1
|
Galocha-León C, Antich C, Voltes-Martínez A, Marchal JA, Mallandrich M, Halbaut L, Souto EB, Gálvez-Martín P, Clares-Naveros B. Human mesenchymal stromal cells-laden crosslinked hyaluronic acid-alginate bioink for 3D bioprinting applications in tissue engineering. Drug Deliv Transl Res 2025; 15:291-311. [PMID: 38662335 PMCID: PMC11614963 DOI: 10.1007/s13346-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Three-dimensional (3D) bioprinting is considered one of the most advanced tools to build up materials for tissue engineering. The aim of this work was the design, development and characterization of a bioink composed of human mesenchymal stromal cells (hMSC) for extrusion through nozzles to create these 3D structures that might potentially be apply to replace the function of damaged natural tissue. In this study, we focused on the advantages and the wide potential of biocompatible biomaterials, such as hyaluronic acid and alginate for the inclusion of hMSC. The bioink was characterized for its physical (pH, osmolality, degradation, swelling, porosity, surface electrical properties, conductivity, and surface structure), mechanical (rheology and printability) and biological (viability and proliferation) properties. The developed bioink showed high porosity and high swelling capacity, while the degradation rate was dependent on the temperature. The bioink also showed negative electrical surface and appropriate rheological properties required for bioprinting. Moreover, stress-stability studies did not show any sign of physical instability. The developed bioink provided an excellent environment for the promotion of the viability and growth of hMSC cells. Our work reports the first-time study of the effect of storage temperature on the cell viability of bioinks, besides showing that our bioink promoted a high cell viability after being extruded by the bioprinter. These results support the suggestion that the developed hMSC-composed bioink fulfills all the requirements for tissue engineering and can be proposed as a biological tool with potential applications in regenerative medicine and tissue engineering.
Collapse
Grants
- Ministry of Economy and Competitiveness (FEDER funds), grant number RTC-2016-5451-1; Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds), grant numbers DTS19/00143 and DTS17/00087); Consejería de Economía, Conocimiento, Emp Ministry of Economy and Competitiveness (FEDER funds), grant number RTC-2016-5451-1; Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds), grant numbers DTS19/00143 and DTS17/00087); Consejería de Economía, Conocimiento, Emp
- FCT-Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal FCT-Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal
- FCT—Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal
- Universidade do Porto
Collapse
Affiliation(s)
- Cristina Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100, Granada, Spain
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100, Granada, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain
- R&D Human and Animal Health, Bioibérica S.A.U., 08029, Barcelona, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Trufanova N, Hubenia O, Kot Y, Trufanov O, Kovalenko I, Kot K, Petrenko O. Metabolic Mode of Alginate-Encapsulated Human Mesenchymal Stromal Cells as a Background for Storage at Ambient Temperature. Biopreserv Biobank 2024. [PMID: 39723454 DOI: 10.1089/bio.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Introduction: Human mesenchymal stromal cells (MSCs) are attractive for both medical practice and biomedical research. Nonfreezing short-term storage may provide safe and simple transportation and promote the practical use of MSCs. Objectives: We aimed to determine the duration of efficient storage at ambient temperature (22°C) of human dermal MSCs in different three-dimensional organization and to investigate the role of cell metabolic mode in the resistance to the ambient storage damaging factors. Methods: MSCs in monolayer, suspension, and encapsulated in alginate microspheres (AMS) were stored in sealed containers at 22°С in culture medium. Viability (fluorescein diacetate /ethidium bromide) and metabolic activity (Alamar Blue assay) were assessed at 0, 3, 7, 10, and 14 days of the storage. Mitochondrial membrane potential (JC-1 test), cell cycle analysis, reactive oxygen species level, and resistance to hydrogen peroxide were analyzed under culture conditions. Results: Alginate encapsulation was shown to maintain viability (about 85%), metabolic activity, and adhesion ability during storage for 7 days. The storage of MSCs in both monolayer and suspension was less efficient. Culture of MSCs in AMS decreased basal metabolic activity, mitochondrial activity, and led to reversible cell cycle arrest compared to standard two-dimensional culture. MSCs in AMS have a lower basal level of reactive oxygen species and higher resistance to hydrogen peroxide compared with those in monolayer culture. Conclusion: Revealed shift into quiescent metabolic mode is essential for alginate-encapsulated MSCs resistance to storage at ambient temperature.
