1
|
Gu X, Zhang S, Ma W. Bibliometric analysis of nanotechnology in spinal cord injury: current status and emerging frontiers. Front Pharmacol 2024; 15:1473599. [PMID: 39723251 PMCID: PMC11668783 DOI: 10.3389/fphar.2024.1473599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Objective The objective of this study was to analyze the impact of nanotechnology on the treatment and recovery of spinal cord injury (SCI), a condition that has profound global effects on physical and psychological health. Methods We utilized the Web of Science Core Collection to obtain bibliometric data. With the tools such as VOSviewer and CiteSpace, we conducted a comprehensive review of 422 relevant publications to identify research trends and influential works in the field of nanotechnology applied to SCI. Results The analysis revealed significant contributions from both China, Sweden and the United States, and pinpointed inflammation, apoptosis, and nano-drug delivery as the primary areas of focus in current research, with emerging trends evident in recent literature. Conclusion Nanotechnology hold great potential to revolutionize the treatment of SCI through targeted therapeutics and modulation of pathological processes. This study provided valuable insights into the evolving landscape of SCI research, underscoring the importance of continuous innovation and interdisciplinary collaboration.
Collapse
Affiliation(s)
- XiaoPeng Gu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang, China
- Department of Orthopedics, Zhoushan Guhechuan Hospital, Zhoushan, Zhejiang, China
- Department of Orthopedics, Zhoushan Institute of Orthopedics and Traumatology, Zhoushan, Zhejiang, China
| | - SongOu Zhang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - WeiHu Ma
- Department of Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Wang C, Wang C, Wang M, Wang M, Ni Q, Sun J, Sun B, Wang Y. Minimally Invasive Real-Time Monitoring for Rapid and Sensitive Diagnosis of Spinal Cord Injury. ACS Sens 2024; 9:5058-5068. [PMID: 39401952 DOI: 10.1021/acssensors.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Spinal cord injury (SCI) is a serious neurological injury that is currently extremely difficult to cure clinically. SCI involves numerous pathophysiological processes, and microRNAs (miRNAs) play an important role in these processes. Meanwhile, miRNAs have received a lot of attention for their role in other diseases as well. Therefore, the detection of disease-related miRNAs is important for the study of disease development, treatment, and prognosis. With the rapid development of molecular biology, the traditional detection methods of miRNA can no longer meet the needs of experiments. Electrochemical detection methods are widely used because of their excellent detection performance. Here, we designed an electrochemical sensor prepared using borosilicate glass microneedle electrodes for real-time monitoring of miR-21-5p expression in vivo after SCI. The sensor showed a good linear relationship between the oxidation peak current value and the concentration of miR-21-5p in the concentration range 0-2 fM (Y = 12.025X + 90.396, R2 = 0.98). The limit of detection (LOD) of the sensor was 0.3667 fM. The experimental results showed that the borosilicate glass microneedle electrochemical sensor achieved fast, accurate, highly sensitive, highly specific, highly stable, and reproducible monitoring of miR-21-5p. More importantly, the electrochemical sensor has a better clinical translation prospect, which is important for the research of clinical diseases.
Collapse
Affiliation(s)
- Chengcheng Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Cai Wang
- Binhai County People's Hospital, Yancheng, Jiangsu 224500, China
| | - Minyue Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Mengyue Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, Shandong 271000, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Baoliang Sun
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Ying Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| |
Collapse
|
3
|
Zhang Y, Wu Z, Wu J, Li T, Jiang F, Yang B. Current multi-scale biomaterials for tissue regeneration following spinal cord injury. Neurochem Int 2024; 178:105801. [PMID: 38971503 DOI: 10.1016/j.neuint.2024.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Spinal cord injury (SCI) may cause loss of motor and sensory function, autonomic dysfunction, and thus disrupt the quality of life of patients, leading to severe disability and significant psychological, social, and economic burden. At present, existing therapy for SCI have limited ability to promote neural function recovery, and there is an urgent need to develop innovative regenerative approaches to repair SCI. Biomaterials have become a promising strategy to promote the regeneration and repair of damaged nerve tissue after SCI. Biomaterials can provide support for nerve tissue by filling cavities, and improve local inflammatory responses and reshape extracellular matrix structures through unique biochemical properties to create the optimal microenvironment at the SCI site, thereby promoting neurogenesis and reconnecting damaged spinal cord tissue. Considering the importance of biomaterials in repairing SCI, this article reviews the latest progress of multi-scale biomaterials in SCI treatment and tissue regeneration, and evaluates the relevant technologies for manufacturing biomaterials.
