1
|
Xu H, Zhang S, Song K, Yang H, Yin J, Huang Y. Droplet-based 3D bioprinting for drug delivery and screening. Adv Drug Deliv Rev 2025; 217:115486. [PMID: 39667692 DOI: 10.1016/j.addr.2024.115486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Recently, the conventional criterion of "one-size-fits-all" is not qualified for each individual patient, requiring precision medicine for enhanced therapeutic effects. Besides, drug screening is a high-cost and time-consuming process which requires innovative approaches to facilitate drug development rate. Benefiting from consistent technical advances in 3D bioprinting techniques, droplet-based 3D bioprinting techniques have been broadly utilized in pharmaceutics due to the noncontact printing mechanism and precise control on the deposition position of droplets. More specifically, cell-free/cell-laden bioinks which are deposited for the fabrication of drug carriers/3D tissue constructs have been broadly utilized for precise drug delivery and high throughput drug screening, respectively. This review summarizes the mechanism of various droplet-based 3D bioprinting techniques and the most up-to-date applications in drug delivery and screening and discusses the potential improvements of droplet-based 3D bioprinting techniques from both technical and material aspects. Through technical innovations, materials development, and the assistance from artificial intelligence, the formation process of drug carriers will be more stable and accurately controlled guaranteeing precise drug delivery. Meanwhile, the shape fidelity and uniformity of the printed tissue models will be significantly improved ensuring drug screening efficiency and efficacy.
Collapse
Affiliation(s)
- Heqi Xu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Shaokun Zhang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | | | - Huayong Yang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China.
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Huang Y, Zhang Y, Wu W, Wang Y, Qiu W, Zhang Z, Yu Y. Fast acoustic droplet ejection based on annular array transducer. ULTRASONICS 2025; 145:107448. [PMID: 39243532 DOI: 10.1016/j.ultras.2024.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/04/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Acoustic droplet ejection (ADE) has become the preferred method for liquid transfer in a variety of applications including synthetic biology, genotyping and drug discovery. Comparing with traditional pipetting techniques, the accuracy and data reproducibility of ADE based liquid transfer are improved, waste and cost are reduced, and cross-contamination is eliminated. The key component in the ADE system is the ultrasound transducer, which is responsible for generating focused ultrasound beam for droplet ejection. However, current ADE systems commonly utilize a single-element focused transducer with a fixed focal length that require mechanical movement to focus on the liquid surface, resulting in reduced liquid transfer efficiency. In this study, we first present a high-frequency annular array transducer for the ADE technology, which enables rapid and dynamic axial focusing to the liquid surface without mechanically moving the transducer, thereby accelerating liquid transfer. Experimental results show that the proposed 10 MHz, 5-element annular array transducer has good dynamic axial focusing ability, and can achieve accurate and stable droplet ejection of nanoliter volume at the designed focal length of 26-32 mm. Our results highlight the potential of the annular array transducer in advancing ADE system for rapid liquid transfer. This technology is expected to be useful in a variety of applications where precise and high-throughput liquid transfer is crucial.
Collapse
Affiliation(s)
- Youta Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; National-Reginoal Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Yang Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; School of Electrical Engineering, University of South China, Hengyang, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Weichang Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Yan Wang
- School of Electrical Engineering, University of South China, Hengyang, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China.
| | - Zhiqiang Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China.
| | - Yanyan Yu
- National-Reginoal Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Gonçalves RC, Oliveira MB, Mano JF. Exploring the potential of all-aqueous immiscible systems for preparing complex biomaterials and cellular constructs. MATERIALS HORIZONS 2024; 11:4573-4599. [PMID: 39010747 DOI: 10.1039/d4mh00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
All-aqueous immiscible systems derived from liquid-liquid phase separation of incompatible hydrophilic agents such as polymers and salts have found increasing interest in the biomedical and tissue engineering fields in the last few years. The unique characteristics of aqueous interfaces, namely their low interfacial tension and elevated permeability, as well as the non-toxic environment and high water content of the immiscible phases, confer to these systems optimal qualities for the development of biomaterials such as hydrogels and soft membranes, as well as for the preparation of in vitro tissues derived from cellular assembly. Here, we overview the main properties of these systems and present a critical review of recent strategies that have been used for the development of biomaterials with increased levels of complexity using all-aqueous immiscible phases and interfaces, and their potential as cell-confining environments for micropatterning approaches and the bioengineering of cell-rich structures. Importantly, due to the relatively recent emergence of these areas, several key design considerations are presented, in order to guide researchers in the field. Finally, the main present challenges, future directions, and adaptability to develop advanced materials with increased biomimicry and new potential applications are briefly evaluated.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Wang G, Mao X, Wang W, Wang X, Li S, Wang Z. Bioprinted research models of urological malignancy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230126. [PMID: 39175884 PMCID: PMC11335473 DOI: 10.1002/exp.20230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 08/24/2024]
Abstract
Urological malignancy (UM) is among the leading threats to health care worldwide. Recent years have seen much investment in fundamental UM research, including mechanistic investigation, early diagnosis, immunotherapy, and nanomedicine. However, the results are not fully satisfactory. Bioprinted research models (BRMs) with programmed spatial structures and functions can serve as powerful research tools and are likely to disrupt traditional UM research paradigms. Herein, a comprehensive review of BRMs of UM is presented. It begins with a brief introduction and comparison of existing UM research models, emphasizing the advantages of BRMs, such as modeling real tissues and organs. Six kinds of mainstream bioprinting techniques used to fabricate such BRMs are summarized with examples. Thereafter, research advances in the applications of UM BRMs, such as culturing tumor spheroids and organoids, modeling cancer metastasis, mimicking the tumor microenvironment, constructing organ chips for drug screening, and isolating circulating tumor cells, are comprehensively discussed. At the end of this review, current challenges and future development directions of BRMs and UM are highlighted from the perspective of interdisciplinary science.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Xiongmin Mao
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wang Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaolong Wang
- Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sheng Li
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zijian Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| |
Collapse
|
5
|
Yu J, Zhang Y, Ran R, Kong Z, Zhao D, Zhao W, Yang Y, Gao L, Zhang Z. Research Progress in the Field of Tumor Model Construction Using Bioprinting: A Review. Int J Nanomedicine 2024; 19:6547-6575. [PMID: 38957180 PMCID: PMC11217009 DOI: 10.2147/ijn.s460387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The development of therapeutic drugs and methods has been greatly facilitated by the emergence of tumor models. However, due to their inherent complexity, establishing a model that can fully replicate the tumor tissue situation remains extremely challenging. With the development of tissue engineering, the advancement of bioprinting technology has facilitated the upgrading of tumor models. This article focuses on the latest advancements in bioprinting, specifically highlighting the construction of 3D tumor models, and underscores the integration of these two technologies. Furthermore, it discusses the challenges and future directions of related techniques, while also emphasizing the effective recreation of the tumor microenvironment through the emergence of 3D tumor models that resemble in vitro organs, thereby accelerating the development of new anticancer therapies.
Collapse
Affiliation(s)
- Jiachen Yu
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Yingchun Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Rong Ran
- Department of Anesthesia, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Zixiao Kong
- China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Duoyi Zhao
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Wei Zhao
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Yingxin Yang
- General Hospital of Northern Theater Command, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Lianbo Gao
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Zhiyu Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| |
Collapse
|
6
|
De Vitis E, Stanzione A, Romano A, Quattrini A, Gigli G, Moroni L, Gervaso F, Polini A. The Evolution of Technology-Driven In Vitro Models for Neurodegenerative Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304989. [PMID: 38366798 DOI: 10.1002/advs.202304989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/15/2024] [Indexed: 02/18/2024]
Abstract
The alteration in the neural circuits of both central and peripheral nervous systems is closely related to the onset of neurodegenerative disorders (NDDs). Despite significant research efforts, the knowledge regarding NDD pathological processes, and the development of efficacious drugs are still limited due to the inability to access and reproduce the components of the nervous system and its intricate microenvironment. 2D culture systems are too simplistic to accurately represent the more complex and dynamic situation of cells in vivo and have therefore been surpassed by 3D systems. However, both models suffer from various limitations that can be overcome by employing two innovative technologies: organ-on-chip and 3D printing. In this review, an overview of the advantages and shortcomings of both microfluidic platforms and extracellular matrix-like biomaterials will be given. Then, the combination of microfluidics and hydrogels as a new synergistic approach to study neural disorders by analyzing the latest advances in 3D brain-on-chip for neurodegenerative research will be explored.
