collapse
Affiliation(s)
- Kazem Parivar
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Baharara
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Azar Sheikholeslami
- Department of Zoology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
41
|
Generation of neurospheres from human adipose-derived stem cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:743714. [PMID: 25815334 PMCID: PMC4357140 DOI: 10.1155/2015/743714] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 01/29/2023]
Abstract
Transplantation of neural stem cells (NSCs) to treat neurodegenerative disease shows promise; however, the clinical application of NSCs is limited by the invasive procurement and ethical concerns. Adipose-derived stem cells (ADSCs) are a source of multipotent stem cells that can self-renew and differentiate into various kinds of cells; this study intends to generate neurospheres from human ADSCs by culturing ADSCs on uncoated culture flasks in serum-free neurobasal medium supplemented with B27, basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF); the ADSCs-derived neurospheres were terminally differentiated after growth factor withdrawal. Expression of Nestin, NeuN, MAP2, and GFAP in ADSCs and terminally differentiated neurospheres was shown by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, and immunocytochemistry; cell proliferation in neurospheres was evaluated by cell cycle analyses, immunostaining, and flow cytometry. These data strongly support the conclusion that human ADSCs can successfully differentiate into neurospheres efficiently on uncoated culture flasks, which present similar molecular marker pattern and proliferative ability with NSCs derived from embryonic and adult brain tissues. Therefore, human ADSCs may be an ideal alternative source of stem cells for the treatment of neurodegenerative diseases.
Collapse
|
42
|
Donner DG, Beck BR, Bulmer AC, Lam AK, Du Toit EF. Improvements in body composition, cardiometabolic risk factors and insulin sensitivity with trenbolone in normogonadic rats. Steroids 2015; 94:60-9. [PMID: 25554582 DOI: 10.1016/j.steroids.2014.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/11/2014] [Accepted: 12/17/2014] [Indexed: 11/24/2022]
Abstract
Trenbolone (TREN) is used for anabolic growth-promotion in over 20 million cattle annually and continues to be misused for aesthetic purposes in humans. The current study investigated TREN's effects on body composition and cardiometabolic risk factors; and its tissue-selective effects on the cardiovascular system, liver and prostate. Male rats (n=12) were implanted with osmotic infusion pumps delivering either cyclodextrin vehicle (CTRL) or 2mg/kg/day TREN for 6 weeks. Dual-energy X-ray Absorptiometry assessment of body composition; organ wet weights and serum lipid profiles; and insulin sensitivity were assessed. Cardiac ultrasound examinations were performed before in vivo studies assessed myocardial susceptibility to ischemia-reperfusion (I/R) injury. Circulating sex hormones and liver enzyme activities; and prostate and liver histology were examined. In 6 weeks, fat mass increased by 34±7% in CTRLs (p<0.01). Fat mass decreased by 37±6% and lean mass increased by 11±4% with TREN (p<0.05). Serum triglycerides, HDL and LDL were reduced by 62%, 57% and 78% (p<0.05) respectively in TREN rats. Histological examination of the prostates from TREN-treated rats indicated benign hyperplasia associated with an increased prostate mass (149% compared to CTRLs, p<0.01). No evidence of adverse cardiac or hepatic effects was observed. In conclusion, improvements in body composition, lipid profile and insulin sensitivity (key risk factors for cardiometabolic disease) were achieved with six-week TREN treatment without evidence of adverse cardiovascular or hepatic effects that are commonly associated with traditional anabolic steroid misuse. Sex hormone suppression and benign prostate hyperplasia were confirmed as adverse effects of the treatment.
Collapse
Affiliation(s)
- Daniel G Donner
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia.