Collapse
Affiliation(s)
- Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Zhonghuan Wu
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Junfeng Wu
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Tingdong Li
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Fugui Jiang
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Biao Yang
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China.
| |
Collapse
|
4
|
Tsai MH, Wu CY, Wu CH, Chen CY. The Current Update of Conventional and Innovative Treatment Strategies for Central Nervous System Injury. Biomedicines 2024; 12:1894. [PMID: 39200357 PMCID: PMC11351448 DOI: 10.3390/biomedicines12081894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
This review explores the complex challenges and advancements in the treatment of traumatic brain injury (TBI) and spinal cord injury (SCI). Traumatic injuries to the central nervous system (CNS) trigger intricate pathophysiological responses, frequently leading to profound and enduring disabilities. This article delves into the dual phases of injury-primary impacts and the subsequent secondary biochemical cascades-that worsen initial damage. Conventional treatments have traditionally prioritized immediate stabilization, surgical interventions, and supportive medical care to manage both the primary and secondary damage associated with central nervous system injuries. We explore current surgical and medical management strategies, emphasizing the crucial role of rehabilitation and the promising potential of stem cell therapies and immune modulation. Advances in stem cell therapy, gene editing, and neuroprosthetics are revolutionizing treatment approaches, providing opportunities not just for recovery but also for the regeneration of impaired neural tissues. This review aims to emphasize emerging therapeutic strategies that hold promise for enhancing outcomes and improving the quality of life for affected individuals worldwide.
Collapse
Affiliation(s)
- Meng-Hsuan Tsai
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
| | - Chi-Ying Wu
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
| | - Chao-Hsin Wu
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
- Post-Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| |
Collapse
|
5
|
Zhang H, Li S, Ma X. Transforming Healthcare with Nanomedicine: A SWOT Analysis of Drug Delivery Innovation. Drug Des Devel Ther 2024; 18:3499-3521. [PMID: 39132625 PMCID: PMC11314449 DOI: 10.2147/dddt.s470210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Nanomedicine represents a transformative approach in biomedical applications. This study aims to delineate the application of nanomedicine in the biomedical field through the strengths, weaknesses, opportunities, and threats (SWOT) analysis to evaluate its efficacy and potential in clinical applications. Methods The SWOT analysis framework was employed to systematically review and assess the internal strengths and weaknesses, along with external opportunities and threats of nanomedicine. This method provides a balanced consideration of the potential benefits and challenges. Results Findings from the SWOT analysis indicate that nanomedicine presents significant potential in drug delivery, diagnostic imaging, and tissue engineering. Nonetheless, it faces substantial hurdles such as safety issues, environmental concerns, and high development costs. Critical areas for development were identified, particularly concerning its therapeutic potential and the uncertainties surrounding long-term effects. Conclusion Nanomedicine holds substantial promise in driving medical innovation. However, successful clinical translation requires addressing safety, cost, and regulatory challenges. Interdisciplinary collaboration and comprehensive strategic planning are crucial for the safe and effective application of nanomedicine.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Suping Li
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xingming Ma
- School of Health Management, Xihua University, Chengdu, 610039, People’s Republic of China
| |
Collapse
|
6
|
Huang A, Huang Y, Yang W, Wang L, You R, Wang J, Yan S, Zhang Q. Fabrication of multifunctional silk nanofibril/hyaluronic acid scaffold for spinal cord repair. Int J Biol Macromol 2024; 263:130287. [PMID: 38373567 DOI: 10.1016/j.ijbiomac.2024.130287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Bioactive scaffolds accurately mimicking the structure and composition of the extracellular matrix have garnered significant interest in tissue engineering. In this study, we developed a platform utilizing natural silk nanofibrils, hyaluronic acid, and basic fibroblast growth factor for the purpose of promoting spinal cord regeneration by creating an optimal microenvironment. The bioactive scaffold exhibited notable characteristics such as high porosity and hydrophilicity, attributed to its unique nanostructure, high connectivity, and polysaccharide composition. Furthermore, the pore size of the scaffold can be adjusted within the range of 90 μm to 120 μm by varying the content of hyaluronic acid. In vitro, human umbilical vein endothelial cells were seeded into the scaffold, demonstrating enhanced cell viability. The scaffold facilitated cell proliferation and migration. In vivo experiments on rats indicated that the scaffold had a beneficial impact on spinal cord regeneration, creating a conducive environment for motor function recovery of the rats. This effect may be attributed to the scaffold's ability to stimulate axon growth and neuronal survival, as well as inhibit the formation of glial scars, as evidenced by the decreased expression of growth associated protein-43, microtubule-associated protein 2, and neurofilament-200. This study presents a promising method to develop a feasible bioscaffold for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Ao Huang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ying Huang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Wenjing Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiannan Wang
- Key Laboratory of Textile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215123, China
| | - Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Key Laboratory of Textile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215123, China.
