1
|
Berg M, Eleftheriadou D, Phillips JB, Shipley RJ. Mathematical modelling with Bayesian inference to quantitatively characterize therapeutic cell behaviour in nerve tissue engineering. J R Soc Interface 2023; 20:20230258. [PMID: 37669694 PMCID: PMC10480012 DOI: 10.1098/rsif.2023.0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
Cellular engineered neural tissues have significant potential to improve peripheral nerve repair strategies. Traditional approaches depend on quantifying tissue behaviours using experiments in isolation, presenting a challenge for an overarching framework for tissue design. By comparison, mathematical cell-solute models benchmarked against experimental data enable computational experiments to be performed to test the role of biological/biophysical mechanisms, as well as to explore the impact of different design scenarios and thus accelerate the development of new treatment strategies. Such models generally consist of a set of continuous, coupled, partial differential equations relying on a number of parameters and functional forms. They necessitate dedicated in vitro experiments to be informed, which are seldom available and often involve small datasets with limited spatio-temporal resolution, generating uncertainties. We address this issue and propose a pipeline based on Bayesian inference enabling the derivation of experimentally informed cell-solute models describing therapeutic cell behaviour in nerve tissue engineering. We apply our pipeline to three relevant cell types and obtain models that can readily be used to simulate nerve repair scenarios and quantitatively compare therapeutic cells. Beyond parameter estimation, the proposed pipeline enables model selection as well as experiment utility quantification, aimed at improving both model formulation and experimental design.
Collapse
Affiliation(s)
- Maxime Berg
- Centre for Nerve Engineering, University College London, WC1E 6BT London, UK
- Department of Mechanical Engineering, University College London, WC1E 6BT London, UK
| | - Despoina Eleftheriadou
- Centre for Nerve Engineering, University College London, WC1E 6BT London, UK
- School of Pharmacy, University College London, WC1N 1AX London, UK
| | - James B. Phillips
- Centre for Nerve Engineering, University College London, WC1E 6BT London, UK
- School of Pharmacy, University College London, WC1N 1AX London, UK
| | - Rebecca J. Shipley
- Centre for Nerve Engineering, University College London, WC1E 6BT London, UK
- Department of Mechanical Engineering, University College London, WC1E 6BT London, UK
| |
Collapse
|
2
|
Annunziata C, Fattahpour H, Fong D, Hadjiargyrou M, Sanaei P. Effects of Elasticity on Cell Proliferation in a Tissue-Engineering Scaffold Pore. Bull Math Biol 2023; 85:25. [PMID: 36826607 DOI: 10.1007/s11538-023-01134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Scaffolds engineered for in vitro tissue engineering consist of multiple pores where cells can migrate along with nutrient-rich culture medium. The presence of the nutrient medium throughout the scaffold pores promotes cell proliferation, and this process depends on several factors such as scaffold geometry, nutrient medium flow rate, shear stress, cell-scaffold focal adhesions and elastic properties of the scaffold material. While numerous studies have addressed the first four factors, the mathematical approach described herein focuses on cell proliferation rate in elastic scaffolds, under constant flux of nutrients. As cells proliferate, the scaffold pores radius shrinks and thus, in order to sustain the nutrient flux, the inlet applied pressure on the upstream side of the scaffold pore must be increased. This results in expansion of the elastic scaffold pore, which in turn further increases the rate of cell proliferation. Considering the elasticity of the scaffold, the pore deformation allows further cellular growth beyond that of inelastic conditions. In this paper, our objectives are as follows: (i) Develop a mathematical model for describing fluid dynamics, scaffold elasticity and cell proliferation for scaffolds consist of identical nearly cylindrical pores; (ii) Solve the models and then simulate cellular proliferation within an elastic pore. The simulation can emulate real life tissue growth in a scaffold and offer a solution which reduces the numerical burdens. Lastly, our results demonstrated are in qualitative agreement with experimental observations reported in the literature.
Collapse
Affiliation(s)
- Carlyn Annunziata
- Department of Biomedical Engineering, New York Institute of Technology, Old Westbury, NY, 11568, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Haniyeh Fattahpour
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Daniel Fong
- Department of Mathematics and Science, U.S. Merchant Marine Academy, Kings Point, NY, 11024, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Pejman Sanaei
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
3
|
Scalable macroporous hydrogels enhance stem cell treatment of volumetric muscle loss. Biomaterials 2022; 290:121818. [PMID: 36209578 DOI: 10.1016/j.biomaterials.2022.121818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/15/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Volumetric muscle loss (VML), characterized by an irreversible loss of skeletal muscle due to trauma or surgery, is accompanied by severe functional impairment and long-term disability. Tissue engineering strategies combining stem cells and biomaterials hold great promise for skeletal muscle regeneration. However, scaffolds, including decellularized extracellular matrix (dECM), hydrogels, and electrospun fibers, used for VML applications generally lack macroporosity. As a result, the scaffolds used typically delay host cell infiltration, transplanted cell proliferation, and new tissue formation. To overcome these limitations, we engineered a macroporous dECM-methacrylate (dECM-MA) hydrogel, which we will refer to as a dECM-MA sponge, and investigated its therapeutic potential in vivo. Our results demonstrate that dECM-MA sponges promoted early cellularization, endothelialization, and establishment of a pro-regenerative immune microenvironment in a mouse VML model. In addition, dECM-MA sponges enhanced the proliferation of transplanted primary muscle stem cells, muscle tissue regeneration, and functional recovery four weeks after implantation. Finally, we investigated the scale-up potential of our scaffolds using a rat VML model and found that dECM-MA sponges significantly improved transplanted cell proliferation and muscle regeneration compared to conventional dECM scaffolds. Together, these results validate macroporous hydrogels as novel scaffolds for VML treatment and skeletal muscle regeneration.
Collapse
|
4
|
Dursun Usal T, Yesiltepe M, Yucel D, Sara Y, Hasirci V. Fabrication of a 3D Printed PCL Nerve Guide: In Vitro and In Vivo Testing. Macromol Biosci 2021; 22:e2100389. [PMID: 34939303 DOI: 10.1002/mabi.202100389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/11/2021] [Indexed: 12/27/2022]
Abstract
Nerve guides are medical devices designed to guide proximal and distal ends of injured peripheral nerves in order to assist regeneration of the damaged nerves. A 3D-printed polycaprolactone (PCL) nerve guide using an aligned gelatin-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) electrospun mat, seeded with PC12 and Schwann cells (SCs) is produced. During characterization with microCT and SEM porosity (55%), pore sizes (675 ± 40 µm), and fiber diameters (382 ± 25 µm) are determined. Electrospun fibers have degree of alignment of 7°, indicating high potential for guidance. On Day 14, PC12 cells migrated from proximal to distal end of nerve guide when SCs are seeded on the guide. After 28 days, over 95% of PC12 are alive and aligned. PC12 cells express early differentiation marker beta-tubulin 10 times more than late marker NeuN. In a 10 mm rat sciatic nerve injury, functional recovery evaluated by using static sciatic index (SSI) is observed in mat-free guides and guides containing mat and SCs. Nerve conduction velocities are also improved in these groups. Histological stainings showed tissue growth around nerve guides with highest new tissue organization being observed with mat and cell-free guides. These suggest 3D-printed PCL nerve guides have significant potential for treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Tugba Dursun Usal
- Middle East Technical University (METU), BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.,Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey.,Department of Biological Sciences, Middle East Technical University (METU), Ankara, 06800, Turkey
| | - Metin Yesiltepe
- Hacettepe University, Faculty of Medicine, Medical Pharmacology, Ankara, 06100, Turkey
| | - Deniz Yucel
- Middle East Technical University (METU), BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.,Department of Histology and Embryology, Acıbadem Mehmet Ali Aydinlar University (ACU), Istanbul, 34755, Turkey.,ACU Biomaterials Center, Acıbadem Mehmet Ali Aydinlar University (ACU), Istanbul, 34755, Turkey
| | - Yıldırım Sara
- Hacettepe University, Faculty of Medicine, Medical Pharmacology, Ankara, 06100, Turkey
| | - Vasif Hasirci
- Middle East Technical University (METU), BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.,Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey.,Department of Biological Sciences, Middle East Technical University (METU), Ankara, 06800, Turkey.,ACU Biomaterials Center, Acıbadem Mehmet Ali Aydinlar University (ACU), Istanbul, 34755, Turkey.,Department of Medical Engineering, Acıbadem Mehmet Ali Aydinlar University (ACU), Istanbul, 34755, Turkey
| |
Collapse
|
5
|
Liu Z, Tamaddon M, Gu Y, Yu J, Xu N, Gang F, Sun X, Liu C. Cell Seeding Process Experiment and Simulation on Three-Dimensional Polyhedron and Cross-Link Design Scaffolds. Front Bioeng Biotechnol 2020; 8:104. [PMID: 32195229 PMCID: PMC7064471 DOI: 10.3389/fbioe.2020.00104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
Cell attachment to a scaffold is a significant step toward successful tissue engineering. Cell seeding is the first stage of cell attachment, and its efficiency and distribution can affect the final biological performance of the scaffold. One of the contributing factors to maximize cell seeding efficiency and consequently cell attachment is the design of the scaffold. In this study, we investigated the optimum scaffold structure using two designs – truncated octahedron (TO) structure and cubic structure – for cell attachment. A simulation approach, by ANSYS Fluent coupling the volume of fluid (VOF) model, discrete phase model (DPM), and cell impingement model (CIM), was developed for cell seeding process in scaffold, and the results were validated with in vitro cell culture assays. Our observations suggest that both designs showed a gradual lateral variation of attached cells, and live cell movements are extremely slow by diffusion only while dead cells cannot move without external force. The simulation approaches supply a more accurate model to simulate cell adhesion for three-dimensional structures. As the initial stages of cell attachment in vivo are hard to observe, this novel method provides an opportunity to predict cell distribution, thereby helping to optimize scaffold structures. As tissue formation is highly related to cell distribution, this model may help researchers predict the effect of applied scaffold and reduce the number of animal testing.
