1
|
Sasikumar SC, Goswami U, Raichur AM. Mucin-Based Dual Cross-Linkable IPN Hydrogel Bioink for 3D Bioprinting and Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2025. [PMID: 39818697 DOI: 10.1021/acsabm.4c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The cartilage possesses limited regenerative capacity, necessitating advanced approaches for its repair. This study introduces a bioink designed for cartilage tissue engineering (TE) by incorporating ionically cross-linkable alginate into the photo-cross-linkable MuMA bioink, resulting in a double cross-linked interpenetrating network (IPN) hydrogel. Additionally, hyaluronic acid (HA), a natural component of cartilage and synovial fluid, was added to enhance the scaffold's properties. HA has been demonstrated to improve cartilage lubrication, regulate inflammation, promote cell proliferation, and support extracellular matrix (ECM) deposition and regeneration, making it valuable for cartilage TE. Comprehensive experiments were conducted to assess morphology, swelling, degradation, mechanical and rheological properties, printability, and biocompatibility. Results indicated that the double cross-linked scaffolds comprising MuMA, alginate, and HA exhibited compressive moduli comparable to native cartilage, unlike single cross-linked variants. The double cross-linking also influenced degradation, water uptake, and porosity, contributing to the scaffold durability and stability for chondrocyte support. Biocompatibility tests with C28/I2 cells demonstrated the cell-supportive and chondrogenic potential of the bioink. This study establishes mucin as a versatile material for specialized cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Sruthi C Sasikumar
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
| | - Upashi Goswami
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
- Institute for Nanoscience and Water Sustainability, University of South Africa, The Science Campus, Florida Park, 1710 Roodepoort,Johannesburg,South Africa
| |
Collapse
|
2
|
Bai L, Zhou D, Li G, Liu J, Chen X, Su J. Engineering bone/cartilage organoids: strategy, progress, and application. Bone Res 2024; 12:66. [PMID: 39567500 PMCID: PMC11579019 DOI: 10.1038/s41413-024-00376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications. We delve into the significance of selecting appropriate cells, matrix gels, cytokines/inducers, and construction techniques. Moreover, we explore the role of bone/cartilage organoids in advancing our understanding of bone/cartilage reconstruction, disease modeling, drug screening, disease prevention, and treatment strategies. While acknowledging the potential of these organoids, we discuss the inherent challenges and limitations in the field and propose potential solutions, including the use of bioprinting for organoid induction, AI for improved screening processes, and the exploration of assembloids for more complex, multicellular bone/cartilage organoids models. We believe that with continuous refinement and standardization, bone/cartilage organoids can profoundly impact patient-specific therapeutic interventions and lead the way in regenerative medicine.
Collapse
Affiliation(s)
- Long Bai
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Dongyang Zhou
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Jinlong Liu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| |
Collapse
|
3
|
Sharma D, Satapathy BK. Nanostructured Biopolymer-Based Constructs for Cartilage Regeneration: Fabrication Techniques and Perspectives. Macromol Biosci 2024; 24:e2400125. [PMID: 38747219 DOI: 10.1002/mabi.202400125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Indexed: 05/24/2024]
Abstract
The essential functions of cartilage, such as shock absorption and resilience, are hindered by its limited regenerative capacity. Although current therapies alleviate symptoms, novel strategies for cartilage regeneration are desperately needed. Recent developments in three-dimensional (3D) constructs aim to address this challenge by mimicking the intrinsic characteristics of native cartilage using biocompatible materials, with a significant emphasis on both functionality and stability. Through fabrication methods such as 3D printing and electrospinning, researchers are making progress in cartilage regeneration; nevertheless, it is still very difficult to translate these advances into clinical practice. The review emphasizes the importance of integrating various fabrication techniques to create stable 3D constructs. Meticulous design and material selection are required to achieve seamless cartilage integration and durability. The review outlines the need to address these challenges and focuses on the latest developments in the production of hybrid 3D constructs based on biodegradable and biocompatible polymers. Furthermore, the review acknowledges the limitations of current research and provides perspectives on potential avenues for effectively regenerating cartilage defects in the future.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
| |
Collapse
|
4
|
Liang J, Liu P, Yang X, Liu L, Zhang Y, Wang Q, Zhao H. Biomaterial-based scaffolds in promotion of cartilage regeneration: Recent advances and emerging applications. J Orthop Translat 2023; 41:54-62. [PMID: 37691640 PMCID: PMC10485599 DOI: 10.1016/j.jot.2023.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 08/05/2023] [Indexed: 09/12/2023] Open
Abstract
Osteoarthritis (OA) poses a significant burden for countless individuals, inflicting relentless pain and impairing their quality of life. Although traditional treatments for OA focus on pain management and surgical interventions, they often fall short of addressing the underlying cause of the disease. Fortunately, emerging biomaterial-based scaffolds offer hope for OA therapy, providing immense promise for cartilage regeneration in OA. These innovative scaffolds are ingeniously designed to provide support and mimic the intricate structure of the natural extracellular matrix, thus stimulating the regeneration of damaged cartilage. In this comprehensive review, we summarize and discuss current landscape of biomaterial-based scaffolds for cartilage regeneration in OA. Furthermore, we delve into the diverse range of biomaterials employed in their construction and explore the cutting-edge techniques utilized in their fabrication. By examining both preclinical and clinical studies, we aim to illuminate the remarkable versatility and untapped potential of biomaterial-based scaffolds in the context of OA. Thetranslational potential of this article By thoroughly examining the current state of research and clinical studies, this review provides valuable insights that bridge the gap between scientific knowledge and practical application. This knowledge is crucial for clinicians and researchers who strive to develop innovative treatments that go beyond symptom management and directly target the underlying cause of OA. Through the comprehensive analysis and multidisciplinary approach, the review paves the way for the translation of scientific knowledge into practical applications, ultimately improving the lives of individuals suffering from OA and shaping the future of orthopedic medicine.