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
7
|
Chen D, Zhou L, Chen G, Lin T, Lin J, Zhao X, Li W, Guo S, Wu R, Wang Z, Liu W. FUNDC1-induced mitophagy protects spinal cord neurons against ischemic injury. Cell Death Discov 2024; 10:4. [PMID: 38177127 PMCID: PMC10766648 DOI: 10.1038/s41420-023-01780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Local ischemia and hypoxia are the most important pathological processes in the early phase of secondary spinal cord injury (SCI), in which mitochondria are the main target of ischemic injury. Mitochondrial autophagy, also known as mitophagy, acts as a selective autophagy that specifically identifies and degrades damaged mitochondria, thereby reducing mitochondria-dependent apoptosis. Accumulating evidence shows that the mitophagy receptor, FUN14 domain-containing 1 (FUNDC1), plays an important role in ischemic injury, but the role of FUNDC1 in SCI has not been reported. In this study, we aimed to investigate whether FUNDC1 can enhance mitophagy and inhibit neuronal apoptosis in the early stage of SCI. In a rat SCI model, we found that FUNDC1 overexpression enhanced neuronal autophagy and decreased neuronal apoptosis in the early stage of injury, thereby reducing spinal cord damage. In vitro studies showed that the neuroprotective effects of FUNDC1 were achieved by inhibiting mitochondria-dependent apoptosis and improving mitochondrial function. In addition, FUNDC1 enhanced mitophagy. The protective effects of FUNDC1 against apoptosis and mitochondrial dysfunction were reversed by 3-methyladenine (3-MA), an autophagy inhibitor. Taken together, our results confirm that FUNDC1 can protect against neuronal loss after SCI by inducing mitophagy, inhibiting mitochondria-dependent apoptosis, and improving mitochondrial function.
Collapse
Affiliation(s)
- Dehui Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Linquan Zhou
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Gang Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Taotao Lin
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Jiemin Lin
- School of Health, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Xin Zhao
- School of Health, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Wenwen Li
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Shengyu Guo
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Rongcan Wu
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Zhenyu Wang
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| | - Wenge Liu
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
8
|
Baltin M, Smirnova V, Khamatnurova R, Sabirova D, Samigullin B, Sachenkov O, Baltina T. Functional State of the Motor Centers of the Lumbar Spine after Contusion (Th8-Th9) with Application of Methylprednisolone-Copolymer at the Site of Injury. Biomedicines 2023; 11:2026. [PMID: 37509665 PMCID: PMC10377350 DOI: 10.3390/biomedicines11072026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injuries must be treated as soon as possible. Studies of NASCIS protocols have questioned the use of methylprednisolone therapy. This study aimed to evaluate the effect of local delivery of methylprednisolone succinate in combination with a tri-block copolymer in rats with spinal cord injury. The experiments were conducted in accordance with the bioethical guidelines. We evaluated the state of the motor centers below the level of injury by assessing the amplitude of evoked motor responses in the hind limb muscles of rats during epidural stimulation. Kinematic analysis was performed to examine the stepping cycle in each rat. Trajectories of foot movements were plotted to determine the range of limb motion, maximum foot lift height, and lateral deviation of the foot in rats on the 21st day after spinal cord injury. We have shown that the local application of methylprednisolone succinate in combination with block copolymer leads to recovery of center excitability by 21 days after injury. In rats, they recovered weight-supported locomotion, directional control of walking, and balance. The proposed assessment method provides valuable information on gait disturbances following injury and can be utilized to evaluate the quality of therapeutic interventions.