Collapse
Affiliation(s)
- Natalia Trufanova
- Institute for Problems of Cryobiology and Cryomedicine of National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Oleksandra Hubenia
- Institute for Problems of Cryobiology and Cryomedicine of National Academy of Sciences of Ukraine, Kharkiv, Ukraine
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Yurii Kot
- V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Oleh Trufanov
- Institute for Problems of Cryobiology and Cryomedicine of National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ihor Kovalenko
- Institute for Problems of Cryobiology and Cryomedicine of National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Kateryna Kot
- V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Oleksandr Petrenko
- Institute for Problems of Cryobiology and Cryomedicine of National Academy of Sciences of Ukraine, Kharkiv, Ukraine
- V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
3
|
Li X, Cao Y, Liu C, Tan J, Zhou X. l-Proline and GelMA hydrogel complex:An efficient antifreeze system for cell cryopreservation. Cryobiology 2024; 116:104942. [PMID: 39032528 DOI: 10.1016/j.cryobiol.2024.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Cryopreservation of biological samples is an important technology for expanding their applications in the biomedical field. However, the quality and functionality of samples after rewarming are limited by the toxicity of commonly used cryoprotectant agents (CPAs). Here, we developed a novel preservation system by combining the natural amino acid l-proline (L-Pro) with gelatin methacryloyl (GelMA) hydrogels. Compared with dimethyl sulfoxide (DMSO), L-Pro and GelMA demonstrated excellent biocompatibility when co-culturing with cells. Cryopreservation procedures were optimized using 3T3 as model cells. The results showed that rapid cooling was the most suitable cooling procedure for L-Pro and GelMA among the three cooling procedures. Co-culturing with cells for 3 h before cryopreservation, 6 % L-Pro +7 % GelMA had the highest survival rate, reaching up to 80 %. Differential Scanning Calorimetry (DSC) analysis showed that 6 % L-Pro + 7 % GelMA lowered the freezing point of the solution to -4.2 °C and increased the unfrozen water content to 20 %. To the best of our knowledge, this is the first report of cell cryopreservation using a combination of L-Pro and GelMA hydrogels, which provides a new strategy for improving cell cryopreservation.
Collapse
Affiliation(s)
- Xin Li
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China
| | - Yukun Cao
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China
| | - Chenxi Liu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China
| | - Jia Tan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China
| | - Xinli Zhou
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China.
| |
Collapse
|
4
|
Farasati
Far B, Safaei M, Nahavandi R, Gholami A, Naimi-Jamal MR, Tamang S, Ahn JE, Ramezani Farani M, Huh YS. Hydrogel Encapsulation Techniques and Its Clinical Applications in Drug Delivery and Regenerative Medicine: A Systematic Review. ACS OMEGA 2024; 9:29139-29158. [PMID: 39005800 PMCID: PMC11238230 DOI: 10.1021/acsomega.3c10102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 07/16/2024]
Abstract
Hydrogel encapsulation is a promising carrier for cell and drug delivery due to its ability to protect the encapsulated entities from harsh physiological conditions and enhance their therapeutic efficacy and bioavailability. However, there is not yet consensus on the optimal hydrogel type, encapsulation method, and clinical application. Therefore, a systematic review of hydrogel encapsulation techniques and their potential for clinical application is needed to provide a comprehensive and up-to-date overview. In this systematic review, we searched electronic databases for articles published between 2008 and 2023 that described the encapsulation of cells or drug molecules within hydrogels. Herein, we identified 9 relevant studies that met the inclusion and exclusion criteria of our study. Our analysis revealed that the physicochemical properties of the hydrogel, such as its porosity, swelling behavior, and degradation rate, play a critical role in the encapsulation of cells or drug molecules. Furthermore, the encapsulation method, including physical, chemical, or biological methods, can affect the encapsulated entities' stability, bioavailability, and therapeutic efficacy. Challenges of hydrogel encapsulation include poor control over the release of encapsulated entities, limited shelf life, and potential immune responses. Future directions of hydrogel encapsulation include the development of novel hydrogel and encapsulation methods and the integration of hydrogel encapsulation with other technologies, such as 3D printing and gene editing. In conclusion, this review is useful for researchers, clinicians, and policymakers who are interested in this field of drug delivery and regenerative medicine that can serve as a guide for the future development of novel technologies that can be applied into clinical practice.