Collapse
Affiliation(s)
| | | | - Xinquan Yang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Liu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiong Wang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Wu J, Zhang Y, Lyu Y, Cheng L. On the Various Numerical Techniques for the Optimization of Bone Scaffold. MATERIALS (BASEL, SWITZERLAND) 2023; 16:974. [PMID: 36769983 PMCID: PMC9917976 DOI: 10.3390/ma16030974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
As the application of bone scaffolds becomes more and more widespread, the requirements for the high performance of bone scaffolds are also increasing. The stiffness and porosity of porous structures can be adjusted as needed, making them good candidates for repairing damaged bone tissues. However, the development of porous bone structures is limited by traditional manufacturing methods. Today, the development of additive manufacturing technology has made it very convenient to manufacture bionic porous bone structures as needed. In the present paper, the current state-of-the-art optimization techniques for designing the scaffolds and the settings of different optimization methods are introduced. Additionally, various design methods for bone scaffolds are reviewed. Furthermore, the challenges in designing high performance bone scaffolds and the future developments of bone scaffolds are also presented.
Collapse
Affiliation(s)
- Jiongyi Wu
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Youwei Zhang
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Yongtao Lyu
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Liangliang Cheng
- Department of Orthopeadics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian 116001, China
| |
Collapse
|
6
|
Yoshida M, Turner PR, Cabral JD. Intervertebral Disc Tissue Engineering Using Additive Manufacturing. Gels 2022; 9:gels9010025. [PMID: 36661793 PMCID: PMC9857857 DOI: 10.3390/gels9010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is one of the major causes of lower back pain, a common health condition that greatly affects the quality of life. With an increasing elderly population and changes in lifestyle, there exists a high demand for novel treatment strategies for damaged IVDs. Researchers have investigated IVD tissue engineering (TE) as a way to restore biological and mechanical functions by regenerating or replacing damaged discs using scaffolds with suitable cells. These scaffolds can be constructed using material extrusion additive manufacturing (AM), a technique used to build three-dimensional (3D), custom discs utilising computer-aided design (CAD). Structural geometry can be controlled via the manipulation of printing parameters, material selection, temperature, and various other processing parameters. To date, there are no clinically relevant TE-IVDs available. In this review, advances in AM-based approaches for IVD TE are briefly discussed in order to achieve a better understanding of the requirements needed to obtain more effective, and ultimately clinically relevant, IVD TE constructs.
Collapse
Affiliation(s)
- Minami Yoshida
- Centre of Bioengineering & Nanomedicine, Department of Oral Rehabilitation, University of Otago, Dunedin 9054, New Zealand
| | - Paul Richard Turner
- Department of Microbiology & Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Jaydee Dones Cabral
- Department of Microbiology & Immunology, University of Otago, Dunedin 9054, New Zealand
- Correspondence: ; Tel.: +64-3-479-7738
| |
Collapse
|
7
|
Chiesa-Estomba CM, Hernáez-Moya R, Rodiño C, Delgado A, Fernández-Blanco G, Aldazabal J, Paredes J, Izeta A, Aiastui A. Ex Vivo Maturation of 3D-Printed, Chondrocyte-Laden, Polycaprolactone-Based Scaffolds Prior to Transplantation Improves Engineered Cartilage Substitute Properties and Integration. Cartilage 2022; 13:105-118. [PMID: 36250422 PMCID: PMC9924975 DOI: 10.1177/19476035221127638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The surgical management of nasal septal defects due to perforations, malformations, congenital cartilage absence, traumatic defects, or tumors would benefit from availability of optimally matured septal cartilage substitutes. Here, we aimed to improve in vitro maturation of 3-dimensional (3D)-printed, cell-laden polycaprolactone (PCL)-based scaffolds and test their in vivo performance in a rabbit auricular cartilage model. DESIGN Rabbit auricular chondrocytes were isolated, cultured, and seeded on 3D-printed PCL scaffolds. The scaffolds were cultured for 21 days in vitro under standard culture media and normoxia or in prochondrogenic and hypoxia conditions, respectively. Cell-laden scaffolds (as well as acellular controls) were implanted into perichondrium pockets of New Zealand white rabbit ears (N = 5 per group) and followed up for 12 weeks. At study end point, the tissue-engineered scaffolds were extracted and tested by histological, immunohistochemical, mechanical, and biochemical assays. RESULTS Scaffolds previously matured in vitro under prochondrogenic hypoxic conditions showed superior mechanical properties as well as improved patterns of cartilage matrix deposition, chondrogenic gene expression (COL1A1, COL2A1, ACAN, SOX9, COL10A1), and proteoglycan production in vivo, compared with scaffolds cultured in standard conditions. CONCLUSIONS In vitro maturation of engineered cartilage scaffolds under prochondrogenic conditions that better mimic the in vivo environment may be beneficial to improve functional properties of the engineered grafts. The proposed maturation strategy may also be of use for other tissue-engineered constructs and may ultimately impact survival and integration of the grafts in the damaged tissue microenvironment.
Collapse
Affiliation(s)
- Carlos M. Chiesa-Estomba
- Department of Otorhinolaryngology-Head
and Neck Surgery, Osakidetza, Donostia University Hospital, San Sebastián,
Spain,Otorhinolaryngology and Head and Neck
Surgery Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Raquel Hernáez-Moya
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Claudia Rodiño
- Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| | - Alba Delgado
- Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| | - Gonzalo Fernández-Blanco
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Javier Aldazabal
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Jacobo Paredes
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Ander Izeta
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain,Tissue Engineering Group, Biodonostia
Health Research Institute, San Sebastián, Spain,Ander Izeta, Tissue Engineering Group,
Biodonostia Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San
Sebastián, Spain.