Collapse
Affiliation(s)
- Maxim Baltin
- Research Laboratory "Mechanobiology", Institute of Fundamental Medicine and Biology, Kazan Federal University, 420015 Kazan, Russia
- Research Institute of Sports Reserve Training Technologies, Volga State University of Physical Culture, Sports and Tourism, Universiade Village, 35, 420010 Kazan, Russia
| | - Victoriya Smirnova
- N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia
| | - Regina Khamatnurova
- Interdisciplinary Neuroscience Faculty, Goethe-Universität Frankfurt am Main, 60323 Frankfurt am Main, Germany
| | - Diana Sabirova
- N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 76 K. Marx St., 420015 Kazan, Russia
| | - Bulat Samigullin
- Research Laboratory "Mechanobiology", Institute of Fundamental Medicine and Biology, Kazan Federal University, 420015 Kazan, Russia
- NeuroStart Medical Center, 420049 Kazan, Russia
| | - Oskar Sachenkov
- N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia
- Department Machines Science and Engineering Graphics, Tupolev Kazan National Research Technical University, 420111 Kazan, Russia
| | - Tatyana Baltina
- Research Laboratory "Mechanobiology", Institute of Fundamental Medicine and Biology, Kazan Federal University, 420015 Kazan, Russia
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 76 K. Marx St., 420015 Kazan, Russia
| |
Collapse
|
9
|
García E, Sánchez-Noriega S, González-Pacheco G, González-Vázquez AN, Ibarra A, Rodríguez-Barrera R. Recent advances in the combination of cellular therapy with stem cells and nanoparticles after a spinal cord injury. Front Neurol 2023; 14:1127878. [PMID: 37181563 PMCID: PMC10169723 DOI: 10.3389/fneur.2023.1127878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 05/16/2023] Open
Abstract
Background Currently, combined therapies could help to reduce long-term sequelae of spinal cord injury (SCI); stem cell therapy at the site of injury in combination with other therapies has shown very promising results that can be transferred to the clinical field. Nanoparticles (NPs) are versatile technologies with applications to medical research for treatments of SCI since they could deliver therapeutic molecules to the target tissue and may help to reduce the side effects of non-targeted therapies. This article's purpose is to analyze and concisely describe the diverse cellular therapies in combination with NPs and their regenerative effect after SCI. Methods We reviewed the literature related to combinatory therapy for motor impairment following SCI that has been published by Web of Science, Scopus, EBSCO host, and PubMed databases. The research covers the databases from 2001 to December 2022. Result Animal models of SCI have shown that the combination of NPs plus stem cells has a positive impact on neuroprotection and neuroregeneration. Further research is required to better understand the effects and benefits of SCI on a clinical level; therefore, it is necessary to find and select the most effective molecules that are capable of exacerbating the neurorestorative effects of the different stem cells and then try them out on patients after SCI. On the other hand, we consider that synthetic polymers such as poly [lactic-co-glycolic acid] (PLGA) could be a candidate for the design of the first therapeutic strategy that combines NPs with stem cells in patients with SCI. The reasons for the selection are that PLGA has shown important advantages over other NPs, such as being biodegradable, having low toxicity levels, and high biocompatibility; In addition, researchers could control the release time and the biodegradation kinetics, and most importantly, it could be used as NMs on other clinical pathologies (12 studies on www.clinicaltrials.gov) and has been approved by the Federal Food, Drug, and Cosmetic Act (FDA). Conclusion The use of cellular therapy and NPs may be a worthwhile alternative for SCI therapy; however, it is expected that the data obtained from interventions after SCI reflect an important variability of molecules combined with NPs. Therefore, it is necessary to properly define the limits of this research to be able to continue to work on the same line. Consequently, the selection of a specific therapeutic molecule and type of NPs plus stem cells are crucial to evaluate its application in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan de Degollado, CP, Mexico
| |
Collapse
|
10
|