Collapse
Affiliation(s)
- Ziyu Liu
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
| | - Maryam Tamaddon
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
| | - Yingying Gu
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
| | - Jianshu Yu
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
| | - Nan Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Fangli Gang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Chaozong Liu
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
| |
Collapse
|
6
|
Fernandes MM, Correia DM, Ribeiro C, Castro N, Correia V, Lanceros-Mendez S. Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45265-45275. [PMID: 31682095 DOI: 10.1021/acsami.9b14001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bone tissue repair strategies are gaining increasing relevance due to the growing incidence of bone disorders worldwide. Biochemical stimulation is the most commonly used strategy for cell regeneration, while the application of physical cues, including magnetic, mechanical, or electrical fields, is a promising, however, scarcely investigated field. This work reports on novel magnetoactive three-dimensional (3D) porous scaffolds suitable for effective proliferation of osteoblasts in a biomimetic microenvironment. This physically active microenvironment is developed through the bone-mimicking structure of the scaffold combined with the physical stimuli provided by a magnetic custom-made bioreactor on a magnetoresponsive scaffold. Scaffolds are obtained through the development of nanocomposites comprised of a piezoelectric polymer, poly(vinylidene fluoride) (PVDF), and magnetostrictive particles of CoFe2O4, using a solvent casting method guided by the overlapping of nylon template structures with three different fiber diameter sizes (60, 80, and 120 μm), thus generating 3D scaffolds with different pore sizes. The magnetoactive composites show a structure very similar to trabecular bone with pore sizes that range from 5 to 20 μm, owing to the inherent process of crystallization of PVDF with the nanoparticles (NPs), interconnected with bigger pores, formed after removing the nylon templates. It is found that the materials crystallize in the electroactive β-phase of PVDF and promote the proliferation of preosteoblasts through the application of magnetic stimuli. This phenomenon is attributed to both local magnetomechanical and magnetoelectric response of the scaffolds, which induce a proper cellular mechano- and electro-transduction process.
Collapse
Affiliation(s)
- Margarida M Fernandes
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , Braga 4710-057 , Portugal
- Centre of Physics , University of Minho , Braga 4710-057 , Portugal
| | - Daniela M Correia
- Centre of Physics , University of Minho , Braga 4710-057 , Portugal
- Centro de Química , Universidade de Trás-os-Montes e Alto Douro , Vila Real 5001-801 , Portugal
| | - Clarisse Ribeiro
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , Braga 4710-057 , Portugal
- Centre of Physics , University of Minho , Braga 4710-057 , Portugal
| | - Nelson Castro
- BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , Leioa 48940 , Spain
| | - Vitor Correia
- Centro Algoritmi , Universidade do Minho , Guimarães 4800-058 , Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , Leioa 48940 , Spain
- Ikerbasque, Basque Foundation for Science , Bilbao 48013 , Spain
| |
Collapse
|
7
|
Paim Á, Tessaro IC, Cardozo NSM, Pranke P. Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering. J Biol Phys 2018; 44:245-271. [PMID: 29508186 PMCID: PMC6082795 DOI: 10.1007/s10867-018-9482-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
Abstract
Tissue engineering is a multidisciplinary field of research in which the cells, biomaterials, and processes can be optimized to develop a tissue substitute. Three-dimensional (3D) architectural features from electrospun scaffolds, such as porosity, tortuosity, fiber diameter, pore size, and interconnectivity have a great impact on cell behavior. Regarding tissue development in vitro, culture conditions such as pH, osmolality, temperature, nutrient, and metabolite concentrations dictate cell viability inside the constructs. The effect of different electrospun scaffold properties, bioreactor designs, mesenchymal stem cell culture parameters, and seeding techniques on cell behavior can be studied individually or combined with phenomenological modeling techniques. This work reviews the main culture and scaffold factors that affect tissue development in vitro regarding the culture of cells inside 3D matrices. The mathematical modeling of the relationship between these factors and cell behavior inside 3D constructs has also been critically reviewed, focusing on mesenchymal stem cell culture in electrospun scaffolds.
Collapse
Affiliation(s)
- Ágata Paim
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n, Porto Alegre, Rio Grande do Sul, 90040-040, Brazil.
| | - Isabel C Tessaro
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n, Porto Alegre, Rio Grande do Sul, 90040-040, Brazil
| | - Nilo S M Cardozo
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n, Porto Alegre, Rio Grande do Sul, 90040-040, Brazil
| | - Patricia Pranke
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
- Stem Cell Research Institute, Porto Alegre, Rio Grande do Sul, 90020-010, Brazil
| |
Collapse
|
8
|
Behbehani M, Glen A, Taylor CS, Schuhmacher A, Claeyssens F, Haycock JW. Pre-clinical evaluation of advanced nerve guide conduits using a novel 3D in vitro testing model. Int J Bioprint 2017; 4:123. [PMID: 33102907 PMCID: PMC7582002 DOI: 10.18063/ijb.v4i1.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/22/2017] [Indexed: 01/20/2023] Open
Abstract
Autografts are the current gold standard for large peripheral nerve defects in clinics despite the frequently occurring side effects like donor site morbidity. Hollow nerve guidance conduits (NGC) are proposed alternatives to autografts, but failed to bridge gaps exceeding 3 cm in humans. Internal NGC guidance cues like microfibres are believed to enhance hollow NGCs by giving additional physical support for directed regeneration of Schwann cells and axons. In this study, we report a new 3D in vitro model that allows the evaluation of different intraluminal fibre scaffolds inside a complete NGC. The performance of electrospun polycaprolactone (PCL) microfibres inside 5 mm long polyethylene glycol (PEG) conduits were investigated in neuronal cell and dorsal root ganglion (DRG) cultures in vitro. Z-stack confocal microscopy revealed the aligned orientation of neuronal cells along the fibres throughout the whole NGC length and depth. The number of living cells in the centre of the scaffold was not significantly different to the tissue culture plastic (TCP) control. For ex vivo analysis, DRGs were placed on top of fibre-filled NGCs to simulate the proximal nerve stump. In 21 days of culture, Schwann cells and axons infiltrated the conduits along the microfibres with 2.2 ± 0.37 mm and 2.1 ± 0.33 mm, respectively. We conclude that this in vitro model can help define internal NGC scaffolds in the future by comparing different fibre materials, composites and dimensions in one setup prior to animal testing.