| | - Ana Aiastui
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| |
Collapse
|
8
|
Verisqa F, Cha JR, Nguyen L, Kim HW, Knowles JC. Digital Light Processing 3D Printing of Gyroid Scaffold with Isosorbide-Based Photopolymer for Bone Tissue Engineering. Biomolecules 2022; 12:1692. [PMID: 36421706 PMCID: PMC9687763 DOI: 10.3390/biom12111692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 09/28/2023] Open
Abstract
As one of the most transplanted tissues of the human body, bone has varying architectures, depending on its anatomical location. Therefore, bone defects ideally require bone substitutes with a similar structure and adequate strength comparable to native bones. Light-based three-dimensional (3D) printing methods allow the fabrication of biomimetic scaffolds with high resolution and mechanical properties that exceed the result of commonly used extrusion-based printing. Digital light processing (DLP) is known for its faster and more accurate printing than other 3D printing approaches. However, the development of biocompatible resins for light-based 3D printing is not as rapid as that of bio-inks for extrusion-based printing. In this study, we developed CSMA-2, a photopolymer based on Isosorbide, a renewable sugar derivative monomer. The CSMA-2 showed suitable rheological properties for DLP printing. Gyroid scaffolds with high resolution were successfully printed. The 3D-printed scaffolds also had a compressive modulus within the range of a human cancellous bone modulus. Human adipose-derived stem cells remained viable for up to 21 days of incubation on the scaffolds. A calcium deposition from the cells was also found on the scaffolds. The stem cells expressed osteogenic markers such as RUNX2, OCN, and OPN. These results indicated that the scaffolds supported the osteogenic differentiation of the progenitor cells. In summary, CSMA-2 is a promising material for 3D printing techniques with high resolution that allow the fabrication of complex biomimetic scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Fiona Verisqa
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2PF, UK
| | - Jae-Ryung Cha
- Department of Chemistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Linh Nguyen
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2PF, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2PF, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
9
|
Poly-Alanine-ε-Caprolacton-Methacrylate as Scaffold Material with Tuneable Biomechanical Properties for Osteochondral Implants. Int J Mol Sci 2022; 23:ijms23063115. [PMID: 35328536 PMCID: PMC8951525 DOI: 10.3390/ijms23063115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
An aging population and injury-related damage of the bone substance lead to an increasing need of innovative materials for the regeneration of osteochondral defects. Biodegradable polymers form the basis for suitable artificial implants intended for bone replacement or bone augmentation. The great advantage of these structures is the site-specific implant design, which leads to a considerable improvement in patient outcomes and significantly reduced post-operative regeneration times. Thus, biomechanical and biochemical parameters as well as the rate of degradation can be set by the selection of the polymer system and the processing technology. Within this study, we developed a polymer platform based on the amino acid Alanine and ε-Caprolacton for use as raw material for osteochondral implants. The biomechanical and degradation properties of these Poly-(Alanine-co-ε-Caprolacton)-Methacrylate (ACM) copolymers can be adjusted by changing the ratio of the monomers. Fabrication of artificial structures for musculo-skeletal tissue engineering was done by Two-Photon-Polymerization (2PP), which represents an innovative technique for generating defined scaffolds with tailor-made mechanical and structural properties. Here we show the synthesis, physicochemical characterization, as well as first results for structuring ACM using 2PP technology. The data demonstrate the high potential of ACM copolymers as precursors for the fabrication of biomimetic implants for bone-cartilage reconstruction.
Collapse
|
10
|
Zare P, Pezeshki-Modaress M, Davachi SM, Chahsetareh H, Simorgh S, Asgari N, Haramshahi MA, Alizadeh R, Bagher Z, Farhadi M. An additive manufacturing-based 3D printed poly ɛ-caprolactone/alginate sulfate/extracellular matrix construct for nasal cartilage regeneration. J Biomed Mater Res A 2022; 110:1199-1209. [PMID: 35098649 DOI: 10.1002/jbm.a.37363] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Various composite scaffolds with different fabrication techniques have been applied in cartilage tissue engineering. In this study, poly ɛ-caprolactone (PCL) was printed by fused deposition modeling method, and the prepared scaffold was filled with Alginate (Alg): Alginate-Sulfate (Alg-Sul) hydrogel to provide a better biomimetic environment and emulate the structure of glycosaminoglycans properly. Furthermore, to enhance chondrogenesis, different concentrations of decellularized extracellular matrix (dECM) were added to the hydrogel. For cellular analyses, the adipose-derived mesenchymal stem cells were seeded on the hydrogel and the results of MTT assay, live/dead staining, and SEM images revealed that the scaffold with 1% dECM had better viscosity, cell viability, and proliferation. The study was conducted on the optimized scaffold (1% dECM) to determine mechanical characteristics, chondrogenic differentiation, and results demonstrated that the scaffold showed mechanical similarity to the native nasal cartilage tissue along with possessing appropriate biochemical features, which makes this new formulation based on PCL/dECM/Alg:Alg-Sul a promising candidate for further in-vivo studies.