Collapse
Affiliation(s)
- Eleonora De Vitis
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
| | - Antonella Stanzione
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Romano
- IRCCS San Raffaele Scientific Institute, Division of Neuroscience, Institute of Experimental Neurology, Milan, 20132, Italy
| | - Angelo Quattrini
- IRCCS San Raffaele Scientific Institute, Division of Neuroscience, Institute of Experimental Neurology, Milan, 20132, Italy
| | - Giuseppe Gigli
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
- Dipartimento di Medicina Sperimentale, Università Del Salento, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Lorenzo Moroni
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
- Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, Netherlands
| | - Francesca Gervaso
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Polini
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
7
|
Makode S, Maurya S, Niknam SA, Mollocana-Lara E, Jaberi K, Faramarzi N, Tamayol A, Mortazavi M. Three dimensional (bio)printing of blood vessels: from vascularized tissues to functional arteries. Biofabrication 2024; 16:022005. [PMID: 38277671 DOI: 10.1088/1758-5090/ad22ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Tissue engineering has emerged as a strategy for producing functional tissues and organs to treat diseases and injuries. Many chronic conditions directly or indirectly affect normal blood vessel functioning, necessary for material exchange and transport through the body and within tissue-engineered constructs. The interest in vascular tissue engineering is due to two reasons: (1) functional grafts can be used to replace diseased blood vessels, and (2) engineering effective vasculature within other engineered tissues enables connection with the host's circulatory system, supporting their survival. Among various practices, (bio)printing has emerged as a powerful tool to engineer biomimetic constructs. This has been made possible with precise control of cell deposition and matrix environment along with the advancements in biomaterials. (Bio)printing has been used for both engineering stand-alone vascular grafts as well as vasculature within engineered tissues for regenerative applications. In this review article, we discuss various conditions associated with blood vessels, the need for artificial blood vessels, the anatomy and physiology of different blood vessels, available 3D (bio)printing techniques to fabricate tissue-engineered vascular grafts and vasculature in scaffolds, and the comparison among the different techniques. We conclude our review with a brief discussion about future opportunities in the area of blood vessel tissue engineering.
Collapse
Affiliation(s)
- Shubham Makode
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Satyajit Maurya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Seyed A Niknam
- Department of Industrial Engineering, Western New England University, Springfield, MA, United States of America
| | - Evelyn Mollocana-Lara
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Kiana Jaberi
- Department of Nutritional Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Faramarzi
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Mehdi Mortazavi
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
| |
Collapse
|
8
|
Ren Y, Zhang C, Liu Y, Kong W, Yang X, Niu H, Qiang L, Yang H, Yang F, Wang C, Wang J. Advances in 3D Printing of Highly Bioadaptive Bone Tissue Engineering Scaffolds. ACS Biomater Sci Eng 2024; 10:255-270. [PMID: 38118130 DOI: 10.1021/acsbiomaterials.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The number of patients with bone defects caused by trauma, bone tumors, and osteoporosis has increased considerably. The repair of irregular, recurring, and large bone defects poses a great challenge to clinicians. Bone tissue engineering is emerging as an appropriate strategy to replace autologous bone grafting in the repair of critically sized bone defects. However, the suitability of bone tissue engineering scaffolds in terms of structure, mechanics, degradation, and the microenvironment is inadequate. Three-dimensional (3D) printing is an advanced additive-manufacturing technology widely used for bone repair. 3D printing constructs personalized structurally adapted scaffolds based on 3D models reconstructed from CT images. The contradiction between the mechanics and degradation is resolved by altering the stacking structure. The local microenvironment of the implant is improved by designing an internal pore structure and a spatiotemporal factor release system. Therefore, there has been a boom in the 3D printing of personalized bone repair scaffolds. In this review, successful research on the preparation of highly bioadaptive bone tissue engineering scaffolds using 3D printing is presented. The mechanisms of structural, mechanical, degradation, and microenvironmental adaptations of bone prostheses and their interactions were elucidated to provide a feasible strategy for constructing highly bioadaptive bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Ya Ren
- School of Rehabilitation Medicine, Weifang Medical University, Shandong 261041, China
- Southwest JiaoTong University College of Medicine, No. 111 North first Section of Second Ring Road, Chengdu 610036, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Weiqing Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266000, Shandong Province, China
| | - Xue Yang
- Southwest JiaoTong University College of Medicine, No. 111 North first Section of Second Ring Road, Chengdu 610036, China
| | - Haoyi Niu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Lei Qiang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Han Yang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Fei Yang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Chengwei Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Jinwu Wang
- School of Rehabilitation Medicine, Weifang Medical University, Shandong 261041, China
- Southwest JiaoTong University College of Medicine, No. 111 North first Section of Second Ring Road, Chengdu 610036, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
9
|
Hobson EC, Li W, Friend NE, Putnam AJ, Stegemann JP, Deng CX. Crossover of surface waves and capillary-viscous-elastic transition in soft biomaterials detected by resonant acoustic rheometry. Biomaterials 2023; 302:122282. [PMID: 37672999 DOI: 10.1016/j.biomaterials.2023.122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
Viscoelastic properties of hydrogels are important for their application in science and industry. However, rheological assessment of soft hydrogel biomaterials is challenging due to their complex, rapid, and often time-dependent behaviors. Resonant acoustic rheometry (RAR) is a newly developed technique capable of inducing and measuring resonant surface waves in samples in a non-contact fashion. By applying RAR at high temporal resolution during thrombin-induced fibrin gelation and ultraviolet-initiated polyethylene glycol (PEG) polymerization, we observed distinct changes in both frequency and amplitude of the resonant surface waves as the materials changed over time. RAR detected a series of capillary-elastic, capillary-viscous, and visco-elastic transitions that are uniquely manifested as crossover of different types of surface waves in the temporally evolving materials. These results reveal the dynamic interplay of surface tension, viscosity, and elasticity that is controlled by the kinetics of polymerization and crosslinking during hydrogel formation. RAR overcomes many limitations of conventional rheological approaches by offering a new way to comprehensively and longitudinally characterize soft materials during dynamic processes.
Collapse
Affiliation(s)
- Eric C Hobson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 40109, USA
| | - Weiping Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 40109, USA
| | - Nicole E Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 40109, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 40109, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 40109, USA.
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 40109, USA.
| |
Collapse
|
10
|
Ning J, Lei Y, Hu H, Gai C. A Comprehensive Review of Surface Acoustic Wave-Enabled Acoustic Droplet Ejection Technology and Its Applications. MICROMACHINES 2023; 14:1543. [PMID: 37630082 PMCID: PMC10456473 DOI: 10.3390/mi14081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
This review focuses on the development of surface acoustic wave-enabled acoustic drop ejection (SAW-ADE) technology, which utilizes surface acoustic waves to eject droplets from liquids without touching the sample. The technology offers advantages such as high throughput, high precision, non-contact, and integration with automated systems while saving samples and reagents. The article first provides an overview of the SAW-ADE technology, including its basic theory, simulation verification, and comparison with other types of acoustic drop ejection technology. The influencing factors of SAW-ADE technology are classified into four categories: fluid properties, device configuration, presence of channels or chambers, and driving signals. The influencing factors discussed in detail from various aspects, such as the volume, viscosity, and surface tension of the liquid; the type of substrate material, interdigital transducers, and the driving waveform; sessile droplets and fluid in channels/chambers; and the power, frequency, and modulation of the input signal. The ejection performance of droplets is influenced by various factors, and their optimization can be achieved by taking into account all of the above factors and designing appropriate configurations. Additionally, the article briefly introduces the application scenarios of SAW-ADE technology in bioprinters and chemical analyses and provides prospects for future development. The article contributes to the field of microfluidics and lab-on-a-chip technology and may help researchers to design and optimize SAW-ADE systems for specific applications.
