1
|
Zastosowanie fibryny w inżynierii tkankowej. Osiągnięcia i perspektywy. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
W ostatnich latach istotnym obszarem zastosowania fibryny stała się inżynieria tkankowa, w której wykorzystuje się naturalne właściwości biostatyczne i bioaktywne fibryny, a także możliwość pułapkowania i wiązania w jej strukturze czynników wzrostu. Fibryna jest najczęściej stosowana w postaci żeli i dysków. Jednak każda postać wskutek pochłaniania wody docelowo przyjmuje postać żelu. Białko to w warunkach in vivo spełnia rolę rusztowania dla komórek, a także może być aplikowane w miejsca trudno dostępne – może wypełniać ubytki tkanek i podtrzymywać tkanki okalające, zapobiegając ich zapadaniu się. Ponadto fibryna hamuje krwawienie i inicjuje proces odnowy, jak również pełni rolę stymulatora wzrostu komórek. Przez modyfikacje struktury fibryny cząsteczkami adhezyjnymi, można przyspieszyć odbudowę prawidłowej struktury tkanek. Jej właściwości strukturalne mogą być także wykorzystywane jako rezerwuar czynników wzrostu i system ich przedłużonego uwalniania. Fibryna jest materiałem biodegradowalnym, umożliwiając skorelowanie ubytku matrycy fibrynowej z odbudową tkanek własnych pacjenta. Wprowadzenie metod druku 3D i elektroprzędzenia umożliwia formulację dopasowanych do uszkodzeń kształtek oraz włóknin bez utraty bioaktywnych funkcji fibryny. Metody te umożliwiają także poprawę właściwości mechanicznych przez otrzymywanie m.in. włóknin fibryny z innymi polimerami, co jest szczególnie uzasadnione w przypadku materiałów stosowanych w odbudowie takich struktur jak ścięgna czy kości. Biotechnologiczna synteza fibrynogenu może w przyszłości uniezależnić pozyskiwanie go z krwi i zwiększyć popularność wyrobów medycznych otrzymywanych z fibryny.
Collapse
|
2
|
Alghutaimel H, Yang X, Drummond B, Nazzal H, Duggal M, Raïf E. Investigating the vascularization capacity of a decellularized dental pulp matrix seeded with human dental pulp stem cells: in vitro and preliminary in vivo evaluations. Int Endod J 2021; 54:1300-1316. [PMID: 33709438 DOI: 10.1111/iej.13510] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022]
Abstract
AIM To investigate the vascularization capacity of a decellularized dental pulp matrix (DDP) of bovine origin seeded with human dental pulp stem cells (hDPSCs) in vitro and to present preliminary in vivo findings. METHODOLOGY Bovine dental pulps were decellularized and then analysed using histological staining and DNA quantification. The resultant DDPs were characterized using immunohistochemical staining for the retention of vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF-2). Furthermore, DDPs were recellularized with hDPSCs and analysed histologically. The expression of markers involved in angiogenesis by hDPSCs colonizing the DDPs was assessed in vitro. A preliminary in vivo study was then conducted in which hDPSCs-seeded and unseeded DDPs were inserted in debrided human premolars root slices and implanted subcutaneously in immunodeficient mice. Samples were retrieved after 30 days and analysed using histological and immunohistochemical staining. The independent samples t-test, analysis of variance and a Kruskal-Wallis test were used to analyse the quantitative data statistically depending on the group numbers and normality of data distribution. The difference between the groups was considered significant when the P-value was less than 0.05. RESULTS Acellular dental pulp matrices were generated following bovine dental pulp decellularization. Evaluation of the developed DDPs revealed a significant DNA reduction (P < 0.0001) with preservation of the native histoarchitecture and vasculature and retention of VEGF-A and FGF-2. Upon recellularization of the DDPs with hDPSCs, the in vitro analyses revealed cell engraftment with progressive repopulation of DDPs' matrices and vasculature and with enhanced expression of markers involved in angiogenesis. In vivo implantation of root slices with hDPSCs-seeded DDPs revealed apparent vascularization enhancement as compared to the unseeded DDP group (P < 0.0001). CONCLUSIONS The developed decellularized dental pulp matrix had pro-angiogenic properties characterized by the retention of native vasculature and angiogenic growth factors. Seeding of hDPSCs into the DDP led to progressive repopulation of the vasculature, enhanced expression of markers involved in angiogenesis in hDPSCs and improved in vivo vascularization capacity. The se suggest that a combination of DDP and hDPSCs have the potential to provide a promising vascularization promoting strategy for dental pulp regeneration.
