1
|
Estrada Mira S, García-Briega MI, Gómez Ribelles JL, Restrepo Munera LM. Viscoelastic Properties of Acellular Matrices of Porcine Esophageal Mucosa and Comparison with Acellular Matrices of Porcine Small Intestine Submucosa and Bovine Pericardium. MATERIALS (BASEL, SWITZERLAND) 2023; 17:134. [PMID: 38203987 PMCID: PMC10779732 DOI: 10.3390/ma17010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
The aim of this study was to compare the viscoelastic properties of a decellularized mesh from the porcine esophagus, prepared by our group, with two commercial acellular tissues derived from porcine small intestine submucosa and bovine pericardium for use in medical devices. The tissues' viscoelastic properties were characterized by creep tests in tension, applying the load in the direction of the fibers or the transverse direction, and also by dynamic-shear mechanical tests between parallel plates or in tension at frequencies between 0.1 and 35 Hz. All the tests were performed in triplicate at a constant temperature of 37 °C immersed in distilled water. The tissues' surface and cross-sectional microstructure were observed by scanning electron microscopy (SEM) to characterize the orientation of the fibers. The matrices of the porcine esophagus present an elastic modulus in the order of 60 MPa when loaded in the longitudinal direction while those of the porcine intestine submucosa and bovine pericardium have an elastic modulus below 5 MPa. Nevertheless, the shear modulus of bovine pericardium nearly triplicates that of the esophageal matrix. The viscoelasticity of decellularized esophageal mucosa is characterized by a fast change in the creep compliance with time. The slope of the creep curve in the double logarithmic plot is twice that of the control samples. These results are consistent with the microstructure observed under electron microscopy regarding the orientation of the fibers that make up the matrices.
Collapse
Affiliation(s)
- Sergio Estrada Mira
- Tissue Engineering and Cells Therapy Group (GITTC), School of Medicine, University of Antioquia, Medellin 050010, Colombia; (S.E.M.); (L.M.R.M.)
- Cell Therapy and Biobank, Alma Mater Hospital of Antioquia, University of Antioquia, Medellin 050010, Colombia
| | - María Inmaculada García-Briega
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Luis Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luz M. Restrepo Munera
- Tissue Engineering and Cells Therapy Group (GITTC), School of Medicine, University of Antioquia, Medellin 050010, Colombia; (S.E.M.); (L.M.R.M.)
- Cell Therapy and Biobank, Alma Mater Hospital of Antioquia, University of Antioquia, Medellin 050010, Colombia
| |
Collapse
|
2
|
Du EY, Jung M, Skhinas J, Tolentino MAK, Noy J, Jamshidi N, Houng JL, Tjandra KC, Engel M, Utama R, Tilley RD, Kavallaris M, Gooding JJ. 3D Bioprintable Hydrogel with Tunable Stiffness for Exploring Cells Encapsulated in Matrices of Differing Stiffnesses. ACS APPLIED BIO MATERIALS 2023; 6:4603-4612. [PMID: 37844275 DOI: 10.1021/acsabm.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In vitro cell models have undergone a shift from 2D models on glass slides to 3D models that better reflect the native 3D microenvironment. 3D bioprinting promises to progress the field by allowing the high-throughput production of reproducible cell-laden structures with high fidelity. The current stiffness range of printable matrices surrounding the cells that mimic the extracellular matrix environment remains limited. The work presented herein aims to expand the range of stiffnesses by utilizing a four-armed polyethylene glycol with maleimide-functionalized arms. The complementary cross-linkers comprised a matrix metalloprotease-degradable peptide and a four-armed thiolated polymer which were adjusted in ratio to tune the stiffness. The modularity of this system allows for a simple method of controlling stiffness and the addition of biological motifs. The application of this system in drop-on-demand printing is validated using MCF-7 cells, which were monitored for viability and proliferation. This study shows the potential of this system for the high-throughput investigation of the effects of stiffness and biological motif compositions in relation to cell behaviors.
Collapse
Affiliation(s)
- Eric Y Du
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - MoonSun Jung
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Joanna Skhinas
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - M A Kristine Tolentino
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - Janina Noy
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - Niloufar Jamshidi
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - Jacinta L Houng
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - Kristel C Tjandra
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - Martin Engel
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - Robert Utama
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - Richard D Tilley
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Maria Kavallaris
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| |
Collapse
|
3
|
Cui H, Yu ZX, Huang Y, Hann SY, Esworthy T, Shen YL, Zhang LG. 3D printing of thick myocardial tissue constructs with anisotropic myofibers and perfusable vascular channels. BIOMATERIALS ADVANCES 2023; 153:213579. [PMID: 37566935 DOI: 10.1016/j.bioadv.2023.213579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Engineering of myocardial tissues has become a promising therapeutic strategy for treating myocardial infarction (MI). However, a significant challenge remains in generating clinically relevant myocardial tissues that possess native microstructural characteristics and fulfill the requirements for implantation within the human body. In this study, a thick 3D myocardial construct with anisotropic myofibers and perfusable branched vascular channels is created with clinically relevant dimensions using a customized beam-scanning stereolithography printing technique. To obtain tissue-specific matrix niches, a decellularized extracellular matrix microfiber-reinforced gelatin-based bioink is developed. The bioink plays a crucial role in facilitating the precise manufacturing of a hierarchical microstructure, enabling us to better replicate the physiological characteristics of the native myocardial tissue matrix in terms of structure, biomechanics, and bioactivity. Through the integration of the tailored bioink with our printing method, we demonstrate a biomimetic architecture, appropriate biomechanical properties, vascularization, and improved functionality of induced pluripotent stem cell-derived cardiomyocytes in the thick tissue construct in vitro. This work not only offers a novel and effective means to generate biomimetic heart tissue in vitro for the treatment of MI, but also introduces a potential methodology for creating clinically relevant tissue products to aid in other complex tissue/organ regeneration and disease model applications.