Collapse
Affiliation(s)
| | | | - Hong Hu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; (J.N.)
| | | |
Collapse
|
11
|
Guo Q, Zhang J, Li D, Yu H. Effect of Wettability on the Collision Behavior of Acoustically Excited Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7408-7417. [PMID: 37186956 DOI: 10.1021/acs.langmuir.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Acoustic droplet ejection (ADE) is a noncontact technique for micro-liquid handling (usually nanoliters or picoliters) that is not restricted by nozzles and enables high-throughput liquid dispensing without sacrificing precision. It is widely regarded as the most advanced solution for liquid handling in large-scale drug screening. Stable coalescence of the acoustically excited droplets on the target substrate is a fundamental requirement during the application of the ADE system. However, it is challenging to investigate the collision behavior of nanoliter droplets flying upward during the ADE. In particular, the dependence of the droplet's collision behavior on substrate wettability and droplet velocity has yet to be thoroughly analyzed. In this paper, the kinetic processes of binary droplet collisions were investigated experimentally for different wettability substrate surfaces. Four states occur as the droplet collision velocity increases: coalescence after minor deformation, complete rebound, coalescence during rebound, and direct coalescence. For the hydrophilic substrate, there are wider ranges of Weber number (We) and Reynolds number (Re) in the complete rebound state. And with the decrease of the substrate wettability, the critical Weber and Reynolds numbers for the coalescence during rebound and the direct coalescence decrease. It is further revealed that the hydrophilic substrate is susceptible to droplet rebound because the sessile droplet has a larger radius of curvature and the viscous energy dissipation is greater. Besides, the prediction model of the maximum spreading diameter was established by modifying the droplet morphology in the complete rebound state. It is found that, under the same Weber and Reynolds numbers, droplet collisions on the hydrophilic substrate achieve a smaller maximum spreading coefficient and greater viscous energy dissipation, so the hydrophilic substrate is prone to droplet bounce.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Jialu Zhang
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Haixia Yu
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Chairez-Cantu K, González-González M, Rito-Palomares M. Generation of polyethylene glycol-dextran aqueous two-phase system droplets using different culture media under in vitro conditions. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Introduction to three-dimensional printing in medicine. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
14
|
Phakoukaki YV, O'Shaughnessy P, Angeli P. Flow patterns of ionic liquid based aqueous biphasic systems in small channels. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Yuan TY, Zhang J, Yu T, Wu JP, Liu QY. 3D Bioprinting for Spinal Cord Injury Repair. Front Bioeng Biotechnol 2022; 10:847344. [PMID: 35519617 PMCID: PMC9065470 DOI: 10.3389/fbioe.2022.847344] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is considered to be one of the most challenging central nervous system injuries. The poor regeneration of nerve cells and the formation of scar tissue after injury make it difficult to recover the function of the nervous system. With the development of tissue engineering, three-dimensional (3D) bioprinting has attracted extensive attention because it can accurately print complex structures. At the same time, the technology of blending and printing cells and related cytokines has gradually been matured. Using this technology, complex biological scaffolds with accurate cell localization can be manufactured. Therefore, this technology has a certain potential in the repair of the nervous system, especially the spinal cord. So far, this review focuses on the progress of tissue engineering of the spinal cord, landmark 3D bioprinting methods, and landmark 3D bioprinting applications of the spinal cord in recent years.
Collapse
|
16
|
Zhou X, Wu H, Wen H, Zheng B. Advances in Single-Cell Printing. MICROMACHINES 2022; 13:80. [PMID: 35056245 PMCID: PMC8778191 DOI: 10.3390/mi13010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022]
Abstract
Single-cell analysis is becoming an indispensable tool in modern biological and medical research. Single-cell isolation is the key step for single-cell analysis. Single-cell printing shows several distinct advantages among the single-cell isolation techniques, such as precise deposition, high encapsulation efficiency, and easy recovery. Therefore, recent developments in single-cell printing have attracted extensive attention. We review herein the recently developed bioprinting strategies with single-cell resolution, with a special focus on inkjet-like single-cell printing. First, we discuss the common cell printing strategies and introduce several typical and advanced printing strategies. Then, we introduce several typical applications based on single-cell printing, from single-cell array screening and mass spectrometry-based single-cell analysis to three-dimensional tissue formation. In the last part, we discuss the pros and cons of the single-cell strategies and provide a brief outlook for single-cell printing.
Collapse
Affiliation(s)
| | | | | | - Bo Zheng
- Shenzhen Bay Laboratory, Institute of Cell Analysis, Shenzhen 518132, China; (X.Z.); (H.W.); (H.W.)
| |
Collapse
|
17
|
Guo Q, Shao M, Su X, Zhang X, Yu H, Li D. Controllable Droplet Ejection of Multiple Reagents through Focused Acoustic Beams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14805-14812. [PMID: 34902972 DOI: 10.1021/acs.langmuir.1c02450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acoustic droplet ejection (ADE) technology has revolutionized fluid handling with its contactless and fast fluid transfer. For precise droplet ejection and stable droplet coalescence at the target substrates for further detection, the input power of the ADE system needs to be adjusted. Currently, the existing power control method depends on scanning the source fluid wells one by one, which cannot afford precise and highly efficient droplet velocity adjustment, and the complicated operation caused by the repeated power evaluation processes for thousands of fluid transfers will waste much time. We propose a new method, which realizes the controllable ejection of multiple reagents by analyzing the effect of the product of kinematic viscosity and surface tension of the reagents on the droplet initial velocity. The experimental results obtained by ejecting dimethyl sulfoxide coincide well with the predicted results, and the relative error in the droplet initial velocity is mostly less than 8%. On the basis of the input power prediction method proposed in this paper, the ADE system is successfully constructed for continuous dispensing of polystyrene microspheres as cell surrogates, which provided an advanced liquid handling solution for research in biochemistry and other fields.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Mengchuan Shao
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiao Su
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Haixia Yu
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Ahmed T, Yamanishi C, Kojima T, Takayama S. Aqueous Two-Phase Systems and Microfluidics for Microscale Assays and Analytical Measurements. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:231-255. [PMID: 33950741 DOI: 10.1146/annurev-anchem-091520-101759] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phase separation is a common occurrence in nature. Synthetic and natural polymers, salts, ionic liquids, surfactants, and biomacromolecules phase separate in water, resulting in an aqueous two-phase system (ATPS). This review discusses the properties, handling, and uses of ATPSs. These systems have been used for protein, nucleic acid, virus, and cell purification and have in recent years found new uses for small organics, polysaccharides, extracellular vesicles, and biopharmaceuticals. Analytical biochemistry applications such as quantifying protein-protein binding, probing for conformational changes, or monitoring enzyme activity have been performed with ATPSs. Not only are ATPSs biocompatible, they also retain their properties at the microscale, enabling miniaturization experiments such as droplet microfluidics, bacterial quorum sensing, multiplexed and point-of-care immunoassays, and cell patterning. ATPSs include coacervates and may find wider interest in the context of intracellular phase separation and origin of life. Recent advances in fundamental understanding and in commercial application are also considered.