Collapse
Affiliation(s)
- H Alghutaimel
- Department of Paediatric Dentistry, School of Dentistry, University of Leeds, Leeds, UK.,Department of Paediatric Dentistry, School of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - X Yang
- Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - B Drummond
- Department of Paediatric Dentistry, School of Dentistry, University of Leeds, Leeds, UK
| | - H Nazzal
- Paediatric Dentistry Section, Hamad Dental Centre, Hamad Medical Corporation, Doha, Qatar
| | - M Duggal
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - E Raïf
- Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Lu X, Jin H, Quesada C, Farrell EC, Huang L, Aliabouzar M, Kripfgans OD, Fowlkes JB, Franceschi RT, Putnam AJ, Fabiilli ML. Spatially-directed cell migration in acoustically-responsive scaffolds through the controlled delivery of basic fibroblast growth factor. Acta Biomater 2020; 113:217-227. [PMID: 32553916 DOI: 10.1016/j.actbio.2020.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Hydrogels are commonly used in regenerative medicine for the delivery of growth factors (GFs). The spatial and temporal presentations of GFs are critical for directing regenerative processes, yet conventional hydrogels do not enable such control. We have developed a composite hydrogel, termed an acoustically-responsive scaffold (ARS), where release of a GF is non-invasively and spatiotemporally-controlled using focused ultrasound. The ARS consists of a fibrin matrix doped with a GF-loaded, phase-shift emulsion. The GF is released when the ARS is exposed to suprathreshold ultrasound via a mechanism termed acoustic droplet vaporization. In this study, we investigate how different spatial patterns of suprathreshold ultrasound can impact the biological response upon in vivo implantation of an ARS containing basic fibroblast growth factor (bFGF). ARSs were fabricated with either perfluorohexane (bFGF-C6-ARS) or perflurooctane (bFGF-C8-ARS) within the phase-shift emulsion. Ultrasound generated stable bubbles in bFGF-C6-ARS, which inhibited matrix compaction, whereas transiently stable bubbles were generated in bFGF-C8-ARS, which decreased in height by 44% within one day of implantation. The rate of bFGF release and distance of host cell migration were up to 6.8-fold and 8.1-fold greater, respectively, in bFGF-C8-ARS versus bFGF-C6-ARS. Ultrasound increased the formation of macropores within the fibrin matrix of bFGF-C8-ARS by 2.7-fold. These results demonstrate that spatially patterning suprathreshold ultrasound within bFGF-C8-ARS can be used to elicit a spatially-directed response from the host. Overall, these findings can be used in developing strategies to spatially pattern regenerative processes. STATEMENT OF SIGNIFICANCE: Hydrogels are commonly used in regenerative medicine for the delivery of growth factors (GFs). The spatial and temporal presentations of GFs are critical for directing regenerative processes, yet conventional hydrogels do not enable such control. We have developed a composite hydrogel, termed an acoustically-responsive scaffold (ARS), where GF release is non-invasively and spatiotemporally-controlled using focused ultrasound. The ARS consists of a fibrin matrix doped with a phase-shift emulsion loaded with GF, which is released when the ARS is exposed to ultrasound. In this in vivo study, we demonstrate that spatially patterning ultrasound within an ARS containing basic fibroblast growth factor (bFGF) can elicit a spatially-directed response from the host. Overall, these findings can be used in developing strategies to spatially pattern regenerative processes.