Collapse
Affiliation(s)
- Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Yimin Huang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Yin-Lin Shen
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America; Departments of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, United States of America; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, United States of America; Department of Medicine, The George Washington University, Washington, DC 20052, United States of America.
| |
Collapse
|
4
|
Rheology and Gelation of Hyaluronic Acid/Chitosan Coacervates. Biomolecules 2022; 12:biom12121817. [PMID: 36551245 PMCID: PMC9775361 DOI: 10.3390/biom12121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Hyaluronic acid (HA) and chitosan (CHI) are biopolyelectrolytes which are interesting for both the medical and polymer physics communities due to their biocompatibility and semi-flexibility, respectively. In this work, we demonstrate by rheology experiments that the linear viscoelasticity of HA/CHI coacervates depends strongly on the molecular weight of the polymers. Moduli for coacervates were found significantly higher than those of individual HA and CHI physical gels. A remarkable 1.5-fold increase in moduli was noted when catechol-conjugated HA and CHI were used instead. This was attributed to the conversion of coacervates to chemical gels by oxidation of 3,4-dihydroxyphenylalanine (DOPA) groups in HA and CHI to di-DOPA crosslinks. These rheological results put HA/CHI coacervates in the category of strong candidates as injectable tissue scaffolds or medical adhesives.
Collapse
|
5
|
Jung M, Ghamrawi S, Du EY, Gooding JJ, Kavallaris M. Advances in 3D Bioprinting for Cancer Biology and Precision Medicine: From Matrix Design to Application. Adv Healthc Mater 2022; 11:e2200690. [PMID: 35866252 PMCID: PMC11648101 DOI: 10.1002/adhm.202200690] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/08/2022] [Indexed: 01/28/2023]
Abstract
The tumor microenvironment is highly complex owing to its heterogeneous composition and dynamic nature. This makes tumors difficult to replicate using traditional 2D cell culture models that are frequently used for studying tumor biology and drug screening. This often leads to poor translation of results between in vitro and in vivo and is reflected in the extremely low success rates of new candidate drugs delivered to the clinic. Therefore, there has been intense interest in developing 3D tumor models in the laboratory that are representative of the in vivo tumor microenvironment and patient samples. 3D bioprinting is an emerging technology that enables the biofabrication of structures with the virtue of providing accurate control over distribution of cells, biological molecules, and matrix scaffolding. This technology has the potential to bridge the gap between in vitro and in vivo by closely recapitulating the tumor microenvironment. Here, a brief overview of the tumor microenvironment is provided and key considerations in biofabrication of tumor models are discussed. Bioprinting techniques and choice of bioinks for both natural and synthetic polymers are also outlined. Lastly, current bioprinted tumor models are reviewed and the perspectives of how clinical applications can greatly benefit from 3D bioprinting technologies are offered.
Collapse
Affiliation(s)
- MoonSun Jung
- Children's Cancer InstituteLowy Cancer Research CenterUNSW SydneySydneyNSW2052Australia
- Australian Centre for NanoMedicineUNSW SydneySydneyNSW2052Australia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneySydneyNSW2052Australia
| | - Sarah Ghamrawi
- Children's Cancer InstituteLowy Cancer Research CenterUNSW SydneySydneyNSW2052Australia
- Australian Centre for NanoMedicineUNSW SydneySydneyNSW2052Australia
| | - Eric Y. Du
- Australian Centre for NanoMedicineUNSW SydneySydneyNSW2052Australia
- School of ChemistryUNSW SydneySydneyNSW2052Australia
| | - J. Justin Gooding
- Australian Centre for NanoMedicineUNSW SydneySydneyNSW2052Australia
- School of ChemistryUNSW SydneySydneyNSW2052Australia
| | - Maria Kavallaris
- Children's Cancer InstituteLowy Cancer Research CenterUNSW SydneySydneyNSW2052Australia
- Australian Centre for NanoMedicineUNSW SydneySydneyNSW2052Australia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneySydneyNSW2052Australia
| |
Collapse
|
6
|
Lizana-Vasquez GD, Arrieta-Viana LF, Mendez-Vega J, Acevedo A, Torres-Lugo M. Synthetic Thermo-Responsive Terpolymers as Tunable Scaffolds for Cell Culture Applications. Polymers (Basel) 2022; 14:polym14204379. [PMID: 36297960 PMCID: PMC9611013 DOI: 10.3390/polym14204379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tailored synthetic hydrogels for in vitro tissue culture and biomanufacturing provides the advantage of mimicking the cell microenvironment without issues of batch-to-batch variability. To that end, this work focused on the design, characterization, and preliminary evaluation of thermo-responsive, transparent synthetic terpolymers based on N-isopropylacrylamide, vinylphenylboronic acid, and polyethylene glycol for cell manufacturing and in vitro culture applications. Polymer physical properties were characterized by FT-IR, 1H-NMR, DLS, rheology, and thermal-gravimetric analysis. Tested combinations provided polymers with a lower critical solution temperature (LCST) between 30 and 45 °C. Terpolymer elastic/shear modulus varied between 0.3 and 19.1 kPa at 37 °C. Cellular characterization indicated low cell cytotoxicity on NIH-3T3. Experiments with the ovarian cancer model SKOV-3 and Jurkat T cells showed the terpolymers’ capacity for cell encapsulation without interfering with staining or imaging protocols. In addition, cell growth and high levels of pluripotency demonstrated the capability of terpolymer to culture iPSCs. Characterization results confirmed a promising use of terpolymers as a tunable scaffold for cell culture applications.