Collapse
Affiliation(s)
- Pariya Zare
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas, USA
| | - Hadi Chahsetareh
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negin Asgari
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohamad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
11
|
Stocco E, Porzionato A, De Rose E, Barbon S, Caro RD, Macchi V. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives. J Tissue Eng 2022; 13:20417314211065860. [PMID: 35096363 PMCID: PMC8793124 DOI: 10.1177/20417314211065860] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023] Open
Abstract
Meniscal tears are a frequent orthopedic injury commonly managed by conservative
strategies to avoid osteoarthritis development descending from altered
biomechanics. Among cutting-edge approaches in tissue engineering, 3D printing
technologies are extremely promising guaranteeing for complex biomimetic
architectures mimicking native tissues. Considering the anisotropic
characteristics of the menisci, and the ability of printing over structural
control, it descends the intriguing potential of such vanguard techniques to
meet individual joints’ requirements within personalized medicine. This
literature review provides a state-of-the-art on 3D printing for meniscus
reconstruction. Experiences in printing materials/technologies, scaffold types,
augmentation strategies, cellular conditioning have been compared/discussed;
outcomes of pre-clinical studies allowed for further considerations. To date,
translation to clinic of 3D printed meniscal devices is still a challenge:
meniscus reconstruction is once again clear expression of how the integration of
different expertise (e.g., anatomy, engineering, biomaterials science, cell
biology, and medicine) is required to successfully address native tissues
complexities.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Enrico De Rose
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Silvia Barbon
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| |
Collapse
|
12
|
Xia D, Wu J, Zhou F, Wang S, Zhang Z, Zhou P, Xu S. Mapping Thematic Trends and Analysing Hotspots Concerning the Use of Stem Cells for Cartilage Regeneration: A Bibliometric Analysis From 2010 to 2020. Front Pharmacol 2022; 12:737939. [PMID: 35046799 PMCID: PMC8762272 DOI: 10.3389/fphar.2021.737939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Defects of articular cartilage represent a common condition that usually progresses to osteoarthritis with pain and dysfunction of the joint. Current treatment strategies have yielded limited success in these patients. Stem cells are emerging as a promising option for cartilage regeneration. We aim to summarize the developmental history of stem cells for cartilage regeneration and to analyse the relevant trends and hotspots. Methods: We screened all relevant literature on stem cells for cartilage regeneration from Web of Science during 2010–2020 and analysed the research trends in this field by VOSviewer and CiteSpace. We also summarized previous clinical trials. Results: We screened 1,011 publications. China contributed the largest number of publications (317, 31.36%) and citations (81,376, 48.61%). The United States achieved the highest H-index (39). Shanghai Jiao Tong University had the largest number of publications (34) among all full-time institutions. The Journal of Biomaterials and Stem Cell Research and Therapy published the largest number of studies on stem cells for cartilage regeneration (35). SEKIYA I and YANG F published the majority of articles in this field (14), while TOH WS was cited most frequently (740). Regarding clinical research on stem cells for cartilage regeneration, the keyword “double-blind” emerged in recent years, with an average year of 2018.75. In tissue engineering, the keyword “3D printing” appeared latest, with an average year of 2019.625. In biological studies, the key word “extracellular vesicles” appeared latest, with an average year of 2018.9091. The current research trend indicates that basic research is gradually transforming to tissue engineering. Clinical trials have confirmed the safety and feasibility of stem cells for cartilage regeneration. Conclusion: Multiple scientific methods were employed to reveal productivity, collaborations, and research hotspots related to the use of stem cells for cartilage regeneration. 3D printing, extracellular vesicles, and double-blind clinical trials are research hotspots and are likely to be promising in the near future. Further studies are needed for to improve our understanding of this field, and clinical trials with larger sample sizes and longer follow-up periods are needed for clinical transformation.
Collapse
Affiliation(s)
- Demeng Xia
- Department of Orthopedics, Naval Hospital of Eastern Theater, Zhoushan, China.,Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianghong Wu
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Feng Zhou
- Department of Emergency, Affiliated Hospital of Jiangsu University, Jiangsu, China
| | - Sheng Wang
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhentao Zhang
- Department of Orthopedics, Naval Medical University, Shanghai, China
| | - Panyu Zhou
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuogui Xu
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
In Vitro Human Joint Models Combining Advanced 3D Cell Culture and Cutting-Edge 3D Bioprinting Technologies. Cells 2021; 10:cells10030596. [PMID: 33800436 PMCID: PMC7999996 DOI: 10.3390/cells10030596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Joint-on-a-chip is a new technology able to replicate the joint functions into microscale systems close to pathophysiological conditions. Recent advances in 3D printing techniques allow the precise control of the architecture of the cellular compartments (including chondrocytes, stromal cells, osteocytes and synoviocytes). These tools integrate fluid circulation, the delivery of growth factors, physical stimulation including oxygen level, external pressure, and mobility. All of these structures must be able to mimic the specific functions of the diarthrodial joint: mobility, biomechanical aspects and cellular interactions. All the elements must be grouped together in space and reorganized in a manner close to the joint organ. This will allow the study of rheumatic disease physiopathology, the development of biomarkers and the screening of new drugs.
Collapse
|
14
|
Recent advances in bioprinting technologies for engineering different cartilage-based tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112005. [PMID: 33812625 DOI: 10.1016/j.msec.2021.112005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Inadequate self-repair and regenerative efficiency of the cartilage tissues has motivated the researchers to devise advanced and effective strategies to resolve this issue. Introduction of bioprinting to tissue engineering has paved the way for fabricating complex biomimetic engineered constructs. In this context, the current review gears off with the discussion of standard and advanced 3D/4D printing technologies and their implications for the repair of different cartilage tissues, namely, articular, meniscal, nasoseptal, auricular, costal, and tracheal cartilage. The review is then directed towards highlighting the current stem cell opportunities. On a concluding note, associated critical issues and prospects for future developments, particularly in this sphere of personalized medicines have been discussed.
Collapse
|
15
|
Gao J, Ding X, Yu X, Chen X, Zhang X, Cui S, Shi J, Chen J, Yu L, Chen S, Ding J. Cell-Free Bilayered Porous Scaffolds for Osteochondral Regeneration Fabricated by Continuous 3D-Printing Using Nascent Physical Hydrogel as Ink. Adv Healthc Mater 2021; 10:e2001404. [PMID: 33225617 DOI: 10.1002/adhm.202001404] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Cartilage is difficult to self-repair and it is more challenging to repair an osteochondral defects concerning both cartilage and subchondral bone. Herein, it is hypothesized that a bilayered porous scaffold composed of a biomimetic gelatin hydrogel may, despite no external seeding cells, induce osteochondral regeneration in vivo after being implanted into mammal joints. This idea is confirmed based on the successful continuous 3D-printing of the bilayered scaffolds combined with the sol-gel transition of the aqueous solution of a gelatin derivative (physical gelation) and photocrosslinking of the gelatin methacryloyl (gelMA) macromonomers (chemical gelation). At the direct printing step, a nascent physical hydrogel is extruded, taking advantage of non-Newtonian and thermoresponsive rheological properties of this 3D-printing ink. In particular, a series of crosslinked gelMA (GelMA) and GelMA-hydroxyapatite bilayered hydrogel scaffolds are fabricated to evaluate the influence of the spacing of 3D-printed filaments on osteochondral regeneration in a rabbit model. The moderately spaced scaffolds output excellent regeneration of cartilage with cartilaginous lacunae and formation of subchondral bone. Thus, tricky rheological behaviors of soft matter can be employed to improve 3D-printing, and the bilayered hybrid scaffold resulting from the continuous 3D-printing is promising as a biomaterial to regenerate articular cartilage.