Georgelou K, Saridaki EA, Karali K, Papagiannaki A, Charalampopoulos I, Gravanis A, Tzeranis DS. Microneurotrophin BNN27 Reduces Astrogliosis and Increases Density of Neurons and Implanted Neural Stem Cell-Derived Cells after Spinal Cord Injury. Biomedicines 2023; 11:biomedicines11041170. [PMID: 37189788 DOI: 10.3390/biomedicines11041170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Microneurotrophins, small-molecule mimetics of endogenous neurotrophins, have demonstrated significant therapeutic effects on various animal models of neurological diseases. Nevertheless, their effects on central nervous system injuries remain unknown. Herein, we evaluate the effects of microneurotrophin BNN27, an NGF analog, in the mouse dorsal column crush spinal cord injury (SCI) model. BNN27 was delivered systemically either by itself or combined with neural stem cell (NSC)-seeded collagen-based scaffold grafts, demonstrated recently to improve locomotion performance in the same SCI model. Data validate the ability of NSC-seeded grafts to enhance locomotion recovery, neuronal cell integration with surrounding tissues, axonal elongation and angiogenesis. Our findings also show that systemic administration of BNN27 significantly reduced astrogliosis and increased neuron density in mice SCI lesion sites at 12 weeks post injury. Furthermore, when BNN27 administration was combined with NSC-seeded PCS grafts, BNN27 increased the density of survived implanted NSC-derived cells, possibly addressing a major challenge of NSC-based SCI treatments. In conclusion, this study provides evidence that small-molecule mimetics of endogenous neurotrophins can contribute to effective combinatorial treatments for SCI, by simultaneously regulating key events of SCI and supporting grafted cell therapies in the lesion site.
Collapse
Affiliation(s)
- Konstantina Georgelou
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
| | | | - Kanelina Karali
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
| | - Argyri Papagiannaki
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
| | - Dimitrios S Tzeranis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| |
Collapse
|
11
|
Xiang W, Cao H, Tao H, Jin L, Luo Y, Tao F, Jiang T. Applications of chitosan-based biomaterials: From preparation to spinal cord injury neuroprosthetic treatment. Int J Biol Macromol 2023; 230:123447. [PMID: 36708903 DOI: 10.1016/j.ijbiomac.2023.123447] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Spinal cord injury (SCI)-related disabilities are a serious problem in the modern society. Further, the treatment of SCI is highly challenging and is urgently required in clinical practice. Research on nerve tissue engineering is an emerging approach for improving the treatment outcomes of SCI. Chitosan (CS) is a cationic polysaccharide derived from natural biomaterials. Chitosan has been found to exhibit excellent biological properties, such as nontoxicity, biocompatibility, biodegradation, and antibacterial activity. Recently, chitosan-based biomaterials have attracted significant attention for SCI repair in nerve tissue engineering applications. These studies revealed that chitosan-based biomaterials have various functions and mechanisms to promote SCI repair, such as promoting neural cell growth, guiding nerve tissue regeneration, delivering nerve growth factors, and as a vector for gene therapy. Chitosan-based biomaterials have proven to have excellent potential for the treatment of SCI. This review aims to introduce the recent advances in chitosan-based biomaterials for SCI treatment and to highlight the prospects for further application.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yue Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Ting Jiang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
12
|
Leemhuis E, Favieri F, Forte G, Pazzaglia M. Integrated Neuroregenerative Techniques for Plasticity of the Injured Spinal Cord. Biomedicines 2022; 10:biomedicines10102563. [PMID: 36289825 PMCID: PMC9599452 DOI: 10.3390/biomedicines10102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
On the slow path to improving the life expectancy and quality of life of patients post spinal cord injury (SCI), recovery remains controversial. The potential role of the regenerative capacity of the nervous system has led to numerous attempts to stimulate the SCI to re-establish the interrupted sensorimotor loop and to understand its potential in the recovery process. Numerous resources are now available, from pharmacological to biomolecular approaches and from neuromodulation to sensorimotor rehabilitation interventions based on the use of various neural interfaces, exoskeletons, and virtual reality applications. The integration of existing resources seems to be a promising field of research, especially from the perspective of improving living conditions in the short to medium term. Goals such as reducing chronic forms of neuropathic pain, regaining control over certain physiological activities, and enhancing residual abilities are often more urgent than complete functional recovery. In this perspective article, we provide an overview of the latest interventions for the treatment of SCI through broad phases of injury rehabilitation. The underlying intention of this work is to introduce a spinal cord neuroplasticity-based multimodal approach to promote functional recovery and improve quality of life after SCI. Nonetheless, when used separately, biomolecular therapeutic approaches have been shown to have modest outcomes.