Collapse
|
7
|
Brudnicki PAP, Gonsalves MA, Spinella SM, Kaufman LJ, Lu HH. Engineering collagenous analogs of connective tissue extracellular matrix. Front Bioeng Biotechnol 2022; 10:925838. [PMID: 36312546 PMCID: PMC9613959 DOI: 10.3389/fbioe.2022.925838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Connective tissue extracellular matrix (ECM) consists of an interwoven network of contiguous collagen fibers that regulate cell activity, direct biological function, and guide tissue homeostasis throughout life. Recently, ECM analogs have emerged as a unique ex vivo culture platform for studying healthy and diseased tissues and in the latter, enabling the screening for and development of therapeutic regimen. Since these tissue models can mitigate the concern that observations from animal models do not always translate clinically, the design and production of a collagenous ECM analogue with relevant chemistry and nano- to micro-scale architecture remains a frontier challenge in the field. Therefore, the objectives of this study are two-fold— first, to apply green electrospinning approaches to the fabrication of an ECM analog with nanoscale mimicry and second, to systematically optimize collagen crosslinking in order to produce a stable, collagen-like substrate with continuous fibrous architecture that supports human cell culture and phenotypic expression. Specifically, the “green” electrospinning solvent acetic acid was evaluated for biofabrication of gelatin-based meshes, followed by the optimization of glutaraldehyde (GTA) crosslinking under controlled ambient conditions. These efforts led to the production of a collagen-like mesh with nano- and micro-scale cues, fibrous continuity with little batch-to-batch variability, and proven stability in both dry and wet conditions. Moreover, the as-fabricated mesh architecture and native chemistry were preserved with augmented mechanical properties. These meshes supported the in vitro expansion of stem cells and the production of a mineralized matrix by human osteoblast-like cells. Collectively these findings demonstrate the potential of green fabrication in the production of a collagen-like ECM analog with physiological relevance. Future studies will explore the potential of this high-fidelity platform for elucidating cell-matrix interactions and their relevance in connective tissue healing.
Collapse
Affiliation(s)
- Philip A. P. Brudnicki
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Matthew A. Gonsalves
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Laura J. Kaufman
- Department of Chemistry, Columbia University, New York, NY, United States
| | - Helen H. Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, United States
- *Correspondence: Helen H. Lu,
| |
Collapse
|
8
|
Wiwatsamphan P, Chirachanchai S. Persistently Reversible pH-/Thermo-responsive Chitosan/Poly (N-isopropyl acrylamide) Hydrogel through Clickable Crosslinked Interpenetrating Network. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Nazir R, Bruyneel A, Carr C, Czernuszka J. Mechanical and Degradation Properties of Hybrid Scaffolds for Tissue Engineered Heart Valve (TEHV). J Funct Biomater 2021; 12:20. [PMID: 33803209 PMCID: PMC8006234 DOI: 10.3390/jfb12010020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/06/2023] Open
Abstract
In addition to biocompatibility, an ideal scaffold for the regeneration of valvular tissue should also replicate the natural heart valve extracellular matrix (ECM) in terms of biomechanical properties and structural stability. In our previous paper, we demonstrated the development of collagen type I and hyaluronic acid (HA)-based scaffolds with interlaced microstructure. Such hybrid scaffolds were found to be compatible with cardiosphere-derived cells (CDCs) to potentially regenerate the diseased aortic heart valve. This paper focused on the quantification of the effect of crosslinking density on the mechanical properties under dry and wet conditions as well as degradation resistance. Elastic moduli increased with increasing crosslinking densities, in the dry and wet state, for parent networks, whereas those of interlaced scaffolds were higher than either network alone. Compressive and storage moduli ranged from 35 ± 5 to 95 ± 5 kPa and 16 ± 2 kPa to 113 ± 6 kPa, respectively, in the dry state. Storage moduli, in the dry state, matched and exceeded those of human aortic valve leaflets (HAVL). Similarly, degradation resistance increased with increasing the crosslinking densities for collagen-only and HA-only scaffolds. Interlaced scaffolds showed partial degradation in the presence of either collagenase or hyaluronidase as compared to when exposed to both enzymes together. These results agree with our previous findings that interlaced scaffolds were composed of independent collagen and HA networks without crosslinking between them. Thus, collagen/HA interlaced scaffolds have the potential to fill in the niche for designing an ideal tissue engineered heart valve (TEHV).