Collapse
Affiliation(s)
- Bahareh Farasati
Far
- Department
of Chemistry, Iran University of Science
and Technology, Tehran 13114-16846, Iran
| | - Maryam Safaei
- Department
of Pharmacology, Faculty of Pharmacy, Eastern
Mediterranean University, via Mersin 10, Famagusta, TR. North Cyprus 99628, Turkey
| | - Reza Nahavandi
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Amir Gholami
- Faculty
of Medicine, Kurdistan University of Medical
Science, Sanandaj 6618634683, Iran
| | | | - Sujina Tamang
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Jung Eun Ahn
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Marzieh Ramezani Farani
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Yun Suk Huh
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| |
Collapse
|
5
|
Ozel C, Apaydin E, Sariboyaci AE, Tamayol A, Avci H. A multifunctional sateen woven dressings for treatment of skin injuries. Colloids Surf B Biointerfaces 2023; 224:113197. [PMID: 36822118 DOI: 10.1016/j.colsurfb.2023.113197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Cutaneous wounds with impaired healing such as diabetic ulcers and burns constitute major and rapidly growing threat to healthcare systems worldwide. Accelerating wound healing requires the delivery of biological factors that induce angiogenesis, support cellular proliferation, and modulate inflammation while minimizing infection. In this study, we engineered a dressing made by weaving of composite fibers (CFs) carrying mesenchymal stem cells (MSCs) and a model antibiotic using a scalable sateen textile technique. In this regard, two different sets of CFs carrying MSCs or an antimicrobial agent were used to generate a multifunctional dressing. According to cell viability and metabolic activity as CCK-8 and live/dead with qRT-PCR results, more than %90 the encapsulated MSCs remain viable for 28 days and their expression levels of the wound repair factors including ECM remodeling, angiogenesis and immunomodulatory maintained in MSCs post dressing manufacturing for 14 days. Post 10 days culture of the dressing, MSCs within CFs had 10-fold higher collagen synthesis (p < 0.0001) determined by hydroxyproline assay which indicates the enhanced healing properties. According to in vitro antimicrobial activity results determined by disk diffusion and broth microdilution tests, the first day and the total amount of release gentamicin loaded dressing samples during the 28 days were higher than determined minimal inhibition concentration (MIC) values for S. aureus and K. pneumonia without negatively impacting the viability and functionality of encapsulated MSCs within the dressing. The dressing is also flexible and can conform to skin curvatures making the dressing suitable for the treatment of different skin injuries such as burns and diabetic ulcers.
Collapse
Affiliation(s)
- Ceren Ozel
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Elif Apaydin
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Department of Biochemistry, Institute of Health Sciences, Anadolu University, Eskişehir 26470, Turkey
| | - Ayla Eker Sariboyaci
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06269, USA.
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Department of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Turkey; Translational Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey.
| |
Collapse
|
6
|
Cui Y, Nash AM, Castillo B, Sanchez Solis LD, Aghlara-Fotovat S, Levitan M, Kim B, Diehl M, Veiseh O. Development of Serum-Free Media for Cryopreservation of Hydrogel Encapsulated Cell-Based Therapeutics. Cell Mol Bioeng 2022; 15:425-437. [PMID: 36444347 PMCID: PMC9700535 DOI: 10.1007/s12195-022-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/22/2022] [Indexed: 11/03/2022] Open
Abstract
Introduction While hydrogel encapsulation of cells has been developed to treat multiple diseases, methods to cryopreserve and maintain the composite function of therapeutic encapsulated cell products are still needed to facilitate their storage and distribution. While methods to preserve encapsulated cells, and post-synthesis have received recent attention, effective preservation mediums have not been fully defined. Methods We employed a two-tiered screen of an initial library of 32 different cryopreservation agent (CPA) formulations composed of different cell-permeable and impermeable agents. Formulations were assayed using dark field microscopy to evaluate alginate hydrogel matrix integrity, followed by cell viability analyses and measurements of functional secretion activity. Results The structural integrity of large > 1 mm alginate capsules were highly sensitive to freezing and thawing in media alone but could be recovered by a number of CPA formulations containing different cell-permeable and impermeable agents. Subsequent viability screens identified two top-performing CPA formulations that maximized capsule integrity and cell viability after storage at - 80 °C. The top formulation (10% Dimethyl sulfoxide (DMSO) and 0.3 M glucose) was demonstrated to preserve hydrogel integrity and retain cell viability beyond a critical USA FDA set 70% viability threshold while maintaining protein secretion and resultant cell potency. Conclusions This prioritized screen identified a cryopreservation solution that maintains the integrity of large alginate capsules and yields high viabilities and potency. Importantly, this formulation is serum-free, non-toxic, and can support the development of clinically translatable encapsulated cell-based therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00739-7.