Collapse
Affiliation(s)
- Erik Leemhuis
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Correspondence: (E.L.); (M.P.)
| | - Francesca Favieri
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Giuseppe Forte
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Dipartimento di Psicologia Dinamica, Clinica e Salute, Sapienza Università di Roma, 00185 Roma, Italy
| | - Mariella Pazzaglia
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Correspondence: (E.L.); (M.P.)
| |
Collapse
|
13
|
Zarepour A, Bal Öztürk A, Koyuncu Irmak D, Yaşayan G, Gökmen A, Karaöz E, Zarepour A, Zarrabi A, Mostafavi E. Combination Therapy Using Nanomaterials and Stem Cells to Treat Spinal Cord Injuries. Eur J Pharm Biopharm 2022; 177:224-240. [PMID: 35850168 DOI: 10.1016/j.ejpb.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
As a part of the central nervous system, the spinal cord (SC) provides most of the communications between the brain and other parts of the body. Any damage to SC interrupts this communication, leading to serious problems, which may remain for the rest of their life. Due to its significant impact on patients' quality of life and its exorbitant medical costs, SC injury (SCI) is known as one of the most challengeable diseases in the world. Thus, it is critical to introduce highly translatable therapeutic platforms for SCI treatment. So far, different strategies have been introduced, among which utilizing various types of stem cells is one of the most interesting ones. The capability of stem cells to differentiate into several types of cell lines makes them promising candidates for the regeneration of injured tissues. One of the other interesting and novel strategies for SCI treatment is the application of nanomaterials, which could appear as a carrier for therapeutic agents or as a platform for culturing the cells. Combining these two approaches, stem cells and nanomaterials, could provide promising therapeutic strategies for SCI management. Accordingly, in this review we have summarized some of the recent advancements in which the applications of different types of stem cells and nanomaterials, alone and in combination forms, were evaluated for SCI treatment.
Collapse
Affiliation(s)
- Arezou Zarepour
- Radiology Department, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| | - Ayça Bal Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey; Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Zeytinburnu, Turkey
| | | | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Aylin Gökmen
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, Besiktas, Istanbul, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Manufacturing (LivMedCell), İstanbul, Turkey
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Applications of Various Types of Nanomaterials for the Treatment of Neurological Disorders. NANOMATERIALS 2022; 12:nano12132140. [PMID: 35807977 PMCID: PMC9268720 DOI: 10.3390/nano12132140] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023]
Abstract
Neurological disorders (NDs) are recognized as one of the major health concerns globally. According to the World Health Organization (WHO), neurological disorders are one of the main causes of mortality worldwide. Neurological disorders include Alzheimer’s disease, Parkinson′s disease, Huntington′s disease, Amyotrophic lateral sclerosis, Frontotemporal dementia, Prion disease, Brain tumor, Spinal cord injury, and Stroke. These diseases are considered incurable diseases because no specific therapies are available to cross the blood-brain barrier (BBB) and reach the brain in a significant amount for the pharmacological effect in the brain. There is a need for the development of strategies that can improve the efficacy of drugs and circumvent BBB. One of the promising approaches is the use of different types of nano-scale materials. These nano-based drugs have the ability to increase the therapeutic effect, reduce toxicity, exhibit good stability, targeted delivery, and drug loading capacity. Different types and shapes of nanomaterials have been widely used for the treatment of neurological disorders, including quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, and micelles. These nanoparticles have unique characteristics, including sensitivity, selectivity, and the ability to cross the BBB when used in nano-sized particles, and are widely used for imaging studies and treatment of NDs. In this review, we briefly summarized the recent literature on the use of various nanomaterials and their mechanism of action for the treatment of various types of neurological disorders.