Collapse
Affiliation(s)
- Mehri Behbehani
- Department of Materials Science and Engineering, The University of Sheffield, UK
| | - Adam Glen
- Department of Materials Science and Engineering, The University of Sheffield, UK
| | - Caroline S Taylor
- Department of Materials Science and Engineering, The University of Sheffield, UK
| | | | - Frederik Claeyssens
- Department of Materials Science and Engineering, The University of Sheffield, UK
| | - John W Haycock
- Department of Materials Science and Engineering, The University of Sheffield, UK
| |
Collapse
|
9
|
Zhao F, Vaughan TJ, Mc Garrigle MJ, McNamara LM. A coupled diffusion-fluid pressure model to predict cell density distribution for cells encapsulated in a porous hydrogel scaffold under mechanical loading. Comput Biol Med 2017; 89:181-189. [DOI: 10.1016/j.compbiomed.2017.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022]
|
10
|
Chen G, Lv Y. Matrix elasticity-modified scaffold loaded with SDF-1α improves the in situ regeneration of segmental bone defect in rabbit radius. Sci Rep 2017; 7:1672. [PMID: 28490814 PMCID: PMC5432001 DOI: 10.1038/s41598-017-01938-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
The effectiveness of stem-cell based therapy has been hampered by the limited availability of stem cell sources, immune rejection, and difficulties in clinical adoption and regulatory approval. These obstacles can be partially circumvented by using in situ tissue engineering that recruits the endogenous stem/progenitor cells and provides cues to direct stem cell phenotype. Here, decellularized bone scaffold is mechanically modified by coating of collagen (Col)/hydroxyapatite (HA) mixture with optimal ratio and loaded with chemokine stromal cell-derived factor-1α (SDF-1α), in which endogenous stem cell recruitment can be improved by chemokine and stem cell fate can be regulated by matrix elasticity of the scaffold. This study shows that mesenchymal stem cells (MSCs) osteogenesis in vitro was enhanced by matrix elasticity and SDF-1α, and endogenous MSCs recruitment in subcutaneous implantation of rat was increased by the release of SDF-1α from the scaffold, and bone regeneration in rabbit large bone defect model was significantly improved by matrix elasticity and SDF-1α. In short, this study provides a new insight for developing novel engineered cell-free bone substitutes by mechanical modification for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Guobao Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, P. R. China
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, P. R. China
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, P. R. China.
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, P. R. China.
| |
Collapse
|
11
|
Sardella E, Salama RA, Waly GH, Habib AN, Favia P, Gristina R. Improving Internal Cell Colonization of Porous Scaffolds with Chemical Gradients Produced by Plasma Assisted Approaches. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4966-4975. [PMID: 28094986 DOI: 10.1021/acsami.6b14170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell colonization of the surrounding environment is a very significant process in both physiological and pathological events. In order to understand the tissue regeneration process and thereby provide guidance principles for designing new biomaterials, it is of paramount importance to study the cell colonization in the presence of physical, chemical, and biological cues. Flat "gradient" materials are generally used with this purpose. Three dimensional gradient scaffolds mimicking more precisely the situation in vivo are somewhat more complex to fabricate and characterize. Scaffolds for Tissue Engineering (TE) made of hydrophobic synthetic polymers do not allow good cell colonization: far from their periphery, in fact, internal cell colonization is usually low. In this research poly-ε caprolactone (PCL) scaffolds have been "decorated" with chemical gradients both on top and along their thickness by means of cold plasma processes, in order to improve cell colonization of their core. Plasma treatments with a mixture of argon and oxygen (Ar/O2), as well as plasma deposition of differently cross-linked poly(ethylene oxide) (PEO)-like coatings, have been performed. This study establishes that cross-linked PEO-like domains interspaced with native PCL ones deposited only on top of the scaffold (i.e., coating that penetrates less than 300 μm inside the scaffold) are more effective in promoting cell colonization across the scaffolds than the other tested materials including superhydrophilic samples and that ones produced by tested double step approaches. Last but not least, one result of this research is that, in the case of plasma coatings with low deposition rates and porous materials with a low pore interconnectivity, it is possible to improve penetration of low pressure plasma active species inside the scaffold's core thorough a pretreatment of the porous materials (i.e., penetration up to 4500 mm far from topside).
Collapse
Affiliation(s)
- Eloisa Sardella
- Institute of Nanotechnology-CNR (CNR Nanotec) , via Orabona 4, 70126 Bari, Italy
| | - Rania A Salama
- Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University , 12 Saraya AlManial Street, Kasr AlEiny, Cairo 11553, Egypt
| | - Gihan H Waly
- Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University , 12 Saraya AlManial Street, Kasr AlEiny, Cairo 11553, Egypt
| | - A Nour Habib
- Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University , 12 Saraya AlManial Street, Kasr AlEiny, Cairo 11553, Egypt
| | - Pietro Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro" , via Orabona 4, 70124, Bari, Italy
| | - Roberto Gristina
- Institute of Nanotechnology-CNR (CNR Nanotec) , via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
12
|
Di Luca A, Longoni A, Criscenti G, Mota C, van Blitterswijk C, Moroni L. Toward mimicking the bone structure: design of novel hierarchical scaffolds with a tailored radial porosity gradient. Biofabrication 2016; 8:045007. [DOI: 10.1088/1758-5090/8/4/045007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Hong SN, Dunn JC, Stelzner M, Martín MG. Concise Review: The Potential Use of Intestinal Stem Cells to Treat Patients with Intestinal Failure. Stem Cells Transl Med 2016; 6:666-676. [PMID: 28191783 PMCID: PMC5442796 DOI: 10.5966/sctm.2016-0153] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/10/2016] [Indexed: 12/17/2022] Open
Abstract
Intestinal failure is a rare life‐threatening condition that results in the inability to maintain normal growth and hydration status by enteral nutrition alone. Although parenteral nutrition and whole organ allogeneic transplantation have improved the survival of these patients, current therapies are associated with a high risk for morbidity and mortality. Development of methods to propagate adult human intestinal stem cells (ISCs) and pluripotent stem cells raises the possibility of using stem cell‐based therapy for patients with monogenic and polygenic forms of intestinal failure. Organoids have demonstrated the capacity to proliferate indefinitely and differentiate into the various cellular lineages of the gut. Genome‐editing techniques, including the overexpression of the corrected form of the defective gene, or the use of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to selectively correct the monogenic disease‐causing variant within the stem cell, make autologous ISC transplantation a feasible approach. However, numerous techniques still need to be further optimized, including more robust ex vivo ISC expansion, native ISC ablation, and engraftment protocols. Large‐animal models can to be used to develop such techniques and protocols and to establish the safety of autologous ISC transplantation because outcomes in such models can be extrapolated more readily to humans. Stem Cells Translational Medicine2017;6:666–676
Collapse
Affiliation(s)
- Sung Noh Hong
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - James C.Y. Dunn
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Matthias Stelzner
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Surgery, Veterans Administration Greater Los Angeles Health System, Los Angeles, California, USA
| | - Martín G. Martín
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
14
|
Nicholas MN, Jeschke MG, Amini-Nik S. Methodologies in creating skin substitutes. Cell Mol Life Sci 2016; 73:3453-72. [PMID: 27154041 PMCID: PMC4982839 DOI: 10.1007/s00018-016-2252-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/14/2022]
Abstract
The creation of skin substitutes has significantly decreased morbidity and mortality of skin wounds. Although there are still a number of disadvantages of currently available skin substitutes, there has been a significant decline in research advances over the past several years in improving these skin substitutes. Clinically most skin substitutes used are acellular and do not use growth factors to assist wound healing, key areas of potential in this field of research. This article discusses the five necessary attributes of an ideal skin substitute. It comprehensively discusses the three major basic components of currently available skin substitutes: scaffold materials, growth factors, and cells, comparing and contrasting what has been used so far. It then examines a variety of techniques in how to incorporate these basic components together to act as a guide for further research in the field to create cellular skin substitutes with better clinical results.