Collapse
Affiliation(s)
- Rabia Nazir
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK;
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, Lahore 54000, Pakistan
| | - Arne Bruyneel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK; (A.B.); (C.C.)
| | - Carolyn Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK; (A.B.); (C.C.)
| | - Jan Czernuszka
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK;
| |
Collapse
|
10
|
Badria AF, Koutsoukos PG, Mavrilas D. Decellularized tissue-engineered heart valves calcification: what do animal and clinical studies tell us? JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:132. [PMID: 33278023 PMCID: PMC7719105 DOI: 10.1007/s10856-020-06462-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases are the first cause of death worldwide. Among different heart malfunctions, heart valve failure due to calcification is still a challenging problem. While drug-dependent treatment for the early stage calcification could slow down its progression, heart valve replacement is inevitable in the late stages. Currently, heart valve replacements involve mainly two types of substitutes: mechanical and biological heart valves. Despite their significant advantages in restoring the cardiac function, both types of valves suffered from serious drawbacks in the long term. On the one hand, the mechanical one showed non-physiological hemodynamics and the need for the chronic anticoagulation therapy. On the other hand, the biological one showed stenosis and/or regurgitation due to calcification. Nowadays, new promising heart valve substitutes have emerged, known as decellularized tissue-engineered heart valves (dTEHV). Decellularized tissues of different types have been widely tested in bioprosthetic and tissue-engineered valves because of their superior biomechanics, biocompatibility, and biomimetic material composition. Such advantages allow successful cell attachment, growth and function leading finally to a living regenerative valvular tissue in vivo. Yet, there are no comprehensive studies that are covering the performance of dTEHV scaffolds in terms of their efficiency for the calcification problem. In this review article, we sought to answer the question of whether decellularized heart valves calcify or not. Also, which factors make them calcify and which ones lower and/or prevent their calcification. In addition, the review discussed the possible mechanisms for dTEHV calcification in comparison to the calcification in the native and bioprosthetic heart valves. For this purpose, we did a retrospective study for all the published work of decellularized heart valves. Only animal and clinical studies were included in this review. Those animal and clinical studies were further subcategorized into 4 categories for each depending on the effect of decellularization on calcification. Due to the complex nature of calcification in heart valves, other in vitro and in silico studies were not included. Finally, we compared the different results and summed up all the solid findings of whether decellularized heart valves calcify or not. Based on our review, the selection of the proper heart valve tissue sources (no immunological provoking residues), decellularization technique (no damaged exposed residues of the decellularized tissues, no remnants of dead cells, no remnants of decellularizing agents) and implantation techniques (avoiding suturing during the surgical implantation) could provide a perfect anticalcification potential even without in vitro cell seeding or additional scaffold treatment.
Collapse
Affiliation(s)
- Adel F Badria
- Department of Fiber and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
- Department of Mechanical Engineering and Aeronautics, Division of Applied Mechanics, Technology of Materials and Biomechanics, University of Patras, Patras, Greece.
| | - Petros G Koutsoukos
- Department of Chemical Engineering, University of Patras, Patras University Campus, 26504, Patras, Greece
| | - Dimosthenis Mavrilas
- Department of Mechanical Engineering and Aeronautics, Division of Applied Mechanics, Technology of Materials and Biomechanics, University of Patras, Patras, Greece
| |
Collapse
|
11
|
Serban BA, Barrett-Catton E, Serban MA. Tetraethyl Orthosilicate-Based Hydrogels for Drug Delivery-Effects of Their Nanoparticulate Structure on Release Properties. Gels 2020; 6:E38. [PMID: 33126579 PMCID: PMC7709574 DOI: 10.3390/gels6040038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Tetraethyl orthosilicate (TEOS)-based hydrogels, with shear stress response and drug releasing properties, can be formulated simply by TEOS hydrolysis followed by volume corrections with aqueous solvents and pH adjustments. Such basic thixotropic hydrogels (thixogels) form via the colloidal aggregation of nanoparticulate silica. Herein, we investigated the effects of the nanoparticulate building blocks on the drug release properties of these materials. Our data indicate that the age of the hydrolyzed TEOS used for the formulation impacts the nanoparticulate structure and stiffness of thixogels. Moreover, the mechanism of formation or the disturbance of the nanoparticulate network significantly affects the release profiles of the incorporated drug. Collectively, our results underline the versatility of these basic, TEOS-only hydrogels for drug delivery applications.
Collapse
Affiliation(s)
- Bogdan A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Emma Barrett-Catton
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA;
| | - Monica A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA;
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
12
|
Serban BA, Shi K, Alverson JB, Hoody J, Priestley ND, Park AH, Serban MA. Single Application Cold-Chain Independent Drug Delivery System for Outer Ear Infections. ACS Biomater Sci Eng 2020; 6:5969-5978. [PMID: 33299928 PMCID: PMC7720692 DOI: 10.1021/acsbiomaterials.0c01223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Outer ear infections (OE) affect millions of people annually with significant associated healthcare costs. Incorrect administration or non-compliance with the treatment regimen can lead to infection persistence, recurrence, antibiotic resistance, and in severe cases aggravation to malignant otitis externa. Such issues are particularly pertinent for military personnel, patients in nursing homes, the geriatric population, for patients with head or hand tremors and for those with limited or no access to proper healthcare. With the intent of using traditional material science principles to deconvolute material design while increasing relevance and efficacy, we developed a single application, cold-chain independent thixotropic drug delivery system. This can be easily applied into the ear as a liquid, then gels to deliver effective concentrations of antibiotics against bacterial strains commonly associated with OE. The system maintains thixotropic properties over several stress/no stress cycles, shows negligible swelling and temperature dependence, and does not impact the minimum inhibitory concentration or bactericidal effects of relevant antibiotics. Moreover, the thixogels are biocompatible and are well tolerated in the ear. This drug delivery system can readily translate into a user-friendly product, could improve compliance via a single application by the diagnosing health care provider, is expected to effectively treat OE and minimize the development of antibiotic resistance, infection recurrence or exacerbation.