Collapse
Affiliation(s)
- Yufei Cui
- Rice University, Houston, TX 77030 USA
| | | | | | | | | | | | - Boram Kim
- Rice University, Houston, TX 77030 USA
| | | | | |
Collapse
|
7
|
Freitas-Ribeiro S, Reis RL, Pirraco RP. Long-term and short-term preservation strategies for tissue engineering and regenerative medicine products: state of the art and emerging trends. PNAS NEXUS 2022; 1:pgac212. [PMID: 36714838 PMCID: PMC9802477 DOI: 10.1093/pnasnexus/pgac212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
There is an ever-growing need of human tissues and organs for transplantation. However, the availability of such tissues and organs is insufficient by a large margin, which is a huge medical and societal problem. Tissue engineering and regenerative medicine (TERM) represent potential solutions to this issue and have therefore been attracting increased interest from researchers and clinicians alike. But the successful large-scale clinical deployment of TERM products critically depends on the development of efficient preservation methodologies. The existing preservation approaches such as slow freezing, vitrification, dry state preservation, and hypothermic and normothermic storage all have issues that somehow limit the biomedical applications of TERM products. In this review, the principles and application of these approaches will be summarized, highlighting their advantages and limitations in the context of TERM products preservation.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | - Rui L Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | | |
Collapse
|
8
|
Xiang Ping MK, Zhi HW, Aziz NS, Hadri NA, Ghazalli NF, Yusop N. Optimization of agarose–alginate hydrogel bead components for encapsulation and transportation of stem cells. J Taibah Univ Med Sci 2022; 18:104-116. [DOI: 10.1016/j.jtumed.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
|
9
|
Heydarzadeh S, Kia SK, Boroomand S, Hedayati M. Recent Developments in Cell Shipping Methods. Biotechnol Bioeng 2022; 119:2985-3006. [PMID: 35898166 DOI: 10.1002/bit.28197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/09/2022] [Accepted: 07/17/2022] [Indexed: 11/11/2022]
Abstract
As opposed to remarkable advances in the cell therapy industry, researches reveal inexplicable difficulties associated with preserving and post-thawing cell death. Post cryopreservation apoptosis is a common occurrence that has attracted the attention of scientists to use apoptosis inhibitors. Transporting cells without compromising their survival and function is crucial for any experimental cell-based therapy. Preservation of cells allows the safe transportation of cells between distances and improves quality control testing in clinical and research applications. The vitality of transported cells is used to evaluate the efficacy of transportation strategies. For many decades, the conventional global methods of cell transfer were not only expensive but also challenging and had adverse effects. The first determination of some projects is optimizing cell survival after cryopreservation. The new generation of cryopreservation science wishes to find appropriate and alternative methods for cell transportation to ship viable cells at an ambient temperature without dry ice or in media-filled flasks. The diversity of cell therapies demands new cell shipping methodologies and cryoprotectants. In this review, we tried to summarize novel improved cryopreservation methods and alternatives to cryopreservation with safe and viable cell shipping at ambient temperature, including dry preservation, hypothermic preservation, gel-based methods, encapsulation methods, fibrin microbeads, and osmolyte solution compositions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran.,Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Kheradmand Kia
- Laboratory for Red Blood Cell Diagnostics, Sanquin, Amsterdam, The Netherlands
| | - Seti Boroomand
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mehdi Hedayati
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Ng JY, Tan KYF, Ee PLR. Sugar-Assisted Cryopreservation of Stem Cell-Laden Gellan Gum-Collagen Interpenetrating Network Hydrogels. Biomacromolecules 2022; 23:2803-2813. [PMID: 35675906 PMCID: PMC9277585 DOI: 10.1021/acs.biomac.2c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tissue engineering involves the transplantation of stem cell-laden hydrogels as synthetic constructs to replace damaged tissues. However, their time-consuming fabrication procedures are hurdles to widespread application in clinics. Fortunately, similar to cell banking, synthetic tissues could be cryopreserved for subsequent central distribution. Here, we report the use of trehalose and gellan gum as biomacromolecules to form a cryopreservable yet directly implantable hydrogel system for adipose-derived stem cell (ADSC) delivery. Through a modified cell encapsulation method and a preincubation step, adequate cryoprotection was afforded at 0.75 M trehalose to the encapsulated ADSCs. At this concentration, trehalose demonstrated lower propensity to induce apoptosis than 10% DMSO, the current gold standard cryoprotectant. Moreover, when cultured along with trehalose after thawing, the encapsulated ADSCs retained their stem cell-like phenotype and osteogenic differentiation capacity. Taken together, this study demonstrates the feasibility of an "off-the-shelf" biomacromolecule-based synthetic tissue to be applied in widespread tissue engineering applications.
Collapse
Affiliation(s)
- Jian Yao Ng
- Department
of Pharmacy, Faculty of Science, National
University of Singapore, Block S9, Level 15, 4 Science Drive 2, Singapore 117544, Singapore
| | - Kee Ying Fremi Tan
- Department
of Pharmacy, Faculty of Science, National
University of Singapore, Block S9, Level 15, 4 Science Drive 2, Singapore 117544, Singapore
| | - Pui Lai Rachel Ee
- Department
of Pharmacy, Faculty of Science, National
University of Singapore, Block S9, Level 15, 4 Science Drive 2, Singapore 117544, Singapore
- NUS
Graduate School for Integrative Sciences and Engineering, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| |
Collapse
|
11
|
Wang J, Shi X, Xiong M, Tan WS, Cai H. Trehalose glycopolymers for cryopreservation of tissue-engineered constructs. Cryobiology 2021; 104:47-55. [PMID: 34800528 DOI: 10.1016/j.cryobiol.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/03/2022]
Abstract
The development of an effective cryopreservation method to achieve off-the-shelf and bioactive tissue-engineered constructs (TECs) is important to meet the requirements for clinical applications. The trehalose, a non-permeable cryoprotectant (CPA), has difficulty in penetrating the plasma membranes of mammalian cells and has only been used in combination with other cell penetrating CPA (such as DMSO) to cryopreserve mammalian cells. However, the inherent cytotoxicity of DMSO results in increasing risks with respect to cryopreserved cells. Therefore, in this study, permeable trehalose glycopolymers were synthesised for cryopreservation of TECs. The trehalose glycopolymers exhibited good ice inhibiting activities and biocompatibilities. Furthermore, the viability and function of TECs after cryopreservation with 5.0 wt% S2 were similar to those of the non-cryopreserved TECs. We developed an effective preservation strategy for the off-the-shelf availability of TECs.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaodi Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minghao Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