Collapse
Affiliation(s)
- Mathew N Nicholas
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Marc G Jeschke
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Saeid Amini-Nik
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
15
|
Jedlovszky-Hajdu A, Molnar K, Nagy PM, Sinko K, Zrinyi M. Preparation and properties of a magnetic field responsive three-dimensional electrospun polymer scaffold. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Wang H, Shi Q, Sun T, Liu X, Nakajima M, Huang Q, Dario P, Fukuda T. High-Speed Bioassembly of Cellular Microstructures With Force Characterization for Repeating Single-Step Contact Manipulation. IEEE Robot Autom Lett 2016. [DOI: 10.1109/lra.2016.2522084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks. PLoS One 2016; 11:e0156529. [PMID: 27228079 PMCID: PMC4882012 DOI: 10.1371/journal.pone.0156529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/16/2016] [Indexed: 11/19/2022] Open
Abstract
We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture.
Collapse
|
18
|
Park YS, Hwang JY, Jun Y, Jin YM, Kim G, Kim HY, Kim HS, Lee SH, Jo I. Scaffold-free parathyroid tissue engineering using tonsil-derived mesenchymal stem cells. Acta Biomater 2016; 35:215-27. [PMID: 26945633 DOI: 10.1016/j.actbio.2016.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 01/01/2023]
Abstract
To restore damaged parathyroid function, parathyroid tissue engineering is the best option. Previously, we reported that differentiated tonsil-derived mesenchymal stem cells (dTMSC) restore in vivo parathyroid function, but only if they are embedded in a scaffold. Because of the limited biocompatibility of Matrigel, however, here we developed a more clinically applicable, scaffold-free parathyroid regeneration system. Scaffold-free dTMSC spheroids were engineered in concave microwell plates made of polydimethylsiloxane in control culture medium for the first 7days and differentiation medium (containing activin A and sonic hedgehog) for next 7days. The size of dTMSC spheroids showed a gradual and significant decrease up to day 5, whereafter it decreased much less. Cells in dTMSC spheroids were highly viable (>80%). They expressed high levels of intact parathyroid hormone (iPTH), the parathyroid secretory protein 1, and cell adhesion molecule, N-cadherin. Furthermore, dTMSC spheroids-implanted parathyroidectomized (PTX) rats revealed higher survival rates (50%) over a 3-month period with physiological levels of both serum iPTH (57.7-128.2pg/mL) and ionized calcium (0.70-1.15mmol/L), compared with PTX rats treated with either vehicle or undifferentiated TMSC spheroids. This is the first report of a scaffold-free, human stem cell-based parathyroid tissue engineering and represents a more clinically feasible strategy for hypoparathyroidism treatment than those requiring scaffolds. STATEMENT OF SIGNIFICANCE Herein, we have for the first time developed a scaffold-free parathyroid tissue spheroids using differentiated tonsil-derived mesenchymal stem cells (dTMSC) to restore in vivo parathyroid cell functions. This new strategy is effective, even for long periods (3months), and is thus likely to be more feasible in clinic for hypoparathyroidism treatment. Development of TMSC spheroids may also provide a convenient and efficient scaffold-free platform for researchers investigating conditions involving abnormal calcium homeostasis, such as osteoporosis.
Collapse
|
19
|
Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. BIOMED RESEARCH INTERNATIONAL 2015; 2015:729076. [PMID: 25883972 PMCID: PMC4391163 DOI: 10.1155/2015/729076] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/27/2015] [Indexed: 11/22/2022]
Abstract
A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described.
Collapse
Affiliation(s)
- Marco A. Velasco
- Studies and Applications in Mechanical Engineering Research Group (GEAMEC), Universidad Santo Tomás, Bogotá, Colombia
| | - Carlos A. Narváez-Tovar
- Studies and Applications in Mechanical Engineering Research Group (GEAMEC), Universidad Santo Tomás, Bogotá, Colombia
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego A. Garzón-Alvarado
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
20
|
Sarig U, Nguyen EBV, Wang Y, Ting S, Bronshtein T, Sarig H, Dahan N, Gvirtz M, Reuveny S, Oh SKW, Scheper T, Boey YCF, Venkatraman SS, Machluf M. Pushing the envelope in tissue engineering: ex vivo production of thick vascularized cardiac extracellular matrix constructs. Tissue Eng Part A 2015; 21:1507-19. [PMID: 25602926 PMCID: PMC4426298 DOI: 10.1089/ten.tea.2014.0477] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Functional vascularization is a prerequisite for cardiac tissue engineering of constructs with physiological thicknesses. We previously reported the successful preservation of main vascular conduits in isolated thick acellular porcine cardiac ventricular ECM (pcECM). We now unveil this scaffold's potential in supporting human cardiomyocytes and promoting new blood vessel development ex vivo, providing long-term cell support in the construct bulk. A custom-designed perfusion bioreactor was developed to remodel such vascularization ex vivo, demonstrating, for the first time, functional angiogenesis in vitro with various stages of vessel maturation supporting up to 1.7 mm thick constructs. A robust methodology was developed to assess the pcECM maximal cell capacity, which resembled the human heart cell density. Taken together these results demonstrate feasibility of producing physiological-like constructs such as the thick pcECM suggested here as a prospective treatment for end-stage heart failure. Methodologies reported herein may also benefit other tissues, offering a valuable in vitro setting for “thick-tissue” engineering strategies toward large animal in vivo studies.
Collapse
Affiliation(s)
- Udi Sarig
- 1 The Laboratory of Cancer Drug Delivery & Mammalian Cell Technology, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing.
Collapse
Affiliation(s)
- Helena N Chia
- />Department of Bioengineering, Henry Samueli School of Engineering, University of California, 5121 Engineering V, Los Angeles, CA 90095 USA
| | - Benjamin M Wu
- />Department of Bioengineering, Henry Samueli School of Engineering, University of California, 5121 Engineering V, Los Angeles, CA 90095 USA
- />Department of Materials Science and Engineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA 90095 USA
- />Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095 USA
- />Department of Orthopedic Surgery, School of Medicine, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
22
|
3D tissue-engineered model of Ewing's sarcoma. Adv Drug Deliv Rev 2014; 79-80:155-71. [PMID: 25109853 DOI: 10.1016/j.addr.2014.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/28/2014] [Accepted: 07/24/2014] [Indexed: 12/30/2022]
Abstract
Despite longstanding reliance upon monolayer culture for studying cancer cells, and numerous advantages from both a practical and experimental standpoint, a growing body of evidence suggests that more complex three-dimensional (3D) models are necessary to properly mimic many of the critical hallmarks associated with the oncogenesis, maintenance and spread of Ewing's sarcoma (ES), the second most common pediatric bone tumor. And as clinicians increasingly turn to biologically-targeted therapies that exert their effects not only on the tumor cells themselves, but also on the surrounding extracellular matrix, it is especially important that preclinical models evolve in parallel to reliably measure antineoplastic effects and possible mechanisms of de novo and acquired drug resistance. Herein, we highlight a number of innovative methods used to fabricate biomimetic ES tumors, encompassing both the surrounding cellular milieu and the extracellular matrix (ECM), and suggest potential applications to advance our understanding of ES biology, preclinical drug testing, and personalized medicine.