Collapse
Affiliation(s)
- Bogdan A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Kevin Shi
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, UT 84113, USA
| | - Jeremy B. Alverson
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - John Hoody
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Nigel D. Priestley
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Albert H. Park
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, UT 84113, USA
| | - Monica A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
13
|
Cui H, Liu C, Esworthy T, Huang Y, Yu ZX, Zhou X, San H, Lee SJ, Hann SY, Boehm M, Mohiuddin M, Fisher JP, Zhang LG. 4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. SCIENCE ADVANCES 2020; 6:eabb5067. [PMID: 32637623 PMCID: PMC7314523 DOI: 10.1126/sciadv.abb5067] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/11/2020] [Indexed: 05/20/2023]
Abstract
There has been considerable progress in engineering cardiac scaffolds for the treatment of myocardial infarction (MI). However, it is still challenging to replicate the structural specificity and variability of cardiac tissues using traditional bioengineering approaches. In this study, a four-dimensional (4D) cardiac patch with physiological adaptability has been printed by beam-scanning stereolithography. By combining a unique 4D self-morphing capacity with expandable microstructure, the specific design has been shown to improve both the biomechanical properties of the patches themselves and the dynamic integration of the patch with the beating heart. Our results demonstrate improved vascularization and cardiomyocyte maturation in vitro under physiologically relevant mechanical stimulation, as well as increased cell engraftment and vascular supply in a murine chronic MI model. This work not only potentially provides an effective treatment method for MI but also contributes a cutting-edge methodology to enhance the structural design of complex tissues for organ regeneration.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Chengyu Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Yimin Huang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zu-xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Hong San
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Se-jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhammad Mohiuddin
- Cardiac Xenotransplantation Program, Department of Surgery, University of Maryland, Baltimore, MD 21201, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Medicine, The George Washington University, Washington, DC 20052, USA
- Corresponding author.
| |
Collapse
|
14
|
Nazir R, Bruyneel A, Carr C, Czernuszka J. Collagen type I and hyaluronic acid based hybrid scaffolds for heart valve tissue engineering. Biopolymers 2019; 110:e23278. [PMID: 30958569 DOI: 10.1002/bip.23278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
Tissue engineers have achieved limited success so far in designing an ideal scaffold for aortic valve; scaffolds lack in mechanical compatibility, appropriate degradation rate, and microstructural similarity. This paper, therefore, has demonstrated a carbodiimide-based sequential crosslinking technique to prepare aortic valve extracellular matrix mimicking (ECM) hybrid scaffolds from collagen type I and hyaluronic acid (HA), the building blocks of heart valve ECM, with tailorable crosslinking densities. Swelling studies revealed that crosslinking densities of parent networks increased with increasing the concentration of the crosslinking agents whereas crosslinking densities of hybrid scaffolds averaged from those of parent collagen and HA networks. Hybrid scaffolds also offered a wide range of pore size (66-126 μm) which fulfilled the criteria for valvular tissue regeneration. Scanning electron microscopy and images of Alcian blue-Periodic acid Schiff stained samples suggested that our crosslinking technique yielded an ECM mimicking microstructure with interlaced bands of collagen and HA in the hybrid scaffolds. The mutually reinforcing networks of collagen and HA also resulted in increased bending moduli up to 1660 kPa which spanned the range of natural aortic valves. Cardio sphere-derived cells (CDCs) from rat hearts showed that crosslinking density affected the available cell attachment sites on the surface of the scaffold. Increased bending moduli of CDCs seeded scaffolds up to two folds (2-6 kPa) as compared to the non-seeded scaffolds (1 kPa) suggested that an increase in crosslinking density of the scaffolds could not only increase the in vitro bending modulus but also prevented its disintegration in the cell culture medium.
Collapse
Affiliation(s)
- Rabia Nazir
- Department of Materials, University of Oxford, Oxford, UK.,Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore, Pakistan
| | - Arne Bruyneel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Carolyn Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jan Czernuszka
- Department of Materials, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Int J Mol Sci 2018; 19:ijms19124117. [PMID: 30567407 PMCID: PMC6321114 DOI: 10.3390/ijms19124117] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering and regenerative medicine involve many different artificial and biologic materials, frequently integrated in composite scaffolds, which can be repopulated with various cell types. One of the most promising scaffolds is decellularized allogeneic extracellular matrix (ECM) then recellularized by autologous or stem cells, in order to develop fully personalized clinical approaches. Decellularization protocols have to efficiently remove immunogenic cellular materials, maintaining the nonimmunogenic ECM, which is endowed with specific inductive/differentiating actions due to its architecture and bioactive factors. In the present paper, we review the available literature about the development of grafts from decellularized human tissues/organs. Human tissues may be obtained not only from surgery but also from cadavers, suggesting possible development of Human Tissue BioBanks from body donation programs. Many human tissues/organs have been decellularized for tissue engineering purposes, such as cartilage, bone, skeletal muscle, tendons, adipose tissue, heart, vessels, lung, dental pulp, intestine, liver, pancreas, kidney, gonads, uterus, childbirth products, cornea, and peripheral nerves. In vitro recellularizations have been reported with various cell types and procedures (seeding, injection, and perfusion). Conversely, studies about in vivo behaviour are poorly represented. Actually, the future challenge will be the development of human grafts to be implanted fully restored in all their structural/functional aspects.