12
|
Khan AZ, Utheim TP, Jackson CJ, Tønseth KA, Eidet JR. Concise Review: Considering Optimal Temperature for Short-Term Storage of Epithelial Cells. Front Med (Lausanne) 2021; 8:686774. [PMID: 34485330 PMCID: PMC8416270 DOI: 10.3389/fmed.2021.686774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Transplantation of novel tissue-engineered products using cultured epithelial cells is gaining significant interest. While such treatments can readily be provided at centralized medical centers, delivery to patients at geographically remote locations requires the establishment of suitable storage protocols. One important aspect of storage technology is temperature. This paper reviews storage temperature for above-freezing point storage of human epithelial cells for regenerative medicine purposes. The literature search uncovered publications on epidermal cells, retinal pigment epithelial cells, conjunctival epithelial cells, corneal/limbal epithelial cells, oral keratinocytes, and seminiferous epithelial cells. The following general patterns were noted: (1) Several studies across different cell types inclined toward 4 and 16°C being suitable short-term storage temperatures. Correspondingly, almost all studies investigating 37°C concluded that this storage temperature was suboptimal. (2) Cell death typically escalates rapidly following 7–10 days of storage. (3) The importance of the type of storage medium and its composition was highlighted by some of the studies; however, the relative importance of storage medium vs. storage temperature has not been investigated systematically. Although a direct comparison between the included investigations is not reasonable due to differences in cell types, storage media, and storage duration, this review provides an overview, summarizing the work carried out on each cell type during the past two decades.
Collapse
Affiliation(s)
- Ayyad Zartasht Khan
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Surgery, Sørlandet Hospital Arendal, Arendal, Norway.,Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Catherine Joan Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Ifocus Eye Clinic, Haugesund, Norway
| | - Kim Alexander Tønseth
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Jon Roger Eidet
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Zhan L, Guo S, Kangas J, Shao Q, Shiao M, Khosla K, Low WC, McAlpine MC, Bischof J. Conduction Cooling and Plasmonic Heating Dramatically Increase Droplet Vitrification Volumes for Cell Cryopreservation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004605. [PMID: 34141523 PMCID: PMC8188207 DOI: 10.1002/advs.202004605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Indexed: 05/28/2023]
Abstract
Droplet vitrification has emerged as a promising ice-free cryopreservation approach to provide a supply chain for off-the-shelf cell products in cell therapy and regenerative medicine applications. Translation of this approach requires the use of low concentration (i.e., low toxicity) permeable cryoprotectant agents (CPA) and high post cryopreservation viability (>90%), thereby demanding fast cooling and warming rates. Unfortunately, with traditional approaches using convective heat transfer, the droplet volumes that can be successfully vitrified and rewarmed are impractically small (i.e., 180 picoliter) for <2.5 m permeable CPA. Herein, a novel approach to achieve 90-95% viability in micro-liter size droplets with 2 m permeable CPA, is presented. Droplets with plasmonic gold nanorods (GNRs) are printed onto a cryogenic copper substrate for improved cooling rates via conduction, while plasmonic laser heating yields >400-fold improvement in warming rates over traditional convective approach. High viability cryopreservation is then demonstrated in a model cell line (human dermal fibroblasts) and an important regenerative medicine cell line (human umbilical cord blood stem cells). This approach opens a new paradigm for cryopreservation and rewarming of dramatically larger volume droplets at lower CPA concentration for cell therapy and other regenerative medicine applications.
Collapse
Affiliation(s)
- Li Zhan
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Shuang‐Zhuang Guo
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Joseph Kangas
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Qi Shao
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Maple Shiao
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMN55455USA
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMN55455USA
| | - Kanav Khosla
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Walter C. Low
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMN55455USA
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMN55455USA
| | - Michael C. McAlpine
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - John Bischof
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| |
Collapse
|
14
|
Cell preservation methods and its application to studying rare disease. Mol Cell Probes 2021; 56:101694. [PMID: 33429040 DOI: 10.1016/j.mcp.2021.101694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
The ability to preserve and transport human cells in a stable medium over long distances is critical to collaborative efforts and the advancement of knowledge in the study of human disease. This is particularly important in the study of rare diseases. Recently, advancements in the understanding of renal ciliopathies has been achieved via the use of patient urine-derived cells (UDCs). However, the traditional method of cryopreservation, although considered as the gold standard, can result in decreased sample viability of many cell types, including UDCs. Delays in transportation can have devastating effects upon the viability of samples, and may even result in complete destruction of cells following evaporation of dry ice or liquid nitrogen, leaving samples in cryoprotective agents, which are cytotoxic at room temperature. The loss of any patient sample in this manner is detrimental to research, however it is even more so when samples are from patients with a rare disease. In order to overcome the associated limitations of traditional practices, new methods of preservation and shipment, including cell encapsulation within hydrogels, and transport in specialised devices are continually being investigated. Here we summarise and compare traditional methods with emerging novel alternatives for the preservation and shipment of cells, and consider the effectiveness of such methods for use with UDCs to further enable the study and understanding of kidney diseases.