Collapse
Affiliation(s)
- Tasdiq Ahmed
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA;
| | - Cameron Yamanishi
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA;
| | - Taisuke Kojima
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA;
| | - Shuichi Takayama
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA;
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
19
|
Khoeini R, Nosrati H, Akbarzadeh A, Eftekhari A, Kavetskyy T, Khalilov R, Ahmadian E, Nasibova A, Datta P, Roshangar L, Deluca DC, Davaran S, Cucchiarini M, Ozbolat IT. Natural and Synthetic Bioinks for 3D Bioprinting. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Roghayeh Khoeini
- Department of Medicinal Chemistry Faculty of Pharmacy Tabriz University of Medical Sciences P.O. Box: 51664-14766 Tabriz Iran
- Drug Applied Research Center Tabriz University of Medical Sciences P.O. Box: 51656-65811 Tabriz Iran
| | - Hamed Nosrati
- Drug Applied Research Center Tabriz University of Medical Sciences P.O. Box: 51656-65811 Tabriz Iran
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
| | - Abolfazl Akbarzadeh
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Department of Medical Nanotechnology Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences P.O. Box: 516615731 Tabriz Iran
| | - Aziz Eftekhari
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Russian Institute for Advanced Study Moscow State Pedagogical University 1/1, Malaya Pirogovskaya Street Moscow 119991 Russian Federation
- Pharmacology and Toxicology Department Maragheh University of Medical Sciences 78151-55158 Maragheh Iran
- Department of Synthesis and Characterization of Polymers Polymer Institute Slovak Academy of Sciences (SAS) Dúbravská cesta 9 845 41 Bratislava Slovakia
| | - Taras Kavetskyy
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Department of Biology and Chemistry Drohobych Ivan Franko State Pedagogical University 24, I. Franko Str. 82100 Drohobych Ukraine
- Department of Surface Engineering The John Paul II Catholic University of Lublin 20-950 Lublin Poland
| | - Rovshan Khalilov
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Russian Institute for Advanced Study Moscow State Pedagogical University 1/1, Malaya Pirogovskaya Street Moscow 119991 Russian Federation
- Department of Biophysics and Biochemistry Faculty of Biology Baku State University Baku AZ 1143 Azerbaijan
- Institute of Radiation Problems National Academy of Sciences of Azerbaijan Baku AZ 1143 Azerbaijan
| | - Elham Ahmadian
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Kidney Research Center Tabriz University of Medical Sciences P.O. Box: 5166/15731 Tabriz Iran
| | - Aygun Nasibova
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Institute of Radiation Problems National Academy of Sciences of Azerbaijan Baku AZ 1143 Azerbaijan
| | - Pallab Datta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research Kolkata West Bengal 700054 India
| | - Leila Roshangar
- Stem Cell Research Center Tabriz University of Medical Sciences P.O. Box: 5166/15731 Tabriz Iran
| | - Dante C. Deluca
- Agricultural and Biological Engineering Department Penn State University University Park 16802 PA USA
| | - Soodabeh Davaran
- Department of Medicinal Chemistry Faculty of Pharmacy Tabriz University of Medical Sciences P.O. Box: 51664-14766 Tabriz Iran
- Drug Applied Research Center Tabriz University of Medical Sciences P.O. Box: 51656-65811 Tabriz Iran
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Department of Medical Nanotechnology Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences P.O. Box: 516615731 Tabriz Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics Saarland University Medical Center Kirrbergerstr. Bldg 37 D-66421 Homburg/Saar Germany
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department Penn State University University Park 16802 PA USA
- The Huck Institutes of the Life Sciences Penn State University University Park 16802 PA USA
- Biomedical Engineering Department Penn State University University Park 16802 PA USA
- Materials Research Institute Penn State University University Park 16802 PA USA
- Department of Neurosurgery Penn State University Hershey 17033 PA USA
| |
Collapse
|
20
|
Jentsch S, Nasehi R, Kuckelkorn C, Gundert B, Aveic S, Fischer H. Multiscale 3D Bioprinting by Nozzle-Free Acoustic Droplet Ejection. SMALL METHODS 2021; 5:e2000971. [PMID: 34927902 DOI: 10.1002/smtd.202000971] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Indexed: 06/14/2023]
Abstract
Bioprinting allows the manufacture of complex cell-laden hydrogel constructs that can mature into tissue replacements in subsequent cell culture processes. The nozzles used in currently available bioprinters limit the print resolution and at dimensions below 100 µm clogging is expected. Most critically, the reduction of nozzle diameter also increases shear stress during printing. At critical shear stress, mechanical damage to printed cells triggers cell death. To overcome these limitations, a novel 3D bioprinting method based on the principle of acoustic droplet ejection (ADE) is introduced here. The absence of a nozzle in this method minimizes critical shear stress. A numerical simulation reveals that maximum shear stress during the ADE process is 2.7 times lower than with a Ø150 µm microvalve nozzle. Printing of cell clusters contained in droplets at the millimeter length scale, as well as in droplets the size of a single cell, is feasible. The precise 3D build-up of cell-laden structures is demonstrated and evidence is provided that there are no negative effects on stem cell morphology, proliferation, or differentiation capacities. This multiscale acoustic bioprinting technique thus holds promise for cell-preserving creation of complex and individualized cell-laden 3D hydrogel structures.
Collapse
Affiliation(s)
- Stefan Jentsch
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ramin Nasehi
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Christoph Kuckelkorn
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Benedikt Gundert
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
21
|
Chen K, Jiang E, Wei X, Xia Y, Wu Z, Gong Z, Shang Z, Guo S. The acoustic droplet printing of functional tumor microenvironments. LAB ON A CHIP 2021; 21:1604-1612. [PMID: 33683268 DOI: 10.1039/d1lc00003a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The fabrication of functional tissue is important for tissue engineering, regenerative medicine, and biological research. However, current 3D bioprinting technologies mean it is hard to precisely arrange bioinks (composed of cells and materials) in a high-fidelity 3D structure and print cells of multiple types with sufficient concentrations and superior viabilities; this can severely constrain cell growth, interactions, and functions. Here, an acoustic droplet printing method is introduced to solve these problems in 3D bioprinting. Being nozzle-free, the acoustic printer stably enables high-concentration cells, or even cell spheroids, to be printed without clogging. Cell viability (>94%) using post acoustic printing is higher than those obtained with currently used inkjet-based (>85%) and extrusion-based (40-80%) bioprinting methods. Also, this method involves a small printer that can be flexibly integrated, allowing different kinds of bioinks to be printed. Moreover, the limited printability of low-concentration gelatin methacryloyl (5% (w/v) GelMA) materials is overcome by determining the positioning, fluidity (e.g., spreading), and 3D morphology of the GelMA droplets; therefore, high-fidelity 3D constructs can be fabricated. As a proof of concept, a tumor microenvironment consisting of one tumor spheroid surrounded by a high concentration of cancer-associated fibroblasts (CAFs) was constructed; this was able to establish a dynamic tumor invasion function modulated by reciprocal tumor cell-CAF interactions. The nozzle-free, contact-free, and low cell-damage merits of this method will advance bioprinting, allowing the creation of more functional native tissues, organoids, or disease models.
Collapse
Affiliation(s)
- Keke Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Xiaoyun Wei
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Yu Xia
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Zezheng Wu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Zhiyi Gong
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Shishang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
22
|
Guo Q, Su X, Zhang X, Shao M, Yu H, Li D. A review on acoustic droplet ejection technology and system. SOFT MATTER 2021; 17:3010-3021. [PMID: 33710210 DOI: 10.1039/d0sm02193h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The pace of change in chemical and biological research enabled by improved detection systems demands fundamental liquid handling and sample preparation changes. The acoustic droplet ejection (ADE)-based liquid handling method has the advantages of improving precision and data reproducibility, reducing costs, hands-on time, and eliminating waste. ADE gradually replaced traditional aspiration-and-dispense liquid-handling robots in applications such as synthetic biology, genotyping, personalized medicine, and next-generation sequencing. This review emphatically introduces the setup of the ADE system and the critical technologies of each part, including acoustic droplet generation, optimized design of the source fluid wells, droplet coalescence, and power control. The advantages and disadvantages of these technologies are discussed, and the future development of acoustic droplet ejection technology is also predicted.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
23
|
Maturavongsadit P, Narayanan LK, Chansoria P, Shirwaiker R, Benhabbour SR. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. ACS APPLIED BIO MATERIALS 2021; 4:2342-2353. [PMID: 35014355 DOI: 10.1021/acsabm.0c01108] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
3D bioprinting has recently emerged as a very useful tool in tissue engineering and regenerative medicine. However, developing suitable bioinks to fabricate specific tissue constructs remains a challenging task. Herein, we report on a nanocellulose/chitosan-based bioink, which is compatible with a 3D extrusion-based bioprinting technology, to design and engineer constructs for bone tissue engineering and regeneration applications. Bioinks were prepared using thermogelling chitosan, glycerophosphate, hydroxyethyl cellulose, and cellulose nanocrystals (CNCs). Formulations were optimized by varying the concentrations of glycerophosphate (80-300 mM), hydroxyethyl cellulose (0-0.5 mg/mL), and CNCs (0-2% w/v) to promote fast gelation kinetics (<7 s) at 37 °C and retain the shape integrity of constructs post 3D bioprinting. We investigated the effect of CNCs and pre-osteoblast cells (MC3T3-E1) on the rheological properties of bioinks, bioink printability, and mechanical properties of bioprinted scaffolds. We demonstrate that the addition of CNCs and cells (5 million cells/mL) significantly improved the viscosity of bioinks and the mechanical properties of chitosan scaffolds post-fabrication. The bioinks were biocompatible and printable at an optimized range of printing pressures (12-20 kPa) that did not compromise cell viability. The presence of CNCs promoted greater osteogenesis of MC3T3-E1 cells in chitosan scaffolds as shown by the upregulation of alkaline phosphatase activity, higher calcium mineralization, and extracellular matrix formation. The versatility of this CNCs-incorporated chitosan hydrogel makes it attractive as a bioink for 3D bioprinting to engineer scaffolds for bone tissue engineering and other therapeutic applications.