Collapse
Affiliation(s)
- Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xiaoquan Ding
- Center of Sports Medicine Department of Sports Medicine Huashan Hospital and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200040 China
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xingyu Zhang
- Center of Sports Medicine Department of Sports Medicine Huashan Hospital and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200040 China
| | - Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Jiayue Shi
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Jun Chen
- Center of Sports Medicine Department of Sports Medicine Huashan Hospital and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200040 China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Shiyi Chen
- Center of Sports Medicine Department of Sports Medicine Huashan Hospital and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200040 China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| |
Collapse
|
16
|
Zhu S, Tong G, Xiang J, Qiu S, Yao Z, Zhou X, Lin L. Microstructure Analysis and Reconstruction of a Meniscus. Orthop Surg 2021; 13:306-313. [PMID: 33403835 PMCID: PMC7862168 DOI: 10.1111/os.12899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/01/2020] [Accepted: 11/22/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To analyze the characteristics of menicus microstructure and to reconstruct a microstructure-mimicing 3D model of the menicus. METHODS Human and sheep meniscus were collected and prepared for this study. Hematoxylin-eosin staining (HE) and Masson staining were conducted for histological analysis of the meniscus. For submicroscopic structure analysis, the meniscus was first freeze-dried and then scanned by scanning electron microscopy (SEM). The porosity of the meniscus was determined according to SEM images. A micro-MRI was used to scan each meniscus, immersed in distilled water, and a 3D digital model was reconstructed afterwards. A three-dimensional (3D) resin model was printed out based on the digital model. Before high-resolution micro-CT scanning, each meniscus was freeze-dried. Then, micro-scale two-dimensional (2D) CT projection images were obtained. The porosity of the meniscus was calculated according to micro-CT images. With micro-CT, multiple 2D projection images were collected. A 3D digital model based on 2D CT pictures was also reconstructed. The 3D digital model was exported as STL format. A 3D resin model was printed by 3D printer based on the 3D digital model. RESULTS As revealed in the HE and Masson images, a meniscus is mostly composed of collagen, with a few cells disseminated between the collagen fiber bundles at the micro-scale. The SEM image clearly shows the path of highly cross-linked collagen fibers, and massive pores exist between the fibers. According to the SEM images, the porosity of the meniscus was 34.1% (34.1% ± 0.032%) and the diameters of the collagen fibers were varied. In addition, the cross-linking pattern of the fibers was irregular. The scanning accuracy of micro-MRI was 50 μm. The micro-MRI demonstrated the outline of the meniscus, but the microstructure was obscure. The micro-CT clearly displayed microfibers in the meniscus with a voxel size of 11.4 μm. The surface layer, lamellar layer, circumferential fibers, and radial fibers could be identified. The mean porosity of the meniscus according to micro-CT images was 33.92% (33.92% ± 0.03%). Moreover, a 3D model of the microstructure based on the micro-CT images was built. The microscale fibers could be displayed in the micro-CT image and the reconstructed 3D digital model. In addition, a 3D resin model was printed out based on the 3D digital model. CONCLUSION It is extremely difficult to artificially simulate the microstructure of the meniscus because of the irregularity of the diameter and cross-linking pattern of fibers. The micro-MRI images failed to demonstrate the meniscus microstructure. Freeze-drying and micro-CT scanning are effective methods for 3D microstructure reconstruction of the meniscus, which is an important step towards mechanically functional 3D-printed meniscus grafts.
Collapse
Affiliation(s)
- Shuang Zhu
- Department of Joint and OrthopaedicsZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Ge Tong
- Department of Medical Ultrasonics, Guangdong Province Key Laboratory of Hepatology ResearchThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Jian‐ping Xiang
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgerythe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shuai Qiu
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgerythe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhi Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Xiang Zhou
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgerythe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Li‐jun Lin
- Department of Joint and OrthopaedicsZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
17
|
Liau LL, Hassan MNFB, Tang YL, Ng MH, Law JX. Feasibility of Human Platelet Lysate as an Alternative to Foetal Bovine Serum for In Vitro Expansion of Chondrocytes. Int J Mol Sci 2021; 22:ijms22031269. [PMID: 33525349 PMCID: PMC7865277 DOI: 10.3390/ijms22031269] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects a lot of people worldwide. Current treatment for OA mainly focuses on halting or slowing down the disease progress and to improve the patient’s quality of life and functionality. Autologous chondrocyte implantation (ACI) is a new treatment modality with the potential to promote regeneration of worn cartilage. Traditionally, foetal bovine serum (FBS) is used to expand the chondrocytes. However, the use of FBS is not ideal for the expansion of cells mean for clinical applications as it possesses the risk of animal pathogen transmission and animal protein transfer to host. Human platelet lysate (HPL) appears to be a suitable alternative to FBS as it is rich in biological factors that enhance cell proliferation. Thus far, HPL has been found to be superior in promoting chondrocyte proliferation compared to FBS. However, both HPL and FBS cannot prevent chondrocyte dedifferentiation. Discrepant results have been reported for the maintenance of chondrocyte redifferentiation potential by HPL. These differences are likely due to the diversity in the HPL preparation methods. In the future, more studies on HPL need to be performed to develop a standardized technique which is capable of producing HPL that can maintain the chondrocyte redifferentiation potential reproducibly. This review discusses the in vitro expansion of chondrocytes with FBS and HPL, focusing on its capability to promote the proliferation and maintain the chondrogenic characteristics of chondrocytes.