Collapse
|
15
|
Al-Jaibaji O, Swioklo S, Shortt A, Figueiredo FC, Connon CJ. Hypothermically Stored Adipose-Derived Mesenchymal Stromal Cell Alginate Bandages Facilitate Use of Paracrine Molecules for Corneal Wound Healing. Int J Mol Sci 2020; 21:ijms21165849. [PMID: 32823996 PMCID: PMC7461547 DOI: 10.3390/ijms21165849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived mesenchymal stromal cells (Ad-MSCs) may alleviate corneal injury through the secretion of therapeutic factors delivered at the injury site. We aimed to investigate the therapeutic factors secreted from hypothermically stored, alginate-encapsulated Ad-MSCs’ bandages in in vitro and in vivo corneal wounds. Ad-MSCs were encapsulated in 1.2% w/v alginate gels to form bandages and stored at 15 °C for 72 h before assessing cell viability and co-culture with corneal scratch wounds. Genes of interest, including HGF, TSG-6, and IGF were identified by qPCR and a human cytokine array kit used to profile the therapeutic factors secreted. In vivo, bandages were applied to adult male mice corneas following epithelial debridement. Bandages were shown to maintain Ad-MSCs viability during storage and able to indirectly improve corneal wound healing in vivo. Soluble protein concentration and paracrine factors such as TSG-6, HGF, IL-8, and MCP-1 release were greatest following hypothermic storage. In vivo, Ad-MSCs bandages-treated groups reduced immune cell infiltration when compared to untreated groups. In conclusion, bandages were shown to maintain Ad-MSCs ability to produce a cocktail of key therapeutic factors following storage and that these soluble factors can improve in vitro and in vivo corneal wound healing.
Collapse
Affiliation(s)
- Olla Al-Jaibaji
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; (O.A.-J.); (S.S.); (F.C.F.)
| | - Stephen Swioklo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; (O.A.-J.); (S.S.); (F.C.F.)
- Atelerix Ltd., The Biosphere, Newcastle upon Tyne NE4 5BX, UK
| | - Alex Shortt
- UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Francisco C. Figueiredo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; (O.A.-J.); (S.S.); (F.C.F.)
- Department of Ophthalmology, Royal Victoria Infirmary & Newcastle University, Newcastle upon Tyne NE1 4LP, UK
| | - Che J. Connon
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; (O.A.-J.); (S.S.); (F.C.F.)
- Correspondence: ; Tel.: +44-(0)-191-241-8623
| |
Collapse
|
16
|
Zhang X, Cao Y, Zhao G. Hypothermic Storage of Human Umbilical Vein Endothelial Cells and Their Hydrogel Constructs. Biopreserv Biobank 2020; 18:305-310. [DOI: 10.1089/bio.2019.0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Xiaozhang Zhang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yuan Cao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
17
|
Zhou N, Ma X, Bernaerts KV, Ren P, Hu W, Zhang T. Expansion of Ovarian Cancer Stem-like Cells in Poly(ethylene glycol)-Cross-Linked Poly(methyl vinyl ether-alt-maleic acid) and Alginate Double-Network Hydrogels. ACS Biomater Sci Eng 2020; 6:3310-3326. [DOI: 10.1021/acsbiomaterials.9b01967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Naizhen Zhou
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoe Ma
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Katrien V. Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Pengfei Ren
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wanjun Hu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
18
|
Biopolymer gels as a basis of cryoprotective medium for testicular tissue of rats. Cell Tissue Bank 2018; 19:819-826. [PMID: 30465307 DOI: 10.1007/s10561-018-9740-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022]
Abstract
Cryopreservation of testis tissue is a promising approach to save fertility in prepubertal boys under going gonadotoxic cancer therapies. The using biopolymers as a basis of cryoprotective medium can be effective for the optimization of cryopreservation protocols of immature testicular tissue. The research purpose was to determine morphological parameters and metabolic activity of seminiferous tubules of immature rat testes under exposure to cryoprotective solution (DMSO) based on collagen or fibrin gels (CG or FG) as one of the first stages of developing the cryopreservation protocol. It was found that 30-min exposure of tissue samples to CG and FG with 0.6 M DMSO did not impair the spermatogenic epithelium and metabolic activity of the cells (MTT test and total lactate dehydrogenase activity). The use of FG at the time of exposure of 45 min did not lead to significant changes in the metabolic activity in contrast to other groups. The findings could be used to substantiate and develop the effective techniques for cryopreservation of immature seminiferous tubules.