Collapse
|
16
|
VeDepo MC, Buse EE, Quinn RW, Williams TD, Detamore MS, Hopkins RA, Converse GL. Species-specific effects of aortic valve decellularization. Acta Biomater 2017; 50:249-258. [PMID: 28069510 DOI: 10.1016/j.actbio.2017.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/05/2016] [Accepted: 01/05/2017] [Indexed: 01/12/2023]
Abstract
Decellularized heart valves have great potential as a stand-alone valve replacement or as a scaffold for tissue engineering heart valves. Before decellularized valves can be widely used clinically, regulatory standards require pre-clinical testing in an animal model, often sheep. Numerous decellularization protocols have been applied to both human and ovine valves; however, the ways in which a specific process may affect valves of these species differently have not been reported. In the current study, the comparative effects of decellularization were evaluated for human and ovine aortic valves by measuring mechanical and biochemical properties. Cell removal was equally effective for both species. The initial cell density of the ovine valve leaflets (2036±673cells/mm2) was almost triple the cell density of human leaflets (760±386cells/mm2; p<0.001). Interestingly, post-decellularization ovine leaflets exhibited significant increases in biaxial areal strain (p<0.001) and circumferential peak stretch (p<0.001); however, this effect was not observed in the human counterparts (p>0.10). This species-dependent difference in the effect of decellularization was likely due to the higher initial cellularity in ovine valves, as well as a significant decrease in collagen crosslinking following the decellularization of ovine leaflets that was not observed in the human leaflet. Decellularization also caused a significant decrease in the circumferential relaxation of ovine leaflets (p<0.05), but not human leaflets (p>0.30), which was credited to a greater reduction of glycosaminoglycans in the ovine tissue post-decellularization. These results indicate that an identical decellularization process can have differing species-specific effects on heart valves. STATEMENT OF SIGNIFICANCE The decellularized heart valve offers potential as an improved heart valve substitute and as a scaffold for the tissue engineered heart valve; however, the consequences of processing must be fully characterized. To date, the effects of decellularization on donor valves from different species have not been evaluated in such a way that permits direct comparison between species. In this manuscript, we report species-dependent variation in the biochemical and biomechanical properties of human and ovine aortic heart valve leaflets following decellularization. This is of clinical significance, as current regulatory guidelines required pre-clinical use of the ovine model to evaluate candidate heart valve substitutes.
Collapse
Affiliation(s)
- Mitchell C VeDepo
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108, United States; Bioengineering Program, University of Kansas, 3135A Learned Hall, 1530 W. 15th St., Lawrence, KS 66045, United States
| | - Eric E Buse
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108, United States
| | - Rachael W Quinn
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108, United States
| | - Todd D Williams
- University of Kansas Mass Spectrometry Laboratory, 3006 Malott Hall, 1251 Wescoe Hall Drive, Lawrence, KS 66045, United States
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, United States
| | - Richard A Hopkins
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108, United States
| | - Gabriel L Converse
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108, United States.
| |
Collapse
|
17
|
Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther 2015; 15:1155-72. [PMID: 26027436 DOI: 10.1517/14712598.2015.1051527] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Heart valve disease is an increasingly prevalent and clinically serious condition. There are no clinically effective biological diagnostics or treatment strategies. The only recourse available is replacement with a prosthetic valve, but the inability of these devices to grow or respond biologically to their environments necessitates multiple resizing surgeries and life-long coagulation treatment, especially in children. Tissue engineering has a unique opportunity to impact heart valve disease by providing a living valve conduit, capable of growth and biological integration. AREAS COVERED This review will cover current tissue engineering strategies in fabricating heart valves and their progress towards the clinic, including molded scaffolds using naturally derived or synthetic polymers, decellularization, electrospinning, 3D bioprinting, hybrid techniques, and in vivo engineering. EXPERT OPINION Whereas much progress has been made to create functional living heart valves, a clinically viable product is not yet realized. The next leap in engineered living heart valves will require a deeper understanding of how the natural multi-scale structural and biological heterogeneity of the tissue ensures its efficient function. Related, improved fabrication strategies must be developed that can replicate this de novo complexity, which is likely instructive for appropriate cell differentiation and remodeling whether seeded with autologous stem cells in vitro or endogenously recruited cells.