Collapse
Affiliation(s)
- Xiaofang Lu
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Hai Jin
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; School of Medicine, Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Carole Quesada
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Easton C Farrell
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Leidan Huang
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Dental School, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Gaspar D, Peixoto R, De Pieri A, Striegl B, Zeugolis DI, Raghunath M. Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Drug Deliv Rev 2019; 146:126-154. [PMID: 31226398 DOI: 10.1016/j.addr.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/12/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
The past decades have seen significant advances in pro-angiogenic strategies based on delivery of molecules and cells for conditions such as coronary artery disease, critical limb ischemia and stroke. Currently, three major strategies are evolving. Firstly, various pharmacological agents (growth factors, interleukins, small molecules, DNA/RNA) are locally applied at the ischemic region. Secondly, preparations of living cells with considerable bandwidth of tissue origin, differentiation state and preconditioning are delivered locally, rarely systemically. Thirdly, based on the notion, that cellular effects can be attributed mostly to factors secreted in situ, the cellular secretome (conditioned media, exosomes) has come into the spotlight. We review these three strategies to achieve (neo)angiogenesis in ischemic tissue with focus on the angiogenic mechanisms they tackle, such as transcription cascades, specific signalling steps and cellular gases. We also include cancer-therapy relevant lymphangiogenesis, and shall seek to explain why there are often conflicting data between in vitro and in vivo. The lion's share of data encompassing all three approaches comes from experimental animal work and we shall highlight common technical obstacles in the delivery of therapeutic molecules, cells, and secretome. This plethora of preclinical data contrasts with a dearth of clinical studies. A lack of adequate delivery vehicles and standardised assessment of clinical outcomes might play a role here, as well as regulatory, IP, and manufacturing constraints of candidate compounds; in addition, completed clinical trials have yet to reveal a successful and efficacious strategy. As the biology of angiogenesis is understood well enough for clinical purposes, it will be a matter of time to achieve success for well-stratified patients, and most probably with a combination of compounds.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rita Peixoto
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Britta Striegl
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland.
| |
Collapse
|
5
|
Subbiah R, Guldberg RE. Materials Science and Design Principles of Growth Factor Delivery Systems in Tissue Engineering and Regenerative Medicine. Adv Healthc Mater 2019; 8:e1801000. [PMID: 30398700 DOI: 10.1002/adhm.201801000] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/13/2018] [Indexed: 01/22/2023]
Abstract
Growth factors (GFs) are signaling molecules that direct cell development by providing biochemical cues for stem cell proliferation, migration, and differentiation. GFs play a key role in tissue regeneration, but one major limitation of GF-based therapies is dosage-related adverse effects. Additionally, the clinical applications and efficacy of GFs are significantly affected by the efficiency of delivery systems and other pharmacokinetic factors. Hence, it is crucial to design delivery systems that provide optimal activity, stability, and tunable delivery for GFs. Understanding the physicochemical properties of the GFs and the biomaterials utilized for the development of biomimetic GF delivery systems is critical for GF-based regeneration. Many different delivery systems have been developed to achieve tunable delivery kinetics for single or multiple GFs. The identification of ideal biomaterials with tunable properties for spatiotemporal delivery of GFs is still challenging. This review characterizes the types, properties, and functions of GFs, the materials science of widely used biomaterials, and various GF loading strategies to comprehensively summarize the current delivery systems for tunable spatiotemporal delivery of GFs aimed for tissue regeneration applications. This review concludes by discussing fundamental design principles for GF delivery vehicles based on the interactive physicochemical properties of the proteins and biomaterials.
Collapse
Affiliation(s)
- Ramesh Subbiah
- Parker H. Petit Institute for Bioengineering and Bioscience; George W. Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Robert E. Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience; George W. Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
- Phil and Penny Knight Campus for Accelerating Scientific Impact; 6231 University of Oregon; Eugene OR 97403 USA
| |
Collapse
|
6
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
7
|
Zhan K, Bai L, Wu Q, Lei D, Wang G. Fractal characteristics of the microvascular network: A useful index to assess vascularization level of porous silk fibroin biomaterial. J Biomed Mater Res A 2017; 105:2276-2290. [PMID: 28445607 DOI: 10.1002/jbm.a.36094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 04/05/2017] [Accepted: 04/20/2017] [Indexed: 02/04/2023]
Abstract
The neovascularization of biomaterials for tissue engineering is not only related to growth of capillaries but also involves appropriate hierarchy distribution of the microvessels. In this study, we proposed hierarchy distribution contrast method which can assess vascular transport capacity, in order to examine the hierarchy distribution of the neovessels during vascularization of the porous silk fibroin biomaterials implanted into rats and its evolution. The results showed that the fractal characteristics appeared toward the end of the vascularization stages, and the structure of the microvascular network after 3 weeks of implantation was similar to the fractal microvascular tree with bifurcation exponent x = 3 and fractal dimension D = 1.46, which became a sign of maturation of the regenerative vasculature. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2276-2290, 2017.