Collapse
Affiliation(s)
- Panita Maturavongsadit
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lokesh Karthik Narayanan
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Industrial and Manufacturing Engineering, North Dakota State University, Fargo, North Dakota 58105, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Parth Chansoria
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Rohan Shirwaiker
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.,Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - S Rahima Benhabbour
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.,Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
24
|
Li N, Guo R, Zhang ZJ. Bioink Formulations for Bone Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:630488. [PMID: 33614614 PMCID: PMC7892967 DOI: 10.3389/fbioe.2021.630488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Unlike the conventional techniques used to construct a tissue scaffolding, three-dimensional (3D) bioprinting technology enables fabrication of a porous structure with complex and diverse geometries, which facilitate evenly distributed cells and orderly release of signal factors. To date, a range of cell-laden materials, such as natural or synthetic polymers, have been deployed by the 3D bioprinting technique to construct the scaffolding systems and regenerate substitutes for the natural extracellular matrix (ECM). Four-dimensional (4D) bioprinting technology has attracted much attention lately because it aims to accommodate the dynamic structural and functional transformations of scaffolds. However, there remain challenges to meet the technical requirements in terms of suitable processability of the bioink formulations, desired mechanical properties of the hydrogel implants, and cell-guided functionality of the biomaterials. Recent bioprinting techniques are reviewed in this article, discussing strategies for hydrogel-based bioinks to mimic native bone tissue-like extracellular matrix environment, including properties of bioink formulations required for bioprinting, structure requirements, and preparation of tough hydrogel scaffolds. Stimulus mechanisms that are commonly used to trigger the dynamic structural and functional transformations of the scaffold are analyzed. At the end, we highlighted the current challenges and possible future avenues of smart hydrogel-based bioink/scaffolds for bone tissue regeneration.
Collapse
Affiliation(s)
- Na Li
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zhenyu Jason Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
25
|
Zhang Y. Manufacture of complex heart tissues: technological advancements and future directions. AIMS BIOENGINEERING 2021. [DOI: 10.3934/bioeng.2021008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Fonseca AC, Melchels FPW, Ferreira MJS, Moxon SR, Potjewyd G, Dargaville TR, Kimber SJ, Domingos M. Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chem Rev 2020; 120:11128-11174. [PMID: 32937071 PMCID: PMC7645917 DOI: 10.1021/acs.chemrev.0c00342] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The lack of in vitro tissue and organ models capable of mimicking human physiology severely hinders the development and clinical translation of therapies and drugs with higher in vivo efficacy. Bioprinting allow us to fill this gap and generate 3D tissue analogues with complex functional and structural organization through the precise spatial positioning of multiple materials and cells. In this review, we report the latest developments in terms of bioprinting technologies for the manufacturing of cellular constructs with particular emphasis on material extrusion, jetting, and vat photopolymerization. We then describe the different base polymers employed in the formulation of bioinks for bioprinting and examine the strategies used to tailor their properties according to both processability and tissue maturation requirements. By relating function to organization in human development, we examine the potential of pluripotent stem cells in the context of bioprinting toward a new generation of tissue models for personalized medicine. We also highlight the most relevant attempts to engineer artificial models for the study of human organogenesis, disease, and drug screening. Finally, we discuss the most pressing challenges, opportunities, and future prospects in the field of bioprinting for tissue engineering (TE) and regenerative medicine (RM).
Collapse
Affiliation(s)
- Ana Clotilde Fonseca
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Ferry P. W. Melchels
- Institute
of Biological Chemistry, Biophysics and Bioengineering, School of
Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| | - Miguel J. S. Ferreira
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| | - Samuel R. Moxon
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Geoffrey Potjewyd
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Tim R. Dargaville
- Institute
of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - Susan J. Kimber
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Marco Domingos
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
27
|
Koçak E, Yıldız A, Acartürk F. Three dimensional bioprinting technology: Applications in pharmaceutical and biomedical area. Colloids Surf B Biointerfaces 2020; 197:111396. [PMID: 33075661 DOI: 10.1016/j.colsurfb.2020.111396] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
3D bioprinting is a technology based on the principle of three-dimensional printing of designed biological materials, which has been widely used recently. The production of biological materials, such as tissues, organs, cells and blood vessels with this technology is alternative and promising approach for organ and tissue transplantation. Apart from tissue and organ printing, it has a wide range of usage, such as in vitro/in vivo modeling, production of drug delivery systems and, drug screening. However, there are various restrictions on the use of this technology. In this review, the process steps, classification, advantages, limitations, usage and application areas of 3D bioprinting technology, materials and auxiliary materials used in this technology are discussed.
Collapse
Affiliation(s)
- Esen Koçak
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Ankara, Turkey
| | - Ayşegül Yıldız
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Ankara, Turkey
| | - Füsun Acartürk
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Ankara, Turkey.
| |
Collapse
|
28
|
Morgan FLC, Moroni L, Baker MB. Dynamic Bioinks to Advance Bioprinting. Adv Healthc Mater 2020; 9:e1901798. [PMID: 32100963 DOI: 10.1002/adhm.201901798] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/31/2020] [Indexed: 01/06/2023]
Abstract
The development of bioinks for bioprinting of cell-laden constructs remains a challenge for tissue engineering, despite vigorous investigation. Hydrogels to be used as bioinks must fulfill a demanding list of requirements, mainly focused around printability and cell function. Recent advances in the use of supramolecular and dynamic covalent chemistry (DCvC) provide paths forward to develop bioinks. These dynamic hydrogels enable tailorability, higher printing performance, and the creation of more life-like environments for ultimate tissue maturation. This review focuses on the exploration and benefits of dynamically cross-linked bioinks for bioprinting, highlighting recent advances, benefits, and challenges in this emerging area. By incorporating internal dynamics, many benefits can be imparted to the material, providing design elements for next generation bioinks.
Collapse
Affiliation(s)
- Francis L. C. Morgan
- Department of Complex Tissue RegenerationMERLN InstituteMaastricht University 6200 MD Maastricht The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN InstituteMaastricht University 6200 MD Maastricht The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue RegenerationMERLN InstituteMaastricht University 6200 MD Maastricht The Netherlands
| |
Collapse
|
29
|
Shanjani Y, Siebert SM, Ker DFE, Mercado-Pagán AE, Yang YP. Acoustic Patterning of Growth Factor for Three-Dimensional Tissue Engineering. Tissue Eng Part A 2020; 26:602-612. [PMID: 31950880 PMCID: PMC7310194 DOI: 10.1089/ten.tea.2019.0271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Temporal and spatial presentations of biological cues are critical for tissue engineering. There is a great need in improving the incorporation of bioagent(s) (specifically growth factor(s) [GF(s)]) onto three-dimensional scaffolds. In this study, we developed a process to combine additive manufacturing (AM) technology with acoustic droplet ejection (ADE) technology to control GF distribution. More specifically, we implemented ADE to control the distribution of recombinant human bone morphogenetic protein-2 (rhBMP-2) onto polycaprolactone (PCL)-based tissue engineering constructs (TECs). Three substrates were used in this study: (1) succinimide-terminated PCL (PCL-N-hydroxysuccinimide [NHS]) as model material, (2) alkali-treated PCL (PCL-NaOH) as first control material, and (3) fibrin-coated PCL (PCL-Fibrin) as second control material. It was shown that our process enables a pattern of BMP-2 spots of ∼250 μm in diameter with ∼700 μm center-to-center spacing. An initial concentration of BMP-2 higher than 300 μg/L was required to retain a detectable amount of GF on the substrate after a wash with phosphate-buffered solution. However, to obtain detectable osteogenic differentiation of C2C12 cells, the initial concentration of BMP-2 higher than 750 μg/L was needed. The cells on PCL-NHS samples showed spatial alkaline phosphatase staining correlating with local patterns of BMP-2, although the intensity was lower than the controls (PCL-NaOH and PCL-Fibrin). Our results have demonstrated that the developed AM-ADE process holds great promise in creating TECs with highly controlled GF patterning. Impact statement The combined process of additive manufacturing with acoustic droplet ejection to control growth factor (GF) distribution across three-dimensional (3D) porous scaffolds that is presented in this study enables creating 3D tissue engineering constructs with highly controlled GF patterning. Such constructs enable temporal and spatial presentations of biological cues for enhancing cell migration and differentiation and eventually the formation of targeted tissues in vitro and in vivo.