Collapse
|
23
|
Lam GC, Sefton MV. Tuning graft- and host-derived vascularization in modular tissue constructs: a potential role of HIF1 activation. Tissue Eng Part A 2014; 21:803-16. [PMID: 25379774 DOI: 10.1089/ten.tea.2014.0315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A better understanding of the factors governing the vascularization of engineered tissues is crucial for their advancement as therapeutic platforms. Here, we studied the effect of implant volume and cell densities on the in vivo vascularization of modular engineered tissue constructs. Sub-millimeter collagen modules containing adipose-derived mesenchymal stromal cells (adMSC) and enveloped by human umbilical vein endothelial cells (HUVEC) were subcutaneously implanted in severe-combined immunodeficient mice with a beige-mutation (SCID-bg) mice. Implant volume and cell density was varied relative to a base case, defined as a 0.01 mL implant containing 1.5×10(7) adMSC/mL and 3.9×10(6) HUVEC/mL. At 7 and 14 days post-transplantation, the constructs were harvested for immunohistochemical analysis of total (CD31(+)) and graft-derived (UEA1(+)) vessel formation, hypoxia-inducible factor 1-alpha (HIF1α) expression, infiltration of host-derived leukocytes (CD45), and macrophages (F4/80). Implant volume and cell density affected the relative contributions of host- versus graft-derived vascularization, highlighting that different mechanisms underlie the two processes. Graft-derived vessel formation was most rapid and robust in implants with high HIF1α expression, namely large volume implants and implants with high adMSC and HUVEC density (p<0.01 compared to base case at day 7). Many HIF1α(+) cells were vessel-lining HUVEC, suggesting that HIF1 activation may be key to vessel assembly in the graft. Host vessel ingrowth, however, dominated the vascularization of small volume implants (of high and low adMSC density alike), which showed low HIF1α expression at day 7. Host vessels were sustained to day 14 when adMSC density alone was increased, presumably due to increased paracrine secretions. This study points to a potential role of HIF1 activation in the vascularization of tissue constructs, which may be harnessed to engineer robust vessels for therapeutic applications.
Collapse
Affiliation(s)
- Gabrielle C Lam
- 1 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Walthers CM, Nazemi AK, Patel SL, Wu BM, Dunn JCY. The effect of scaffold macroporosity on angiogenesis and cell survival in tissue-engineered smooth muscle. Biomaterials 2014; 35:5129-37. [PMID: 24695092 DOI: 10.1016/j.biomaterials.2014.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/12/2014] [Indexed: 11/19/2022]
Abstract
Angiogenesis and survival of cells within thick scaffolds is a major concern in tissue engineering. The purpose of this study is to increase the survival of intestinal smooth muscle cells (SMCs) in implanted tissue-engineered constructs. We incorporated 250-μm pores in multi-layered, electrospun scaffolds with a macroporosity ranging from 15% to 25% to facilitate angiogenesis. The survival of green fluorescent protein (GFP)-expressing SMCs was evaluated after 2 weeks of implantation. Whereas host cellular infiltration was similar in scaffolds with different macroporosities, blood vessel development increased with increasing macroporosity. Scaffolds with 25% macropores had the most GFP-expressing SMCs, which correlated with the highest degree of angiogenesis over 1 mm away from the outermost layer. The 25% macroporous group exceeded a critical threshold of macropore connectivity, accelerating angiogenesis and improving implanted cell survival in a tissue-engineered smooth muscle construct.
Collapse
Affiliation(s)
| | - Alireza K Nazemi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Shilpy L Patel
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M Wu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California, Los Angeles, CA, USA
| | - James C Y Dunn
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Surgery, University of California, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Molnar K, Juriga D, Nagy PM, Sinko K, Jedlovszky-Hajdu A, Zrinyi M. Electrospun poly(aspartic acid) gel scaffolds for artificial extracellular matrix. POLYM INT 2014. [DOI: 10.1002/pi.4720] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kristof Molnar
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology; Semmelweis University; Nagyvarad sq 4 H-1094 Budapest Hungary
| | - David Juriga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology; Semmelweis University; Nagyvarad sq 4 H-1094 Budapest Hungary
| | - Peter M Nagy
- RCNS-HAS, MEC; Pusztaszeri str 59-67 H-1025 Budapest Hungary
| | - Katalin Sinko
- Institute of Chemistry; L. Eötvös University; H-1117 Budapest Hungary
| | - Angela Jedlovszky-Hajdu
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology; Semmelweis University; Nagyvarad sq 4 H-1094 Budapest Hungary
| | - Miklos Zrinyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology; Semmelweis University; Nagyvarad sq 4 H-1094 Budapest Hungary
| |
Collapse
|
26
|
Chippendale TWE, Španěl P, Smith D, El Haj AJ. Counting cell numberin situby quantification of dimethyl sulphide in culture headspace. Analyst 2014; 139:4903-7. [DOI: 10.1039/c4an01102c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enzymatic activity by cells reduces DMSO to DMS that can be analysed non-invasively to determine cell numbers in a culture.
Collapse
Affiliation(s)
- Thomas W. E. Chippendale
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent, UK
- Cobra Biologics
- Keele ST5 5SP, UK
| | - Patrik Španěl
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent, UK
- J. Heyrovský Institute of Physical Chemistry
- Academy of Sciences of the Czech Republic
| | - David Smith
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent, UK
| | - Alicia J. El Haj
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent, UK
| |
Collapse
|
27
|
Shakeel M, Raza S. Nonlinear Computational Model of Biological Cell Proliferation and Nutrient Delivery in a Bioreactor. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/am.2014.515222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Effect of heterogeneous multi-layered gelatin scaffolds on the diffusion characteristics and cellular activities of preosteoblasts. Macromol Res 2013. [DOI: 10.1007/s13233-014-2024-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Makhaniok A, Haranava Y, Goranov V, Panseri S, Semerikhina S, Russo A, Marcacci M, Dediu V. In silico prediction of the cell proliferation in porous scaffold using model of effective pore. Biosystems 2013; 114:227-37. [PMID: 24141144 DOI: 10.1016/j.biosystems.2013.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
The mathematical prediction of cell proliferation in porous scaffold still remains a challenge. The analysis of existing models and experimental data confirms a need for a new solution, which takes into account cells" development on the scaffold pore walls as well as some additional parameters such as the pore size, cell density in cellular layers, the thickness of the growing cell layer and others. The simulations, presented below, are based on three main approaches. The first approach takes into account multilayer cell growth on the pore walls of the scaffold. The second approach is a simulation of cell proliferation in a discrete process as a continuous one. The third one is the representation of scaffold structure as a system of cylindrical channels. Oxygen (nutrient) mass transfer is realized inside these channels. The model, described below, proposes the new solution to time dependent description of cell proliferation in porous scaffold and optimized trophical conditions for tissue development.
Collapse
Affiliation(s)
- A Makhaniok
- BioDevice Systems, Praha 10, Vršovice, Bulharská 996/20, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Li H, Wijekoon A, Leipzig ND. Encapsulated Neural Stem Cell Neuronal Differentiation in Fluorinated Methacrylamide Chitosan Hydrogels. Ann Biomed Eng 2013; 42:1456-69. [DOI: 10.1007/s10439-013-0925-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/07/2013] [Indexed: 12/15/2022]
|
31
|
Microscale diffusion measurements and simulation of a scaffold with a permeable strut. Int J Mol Sci 2013; 14:20157-70. [PMID: 24152434 PMCID: PMC3821608 DOI: 10.3390/ijms141020157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/18/2022] Open
Abstract
Electrospun nanofibrous structures provide good performance to scaffolds in tissue engineering. We measured the local diffusion coefficients of 3-kDa FITC-dextran in line patterns of electrospun nanofibrous structures fabricated by the direct-write electrospinning (DWES) technique using the fluorescence recovery after photobleaching (FRAP) method. No significant differences were detected between DWES line patterns fabricated with polymer supplied at flow rates of 0.1 and 0.5 mL/h. The oxygen diffusion coefficients of samples were estimated to be ~92%–94% of the oxygen diffusion coefficient in water based on the measured diffusion coefficient of 3-kDa FITC-dextran. We also simulated cell growth and distribution within spatially patterned scaffolds with struts consisting of either oxygen-permeable or non-permeable material. The permeable strut scaffolds exhibited enhanced cell growth. Saturated depths at which cells could grow to confluence were 15% deeper for the permeable strut scaffolds than for the non-permeable strut scaffold.