Collapse
Affiliation(s)
- Kuihua Zhan
- School of Mechanical and Electric Engineering, Soochow University, 178 Gan Jiang East Road, Suzhou, 215006, China.,College of Textile and Clothing Engineering, Soochow University, 178 Gan Jiang East Road, Suzhou, 215006, China
| | - Lun Bai
- College of Textile and Clothing Engineering, Soochow University, 178 Gan Jiang East Road, Suzhou, 215006, China
| | - Qinqin Wu
- School of Mechanical and Electric Engineering, Soochow University, 178 Gan Jiang East Road, Suzhou, 215006, China
| | - Derong Lei
- School of Mechanical and Electric Engineering, Soochow University, 178 Gan Jiang East Road, Suzhou, 215006, China
| | - Guangqian Wang
- College of Textile and Clothing Engineering, Soochow University, 178 Gan Jiang East Road, Suzhou, 215006, China
| |
Collapse
|
8
|
Tang X, Qin H, Gu X, Fu X. China’s landscape in regenerative medicine. Biomaterials 2017; 124:78-94. [DOI: 10.1016/j.biomaterials.2017.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
9
|
Howell DW, Duran CL, Tsai SP, Bondos SE, Bayless KJ. Functionalization of Ultrabithorax Materials with Vascular Endothelial Growth Factor Enhances Angiogenic Activity. Biomacromolecules 2016; 17:3558-3569. [DOI: 10.1021/acs.biomac.6b01068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- David W. Howell
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
| | - Camille L. Duran
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
| | - Shang-Pu Tsai
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
| | - Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
- Department
of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, United States
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Andrejecsk JW, Chang WG, Pober JS, Saltzman WM. Controlled protein delivery in the generation of microvascular networks. Drug Deliv Transl Res 2015; 5:75-88. [PMID: 25767747 PMCID: PMC4354697 DOI: 10.1007/s13346-012-0122-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rapid induction and stabilization of new microvascular networks is essential for the proper functioning of engineered tissues. Many efforts to achieve this goal have used proangiogenic proteins-such as vascular endothelial growth factors-to induce the formation of new microvessels. These proteins have demonstrated promise in improving vascularization, but it is also clear that the spatial and temporal presentation of these signals is important for achieving proper vascular function. Delivery systems that present proteins in a localized and sustained manner, can promote the formation and stabilization of microvascular networks by precisely presenting proangiogenic proteins at desired locations, and for specified durations. Further, these systems allow for some control over the sequence of release of multiple proteins, and it has become clear that such coordination is critical for the development of fully functional and mature vascular structures. This review focuses on the actions of proangiogenic proteins and the innovations in controlled release technologies that precisely deliver these to stimulate microvascular network formation and stabilization.
Collapse
Affiliation(s)
| | - William G Chang
- Department of Medicine and Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520
| | - Jordan S Pober
- Departments of Immunobiology, Pathology, and Dermatology, Yale University School of Medicine, New Haven, CT 06520
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
| |
Collapse
|
11
|
Fibrin as a delivery system in wound healing tissue engineering applications. J Control Release 2014; 196:1-8. [PMID: 25284479 DOI: 10.1016/j.jconrel.2014.09.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022]
Abstract
Fibrin is formed in the body upon initiation of the clotting cascade and is produced commercially for use as a tissue sealant and hemostasis device during surgical procedures. Experimentally fibrin is being increasingly used as a vector to deliver growth factors, cells, drugs and genes in tissue engineering applications mimicking aspects of the extra cellular matrix. Growth factors (GFs) are central to wound healing, inducing cell proliferation, migration and differentiation. Attempts have been made to augment wound healing with GFs, however widespread clinical use has been hindered in vivo due to their rapid metabolism within the body. Fibrin hydrogels protect GFs from rapid degradation and the composition of which can be altered to achieve their optimal release. This article reviews the use of fibrin for the delivery of GFs and details the various strategies that have evolved to alter the release rate so as to enhance the regenerative process, including bi-domain peptides, plasmin degradation sequences and heparin incorporation. This paper also reviews other recent advances in this field, such as dual delivery of cells and GF or sequential release of multiple GF.