Collapse
|
19
|
Zhang C, Zhou Y, Zhang L, Wu L, Chen Y, Xie D, Chen W. Hydrogel Cryopreservation System: An Effective Method for Cell Storage. Int J Mol Sci 2018; 19:E3330. [PMID: 30366453 PMCID: PMC6274795 DOI: 10.3390/ijms19113330] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Accepted: 10/20/2018] [Indexed: 12/27/2022] Open
Abstract
At present, living cells are widely used in cell transplantation and tissue engineering. Many efforts have been made aiming towards the use of a large number of living cells with high activity and integrated functionality. Currently, cryopreservation has become well-established and is effective for the long-term storage of cells. However, it is still a major challenge to inhibit cell damage, such as from solution injury, ice injury, recrystallization and osmotic injury during the thawing process, and the cytotoxicity of cryoprotectants. Hence, this review focused on different novel gel cryopreservation systems. Natural polymer hydrogel cryopreservation, the synthetic polymer hydrogel cryopreservation system and the supramolecular hydrogel cryopreservation system were presented, respectively. Due to the unique three-dimensional network structure of the hydrogel, these hydrogel cryopreservation systems have the advantages of excellent biocompatibility for natural polymer hydrogel cryopreservation systems, designability for synthetic polymer hydrogel cryopreservation systems, and versatility for supramolecular hydrogel cryopreservation systems. To some extent, the different hydrogel cryopreservation methods can confine ice crystal growth and decrease the change rates of osmotic shock in cell encapsulation systems. It is notable that the cryopreservation of complex cells and tissues is demanded in future clinical research and therapy, and depends on the linkage of different methods.
Collapse
Affiliation(s)
- Chaocan Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Youliang Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Li Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Yanjun Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Dong Xie
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Wanyu Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
20
|
Al-Jaibaji O, Swioklo S, Gijbels K, Vaes B, Figueiredo FC, Connon CJ. Alginate encapsulated multipotent adult progenitor cells promote corneal stromal cell activation via release of soluble factors. PLoS One 2018; 13:e0202118. [PMID: 30192833 PMCID: PMC6128465 DOI: 10.1371/journal.pone.0202118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/28/2018] [Indexed: 01/26/2023] Open
Abstract
To reduce the increasing need for corneal transplantation, attempts are currently aiming to restore corneal clarity, one potent source of cells are multipotent adult progenitor cells (MAPC®). These cells release a powerful cocktail of paracrine factors that can guide wound healing and tissue regeneration. However, their role in corneal regeneration has been overlooked. Thus, we sought to explore the potential of combining the cytoprotective storage feature of alginate, with MAPC to generate a storable cell-laden gel for corneal wound healing. 72 hours following hypothermic storage, alginate encapsulation was shown to maintain MAPC viability at either 4 or 15°C. Encapsulated MAPC (2 x106 cells/mL) stored at 15°C presented the optimum temperature that allowed for cell recovery. These cells had the ability to reattach to tissue culture plastic whilst exhibiting normal phenotype and this was maintained in serum-free and xenobiotic-free medium. Furthermore, corneal stromal cells presented a significant decrease in scratch-wounds in the presence of alginate encapsulated MAPC compared to a no-cell control (p = 0.018). This study shows that immobilization of MAPC within an alginate hydrogel does not hinder their ability to affect a secondary cell population via soluble factors and that these effects are successfully retained following hypothermic storage.
Collapse
Affiliation(s)
- Olla Al-Jaibaji
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stephen Swioklo
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | - Che J. Connon
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Yu NH, Chun SY, Ha YS, Kim HT, Kim DH, Kim J, Chung JW, Lee JN, Song PH, Yoo ES, Kim BS, Kwon TG. Optimal Stem Cell Transporting Conditions to Maintain Cell Viability and Characteristics. Tissue Eng Regen Med 2018; 15:639-647. [PMID: 30603585 DOI: 10.1007/s13770-018-0133-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The preservation of stem cell viability and characteristics during cell transport from the bench to patients can significantly affect the success of cell therapy. Factors such as suspending medium, time, temperature, cell density, and container type could be considered for transport conditions. METHODS To establish optimal conditions, human amniotic fluid stem cells' (AFSCs) viabilities were analyzed under different media {DMEM(H), DMEM/F-12, K-SFM, RPMI 1640, α-MEM, DMEM(L), PBS or saline}, temperature (4, 22 or 37 °C), cell density (1 × 107 cells were suspended in 0.1, 0.5, 1.0 or 2.0 mL of medium) and container type (plastic syringe or glass bottle). After establishing the transport conditions, stem cell characteristics of AFSCs were compared to freshly prepared cells. RESULTS Cells transported in DMEM(H) showed relatively higher viability than other media. The optimized transport temperature was 4 °C, and available transport time was within 12 h. A lower cell density was associated with a better survival rate, and a syringe was selected as a transport container because of its clinical convenience. In compare of stem cell characteristics, the transported cells with established conditions showed similar potency as the freshly prepared cells. CONCLUSION Our findings can provide a foundation to optimization of conditions for stem cell transport.