Collapse
Affiliation(s)
- Daniel Y Cheung
- Cornell University, Department of Biomedical Engineering , Ithaca, NY , USA
| | | | | |
Collapse
|
18
|
Borghi A, New SEP, Chester AH, Taylor PM, Yacoub MH. Time-dependent mechanical properties of aortic valve cusps: effect of glycosaminoglycan depletion. Acta Biomater 2013; 9:4645-52. [PMID: 22963848 DOI: 10.1016/j.actbio.2012.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/30/2012] [Accepted: 09/01/2012] [Indexed: 11/19/2022]
Abstract
Aortic valve (AV) performance is closely linked to its structural components. Glycosaminoglycans (GAGs) are thought to influence the time-dependent properties of living tissues. This study investigates the effect of GAGs on the viscoelastic behaviour of the AV. Fresh porcine AV cusps were either treated enzymatically to remove GAGs or left untreated (control). The specimens were tested for stress relaxation and tensile properties under equibiaxial load conditions. The stress relaxation curves were fitted using a double exponential decay equation and the early relaxation constant (τ(1)) and late relaxation constant (τ(2)) calculated for each specimen. Immunohistochemistry confirmed the successful depletion of both sulphated and non-sulphated GAGs from the AV cusps. A statistical increase in τ(1) was found for both the radial and circumferential directions between the control and -GAGs group (radial, control 17.37s vs. -GAGs 25.65 s; circumferential, control 21.47s vs. -GAGs 27.37 s). It was also found that τ(1) differed between the two directions for the control group but not after GAG depletion (control, radial 17.37s vs. circumferential 21.47 s; -GAGs, radial 25.65 s vs. circumferential 27.37s). No effect on stiffness was found. The results showed that the presence of GAGs influences the mechanical viscoelastic properties of the AV but has no effect on the stiffness. The natural anisotropy, which reflects the relaxation kinematics, is lost after GAG depletion.
Collapse
Affiliation(s)
- Alessandro Borghi
- Institute of Biomedical Engineering, Imperial College London, South Kensington, London, UK
| | | | | | | | | |
Collapse
|
19
|
Zorlutuna P, Vrana NE, Khademhosseini A. The expanding world of tissue engineering: the building blocks and new applications of tissue engineered constructs. IEEE Rev Biomed Eng 2012; 6:47-62. [PMID: 23268388 DOI: 10.1109/rbme.2012.2233468] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of tissue engineering has been growing in the recent years as more products have made it to the market and as new uses for the engineered tissues have emerged, motivating many researchers to engage in this multidisciplinary field of research. Engineered tissues are now not only considered as end products for regenerative medicine, but also have emerged as enabling technologies for other fields of research ranging from drug discovery to biorobotics. This widespread use necessitates a variety of methodologies for production of tissue engineered constructs. In this review, these methods together with their non-clinical applications will be described. First, we will focus on novel materials used in tissue engineering scaffolds; such as recombinant proteins and synthetic, self assembling polypeptides. The recent advances in the modular tissue engineering area will be discussed. Then scaffold-free production methods, based on either cell sheets or cell aggregates will be described. Cell sources used in tissue engineering and new methods that provide improved control over cell behavior such as pathway engineering and biomimetic microenvironments for directing cell differentiation will be discussed. Finally, we will summarize the emerging uses of engineered constructs such as model tissues for drug discovery, cancer research and biorobotics applications.
Collapse
Affiliation(s)
- Pinar Zorlutuna
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA.
| | | | | |
Collapse
|
20
|
Chow JP, Simionescu DT, Warner H, Wang B, Patnaik SS, Liao J, Simionescu A. Mitigation of diabetes-related complications in implanted collagen and elastin scaffolds using matrix-binding polyphenol. Biomaterials 2012; 34:685-95. [PMID: 23103157 DOI: 10.1016/j.biomaterials.2012.09.081] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 09/30/2012] [Indexed: 01/09/2023]
Abstract
There is a major need for scaffold-based tissue engineered vascular grafts and heart valves with long-term patency and durability to be used in diabetic cardiovascular patients. We hypothesized that diabetes, by virtue of glycoxidation reactions, can directly crosslink implanted scaffolds, drastically altering their properties. In order to investigate the fate of tissue engineered scaffolds in diabetic conditions, we prepared valvular collagen scaffolds and arterial elastin scaffolds by decellularization and implanted them subdermally in diabetic rats. Both types of scaffolds exhibited significant levels of advanced glycation end products (AGEs), chemical crosslinking and stiffening -alterations which are not favorable for cardiovascular tissue engineering. Pre-implantation treatment of collagen and elastin scaffolds with penta-galloyl glucose (PGG), an antioxidant and matrix-binding polyphenol, chemically stabilized the scaffolds, reduced their enzymatic degradation, and protected them from diabetes-related complications by reduction of scaffold-bound AGE levels. PGG-treated scaffolds resisted diabetes-induced crosslinking and stiffening, were protected from calcification, and exhibited controlled remodeling in vivo, thereby supporting future use of diabetes-resistant scaffolds for cardiovascular tissue engineering in patients with diabetes.