Collapse
|
32
|
Hu C, Tercero C, Ikeda S, Nakajima M, Tajima H, Shen Y, Fukuda T, Arai F. Biodegradable porous sheet-like scaffolds for soft-tissue engineering using a combined particulate leaching of salt particles and magnetic sugar particles. J Biosci Bioeng 2013; 116:126-31. [DOI: 10.1016/j.jbiosc.2013.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/19/2012] [Accepted: 01/19/2013] [Indexed: 11/16/2022]
|
33
|
Borteh HM, Gallovic MD, Sharma S, Peine KJ, Miao S, Brackman DJ, Gregg K, Xu Y, Guo X, Guan J, Bachelder EM, Ainslie KM. Electrospun acetalated dextran scaffolds for temporal release of therapeutics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7957-7965. [PMID: 23725054 DOI: 10.1021/la400541e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Electrospun acetalated dextran (Ac-DEX) scaffolds were fabricated to encapsulate resiquimod, an immunomodulatory toll-like-receptor (TLR) agonist. Ac-DEX has been used to fabricate scaffolds for sustained and temporal delivery of therapeutics because it has tunable degradation rates that are dependent on its synthesis reaction time or the molecular weight of dextran. Additionally, as opposed to commonly electrospun polyesters that shift the local pH upon degradation, the degradation products of Ac-DEX are pH-neutral: dextran, an alcohol, and the metabolic byproduct acetone. Formulations of Ac-DEX with two different degradation rates were used in this study. The effects of electrospinning conditions on the scaffold size and morphology were examined as well as fibroblast adhesion as imaged with fluorescence microcopy and scanning electron microscopy. Macrophage (MΦ) viability further indicates that the scaffolds are cytocompatible. Also, the controlled release profiles of resiquimod from loaded scaffolds and nitric oxide (NO) production by MΦ incubated with these scaffolds show the potential for Ac-DEX scaffolds to be used to temporally and efficiently deliver therapeutics. Overall, we present a novel scaffold that can have tunable and unique drug release rates for tissue engineering, drug delivery, immunomodulation, and wound healing applications.
Collapse
Affiliation(s)
- Hassan M Borteh
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vitacolonna M, Belharazem D, Hohenberger P, Roessner ED. Effect of static seeding methods on the distribution of fibroblasts within human acellular dermis. Biomed Eng Online 2013; 12:55. [PMID: 23800135 PMCID: PMC3700771 DOI: 10.1186/1475-925x-12-55] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 06/11/2013] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION When developing tissue engineered solutions for existing clinical problems, cell seeding strategies should be optimized for desired cell distribution within matrices. The purpose of this investigation was to compare the effects of different static cell seeding methods and subsequent static cell culture for up to 12 days with regard to seeding efficiency and resulting cellular distribution in acellular dermis. MATERIALS AND METHODS The seeding methods tested were surface seeding of both unmodified and mechanically incised dermis, syringe injection of cell suspension, application of low-pressure and use of an ultrasonic bath to remove trapped air. The effect of "platelet derived growth factor" (PDGF) on surface seeding and low pressure seeding was also investigated. Scaffolds were incubated for up to 12 days and were histologically examined at days 0, 4, 8 and 12 for cell distribution and infiltration depth. The metabolic activity of the cells was quantified with the MTT assay at the same time points. RESULTS The 50 ml syringe degassing procedure produced the best results in terms of seeding efficiency, cell distribution, penetration depth and metabolic activity within the measured time frame. The injection and ultrasonic bath methods produced the lowest seeding efficiency. The incision method and the 20 ml syringe degassing procedure produced results that were not significantly different to those obtained with a standard static seeding method. CONCLUSION We postulate that air in the pores of the human acellular dermis (hAD) hinders cell seeding and subsequent infiltration. We achieved the highest seeding efficiency, homogeneity, infiltration depth and cell growth within the 12 day static culturing period by degassing the dermis using low- pressure created by a 50 ml syringe. We conclude that this method to eliminate trapped air provides the most effective method to seed cells and to allow cell proliferation in a natural scaffold.
Collapse
Affiliation(s)
- Mario Vitacolonna
- Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, University Medical Centre Mannheim, Mannheim, Germany
| | | | | | | |
Collapse
|
35
|
Bettahalli NMS, Arkesteijn ITM, Wessling M, Poot AA, Stamatialis D. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds. Acta Biomater 2013; 9:6928-35. [PMID: 23485858 DOI: 10.1016/j.actbio.2013.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/19/2022]
Abstract
Optimal cell interaction with biomaterial scaffolds is one of the important requirements for the development of successful in vitro tissue-engineered tissues. Fast, efficient and spatially uniform cell adhesion can improve the clinical potential of engineered tissue. Three-dimensional (3-D) solid free form fabrication is one widely used scaffold fabrication technique today. By means of deposition of polymer fibers, scaffolds with various porosity, 3-D architecture and mechanical properties can be prepared. These scaffolds consist mostly of solid round fibers. In this study, it was hypothesized that a corrugated fiber morphology enhances cell adhesion and proliferation and therefore leads to the development of successful in vitro tissue-engineered constructs. Corrugated round fibers were prepared and characterized by extruding poly(ethylene oxide terephthalate)-co-poly(butylene terephthalate) (300PEOT55PBT45) block co-polymer through specially designed silicon wafer inserts. Corrugated round fibers with 6 and 10 grooves on the fiber surface were compared with solid round fibers of various diameters. The culture of mouse pre-myoblast (C2C12) cells on all fibers was studied under static and dynamic conditions by means of scanning electron microscopy, cell staining and DNA quantification. After 7days of culturing under static conditions, the DNA content on the corrugated round fibers was approximately twice as high as that on the solid round fibers. Moreover, under dynamic culture conditions, the cells on the corrugated round fibers seemed to experience lower mechanical forces and therefore adhered better than on the solid round fibers. The results of this study show that the surface architecture of fibers in a tissue engineering scaffold can be used as a tool to improve the performance of the scaffold in terms of cell adhesion and proliferation.
Collapse
Affiliation(s)
- N M S Bettahalli
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Membrane Technology Group, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Kang TY, Hong JM, Jung JW, Yoo JJ, Cho DW. Design and assessment of a microfluidic network system for oxygen transport in engineered tissue. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:701-709. [PMID: 23234496 DOI: 10.1021/la303552m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oxygen and nutrients cannot be delivered to cells residing in the interior of large-volume scaffolds via diffusion alone. Several efforts have been made to meet the metabolic needs of cells in a scaffold by constructing mass transport channels, particularly in the form of bifurcated networks. In contrast to progress in fabrication technologies, however, an approach to designing an optimal network based on experimental evaluation has not been actively reported. The main objective of this study was to establish a procedure for designing an effective microfluidic network system for a cell-seeded scaffold and to develop an experimental model to evaluate the design. We proposed a process to design a microfluidic network by combining an oxygen transport simulation with biomimetic principles governing biological vascular trees. The simulation was performed with the effective diffusion coefficient (D(e,s)), which was experimentally measured in our previous study. Porous scaffolds containing an embedded microfluidic network were fabricated using the lost mold shape-forming process and salt leaching method. The reliability of the procedure was demonstrated by experiments using the scaffolds. This approach established a practical basis for designing an effective microfluidic network in a cell-seeded scaffold.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea
| | | | | | | | | |
Collapse
|
37
|
One-Dimensional Migration of Olfactory Ensheathing Cells on Synthetic Materials: Experimental and Numerical Characterization. Cell Biochem Biophys 2012; 65:21-36. [DOI: 10.1007/s12013-012-9399-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Magrofuoco E, Elvassore N, Doyle FJ. Theoretical analysis of insulin-dependent glucose uptake heterogeneity in 3D bioreactor cell culture. Biotechnol Prog 2012; 28:833-45. [DOI: 10.1002/btpr.1539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/27/2012] [Indexed: 11/08/2022]
|
39
|
Mohebbi-Kalhori D, Behzadmehr A, Doillon CJ, Hadjizadeh A. Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering. J Artif Organs 2012; 15:250-65. [PMID: 22610313 DOI: 10.1007/s10047-012-0649-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 04/23/2012] [Indexed: 11/28/2022]
Abstract
The use of hollow-fiber membrane bioreactors (HFMBs) has been proposed for three-dimensional bone tissue growth at the clinical scale. However, to achieve an efficient HFMB design, the relationship between cell growth and environmental conditions must be determined. Therefore, in this work, a dynamic double-porous media model was developed to determine nutrient-dependent cell growth for bone tissue formation in a HFMB. The whole hollow-fiber scaffold within the bioreactor was treated as a porous domain in this model. The domain consisted of two interpenetrating porous regions, including a porous lumen region available for fluid flow and a porous extracapillary space filled with a collagen gel that contained adherent cells for promoting long-term growth into tissue-like mass. The governing equations were solved numerically and the model was validated using previously published experimental results. The contributions of several bioreactor design and process parameters to the performance of the bioreactor were studied. The results demonstrated that the process and design parameters of the HFMB significantly affect nutrient transport and thus cell behavior over a long period of culture. The approach presented here can be applied to any cell type and used to develop tissue engineering hollow-fiber scaffolds.