Collapse
|
12
|
Biomimetic materials for medical application through enzymatic modification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 125:181-205. [PMID: 21072699 DOI: 10.1007/10_2010_85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Living organisms synthesize functional materials, based on proteins and polysaccharides, using enzyme-catalyzed reactions. According to the biomimetic approach, biomaterial matrices for tissue engineering are designed to be able to mimic the properties and the functions of the extracellular matrix (ECM). In this chapter, the most significant research efforts dedicated to the study and the preparation of biomimetic materials through enzymatic modifications were reviewed. The functionalizations of different polymeric matrices obtained through the catalytic activity of two enzymes (Transglutaminase, TGase and Tyrosinase, TYRase) were discussed. Specifically, the biomimetic applications of TGase and TYRase to confer appropriate biomimetic properties to the biomaterials, such as the possibility to obtain in situ gelling hydrogels and the incorporation of bioactive molecules (growth factors) and cell-binding peptides into the scaffolds, were reviewed.
Collapse
|
13
|
Ling TY, Liu YL, Huang YK, Gu SY, Chen HK, Ho CC, Tsao PN, Tung YC, Chen HW, Cheng CH, Lin KH, Lin FH. Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin--microbubble scaffold. Biomaterials 2014; 35:5660-9. [PMID: 24746968 DOI: 10.1016/j.biomaterials.2014.03.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/27/2014] [Indexed: 12/16/2022]
Abstract
The inability to adequately vascularize tissues in vitro or in vivo is a major challenge in lung tissue engineering. A method that integrates stem cell research with 3D-scaffold engineering may provide a solution. We have successfully isolated mouse pulmonary stem/progenitor cells (mPSCs) by a two-step procedure and fabricated mPSC-compatible gelatin/microbubble-scaffolds using a 2-channel fluid jacket microfluidic device. We then integrated the cells and the scaffold to construct alveoli-like structures. The mPSCs expressed pro-angiogenic factors (e.g., b-FGF and VEGF) and induced angiogenesis in vitro in an endothelial cell tube formation assay. In addition, the mPSCs were able to proliferate along the inside of the scaffolds and differentiate into type-II and type-I pneumocytes The mPSC-seeded microbubble-scaffolds showed the potential for blood vessel formation in both a chick chorioallantoic membrane (CAM) assay and in experiments for subcutaneous implantation in severe combined immunodeficient (SCID) mice. Our results demonstrate that lung stem/progenitor cells together with gelatin microbubble-scaffolds promote angiogenesis as well as the differentiation of alveolar pneumocytes, resulting in an alveoli-like structure. These findings may help advance lung tissue engineering.
Collapse
Affiliation(s)
- Thai-Yen Ling
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yen-Liang Liu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yung-Kang Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sing-Yi Gu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Kuan Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Choa-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Nien Tsao
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Division of Neonatology, Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiung-Hsiang Cheng
- Department and Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Keng-Hui Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater 2013. [PMID: 23184739 DOI: 10.1002/adhm.201200197] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modern synthetic biomaterials are being designed to integrate bioactive ligands within hydrogel scaffolds for cells to respond and assimilate within the matrix. These advanced biomaterials are only beginning to be used to simulate the complex spatio-temporal control of the natural healing microenvironment. With increasing understanding of the role of growth factors and cytokines and their interactions with components of the extracellular matrix, novel biomaterials are being developed that more closely mimic the natural healing environments of tissues, resulting in increased efficacy in applications of tissue repair and regeneration. Herein, the important aspects of the healing microenvironment, and how these features can be incorporated within innovative hydrogel scaffolds, are presented.