Collapse
Affiliation(s)
- Ling Ling Liau
- Physiology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Muhammad Najib Fathi bin Hassan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
| | - Yee Loong Tang
- Pathology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
- Correspondence: ; Tel.: +603-9145-7677; Fax: +603-9145-7678
| |
Collapse
|
18
|
Fang J, Wang X, Jiang W, Zhu Y, Hu Y, Zhao Y, Song X, Zhao J, Zhang W, Peng J, Wang Y. Platelet-Rich Plasma Therapy in the Treatment of Diseases Associated with Orthopedic Injuries. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:571-585. [PMID: 32380937 DOI: 10.1089/ten.teb.2019.0292] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelet-rich plasma (PRP) is an autologous platelet concentrate prepared from the whole blood that is activated to release growth factors (GFs) and cytokines and has been shown to have the potential capacity to reduce inflammation and improve tissue anabolism for regeneration. The use of PRP provides a potential for repair due to its abundant GFs and cytokines, which are key in initiating and modulating regenerative microenvironments for soft and hard tissues. Among outpatients, orthopedic injuries are common and include bone defects, ligament injury, enthesopathy, musculoskeletal injury, peripheral nerve injury, chronic nonhealing wounds, articular cartilage lesions, and osteoarthritis, which are caused by trauma, sport-related or other types of trauma, or tumor resection. Surgical intervention is often required to treat these injuries. However, for numerous reasons regarding limited regeneration capacity and insufficient blood supply of the defect region, these treatments commonly result in unsatisfactory outcomes, and follow-up treatment is challenging. The aim of the present review is to explore future research in the field of PRP therapy in the treatment of diseases associated with orthopedic injuries. Impact statement In recent years, platelet-rich plasma (PRP) has become widely used in the treatment of diseases associated with orthopedic injuries, and the results of numerous studies are encouraging. Due to diseases associated with orthopedic injuries being common in clinics, as a conservative treatment, more and more doctors and patients are more likely to accept PRP. Importantly, PRP is a biological product of autologous blood that is obtained by a centrifugation procedure to enrich platelets from whole blood, resulting in few complications, such as negligible immunogenicity from an autologous source, and it is also simple to produce through an efficient and cost-effective method in a sterile environment. However, the applicability, advantages, and disadvantages of PRP therapy have not yet been fully elucidated. The aim of the present review is to explore future research in the field of PRP therapy in the treatment of diseases associated with orthopedic injuries, as well as to provide references for clinics.
Collapse
Affiliation(s)
- Jie Fang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Graduate School of The North China University of Science and Technology, Hebei, P.R. China.,Department of Hand and Foot Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Xin Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Wen Jiang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yaqiong Zhu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yongqiang Hu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yanxu Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Xueli Song
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Jinjuan Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Wenlong Zhang
- Department of Hand and Foot Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Co-innovation Center of Neuroregeneration Nantong University, Nantong, Jiangsu Province, P.R. China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Co-innovation Center of Neuroregeneration Nantong University, Nantong, Jiangsu Province, P.R. China
| |
Collapse
|
19
|
Jang CH, Koo Y, Kim G. ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold fabricated using 3D printing for auricle regeneration. Carbohydr Polym 2020; 248:116776. [DOI: 10.1016/j.carbpol.2020.116776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
|
20
|
Abdollahiyan P, Baradaran B, de la Guardia M, Oroojalian F, Mokhtarzadeh A. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today. J Control Release 2020; 328:514-531. [PMID: 32956710 DOI: 10.1016/j.jconrel.2020.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
The field of tissue engineering has numerous potential for modified therapeutic results and has been inspired by enhancements in bioengineering at the recent decades. The techniques of regenerating tissues and assembling functional paradigms that are responsible for repairing, maintaining, and revitalizing lost organs and tissues have affected the entire spectrum of health care studies. Strategies to combine bioactive molecules, biocompatible materials and cells are important for progressing the renewal of damaged tissues. Hydrogels have been utilized as one of the most popular cell substrate/carrier in tissue engineering since previous decades, respect to their potential to retain a 3D structure, to protect the embedded cells, and to mimic the native ECM. The hydrophilic nature of hydrogels can provide an ideal milieu for cell viability and structure, which simulate the native tissues. Hydrogel systems have been applied as a favorable matrix for growth factor delivery and cell immobilization. This study reviews a brief explanation of the structure, characters, applications, fabrication methods, and future outlooks of stimuli responsive hydrogels in tissue engineering and, in particular, 3D bioprinting.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, Valencia 46100, Spain