Collapse
|
15
|
Future Treatment of Neuropathic Pain in Spinal Cord Injury: The Challenges of Nanomedicine, Supplements or Opportunities? Biomedicines 2022; 10:biomedicines10061373. [PMID: 35740395 PMCID: PMC9219608 DOI: 10.3390/biomedicines10061373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain (NP) is a common chronic condition that severely affects patients with spinal cord injuries (SCI). It impairs the overall quality of life and is considered difficult to treat. Currently, clinical management of NP is often limited to drug therapy, primarily with opioid analgesics that have limited therapeutic efficacy. The persistence and intractability of NP following SCI and the potential health risks associated with opioids necessitate improved treatment approaches. Nanomedicine has gained increasing attention in recent years for its potential to improve therapeutic efficacy while minimizing toxicity by providing sensitive and targeted treatments that overcome the limitations of conventional pain medications. The current perspective begins with a brief discussion of the pathophysiological mechanisms underlying NP and the current pain treatment for SCI. We discuss the most frequently used nanomaterials in pain diagnosis and treatment as well as recent and ongoing efforts to effectively treat pain by proactively mediating pain signals following SCI. Although nanomedicine is a rapidly growing field, its application to NP in SCI is still limited. Therefore, additional work is required to improve the current treatment of NP following SCI.
Collapse
|
16
|
Novel Strategies for Spinal Cord Regeneration. Int J Mol Sci 2022; 23:ijms23094552. [PMID: 35562941 PMCID: PMC9102050 DOI: 10.3390/ijms23094552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
A spinal cord injury (SCI) is one of the most devastating lesions, as it can damage the continuity and conductivity of the central nervous system, resulting in complex pathophysiology. Encouraged by the advances in nanotechnology, stem cell biology, and materials science, researchers have proposed various interdisciplinary approaches for spinal cord regeneration. In this respect, the present review aims to explore the most recent developments in SCI treatment and spinal cord repair. Specifically, it briefly describes the characteristics of SCIs, followed by an extensive discussion on newly developed nanocarriers (e.g., metal-based, polymer-based, liposomes) for spinal cord delivery, relevant biomolecules (e.g., growth factors, exosomes) for SCI treatment, innovative cell therapies, and novel natural and synthetic biomaterial scaffolds for spinal cord regeneration.
Collapse
|
17
|
Li R, Han J, Chen B, Shang J. Homeodomain Interacting Protein Kinase 2-Modified Rat Spinal Astrocytes Affect Neurofunctional Recovery After Spinal Cord Injury. Curr Neurovasc Res 2022; 19:171-180. [PMID: 35652392 DOI: 10.2174/1567202619666220601111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is regarded as an acute neurological disorder, and astrocytes play a role in the progression of SCI. OBJECTIVE Herein, we investigated the roles of homeodomain-interacting protein kinase 2 (HIPK2)- modified rat spinal astrocytes in neurofunctional recovery after SCI. METHODS Rat spinal astrocytes were cultured, isolated, and then identified through microscopic observation and immunofluorescence staining. Astrocytes were infected with the adenovirus vector overexpressing HIPK2 for modification, and proliferation and apoptosis of astrocytes were examined using Cell Counting Kit-8 method and flow cytometry. SCI rat models were established and treated with astrocytes or HIPK2-modified astrocytes. Subsequently, rat motor ability was analyzed via the Basso-Beattie-Bresnahan (BBB) scoring and inclined-plane test, and the damage to spinal cord tissues and neuronal survival were observed via Hematoxylin-eosin staining and Nissl staining. The levels of HIPK2, brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and nuclear factor erythroid 2- related transcription factor 2 (Nrf2)/antioxidant response element (ARE) pathway-related proteins were detected. RESULTS Rat spinal astrocytes were harvested successfully. HIPK2 overexpression accelerated the proliferation and repressed the apoptosis of rat spinal astrocytes. Rat spinal astrocytes treatment increased BBB points and the maximum angle at which SCI rats remained stable, ameliorated damage to spinal cord tissues, increased the number of neurons, and attenuated neural damage and inflammation, while the treatment of HIPK2-modified rat spinal astrocytes imparted more pronounced effects to the neurofunctional recovery of SCI rats. Meanwhile, HIPK2-modified rat spinal astrocytes further activated the Nrf2/ARE pathway. CONCLUSION HIPK2-modified rat spinal astrocytes facilitated neurofunctional recovery and activated the Nrf2/ARE pathway after SCI.