Collapse
Affiliation(s)
- Jeffrey J Rice
- Institute for Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Cao J, Xiao Z, Jin W, Chen B, Meng D, Ding W, Han S, Hou X, Zhu T, Yuan B, Wang J, Liang W, Dai J. Induction of rat facial nerve regeneration by functional collagen scaffolds. Biomaterials 2012; 34:1302-10. [PMID: 23122676 DOI: 10.1016/j.biomaterials.2012.10.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/10/2012] [Indexed: 12/31/2022]
Abstract
Nerve conduit provides a promising strategy for nerve regeneration, and the proper microenvironment in the lumen could improve the regeneration. Our previous work had demonstrated that linear ordered collagen scaffold (LOCS) could effectively guide the oriented growth of axons. Laminin is known as an important nerve growth promoting factor and can facilitate the growth cone formation. In addition, ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) can effectively improve the nerve regeneration after nerve injuries. However, in practice, diffusion caused by the body fluids is the major obstacle in their applications. To retain CNTF or BDNF on the scaffolds, we produced collagen binding CNTF (CBD-CNTF), collagen binding BDNF (CBD-BDNF) and laminin binding CNTF (LBD-CNTF), laminin binding BDNF (LBD-BDNF) respectively. In this work, we developed laminin modified LOCS fibers (L × LOCS) by chemical cross-linking LOCS fibers with laminin. Collagen binding or laminin binding neurotrophic factors were combined with LOCS or L × LOCS, and then filled them into the collagen nerve conduit. They were found to guide the ordered growth of axons, and improve the nerve functional recovery in the rat facial nerve transection model. The combination of CNTF and BDNF greatly enhanced the facial nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Jiani Cao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Molecular fabrications of smart nanobiomaterials and applications in personalized medicine. Adv Drug Deliv Rev 2012; 64:1459-76. [PMID: 22921596 DOI: 10.1016/j.addr.2012.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/27/2012] [Accepted: 08/09/2012] [Indexed: 12/31/2022]
Abstract
Recent advances in nanotechnology adequately address many of the current challenges in biomedicine. However, to advance medicine we need personalized treatments which require the combination of nanotechnological progress with genetics, molecular biology, gene sequencing, and computational design. This paper reviews the literature of nanoscale biomaterials described to be totally biocompatible, non-toxic, non-immunogenic, and biodegradable and furthermore, have been used or have the potential to be used in personalized biomedical applications such as drug delivery, tissue regeneration, and diagnostics. The nanobiomaterial architecture is discussed as basis for fabrication of novel integrated systems involving cells, growth factors, proteins, cytokines, drug molecules, and other biomolecules with the purpose of creating a universal, all purpose nanobiomedical device for personalized therapies. Nanofabrication strategies toward the development of a platform for the implementation of nanotechnology in personalized medicine are also presented. In addition, there is a discussion on the challenges faced for designing versatile, smart nanobiomaterials and the requirements for choosing a material with tailor made specifications to address the needs of a specific patient.
Collapse
|
17
|
Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev 2012; 64:1078-89. [PMID: 22465487 DOI: 10.1016/j.addr.2012.03.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/12/2012] [Accepted: 03/05/2012] [Indexed: 11/21/2022]
Abstract
The regeneration of large bone defects caused by trauma or disease remains a significant clinical problem. Although osteoinductive growth factors such as bone morphogenetic proteins have entered clinics, transplantation of autologous bone remains the gold standard to treat bone defects. The effective treatment of bone defects by protein therapeutics in humans requires quantities that exceed the physiological doses by several orders of magnitude. This not only results in very high treatment costs but also bears considerable risks for adverse side effects. These issues have motivated the development of biomaterials technologies allowing to better control biomolecule delivery from the solid phase. Here we review recent approaches to immobilize biomolecules by affinity binding or by covalent grafting to biomaterial matrices. We focus on biomaterials concepts that are inspired by extracellular matrix (ECM) biology and in particular the dynamic interaction of growth factors with the ECM. We highlight the value of synthetic, ECM-mimicking matrices for future technologies to study bone biology and develop the next generation of 'smart' implants.
Collapse
|
18
|
Spicer PP, Mikos AG. Fibrin glue as a drug delivery system. J Control Release 2010; 148:49-55. [PMID: 20637815 DOI: 10.1016/j.jconrel.2010.06.025] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/20/2010] [Accepted: 06/29/2010] [Indexed: 11/17/2022]
Abstract
Fibrin glue has been used surgically for decades for hemostasis as well as a sealant. It has also been researched as both a gel for cell delivery and a vehicle for drug delivery. The drug delivery applications for fibrin glue span tissue engineering to chemotherapy and involve several mechanisms for drug matrix interactions and control of release kinetics. Additionally, drugs or factors can be loaded in the gel via impregnation and tethering to the gel through covalent linkages or affinity-based systems. This review highlights recent research of fibrin glue as a drug delivery vehicle.
Collapse
Affiliation(s)
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|