Collapse
Affiliation(s)
- Yaser Shanjani
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California
| | - Sean Michael Siebert
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California
| | - Dai Fei Elmer Ker
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Angel E. Mercado-Pagán
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California
| | - Yunzhi Peter Yang
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California
- Department of Materials Science and Engineering, Stanford University, Stanford, California
- Department of Bioengineering, Stanford University, Stanford, California
| |
Collapse
|
30
|
Fabre K, Berridge B, Proctor WR, Ralston S, Will Y, Baran SW, Yoder G, Van Vleet TR. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. LAB ON A CHIP 2020; 20:1049-1057. [PMID: 32073020 DOI: 10.1039/c9lc01168d] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Safety related drug failures continue to be a challenge for pharmaceutical companies despite the numerous complex and lengthy in vitro assays and in vivo studies that make up the typical safety screening funnel. A lack of complete translation of animal data to humans can explain some of those shortcomings. Differences in sensitivity and drug disposition between animals and humans may also play a role. Many gaps exist for potential target tissues of drugs that cannot be adequately modeled in vitro. Microphysiological systems (MPS) may help to better model these target tissues and provide an opportunity to better assess some aspects of human safety prior to clinical studies. There is hope that these systems can supplement current preclinical drug safety and disposition evaluations, filling gaps and enhancing our ability to predict and understand human relevant toxicities. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) MPS Affiliate is a group of pharmaceutical industry scientists who seek to expedite appropriate characterization and incorporation of MPS to potentially improve drug safety assessment and provide safer and more effective medicines to patients. In keeping with this mission, the IQ MPS Affiliate scientists have prepared a series of organotypic manuscripts for several key drug safety and disposition target tissues (lung, liver, kidney, skin, gastrointestinal, cardiovascular, and blood brain barrier/central nervous system). The goal of these manuscripts is to provide key information related to likely initial contexts of use (CoU) and key characterization data needed for incorporation of MPS in pharmaceutical safety screening including a list of characteristic functions, cell types, toxicities, and test agents (representing major mechanisms of toxicity) that can be used by MPS developers. Additional manuscripts focusing on testing biologically based therapeutics and ADME considerations have been prepared as part of this effort. These manuscripts focus on general needs for assessing biologics and ADME endpoints and include similar information to the tissue specific manuscripts where appropriate. The current manuscript is an introduction to several general concepts related to pharmaceutical industry needs with regard to MPS application and other MPS concepts that apply across the organ specific manuscripts.
Collapse
Affiliation(s)
- Kristin Fabre
- Translational Research Institute for Space Health, Baylor College of Medicine, Houston, TX, USA and MPS Center of Excellence, Drug Safety & Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, MA, USA
| | - Brian Berridge
- National Toxicology Program, The National Institute of Environmental Health Sciences, 530 Davis Dr., Keystone Building, Durham, North Carolina, USA
| | - William R Proctor
- Investigative Toxicology, Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Sherry Ralston
- Department of Preclinical Safety, AbbVie, N Chicago, IL, USA.
| | - Yvonne Will
- Discovery, Product Development & Supply, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| | - Szczepan W Baran
- Emerging Technologies, LAS, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Gorm Yoder
- Analytical Development - Small Molecule Pharmaceutical Development, Janssen Research & Development, LLC, USA
| | | |
Collapse
|
31
|
Three-dimensional bioprinting for organ bioengineering: promise and pitfalls. Curr Opin Organ Transplant 2019; 23:649-656. [PMID: 30234736 DOI: 10.1097/mot.0000000000000581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Loss of organ function is a critical issue that threatens a patient's life. Currently, the only available treatment is organ transplantation; however, shortage of donor organs, histocompatibility, and life-long immunosuppression present major challenges. Three-dimensional bioprinting technology holds a promising solution for treating organ failure by fabricating autologous tissues and organs for transplantation. To biofabricate a functional tissue, target-cell types are combined with an appropriate biomaterial for structural support and a bioink that supports cell function and maturation. Bioprinted structures can mimic the native tissue shape and functionality. RECENT FINDINGS The main goal of three-dimensional bioprinting is to produce functional tissues/organs; however, whole organ printing has not been achieved. There have been recent advances in the successful three-dimensional bioprinting of numerous tissues. This review will discuss the types of bioprinters, biomaterials, bioinks, and the fabrication of various constructs for repair of vascular, cartilage, skin, cardiac, and liver tissues. These bioprinted tissue constructs have the potential to be used to treat tissues and organs that have been damaged by injury or disease. SUMMARY Three-dimensional bioprinting technology offers the ability to fabricate three-dimensional tissue structures with high precision, fidelity, and stability at human clinical scale. The creation of complex tissue architectures with heterogeneous compositions has the potential to revolutionize transplantation of tissues and organs.
Collapse
|
32
|
Mehrotra S, Moses JC, Bandyopadhyay A, Mandal BB. 3D Printing/Bioprinting Based Tailoring of in Vitro Tissue Models: Recent Advances and Challenges. ACS APPLIED BIO MATERIALS 2019; 2:1385-1405. [DOI: 10.1021/acsabm.9b00073] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shreya Mehrotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Joseph Christakiran Moses
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashutosh Bandyopadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
33
|
Agarwal R, Liu G, Tam NW, Gratzer PF, Frampton JP. Precision cell delivery in biphasic polymer systems enhances growth of keratinocytes in culture and promotes their attachment on acellular dermal matrices. J Tissue Eng Regen Med 2019; 13:997-1006. [PMID: 30811860 DOI: 10.1002/term.2845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/10/2019] [Accepted: 02/21/2019] [Indexed: 12/22/2022]
Abstract
Current approaches for precision deposition of cells are not optimized for moist environments or for substrates with complex surface topographic features, for example, the surface of dermal matrices and other biomaterials. To overcome these challenges, an approach is presented that utilizes cell confinement in phase-separating polymer solutions of polyethylene glycol and dextran to precisely deliver keratinocytes in well-defined colonies. Using this approach, keratinocyte colonies are produced with superior viability, proliferative capacity, and barrier formation compared with the same number of cells dispersedly seeded across substrate surfaces. It is further demonstrated that keratinocytes delivered in colonies to the surface of acellular dermal matrices form an intact epidermal basal layer more rapidly and more completely than cells delivered by conventional dispersed seeding. These findings demonstrate that delivery of keratinocytes in phase-separating polymer solutions holds potential for enhancing growth of keratinocytes in culture and production of functional skin equivalents.