| | - Belinda R Beck
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Andrew C Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Eugene F Du Toit
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
43
|
Strong AL, Shi Z, Strong MJ, Miller DFB, Rusch DB, Buechlein AM, Flemington EK, McLachlan JA, Nephew KP, Burow ME, Bunnell BA. Effects of the endocrine-disrupting chemical DDT on self-renewal and differentiation of human mesenchymal stem cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:42-8. [PMID: 25014179 PMCID: PMC4286277 DOI: 10.1289/ehp.1408188] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/10/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Although the global use of the endocrine-disrupting chemical DDT has decreased, its persistence in the environment has resulted in continued human exposure. Accumulating evidence suggests that DDT exposure has long-term adverse effects on development, yet the impact on growth and differentiation of adult stem cells remains unclear. OBJECTIVES Human mesenchymal stem cells (MSCs) exposed to DDT were used to evaluate the impact on stem cell biology. METHODS We assessed DDT-treated MSCs for self-renewal, proliferation, and differentiation potential. Whole genome RNA sequencing was performed to assess gene expression in DDT-treated MSCs. RESULTS MSCs exposed to DDT formed fewer colonies, suggesting a reduction in self-renewal potential. DDT enhanced both adipogenic and osteogenic differentiation, which was confirmed by increased mRNA expression of glucose transporter type 4 (GLUT4), lipoprotein lipase (LpL), peroxisome proliferator-activated receptor gamma (PPARγ), leptin, osteonectin, core binding factor 1 (CBFA1), and FBJ murine osteosarcoma viral oncogene homolog (c-Fos). Expression of factors in DDT-treated cells was similar to that in estrogen-treated MSCs, suggesting that DDT may function via the estrogen receptor (ER)-mediated pathway. The coadministration of ICI 182,780 blocked the effects of DDT. RNA sequencing revealed 121 genes and noncoding RNAs to be differentially expressed in DDT-treated MSCs compared with controls cells. CONCLUSION Human MSCs provide a powerful biological system to investigate and identify the molecular mechanisms underlying the effects of environmental agents on stem cells and human health. MSCs exposed to DDT demonstrated profound alterations in self-renewal, proliferation, differentiation, and gene expression, which may partially explain the homeostatic imbalance and increased cancer incidence among those exposed to long-term EDCs.
Collapse
Affiliation(s)
- Amy L Strong
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu X, Liu Y, Cheng M, Zhang X, Xiao H. A metabolomics study of the inhibitory effect of 17-beta-estradiol on osteoclast proliferation and differentiation. MOLECULAR BIOSYSTEMS 2014; 11:635-46. [PMID: 25474166 DOI: 10.1039/c4mb00528g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estradiol is a major drug used clinically to alleviate osteoporosis, partly through inhibition of the activity of osteoclasts, which play a crucial role in bone resorption. So far, little is known about the effects of estradiol on osteoclast metabolism. In this study, ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC/MS)-based metabolomics strategy was used to investigate the metabolite response to 17β-estradiol in mouse osteoclast RAW264.7, a commonly used cell model for studying osteoporosis. Our results showed that the application of estradiol altered the levels of 27 intracellular metabolites, including lysophosphatidylcholines (LysoPCs), other lipids and amino acid derivants. The changes of all the 27 metabolites were observed in the study of estradiol induced osteoclast proliferation inhibition (1 μM estradiol applied), while the changes of only 18 metabolites were observed in the study of differentiation inhibition (0.1 μM estradiol applied). Further pathway impact analysis determined glycerophospholipid metabolism as the main potential target pathway of estradiol, which was further confirmed by LCAT (phosphatidylcholine-sterol acyltransferase) activity changes and lipid peroxidative product (MDA, methane dicarboxylic aldehyde) changes caused by estradiol. Additionally, we found that estradiol significantly decreased intracellular oxidative stress during cell proliferation but not during cell differentiation. Our study suggested that estradiol generated a highly condition-dependent influence on osteoclast metabolism.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
| | | | | | | | | |
Collapse
|
45
|
17beta-estradiol promotes the odonto/osteogenic differentiation of stem cells from apical papilla via mitogen-activated protein kinase pathway. Stem Cell Res Ther 2014; 5:125. [PMID: 25403930 PMCID: PMC4446088 DOI: 10.1186/scrt515] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Estrogen plays an important role in the osteogenic differentiation of mesenchymal stem cells, while stem cells from apical papilla (SCAP) can contribute to the formation of dentin/bone-like tissues. To date, the effects of estrogen on the differentiation of SCAP remain unclear. Methods SCAP was isolated and treated with 10-7 M 17beta-estradiol (E2). The odonto/osteogenic potency and the involvement of mitogen-activated protein kinase (MAPK) signaling pathway were subsequently investigated by using methyl-thiazolyl-tetrazolium (MTT) assay, and other methods. Results MTT and flow cytometry results demonstrated that E2 treatment had no effect on the proliferation of SCAP in vitro, while alkaline phosphatase (ALP) assay and alizarin red staining showed that E2 can significantly promote ALP activity and mineralization ability in SCAP. Real-time reverse transcription polymerase chain reaction (RT-PCR) and western blot assay revealed that the odonto/osteogenic markers (ALP, DMP1/DMP1, DSPP/DSP, RUNX2/RUNX2, OSX/OSX and OCN/OCN) were significantly upregulated in E2-treated SCAP. In addition, the expression of phosphor-p38 and phosphor-JNK in these stem cells was enhanced by E2 treatment, as was the expression of the nuclear downstream transcription factors including phosphor-Sp1, phosphor-Elk-1, phosphor-c-Jun and phosphor-c-Fos, indicating the activation of MAPK signaling pathway during the odonto/osteogenic differentiation of E2-treated SCAP. Conversely, the differentiation of E2-treated SCAP was inhibited in the presence of MAPK specific inhibitors. Conclusions The ondonto/osteogenic differentiation of SCAP is enhanced by 10-7 M 17beta-estradiol via the activation of MAPK signaling pathway.