Collapse
Affiliation(s)
- Renbo Li
- Spinal and Trauma's Ward, The 3rd People Hospital of Dalian, Dalian 116000, China
| | - Jian Han
- Spinal and Trauma's Ward, The 3rd People Hospital of Dalian, Dalian 116000, China
| | - Bo Chen
- Spinal and Trauma's Ward, The 3rd People Hospital of Dalian, Dalian 116000, China
| | - Jingbo Shang
- Spinal and Trauma's Ward, The 3rd People Hospital of Dalian, Dalian 116000, China
| |
Collapse
|
18
|
De I, Sharma P, Singh M. Emerging approaches of neural regeneration using physical stimulations solely or coupled with smart piezoelectric nano-biomaterials. Eur J Pharm Biopharm 2022; 173:73-91. [DOI: 10.1016/j.ejpb.2022.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/20/2023]
|
19
|
Razavi SM, Khayatan D, Arab ZN, Momtaz S, Zare K, Jafari RM, Dehpour AR, Abdolghaffari AH. Licofelone, a potent COX/5-LOX inhibitor and a novel option for treatment of neurological disorders. Prostaglandins Other Lipid Mediat 2021; 157:106587. [PMID: 34517113 DOI: 10.1016/j.prostaglandins.2021.106587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022]
Abstract
Neurological disorders result in disability and morbidity. Neuroinflammation is a key factor involved in progression or resolution of a series of neurological disorders like Huntington disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), Spinal Cord Injury (SCI), and Seizure. Thereby, anti-inflammatory drugs have been developed to improve the neurodegenerative impairments. Licofelone is an approved osteoarthritis drug that inhibits both the COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways. Licofelone has pain-relieving and anti-inflammatory effects and it was shown to have neuroprotective properties in the central nervous system, which is implicated in its regulatory effect on the COX/5-LOX pathway, inflammatory cytokines, and immune responses. In this study, we briefly review the various features of neurological disorders and the function of COX/LOX in their flare up and current pharmacological products for their management. Moreover, this review attempts to summarize potential therapeutics that target the immune responses within the central nervous system. A better understanding of the interactions between Licofelone and the nervous systems will be crucial to demonstrate the possible efficacy of Licofelone in neurological disorders.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kimia Zare
- School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
20
|
Pishavar E, Khosravi F, Naserifar M, Rezvani Ghomi E, Luo H, Zavan B, Seifalian A, Ramakrishna S. Multifunctional and Self-Healable Intelligent Hydrogels for Cancer Drug Delivery and Promoting Tissue Regeneration In Vivo. Polymers (Basel) 2021; 13:2680. [PMID: 34451220 PMCID: PMC8399012 DOI: 10.3390/polym13162680] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
Regenerative medicine seeks to assess how materials fundamentally affect cellular functions to improve retaining, restoring, and revitalizing damaged tissues and cancer therapy. As potential candidates in regenerative medicine, hydrogels have attracted much attention due to mimicking of native cell-extracellular matrix (ECM) in cell biology, tissue engineering, and drug screening over the past two decades. In addition, hydrogels with a high capacity for drug loading and sustained release profile are applicable in drug delivery systems. Recently, self-healing supramolecular hydrogels, as a novel class of biomaterials, are being used in preclinical trials with benefits such as biocompatibility, native tissue mimicry, and injectability via a reversible crosslink. Meanwhile, the localized therapeutics agent delivery is beneficial due to the ability to deliver more doses of therapeutic agents to the targeted site and the ability to overcome post-surgical complications, inflammation, and infections. These highly potential materials can help address the limitations of current drug delivery systems and the high clinical demand for customized drug release systems. To this aim, the current review presents the state-of-the-art progress of multifunctional and self-healable hydrogels for a broad range of applications in cancer therapy, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Elham Pishavar
- Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran;
| | - Fatemeh Khosravi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Mahshid Naserifar
- Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran;
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Barbara Zavan
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Amelia Seifalian
- UCL Medical School, University College London, London WC1E 6BT, UK;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| |
Collapse
|