Collapse
Affiliation(s)
- Davod Mohebbi-Kalhori
- Department of Chemical Engineering-Biotechnology, Université de Sherbrooke, 2500, Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | | | | | | |
Collapse
|
40
|
Singh S, Wu BM, Dunn JCY. Enhancing angiogenesis alleviates hypoxia and improves engraftment of enteric cells in polycaprolactone scaffolds. J Tissue Eng Regen Med 2012; 7:925-33. [PMID: 22511397 DOI: 10.1002/term.1484] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 11/07/2011] [Accepted: 01/13/2012] [Indexed: 12/13/2022]
Abstract
We examined whether expediting angiogenesis in porous polycaprolactone (PCL) scaffolds could reduce hypoxia and consequently improve the survival of transplanted enteric cells. To accelerate angiogenesis, we delivered vascular endothelial growth factor (VEGF) using PCL scaffolds with surface crosslinked heparin. The fabrication and characterization of scaffolds has been reported in our previous study. Enteric cells, isolated from intestinal tissue of neonatal mice and expanded in vitro for 10 days, exhibited high expression levels for contractile protein α-smooth muscle actin and desmin. The cultured enteric cells were seeded in scaffolds and were implanted subcutaneously in immunodeficient mice for 7 and 14 days. At day 7, the heparin-modified PCL scaffolds with VEGF exhibited significantly increased angiogenesis and engraftment of enteric cells, with a simultaneous reduction in hypoxia. At day 14, the blood vessels grew across the entire thickness of the scaffold and resulted in a significantly diminished hypoxic environment; however, the transplanted cell density did not increase further. In conclusion, the enhancement of angiogenesis reduced cellular hypoxia and improved the engraftment of enteric cells.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
41
|
Continuum Modelling of In Vitro Tissue Engineering: A Review. COMPUTATIONAL MODELING IN TISSUE ENGINEERING 2012. [DOI: 10.1007/8415_2012_140] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
42
|
Couet F, Meghezi S, Mantovani D. Fetal development, mechanobiology and optimal control processes can improve vascular tissue regeneration in bioreactors: an integrative review. Med Eng Phys 2011; 34:269-78. [PMID: 22133487 DOI: 10.1016/j.medengphy.2011.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 11/30/2022]
Abstract
Vascular tissue engineering aims to regenerate blood vessels to replace diseased arteries for cardiovascular patients. With the scaffold-based approach, cells are seeded on a scaffold showing specific properties and are expected to proliferate and self-organize into a functional vascular tissue. Bioreactors can significantly contribute to this objective by providing a suitable environment for the maturation of the tissue engineered blood vessel. It is recognized from the mechanotransduction principles that mechanical stimuli can influence the protein synthesis of the extra-cellular matrix thus leading to maturation and organization of the tissues. Up to date, no bioreactor is especially conceived to take advantage of the mechanobiology and optimize the construct maturation through an advanced control strategy. In this review, experimental strategies in the field of vascular tissue engineering are detailed, and a new approach inspired by fetal development, mechanobiology and optimal control paradigms is proposed. In this new approach, the culture conditions (i.e. flow, circumferential strain, pressure frequency, and others) are supposed to dynamically evolve to match the maturity of vascular constructs and maximize the efficiency of the regeneration process. Moreover, this approach allows the investigation of the mechanisms of growth, remodeling and mechanotransduction during the culture.
Collapse
Affiliation(s)
- Frédéric Couet
- Department of Materials Engineering & Research Centre, Quebec University Hospital, Laval University, Quebec City, Canada
| | | | | |
Collapse
|
43
|
Garzón-Alvarado DA, Velasco MA, Narváez-Tovar CA. Modeling porous scaffold microstructure by a reaction-diffusion system and its degradation by hydrolysis. Comput Biol Med 2011; 42:147-55. [PMID: 22136697 DOI: 10.1016/j.compbiomed.2011.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 12/18/2022]
Abstract
One of the most important areas of Tissue Engineering is the research about bone regeneration and the replacement of its function. To meet this requirement, scaffolds have been developed to allow the cell migration, the growth of bone tissue, the transport of growth factors and nutrients and the renovation of the mechanical properties of bone. Scaffolds are made of different biomaterials and manufactured using various techniques that, in some cases, do not allow full control over the size and orientation of the pores that characterize the scaffold microstructure. From this perspective, we propose a novel hypothesis that a reaction-diffusion system can be used to design the geometrical specifications of the bone matrix. The validation of this hypothesis is performed by simulations of the reaction-diffusion system in a representative tridimensional unit cell, coupled with a model of scaffold degradation by hydrolysis. The results show the possibility that a Reaction-Diffusion system can control features such as the percentage of porosity, trabecular size, orientation, and interconnectivity of pores.
Collapse
Affiliation(s)
- Diego A Garzón-Alvarado
- Engineering Modeling and Numerical Methods Group, Universidad Nacional de Colombia, Carretera 30 No. 45-03, Bogotá, Colombia.
| | | | | |
Collapse
|
44
|
Yu H, Yang X, Cheng J, Wang X, Shen SG. Distraction osteogenesis combined with tissue-engineered cartilage in the reconstruction of condylar osteochondral defect. J Oral Maxillofac Surg 2011; 69:e558-64. [PMID: 21978717 DOI: 10.1016/j.joms.2011.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/14/2011] [Accepted: 07/01/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE Surgical rehabilitation of condylar osteochondral defect remains a challenge for surgeons. The aim of this study was to explore the feasibility of combining distraction osteogenesis with tissue-engineered cartilage in the reconstruction of condylar osteochondral defect. MATERIALS AND METHODS A condylar defect model was established in 18 goats that were randomly divided into 2 groups: the experimental group and the control group. Mandibular ramus osteotomies were performed and distractors were implanted in all animals. The mixture of chondrocytes and Pluronic F-127 (Sigma-Aldrich, St Louis, MO) was injected on the notched surface of a transport disc in the experimental group, whereas a scaffold without cells was transplanted into the control group. After a 5-day latency period, distraction was activated at a rate of 0.5 mm twice per day for 15 days. The goats were killed at the end of the fourth, eighth, or twelfth week in the consolidation period. Specimens were harvested and macroscopic evaluation, as well as Masson trichrome and immunohistochemical staining, were performed to compare the results between the 2 groups. RESULTS Osteogenesis was found in all animals with no evidence of infection. Condyle-like structures were formed at the upper end of the transport segment in all animals. The neocondylar surface was covered with a layer of smooth lustrous fibrocartilage in the experimental group. Collagen was shown in the reparative tissue by Masson trichrome staining. Immunohistochemistry staining indicated that type II collagen was positive, whereas type I collagen was negative on the neocondylar surface in the experimental group. No cartilage-like tissue was seen, but fibrous tissue was identified at the bony surface in the control group. In the experimental group, immunofluorescent semiquantitative analysis showed that the positive rate of type II collagen was 1.62% ± 0.53% after the fourth week of consolidation, and it increased to 12.39% ± 3.27% after the twelfth week. There was a significant difference in the expression of type II collagen between the goats examined after the fourth week, and those examined after the twelfth week. CONCLUSION The combination of distraction osteogenesis with tissue-engineered cartilage is an ideal alternative in the reconstruction of condylar osteochondral defect. By use of this method, the simultaneous rehabilitation and regeneration of condylar bone and cartilage were achieved.