Collapse
Affiliation(s)
- James P Chow
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Quinlan AMT, Billiar KL. Investigating the role of substrate stiffness in the persistence of valvular interstitial cell activation. J Biomed Mater Res A 2012; 100:2474-82. [PMID: 22581728 PMCID: PMC3880130 DOI: 10.1002/jbm.a.34162] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 02/26/2012] [Accepted: 02/28/2012] [Indexed: 01/13/2023]
Abstract
During heart valve remodeling and in many disease states, valvular interstitial cells (VICs) shift to an activated myofibroblast phenotype characterized by enhanced synthetic and contractile activity. Pronounced alpha smooth muscle actin (αSMA)-positive stress fibers, the hallmark of activated myofibroblasts, are also observed in VICs cultured on stiff substrates especially in the presence of transforming growth factor-beta1 (TGF-β1), however, the detailed relationship between stiffness and VIC phenotype has not been explored. The goal of this study was to characterize VIC activation as a function of substrate stiffness over a wide range of stiffness levels including that of diseased valves (stiff), normal valves (compliant), and hydrogels for heart valve tissue engineering (very soft). VICs obtained from porcine aortic valves were cultured on stiff tissue culture plastic to activate them, then, cultured on collagen-coated polyacrylamide substrates of predefined stiffness in a high-throughput culture system to assess the persistence of activation. Metrics extracted from regression analysis demonstrate that relative to a compliant substrate, stiff substrates result in higher cell numbers, more pronounced expression of αSMA-positive stress fibers, and larger spread area which is in qualitative agreement with previous studies. Our data also indicate that VICs require a much lower substrate stiffness level to "deactivate" them than previously thought. The high sensitivity of VICs to substrate stiffness demonstrates the importance of the mechanical properties of materials used for valve repair or for engineering valve tissue.
Collapse
Affiliation(s)
- Angela M. Throm Quinlan
- Dept of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA
| | - Kristen L. Billiar
- Dept of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA
- Dept of Surgery, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
22
|
Teller SS, Farran AJE, Xiao L, Jiao T, Duncan RL, Clifton RJ, Jia X. High-frequency viscoelastic shear properties of vocal fold tissues: implications for vocal fold tissue engineering. Tissue Eng Part A 2012; 18:2008-19. [PMID: 22741523 DOI: 10.1089/ten.tea.2012.0023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The biomechanical function of the vocal folds (VFs) depends on their viscoelastic properties. Many conditions can lead to VF scarring that compromises voice function and quality. To identify candidate replacement materials, the structure, composition, and mechanical properties of native tissues need to be understood at phonation frequencies. Previously, the authors developed the torsional wave experiment (TWE), a stress-wave-based experiment to determine the linear viscoelastic shear properties of small, soft samples. Here, the viscoelastic properties of porcine and human VFs were measured over a frequency range of 10-200 Hz. The TWE utilizes resonance phenomena to determine viscoelastic properties; therefore, the specimen test frequency is determined by the sample size and material properties. Viscoelastic moduli are reported at resonance frequencies. Structure and composition of the tissues were determined by histology and immunochemistry. Porcine data from the TWE are separated into two groups: a young group, consisting of fetal and newborn pigs, and an adult group, consisting of 6-9-month olds and 2+-year olds. Adult tissues had an average storage modulus of 2309±1394 Pa and a loss tangent of 0.38±0.10 at frequencies of 36-200 Hz. The VFs of young pigs were significantly more compliant, with a storage modulus of 394±142 Pa and a loss tangent of 0.40±0.14 between 14 and 30 Hz. No gender dependence was observed. Histological staining showed that adult porcine tissues had a more organized, layered structure than the fetal tissues, with a thicker epithelium and a more structured lamina propria. Elastin fibers in fetal VF tissues were immature compared to those in adult tissues. Together, these structural changes in the tissues most likely contributed to the change in viscoelastic properties. Adult human VF tissues, recovered postmortem from adult patients with a history of smoking or disease, had an average storage modulus of 756±439 Pa and a loss tangent of 0.42±0.10. Contrary to the results of some other investigators, no significant frequency dependence was observed. This lack of observable frequency dependence may be due to the modest frequency range of the experiments and the wide range of stiffnesses observed within nominally similar sample types.
Collapse
Affiliation(s)
- Sean S Teller
- School of Engineering, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Converse GL, Armstrong M, Quinn RW, Buse EE, Cromwell ML, Moriarty SJ, Lofland GK, Hilbert SL, Hopkins RA. Effects of cryopreservation, decellularization and novel extracellular matrix conditioning on the quasi-static and time-dependent properties of the pulmonary valve leaflet. Acta Biomater 2012; 8:2722-9. [PMID: 22484150 DOI: 10.1016/j.actbio.2012.03.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/28/2012] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
Decellularized allografts offer potential as heart valve substitutes and scaffolds for cell seeding. The effects of decellularization on the quasi-static and time-dependent mechanical behavior of the pulmonary valve leaflet under biaxial loading conditions have not previously been reported in the literature. In the current study, the stress-strain, relaxation and creep behaviors of the ovine pulmonary valve leaflet were investigated under planar-biaxial loading conditions to determine the effects of decellularization and a novel post-decellularization extracellular matrix (ECM) conditioning process. As expected, decellularization resulted in increased stretch along the loading axes. A reduction in relaxation was observed following decellularization. This was accompanied by a reduction in glycosaminoglycan (GAG) content. Based on previous implant studies, these changes may be of little functional consequence in the short term; however, the long term effects of decreased relaxation and GAG content remain unknown. Some restoration of relaxation was observed following ECM conditioning, especially in the circumferential specimen direction, which may help mitigate any detrimental effects due to decellularization. Regardless of processing, creep under biaxial loading was negligible.
Collapse
Affiliation(s)
- Gabriel L Converse
- Cardiac Surgery Research Laboratories of the Ward Family Center for Congenital Heart Disease, Children's Mercy Hospital and Clinics, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|