Collapse
Affiliation(s)
- Rishima Agarwal
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Guanyong Liu
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Nicky W Tam
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Paul F Gratzer
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| |
Collapse
|
34
|
Joseph J, Deshmukh K, Tung T, Chidambaram K, Khadheer Pasha SK. 3D Printing Technology of Polymer Composites and Hydrogels for Artificial Skin Tissue Implementations. LECTURE NOTES IN BIOENGINEERING 2019. [DOI: 10.1007/978-3-030-04741-2_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Applications of 3D printing on craniofacial bone repair: A systematic review. J Dent 2019; 80:1-14. [DOI: 10.1016/j.jdent.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/09/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
|
36
|
Ma Y, Xie L, Yang B, Tian W. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnol Bioeng 2018; 116:452-468. [PMID: 30475386 DOI: 10.1002/bit.26882] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023]
Abstract
The tooth and its supporting tissues are organized with complex three-dimensional (3D) architecture, including the dental pulp with a blood supply and nerve tissues, complex multilayer periodontium, and highly aligned periodontal ligament (PDL). Mimicking such 3D complexity and the multicellular interactions naturally existing in dental structures represents great challenges in dental regeneration. Attempts to construct the complex system of the tooth and tooth-supporting apparatus (i.e., the PDL, alveolar bone, and cementum) have made certain progress owing to 3D printing biotechnology. Recent advances have enabled the 3D printing of biocompatible materials, seed cells, and supporting components into complex 3D functional living tissue. Furthermore, 3D bioprinting is driving major innovations in regenerative medicine, giving the field of regenerative dentistry a boost. The fabrication of scaffolds via 3D printing is already being performed extensively at the laboratory bench and in clinical trials; however, printing living cells and matrix materials together to produce tissue constructs by 3D bioprinting remains limited to the regeneration of dental pulp and the tooth germ. This review summarizes the application of scaffolds for cell seeding and biofabricated tissues via 3D printing and bioprinting, respectively, in the tooth and its supporting tissues. Additionally, the key advantages and prospects of 3D bioprinting in regenerative dentistry are highlighted, providing new ideas for dental regeneration.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Li Xie
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
37
|
Ruthven M, Ko KR, Agarwal R, Frampton JP. Microscopic evaluation of aqueous two-phase system emulsion characteristics enables rapid determination of critical polymer concentrations for solution micropatterning. Analyst 2018; 142:1938-1945. [PMID: 28487922 DOI: 10.1039/c7an00255f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Aqueous two-phase systems have emerged as valuable tools for microscale analysis of cell growth and many other biotechnology applications. The most critical step in developing an aqueous two-phase system for a specific application is identifying the critical concentrations at which the polymer solutions phase-separate. Current techniques for determining these critical concentrations rely on laborious methods, highly specialized assays or computational methods that make this step difficult for non-specialists. To overcome these limitations, we present a simplified assay that uses only readily accessible laboratory instruments and consumables (e.g., multichannel micropipettes, 96-well plates and a simple compound microscope) to determine the critical concentrations of aqueous two-phase system-forming polymers. We demonstrate that formulations selected from phase diagrams that describe these critical concentrations can be applied for solution micropatterning of cells.
Collapse
|
38
|
Lee JM, Sing SL, Zhou M, Yeong WY. 3D bioprinting processes: A perspective on classification and terminology. Int J Bioprint 2018; 4:151. [PMID: 33102923 PMCID: PMC7582007 DOI: 10.18063/ijb.v4i2.151] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
This article aims to provide further classification of cell-compatible bioprinting processes and examine the concept of 3D bioprinting within the general technology field of 3D printing. These technologies are categorized into four distinct process categories, namely material jetting, vat photopolymerization, material extrusion and free-form spatial printing. Discussion will be presented on the definition of classification with example of techniques grouped under the same category. The objective of this article is to establish a basic framework for standardization of process terminology in order to accelerate the implementation of bioprinting technologies in research and commercial landscape.
Collapse
Affiliation(s)
- Jia Min Lee
- Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore
| | - Swee Leong Sing
- Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore
| | - Miaomiao Zhou
- Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
39
|
Kogelenberg SV, Yue Z, Dinoro JN, Baker CS, Wallace GG. Three-Dimensional Printing and Cell Therapy for Wound Repair. Adv Wound Care (New Rochelle) 2018; 7:145-155. [PMID: 29755850 DOI: 10.1089/wound.2017.0752] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/29/2017] [Indexed: 12/16/2022] Open
Abstract
Significance: Skin tissue damage is a major challenge and a burden on healthcare systems, from burns and other trauma to diabetes and vascular disease. Although the biological complexities are relatively well understood, appropriate repair mechanisms are scarce. Three-dimensional bioprinting is a layer-based approach to regenerative medicine, whereby cells and cell-based materials can be dispensed in fine spatial arrangements to mimic native tissue. Recent Advances: Various bioprinting techniques have been employed in wound repair-based skin tissue engineering, from laser-induced forward transfer to extrusion-based methods, and with the investigation of the benefits and shortcomings of each, with emphasis on biological compatibility and cell proliferation, migration, and vitality. Critical issues: Development of appropriate biological inks and the vascularization of newly developed tissues remain a challenge within the field of skin tissue engineering. Future Directions: Progress within bioprinting requires close interactions between material scientists, tissue engineers, and clinicians. Microvascularization, integration of multiple cell types, and skin appendages will be essential for creation of complex skin tissue constructs.
Collapse
Affiliation(s)
- Sylvia van Kogelenberg
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, Australia
- Department of Orthopaedics, University of Utrecht, Utrecht, The Netherlands
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, Australia
| | - Jeremy N. Dinoro
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, Australia
| | - Christopher S. Baker
- Department of Dermatology, St Vincent's Hospital Melbourne, Melbourne, Australia
- Department of Medicine (Dermatology), University of Melbourne, Melbourne, Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, Australia
| |
Collapse
|
40
|
Koch L, Deiwick A, Franke A, Schwanke K, Haverich A, Zweigerdt R, Chichkov B. Laser bioprinting of human induced pluripotent stem cells—the effect of printing and biomaterials on cell survival, pluripotency, and differentiation. Biofabrication 2018; 10:035005. [DOI: 10.1088/1758-5090/aab981] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Teixeira AG, Agarwal R, Ko KR, Grant‐Burt J, Leung BM, Frampton JP. Emerging Biotechnology Applications of Aqueous Two-Phase Systems. Adv Healthc Mater 2018; 7:e1701036. [PMID: 29280350 DOI: 10.1002/adhm.201701036] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Liquid-liquid phase separation between aqueous solutions containing two incompatible polymers, a polymer and a salt, or a polymer and a surfactant, has been exploited for a wide variety of biotechnology applications throughout the years. While many applications for aqueous two-phase systems fall within the realm of separation science, the ability to partition many different materials within these systems, coupled with recent advances in materials science and liquid handling, has allowed bioengineers to imagine new applications. This progress report provides an overview of the history and key properties of aqueous two-phase systems to lend context to how these materials have progressed to modern applications such as cellular micropatterning and bioprinting, high-throughput 3D tissue assembly, microscale biomolecular assay development, facilitation of cell separation and microcapsule production using microfluidic devices, and synthetic biology. Future directions and present limitations and design considerations of this adaptable and promising toolkit for biomolecule and cellular manipulation are further evaluated.
Collapse
Affiliation(s)
- Alyne G. Teixeira
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - Rishima Agarwal
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - Kristin Robin Ko
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - Jessica Grant‐Burt
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - Brendan M. Leung
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
- Department of Applied Oral Science Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - John P. Frampton
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| |
Collapse
|
42
|
Abstract
3D printing is an evolving technology that enables the creation of unique organic and inorganic structures with high precision. In urology, the technology has demonstrated potential uses in both patient and clinician education as well as in clinical practice. The four major techniques used for 3D printing are inkjet printing, extrusion printing, laser sintering, and stereolithography. Each of these techniques can be applied to the production of models for education and surgical planning, prosthetic construction, and tissue bioengineering. Bioengineering is potentially the most important application of 3D printing, as the ability to produce functional organic constructs might, in the future, enable urologists to replicate and replace abnormal tissues with neo-organs, improving patient survival and quality of life.
Collapse
|
43
|
|
44
|
Abstract
Three-dimensional (3D) in vitro modeling is increasingly relevant as two-dimensional (2D) cultures have been recognized with limits to recapitulate the complex endogenous conditions in the body. Additionally, fabrication technology is more accessible than ever. Bioprinting, in particular, is an additive manufacturing technique that expands the capabilities of in vitro studies by precisely depositing cells embedded within a 3D biomaterial scaffold that acts as temporary extracellular matrix (ECM). More importantly, bioprinting has vast potential for customization. This allows users to manipulate parameters such as scaffold design, biomaterial selection, and cell types, to create specialized biomimetic 3D systems.The development of a 3D system is important to recapitulate the bone marrow (BM) microenvironment since this particular organ cannot be mimicked with other methods such as organoids. The 3D system can be used to study the interactions between native BM cells and metastatic breast cancer cells (BCCs). Although not perfect, such a system can recapitulate the BM microenvironment. Mesenchymal stem cells (MSCs), a key population within the BM, are known to communicate with BCCs invading the BM and to aid in their transition into dormancy. Dormant BCCs are cycling quiescent and resistant to chemotherapy, which allows them to survive in the BM to resurge even after decades. These persisting BCCs have been identified as the stem cell subset. These BCCs exhibit self-renewal and can be induced to differentiate. More importantly, this BCC subset can initiate tumor formation, exert chemoresistance, and form gap junction with endogenous BM stroma, including MSCs. The bioprinted model detailed in this chapter creates a MSC-BC stem cell coculture system to study intercellular interactions in a model that is more representative of the endogenous 3D microenvironment than conventional 2D cultures. The method can reliably seed primary BM MSCs and BC stem cells within a bioprinted scaffold fabricated from CELLINK Bioink. Since bioprinting is a highly customizable technique, parameters described in this method (i.e., cell-cell ratio, scaffold dimensions) can easily be altered to serve other applications, including studies on hematopoietic regulation.