Collapse
Affiliation(s)
- Hongbo Yu
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
45
|
Way L, Scutt N, Scutt A. Cytocentrifugation: a convenient and efficient method for seeding tendon-derived cells into monolayer cultures or 3-D tissue engineering scaffolds. Cytotechnology 2011; 63:567-79. [PMID: 21948096 DOI: 10.1007/s10616-011-9391-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 08/12/2011] [Indexed: 02/06/2023] Open
Abstract
Tendon and ligament injuries are very common, requiring some 200,000 reconstructions per year in the USA. Autografting can be used to repair these but donor tissue is limited and harvesting leads to morbidity at the graft sites. Tissue engineering has been used to grow simple tissues such as skin, cartilage and bone and due to their low vascularity and simple structure, tendons should be ideal candidates for such an approach. Scaffolds are essential for tissue engineering as they provide structure and signals that regulate growth. However, they present a physical barrier to cell seeding with the majority of the cells congregating at the scaffold surface. To address this we used centrifugation to enhance penetration of tendon-derived cells to the centres of 3-D scaffolds. The process had no apparent deleterious effects on the cells and both plating efficiency and cell distribution improved. After attachment the cells continued to proliferate and deposit a collagenous matrix. Scaffold penetration was investigated using layers of Azowipes allowing the separation and examination of individual leaves. At relatively low g-forces, cells penetrated a stack of 6 Azowipes leaving cells attached to each leaf. These data suggest that cytocentrifugation improves the penetration and homogeneity of tendon derived cells in 3-D and monolayer cultures.
Collapse
Affiliation(s)
- Louise Way
- Bone Biology Group, Department of Human Metabolism, Faculty of Medicine, Dentistry and Health, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | | | | |
Collapse
|
46
|
Bettahalli N, Vicente J, Moroni L, Higuera G, van Blitterswijk C, Wessling M, Stamatialis D. Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs. Acta Biomater 2011; 7:3312-24. [PMID: 21704736 DOI: 10.1016/j.actbio.2011.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 05/20/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
Sufficient nutrient and oxygen transport is a potent modulator of cell proliferation in in vitro tissue-engineered constructs. The lack of oxygen and culture medium can create a potentially lethal environment and limit cellular metabolic activity and growth. Diffusion through scaffold and multi-cellular tissue typically limits transport in vitro, leading to potential hypoxic regions and reduction in the viable tissue thickness. For the in vitro generation of clinically relevant tissue-engineered grafts, current nutrient diffusion limitations should be addressed. Major approaches to overcoming these include culture with bioreactors, scaffolds with artificial microvasculature, oxygen carriers and pre-vascularization of the engineered tissues. This study focuses on the development and utilization of a new perfusion culture system to provide adequate nutrient delivery to cells within large three-dimensional (3D) scaffolds. Perfusion of oxygenated culture medium through porous hollow fiber (HF) integrated within 3D free form fabricated (FFF) scaffolds is proposed. Mouse pre-myoblast (C2C12) cells cultured on scaffolds of poly(ethylene-oxide-terephthalate)-poly(butylene-terephthalate) block copolymer (300PEOT55PBT45) integrated with porous HF membranes of modified poly(ether-sulfone) (mPES, Gambro GmbH) is used as a model system. Various parameters such as fiber transport properties, fiber spacing within a scaffold and medium flow conditions are optimized. The results show that four HF membranes integrated with the scaffold significantly improve the cell density and cell distribution. This study provides a basis for the development of a new HF perfusion culture methodology to overcome the limitations of nutrient diffusion in the culture of large 3D tissue constructs.
Collapse
|
47
|
Ghezzi CE, Muja N, Marelli B, Nazhat SN. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels. Biomaterials 2011; 32:4761-72. [PMID: 21514662 DOI: 10.1016/j.biomaterials.2011.03.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/04/2011] [Indexed: 01/04/2023]
Abstract
In vitro reconstituted type I collagen hydrogels are widely utilized for tissue engineering studies. However, highly hydrated collagen (HHC) gels exhibit insufficient mechanical strength and unstable geometrical properties, thereby limiting their therapeutic application. Plastic compression (PC) is a simple and reproducible approach for the immediate production of dense fibrillar collagen (DC) scaffolds which demonstrate multiple improvements for tissue engineered constructs including extracellular matrix (ECM)-like meso scale characteristics, increased mechanical properties (modulus and strength), enhanced cell growth and differentiation, and reduced long-term scaffold deformation. In order to determine at which stage these benefits become apparent, and the underlying mechanisms involved, the immediate response of NIH/3T3 fibroblasts to PC as well as longer-term cell growth within DC scaffolds were examined herein. The real time three-dimensional (3D) distribution of fluorescently labelled cells during PC was sequentially monitored using confocal laser scanning microscopy (CLSM), observing excellent cell retention and negligible numbers of expelled cells. Relative to cells grown in HHC gels, a significant improvement in cell survival within DC scaffolds was evident as early as day 1. Cell growth and metabolic activity within DC gels were significantly increased over the course of one week. While cells within DC scaffolds reached confluency, an inhomogeneous distribution of cells was present in HHC gels, as detected using x-ray computed micro-tomography analysis of phosphotungstic acid labelled cells and CLSM, which both showed a significant cell loss within the HHC core. Therefore, PC generates a DC gel scaffold without detrimental effects towards seeded cells, surpassing HHC gels as a 3D scaffold for tissue engineering.
Collapse
Affiliation(s)
- Chiara E Ghezzi
- Department of Mining and Materials Engineering, McGill University, 3610, University Street, Montreal, Quebec, Canada H3A 2B2
| | | | | | | |
Collapse
|
48
|
Cheema U, Rong Z, Kirresh O, MacRobert AJ, Vadgama P, Brown RA. Oxygen diffusion through collagen scaffolds at defined densities: implications for cell survival in tissue models. J Tissue Eng Regen Med 2011; 6:77-84. [DOI: 10.1002/term.402] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 11/19/2010] [Indexed: 11/10/2022]
|
49
|
Geris L, Gerisch A, Schugart RC. Mathematical modeling in wound healing, bone regeneration and tissue engineering. Acta Biotheor 2010; 58:355-67. [PMID: 20676732 DOI: 10.1007/s10441-010-9112-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 01/11/2023]
Abstract
The processes of wound healing and bone regeneration and problems in tissue engineering have been an active area for mathematical modeling in the last decade. Here we review a selection of recent models which aim at deriving strategies for improved healing. In wound healing, the models have particularly focused on the inflammatory response in order to improve the healing of chronic wound. For bone regeneration, the mathematical models have been applied to design optimal and new treatment strategies for normal and specific cases of impaired fracture healing. For the field of tissue engineering, we focus on mathematical models that analyze the interplay between cells and their biochemical cues within the scaffold to ensure optimal nutrient transport and maximal tissue production. Finally, we briefly comment on numerical issues arising from simulations of these mathematical models.
Collapse
|
50
|
Buckley CT, O'Kelly KU. Maintaining cell depth viability: on the efficacy of a trimodal scaffold pore architecture and dynamic rotational culturing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1731-1738. [PMID: 20162335 DOI: 10.1007/s10856-010-4013-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/28/2010] [Indexed: 05/28/2023]
Abstract
Tissue-engineering scaffold-based strategies have suffered from limited cell depth viability when cultured in vitro with viable cells typically existing at the fluid-scaffold interface. This is primarily believed to be due to the lack of nutrient delivery into and waste removal from the inner regions of the scaffold construct. This work focused on the assessment of a hydroxyapatite multi-domain porous scaffold architecture (i.e. a scaffold providing a discrete domain for cell occupancy and a separate domain for nutrient delivery). It has been demonstrated that incorporating unidirectional channels into a porous scaffold material significantly enhanced initial cell seeding distribution, while maintaining relatively high seeding efficiencies. In vitro static culturing showed that providing a discrete domain for nutrient diffusion and metabolic waste removal is insufficient to enhance or maintain homogeneous cell viability throughout the entire scaffold depth during a 7-day culture period. In contrast, scaffolds subjected to dynamic rotational culturing maintained uniform cell viability throughout the scaffold depth with increasing culturing time and enhanced the extent of cell proliferation (approximately 2-2.4-fold increase) compared to static culturing.
Collapse
Affiliation(s)
- Conor Timothy Buckley
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
| | | |
Collapse
|