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Tran HD, Park KD, Ching YC, Huynh C, Nguyen DH. A comprehensive review on polymeric hydrogel and its composite: Matrices of choice for bone and cartilage tissue engineering. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Gupta S, Sharma A, Vasantha Kumar J, Sharma V, Gupta PK, Verma RS. Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self-healing interpenetrating network hydrogel. Int J Biol Macromol 2020; 162:1358-1371. [PMID: 32777410 DOI: 10.1016/j.ijbiomac.2020.07.238] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Failure of bioengineered meniscus implant after transplantation is a major concern owing to mechanical failure, lack of chondrogenic capability and patient specific design. In this article, we have, for the first time, fabricated a 3D printed scaffold with carbohydrate based self-healing interpenetrating network (IPN) hydrogels-based monolith construct for load bearing meniscus tissue. 3D printed PLA scaffold was surface functionalized and embedded with self-healing IPN hydrogel for interfacial bonding further characterized by micro CT. Using collagen (C), alginate (A) and oxidized alginate (ADA), we developed self-healing IPN hydrogels with dual crosslinking (Ca2+ based ionic crosslinking and Schiff base (A-A, A-ADA)) capability and studied their physicochemical properties. Further, we studied human stem cells behaviour and chondrogenic differentiation potential within these IPN hydrogels. In-vivo heterotopic implantation confirmed biocompatibility of the monolith showing the feasibility of using carbohydrate based IPN hydrogel embedded in 3D printed scaffold for meniscal tissue development.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - J Vasantha Kumar
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Vineeta Sharma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Piyush Kumar Gupta
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
23
|
Hauptstein J, Böck T, Bartolf‐Kopp M, Forster L, Stahlhut P, Nadernezhad A, Blahetek G, Zernecke‐Madsen A, Detsch R, Jüngst T, Groll J, Teßmar J, Blunk T. Hyaluronic Acid-Based Bioink Composition Enabling 3D Bioprinting and Improving Quality of Deposited Cartilaginous Extracellular Matrix. Adv Healthc Mater 2020; 9:e2000737. [PMID: 32757263 DOI: 10.1002/adhm.202000737] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/26/2020] [Indexed: 12/13/2022]
Abstract
In 3D bioprinting, bioinks with high concentrations of polymeric materials are frequently used to enable fabrication of 3D cell-hydrogel constructs with sufficient stability. However, this is often associated with restricted cell bioactivity and an inhomogeneous distribution of newly produced extracellular matrix (ECM). Therefore, this study investigates bioink compositions based on hyaluronic acid (HA), an attractive material for cartilage regeneration, which allow for reduction of polymer content. Thiolated HA and allyl-modified poly(glycidol) in varying concentrations are UV-crosslinked. To adapt bioinks to poly(ε-caprolactone) (PCL)-supported 3D bioprinting, the gels are further supplemented with 1 wt% unmodified high molecular weight HA (hmHA) and chondrogenic differentiation of incorporated human mesenchymal stromal cells is assessed. Strikingly, addition of hmHA to gels with a low polymer content (3 wt%) results in distinct increase of construct quality with a homogeneous ECM distribution throughout the constructs, independent of the printing process. Improved ECM distribution in those constructs is associated with increased construct stiffness after chondrogenic differentiation, as compared to higher concentrated constructs (10 wt%), which only show pericellular matrix deposition. The study contributes to effective bioink development, demonstrating dual function of a supplement enabling PCL-supported bioprinting and at the same time improving biological properties of the resulting constructs.
Collapse
Affiliation(s)
- Julia Hauptstein
- Department of Trauma, Hand, Plastic and Reconstructive SurgeryUniversity of Würzburg 97080 Würzburg Germany
| | - Thomas Böck
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Michael Bartolf‐Kopp
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Leonard Forster
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Philipp Stahlhut
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Ali Nadernezhad
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Gina Blahetek
- Institute of Experimental Biomedicine IIUniversity Hospital Würzburg 97080 Würzburg Germany
| | - Alma Zernecke‐Madsen
- Institute of Experimental Biomedicine IIUniversity Hospital Würzburg 97080 Würzburg Germany
| | - Rainer Detsch
- Institute of BiomaterialsDepartment of Materials Science and EngineeringUniversity of Erlangen‐Nuremberg 91058 Erlangen Germany
| | - Tomasz Jüngst
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Jürgen Groll
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Jörg Teßmar
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive SurgeryUniversity of Würzburg 97080 Würzburg Germany
| |
Collapse
|
24
|
Lim KS, Abinzano F, Nuñez Bernal P, Sanchez AA, Atienza-Roca P, Otto IA, Peiffer QC, Matsusaki M, Woodfield TBF, Malda J, Levato R. One-Step Photoactivation of a Dual-Functionalized Bioink as Cell Carrier and Cartilage-Binding Glue for Chondral Regeneration. Adv Healthc Mater 2020; 9:e1901792. [PMID: 32324342 PMCID: PMC7116266 DOI: 10.1002/adhm.201901792] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Cartilage defects can result in pain, disability, and osteoarthritis. Hydrogels providing a chondroregeneration-permissive environment are often mechanically weak and display poor lateral integration into the surrounding cartilage. This study develops a visible-light responsive gelatin ink with enhanced interactions with the native tissue, and potential for intraoperative bioprinting. A dual-functionalized tyramine and methacryloyl gelatin (GelMA-Tyr) is synthesized. Photo-crosslinking of both groups is triggered in a single photoexposure by cell-compatible visible light in presence of tris(2,2'-bipyridyl)dichlororuthenium(II) and sodium persulfate as initiators. Neo-cartilage formation from embedded chondroprogenitor cells is demonstrated in vitro, and the hydrogel is successfully applied as bioink for extrusion-printing. Visible light in situ crosslinking in cartilage defects results in no damage to the surrounding tissue, in contrast to the native chondrocyte death caused by UV light (365-400 nm range), commonly used in biofabrication. Tyramine-binding to proteins in native cartilage leads to a 15-fold increment in the adhesive strength of the bioglue compared to pristine GelMA. Enhanced adhesion is observed also when the ink is extruded as printable filaments into the defect. Visible-light reactive GelMA-Tyr bioinks can act as orthobiologic carriers for in situ cartilage repair, providing a permissive environment for chondrogenesis, and establishing safe lateral integration into chondral defects.