Collapse
|
46
|
Xu H, He LL, Xiong CP, Gong CX, Liu CL, Peng LL, Cheng YJ, Jiang FQ, Tan LP, Tang L, Peng W, Tu YM, Yang YP, Luo D, Zou L, Liang SD. Genetic association analyses of fast plasma glucose level in pre-menopausal Chinese women: potential interaction between osteocalcin and oestrogen receptor α. Ann Hum Biol 2014; 42:455-60. [PMID: 25353278 DOI: 10.3109/03014460.2014.965200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Fasting plasma glucose (FPG) levels are usually tightly regulated within a narrow physiologic range. Variation of FPG levels is clinically important and is strongly heritable. Several lines of evidence suggest the importance of the oestrogen receptor α (ER-α) and osteocalcin (also known as BGP, for bone Gla protein) in determining FPG; however, whether their polymorphisms are associated with FPG variation is not well understood. AIM To investigate whether ER-a PvuII and BGP HindIII genetic polymorphisms and their potential interaction are associated with FPG variation. SUBJECTS AND METHODS The study subjects were 328 unrelated pre-menopausal Chinese women aged 21 years and over (mean age ± SD, 33.2 ± 5.9 years), with an average FPG of 4.92 (SD = 0.81). All subjects were genotyped at the ER-α PvuII and BGP HindIII loci using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP). RESULTS The ER-α PvuII genotypes were significantly associated with FPG (p = 0.007). In addition, a significant interaction was observed of the ER-α PvuII polymorphism with BGP HindIII polymorphism on FPG variation (p = 0.013), although the BGP HindIII polymorphism was not shown to be individually associated with FPG. CONCLUSION The PvuII polymorphism of the ER-α gene and its potential interaction with the HindIII polymorphism of the BGP gene were associated with FPG in pre-menopausal Chinese women.
Collapse
Affiliation(s)
- Hong Xu
- a Department of Physiology , Jiangxi Medical College of Nanchang University , Nanchang , Jiangxi , PR China
| | - Lu-Ling He
- a Department of Physiology , Jiangxi Medical College of Nanchang University , Nanchang , Jiangxi , PR China
| | - Chao-Peng Xiong
- b Foreign Nursing Class-2013 Grade, Fuzhou Medical College of Nanchang University , Fuzhou , Jiangxi , PR China
| | - Cheng-Xin Gong
- c School of Life Science & Technology, China Pharmaceutical University , Nanjing , PR China
| | - Chang-Le Liu
- a Department of Physiology , Jiangxi Medical College of Nanchang University , Nanchang , Jiangxi , PR China
| | | | | | | | | | - Lan Tang
- f Clinic 6 Class-2012 Grade, Jiangxi Medical College of Nanchang University , Nanchang , Jiangxi , PR China
| | | | - Yun-Ming Tu
- g Department of Endocrinology , The Fourth Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , PR China , and
| | - Yu-Ping Yang
- g Department of Endocrinology , The Fourth Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , PR China , and
| | - Dan Luo
- a Department of Physiology , Jiangxi Medical College of Nanchang University , Nanchang , Jiangxi , PR China
| | - Lin Zou
- h Department of Radioimmunology , People's Hospital of Jiangxi Province , Nanchang , Jiangxi , PR China
| | - Shang-Dong Liang
- a Department of Physiology , Jiangxi Medical College of Nanchang University , Nanchang , Jiangxi , PR China
| |
Collapse
|
47
|
Zakharova LA. Plasticity of neuroendocrine and immune systems in early development. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014050148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Irmak G, Demirtaş TT, Çetin Altındal D, Çalış M, Gümüşderelioğlu M. Sustained Release of 17β-Estradiol Stimulates Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells on Chitosan-Hydroxyapatite Scaffolds. Cells Tissues Organs 2014; 199:37-50. [DOI: 10.1159/000362362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2014] [Indexed: 11/19/2022] Open
|
49
|