Collapse
Affiliation(s)
- Caitlyn A Moore
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Niloy N Shah
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Caroline P Smith
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
45
|
Zhuang P, Sun AX, An J, Chua CK, Chew SY. 3D neural tissue models: From spheroids to bioprinting. Biomaterials 2017; 154:113-133. [PMID: 29120815 DOI: 10.1016/j.biomaterials.2017.10.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) in vitro neural tissue models provide a better recapitulation of in vivo cell-cell and cell-extracellular matrix interactions than conventional two-dimensional (2D) cultures. Therefore, the former is believed to have great potential for both mechanistic and translational studies. In this paper, we review the recent developments in 3D in vitro neural tissue models, with a particular focus on the emerging bioprinted tissue structures. We draw on specific examples to describe the merits and limitations of each model, in terms of different applications. Bioprinting offers a revolutionary approach for constructing repeatable and controllable 3D in vitro neural tissues with diverse cell types, complex microscale features and tissue level responses. Further advances in bioprinting research would likely consolidate existing models and generate complex neural tissue structures bearing higher fidelity, which is ultimately useful for probing disease-specific mechanisms, facilitating development of novel therapeutics and promoting neural regeneration.
Collapse
Affiliation(s)
- Pei Zhuang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Alfred Xuyang Sun
- Department of Neurology, National Neuroscience Institute, 20 College Road, Singapore 169856, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Chee Kai Chua
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
46
|
Park JA, Yoon S, Kwon J, Now H, Kim YK, Kim WJ, Yoo JY, Jung S. Freeform micropatterning of living cells into cell culture medium using direct inkjet printing. Sci Rep 2017; 7:14610. [PMID: 29097768 PMCID: PMC5668285 DOI: 10.1038/s41598-017-14726-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022] Open
Abstract
Microfabrication methods have widely been used to control the local cellular environment on a micron scale. However, accurately mimicking the complexity of the in vivo tissue architecture while maintaining the freedom of form and design is still a challenge when co-culturing multiple types of cells on the same substrate. For the first time, we present a drop-on-demand inkjet printing method to directly pattern living cells into a cell-friendly liquid environment. High-resolution control of cell location is achieved by precisely optimizing printing parameters with high-speed imaging of cell jetting and impacting behaviors. We demonstrated the capabilities of the direct cell printing method by co-printing different cells into various designs, including complex gradient arrangements. Finally, we applied this technique to investigate the influence of the heterogeneity and geometry of the cell population on the infectivity of seasonal H1N1 influenza virus (PR8) by generating A549 and HeLa cells printed in checkboard patterns of different sizes in a medium-filled culture dish. Direct inkjet cell patterning can be a powerful and versatile tool for both fundamental biology and applied biotechnology.
Collapse
Affiliation(s)
- Ju An Park
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Sejeong Yoon
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jimin Kwon
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Hesung Now
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Young Kwon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Woo-Jong Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Sungjune Jung
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 37673, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 37673, Republic of Korea.
| |
Collapse
|
47
|
Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 28804984 DOI: 10.1002/adhm.201700298] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/15/2017] [Indexed: 12/16/2022]
Abstract
Significant progress has been made in the field of cartilage and bone tissue engineering over the last two decades. As a result, there is real promise that strategies to regenerate rather than replace damaged or diseased bones and joints will one day reach the clinic however, a number of major challenges must still be addressed before this becomes a reality. These include vascularization in the context of large bone defect repair, engineering complex gradients for bone-soft tissue interface regeneration and recapitulating the stratified zonal architecture present in many adult tissues such as articular cartilage. Tissue engineered constructs typically lack such spatial complexity in cell types and tissue organization, which may explain their relatively limited success to date. This has led to increased interest in bioprinting technologies in the field of musculoskeletal tissue engineering. The additive, layer by layer nature of such biofabrication strategies makes it possible to generate zonal distributions of cells, matrix and bioactive cues in 3D. The adoption of biofabrication technology in musculoskeletal tissue engineering may therefore make it possible to produce the next generation of biological implants capable of treating a range of conditions. Here, advances in bioprinting for cartilage and osteochondral tissue engineering are reviewed.
Collapse
Affiliation(s)
- Andrew C. Daly
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Fiona E. Freeman
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Tomas Gonzalez-Fernandez
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Susan E. Critchley
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Jessica Nulty
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Daniel J. Kelly
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Advanced Materials and Bioengineering Research Center (AMBER); Royal College of Surgeons in Ireland and Trinity College Dublin; Dublin Ireland
| |
Collapse
|
48
|
Hann SD, Stebe KJ, Lee D. All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10107-10117. [PMID: 28882042 DOI: 10.1021/acs.langmuir.7b02237] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In nature, the environment surrounding biomolecules and living cells can dictate their structure, function, and properties. Confinement is a key means to define and regulate such environments. For example, the confinement of appropriate constituents in compartments facilitates the assembly, dynamics, and function of biochemical machineries as well as subcellular organelles. Membraneless organelles, in particular, are thought to form via thermodynamic cues defined within the interior space of cells. On larger length scales, the confinement of living cells dictates cellular function for both mammalian and bacterial cells. One promising class of artificial structures that can recapitulate these multiscale confinement effects is based on aqueous two-phase systems (ATPSs). This feature article highlights recent developments in the production and stabilization of ATPS-droplet-based systems, with a focus on interfacial complexation. These systems enable structure formation, modulation, and triggered (dis)assembly, thereby allowing structures to be tailored to fit the desired function and designed for particular confinement studies. Open issues for both synthetic cells and niche studies are identified.
Collapse
Affiliation(s)
- Sarah D Hann
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
49
|
Huang J, Fu H, Li C, Dai J, Zhang Z. Recent advances in cell-laden 3D bioprinting: materials, technologies and applications. ACTA ACUST UNITED AC 2017. [DOI: 10.2217/3dp-2017-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fabrication of 3D scaffolds with patient-specific designs, high structural and component complexity, and rapid on-demand production at a low-cost by printing technique has attracted ever-increasing interests in tissue engineering. Cell-laden 3D bioprinting offers good prospects for future organ transplantation. Compared with nonbiological 3D printing, cell-laden 3D bioprinting involves more complex factors, including the choice of printing materials, the strategy of gelling, cell viability and technical challenges. Although cell-populated 3D bioprinting has so many complex factors, it has proven to be a useful and exciting tool with wide potential applications in regenerative medicine to generate a variety of transplantable tissues. In this review, we first overview the bioprinting materials, gelling strategies and some major applications of cell-laden 3D bioprinting, with main focus on the recent advances and current challenges of the field. Finally, we propose some future directions of the cell-populated 3D bioprinting in tissue engineering and regenerative medicine. [Formula: see text] In this review, we first overview the bioprinting materials, gelling strategies and some major applications of cell-populated 3D bioprinting, with main focus on the recent advances and current challenges of the field. Finally, we propose some future directions of the cell-laden 3D bioprinting in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Han Fu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Chong Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianwu Dai
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
50
|
Mir TA, Nakamura M. Three-Dimensional Bioprinting: Toward the Era of Manufacturing Human Organs as Spare Parts for Healthcare and Medicine. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:245-256. [DOI: 10.1089/ten.teb.2016.0398] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tanveer Ahmad Mir
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
- Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan
| | - Makoto Nakamura
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
- Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan
| |
Collapse
|