Collapse
Affiliation(s)
- Khoon S. Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE)
Group and Medical Technologies Centre of Research Excellence (MedTech
CoRE)
- Department of Orthopaedic Surgery and Musculoskeletal Medicine
University of Otago Christchurch 2 Riccarton Ave, Christchurch 8140, New
Zealand
| | - Florencia Abinzano
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Paulina Nuñez Bernal
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Ane Albillos Sanchez
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Pau Atienza-Roca
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE)
Group and Medical Technologies Centre of Research Excellence (MedTech
CoRE)
- Department of Orthopaedic Surgery and Musculoskeletal Medicine
University of Otago Christchurch 2 Riccarton Ave, Christchurch 8140, New
Zealand
| | - Iris A. Otto
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Quentin C. Peiffer
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Michiya Matsusaki
- Department of Applied Chemistry Graduate School of Engineering
Osaka University 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE)
Group and Medical Technologies Centre of Research Excellence (MedTech
CoRE)
- Department of Orthopaedic Surgery and Musculoskeletal Medicine
University of Otago Christchurch 2 Riccarton Ave, Christchurch 8140, New
Zealand
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
- Department of Clinical Sciences Faculty of Veterinary Medicine
Utrecht University Yalelaan 1, Utrecht 3584 CL, The Netherlands
| | - Riccardo Levato
- Levato Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
- Department of Clinical Sciences Faculty of Veterinary Medicine
Utrecht University Yalelaan 1, Utrecht 3584 CL, The Netherlands
| |
Collapse
|
25
|
Wang C, Yue H, Huang W, Lin X, Xie X, He Z, He X, Liu S, Bai L, Lu B, Wei Y, Wang M. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Biofabrication 2020; 12:025030. [PMID: 32106097 DOI: 10.1088/1758-5090/ab7ab5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the increasing aging population and the high probability of sport injury among young people nowadays, it is of great demand to repair/regenerate diseased/defected osteochondral tissue. Given that osteochondral tissue mainly consists of a subchondral layer and a cartilage layer which are structurally heterogeneous and mechanically distinct, developing a biomimetic bi-phasic scaffold with excellent bonding strength to regenerate osteochondral tissue is highly desirable. Three-dimensional (3D) printing is advantageous in producing scaffolds with customized shape, designed structure/composition gradients and hence can be used to produce heterogeneous scaffolds for osteochondral tissue regeneration. In this study, bi-layered osteochondral scaffolds were developed through cryogenic 3D printing, in which osteogenic peptide/β-tricalcium phosphate/poly(lactic-co-glycolic acid) water-in-oil composite emulsions were printed into hierarchically porous subchondral layer while poly(D,L-lactic acid-co-trimethylene carbonate) water-in-oil emulsions were printed into thermal-responsive cartilage frame on top of the subchondral layer. The cartilage frame was further filled/dispensed with transforming growth factor-β1 loaded collagen I hydrogel to form the cartilage module. Although the continuously constructed osteochondral scaffolds had distinct microscopic morphologies and varied mechanical properties at the subchondral zone and cartilage zone at 37 °C, respectively, the two layers were closely bonded together, showing excellent shear strength and peeling strength. Rat bone marrow derived mesenchymal stem cells (rBMSCs) exhibited high viability and proliferation at both subchondral- and cartilage layer. Moreover, gradient rBMSC osteogenic/chondrogenic differentiation was obtained in the osteochondral scaffolds. This proof-of-concept study provides a facile way to produce integrated osteochondral scaffolds for concurrently directing rBMSC osteogenic/chondrogenic differentiation at different regions.
Collapse
Affiliation(s)
- Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, People's Republic of China. Contributed equally. Authors to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu X, Song S, Huang J, Fu H, Ning X, He Y, Zhang Z. HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation. J Mater Chem B 2020; 8:6115-6127. [DOI: 10.1039/d0tb00616e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels have been developed to provide a multifunctional biomimetic microenvironment for hMSC chondrogenesis.
Collapse
Affiliation(s)
- Xiaoyun Liu
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Shaoshuai Song
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Han Fu
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Xinyu Ning
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems and Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province
- College of Mechanical Engineering
- Zhejiang University
- Hangzhou
- China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| |
Collapse
|
27
|
The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing. J Mech Behav Biomed Mater 2019; 103:103544. [PMID: 32090944 DOI: 10.1016/j.jmbbm.2019.103544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/16/2019] [Indexed: 01/23/2023]
Abstract
The ability to fabricate complex structures via precise and heterogeneous deposition of biomaterials makes additive manufacturing (AM) a leading technology in the creation of implants and tissue engineered scaffolds. Connective tissues (CTs) remain attractive targets for manufacturing due to their "simple" tissue compositions that, in theory, are replicable through choice of biomaterial(s) and implant microarchitecture. Nevertheless, characterisation of the mechanical and biological functions of 3D printed constructs with respect to their host tissues is often limited and remains a restriction towards their translation into clinical practice. This review aims to provide an update on the current status of AM to mimic the mechanical properties of CTs, with focus on arterial tissue, articular cartilage and bone, from the perspective of printing platforms, biomaterial properties, and topological design. Furthermore, the grand challenges associated with the AM of CT replacements and their subsequent regulatory requirements are discussed to aid further development of reliable and effective implants.
Collapse
|
28
|
Kwon H, Brown WE, Lee CA, Wang D, Paschos N, Hu JC, Athanasiou KA. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol 2019; 15:550-570. [PMID: 31296933 PMCID: PMC7192556 DOI: 10.1038/s41584-019-0255-1] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
Abstract
Injuries to articular cartilage and menisci can lead to cartilage degeneration that ultimately results in arthritis. Different forms of arthritis affect ~50 million people in the USA alone, and it is therefore crucial to identify methods that will halt or slow the progression to arthritis, starting with the initiating events of cartilage and meniscus defects. The surgical approaches in current use have a limited capacity for tissue regeneration and yield only short-term relief of symptoms. Tissue engineering approaches are emerging as alternatives to current surgical methods for cartilage and meniscus repair. Several cell-based and tissue-engineered products are currently in clinical trials for cartilage lesions and meniscal tears, opening new avenues for cartilage and meniscus regeneration. This Review provides a summary of surgical techniques, including tissue-engineered products, that are currently in clinical use, as well as a discussion of state-of-the-art tissue engineering strategies and technologies that are being developed for use in articular cartilage and meniscus repair and regeneration. The obstacles to clinical translation of these strategies are also included to inform the development of innovative tissue engineering approaches.
Collapse
Affiliation(s)
- Heenam Kwon
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Cassandra A Lee
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Nikolaos Paschos
- Division of Sports Medicine, Department of Orthopaedic Surgery, New England Baptist Hospital, Tufts University School of Medicine, Boston, MA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|