Mobasheri A, Kalamegam G, Musumeci G, Batt ME. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas 2014; 78:188-98. [PMID: 24855933 DOI: 10.1016/j.maturitas.2014.04.017] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) represents a final and common pathway for all major traumatic insults to synovial joints. OA is the most common form of degenerative joint disease and a major cause of pain and disability. Despite the global increase in the incidence of OA, there are no effective pharmacotherapies capable of restoring the original structure and function of damaged articular cartilage. Consequently cell-based and biological therapies for osteoarthritis (OA) and related orthopaedic disorders have become thriving areas of research and development. Autologous chondrocyte implantation (ACI) has been used for treatment of osteoarticular lesions for over two decades. Although chondrocyte-based therapy has the capacity to slow down the progression of OA and delay partial or total joint replacement surgery, currently used procedures are associated with the risk of serious adverse events. Complications of ACI include hypertrophy, disturbed fusion, delamination, and graft failure. Therefore there is significant interest in improving the success rate of ACI by improving surgical techniques and preserving the phenotype of the primary chondrocytes used in the procedure. Future tissue-engineering approaches for cartilage repair will also benefit from advances in chondrocyte-based repair strategies. This review article focuses on the structure and function of articular cartilage and the pathogenesis of OA in the context of the rising global burden of musculoskeletal disease. We explore the challenges associated with cartilage repair and regeneration using cell-based therapies that use chondrocytes and mesenchymal stem cells (MSCs). This paper also explores common misconceptions associated with cell-based therapy and highlights a few areas for future investigation.
Collapse
Affiliation(s)
- Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH, United Kingdom(1); Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Nottingham University Hospitals, Nottingham NG7 2UH, United Kingdom; Arthritis Research UK Pain Centre, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom; Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah 21589, Saudi Arabia.
| | - Gauthaman Kalamegam
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Giuseppe Musumeci
- Department of Bio-medical Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, Catania 95125, Italy
| | - Mark E Batt
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Nottingham University Hospitals, Nottingham NG7 2UH, United Kingdom; Centre for Sports Medicine, West Block C Floor, Queen's Medical Centre, Nottingham University Hospitals, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
50
|
Fan JZ, Yang L, Meng GL, Lin YS, Wei BY, Fan J, Hu HM, Liu YW, Chen S, Zhang JK, He QZ, Luo ZJ, Liu J. Estrogen improves the proliferation and differentiation of hBMSCs derived from postmenopausal osteoporosis through notch signaling pathway. Mol Cell Biochem 2014; 392:85-93. [PMID: 24752351 PMCID: PMC4053611 DOI: 10.1007/s11010-014-2021-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/05/2014] [Indexed: 12/22/2022]
Abstract
Estrogen deficiency is the main reason of bone loss, leading to postmenopausal osteoporosis, and estrogen replacement therapy (ERT) has been demonstrated to protect bone loss efficiently. Notch signaling controls proliferation and differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Moreover, imperfect estrogen-responsive elements (EREs) were found in the 5'-untranslated region of Notch1 and Jagged1. Thus, we examined the molecular and biological links between estrogen and the Notch signaling in postmenopausal osteoporosis in vitro. hBMSCs were obtained from healthy women and patients with postmenopausal osteoporosis. Notch signaling molecules were quantified using real-time polymerase chain reaction (real-time PCR) and Western Blot. Luciferase reporter constructs with putative EREs were transfected into hBMSCs and analyzed. hBMSCs were transduced with lentiviral vectors containing human Notch1 intracellular domain (NICD1). We also used N-[N-(3, 5-diflurophenylacetate)-l-alanyl]-(S)-phenylglycine t-butyl ester, a γ-secretase inhibitor, to suppress the Notch signaling. We found that estrogen enhanced the Notch signaling in hBMSCs by promoting the expression of Jagged1. hBMSCs cultured with estrogen resulted in the up-regulation of Notch signaling and increased proliferation and differentiation. Enhanced Notch signaling could enhance the proliferation and differentiation of hBMSCs from patients with postmenopausal osteoporosis (OP-hBMSCs). Our results demonstrated that estrogen preserved bone mass partly by activating the Notch signaling. Because long-term ERT has been associated with several side effects, the Notch signaling could be a potential target for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Jin-Zhu Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|