Collapse
Affiliation(s)
- Na-Hee Yu
- 1Biomedical Research Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - So Young Chun
- 1Biomedical Research Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - Yun-Sok Ha
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,3Department of Urology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - Hyun Tae Kim
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,4Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hogukro, Buk-gu, Daegu, 41404 Korea
| | - Dae Hwan Kim
- 5Department of Laboratory Animal Research Support Team, Yeungnam University Medical Center, 170 Hyunchung-ro, Nam-gu, Daegu, 42415 Korea
| | - Jeongshik Kim
- Department of Pathology, Central Hospital, 480 Munsu-ro, Nam-gu, Ulsan, 44667 Korea
| | - Jae-Wook Chung
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,4Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hogukro, Buk-gu, Daegu, 41404 Korea
| | - Jun Nyung Lee
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,4Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hogukro, Buk-gu, Daegu, 41404 Korea
| | - Phil Hyun Song
- 7Department of Urology, College of Medicine, Yeungnam University, 170 Hyunchung-ro, Nam-gu, Daegu, 42415 Korea
| | - Eun Sang Yoo
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,3Department of Urology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - Bum Soo Kim
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,3Department of Urology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - Tae Gyun Kwon
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,4Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hogukro, Buk-gu, Daegu, 41404 Korea
| |
Collapse
|
22
|
Zhang J, Wu Z, Fan Z, Qin Z, Wang Y, Chen J, Wu M, Chen Y, Wu C, Wang J. Pericardial application as a new route for implanting stem-cell cardiospheres to treat myocardial infarction. J Physiol 2018; 596:2037-2054. [PMID: 29736937 PMCID: PMC5983168 DOI: 10.1113/jp275548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/14/2018] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Cardiospheres (CSps) are a promising new form of cardiac stem cells with advantage over other stem cells for myocardial regeneration, but direct implantation of CSps by conventional routes has been limited due to potential embolism. We have implanted CSps into the pericardial cavity and systematically demonstrated its efficacy regarding myocardial infarction. Stem cell potency and cell viability can be optimized in vitro prior to implantation by pre-conditioning CSps with pericardial fluid and hydrogel packing. Transplantation of optimized CSps into the pericardial cavity improved cardiac function and alleviated myocardial fibrosis, increased myocardial cell survival and promoted angiogenesis. Mechanistically, CSps are able to directly differentiate into cardiomyocytes in vivo and promote regeneration of myocardial cells and blood vessels through a paracrine effect with released growth factors as potential paracrine mediators. These findings establish a new strategy for therapeutic myocardial regeneration to treat myocardial infarction. ABSTRACT Cardiospheres (CSps) are a new form of cardiac stem cells with an advantage over other stem cells for myocardial regeneration. However, direct implantation of CSps by conventional routes to treat myocardial infarction has been limited due to potential embolism. We have implanted CSps into the pericardial cavity and systematically assessed its efficacy on myocardial infarction. Preconditioning with pericardial fluid enhanced the activity of CSps and matrix hydrogel prolonged their viability. This shows that pretransplant optimization of stem cell potency and maintenance of cell viability can be achieved with CSps. Transplantation of optimized CSps into the pericardial cavity improved cardiac function and alleviated myocardial fibrosis in the non-infarcted area, and increased myocardial cell survival and promoted angiogenesis in the infarcted area. Mechanistically, CSps were able to directly differentiate into cardiomyocytes in vivo and promoted regeneration of myocardial cells and blood vessels in the infarcted area through a paracrine effect with released growth factors in pericardial cavity serving as possible paracrine mediators. This is the first demonstration of direct pericardial administration of pre-optimized CSps, and its effectiveness on myocardial infarction by functional and morphological outcomes with distinct mechanisms. These findings establish a new strategy for therapeutic myocardial regeneration to treat myocardial infarction.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of CardiologyThe Sun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhou510120PR China
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouPR China
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of EducationJinan UniversityGuangzhouPR China
| | - Zepei Fan
- Key Laboratory for Regenerative Medicine, Ministry of EducationJinan UniversityGuangzhouPR China
| | - Zixi Qin
- Key Laboratory for Regenerative Medicine, Ministry of EducationJinan UniversityGuangzhouPR China
| | - Yingwei Wang
- Key Laboratory for Regenerative Medicine, Ministry of EducationJinan UniversityGuangzhouPR China
| | - Jiayuan Chen
- Department of CardiologyThe Sun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhou510120PR China
| | - Maoxiong Wu
- Department of CardiologyThe Sun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhou510120PR China
| | - Yangxin Chen
- Department of CardiologyThe Sun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhou510120PR China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordGU2 7XHU.K.
| | - Jingfeng Wang
- Department of CardiologyThe Sun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhou510120PR China
| |
Collapse
|
23
|
Swioklo S, Ding P, Pacek AW, Connon CJ. Process parameters for the high-scale production of alginate-encapsulated stem cells for storage and distribution throughout the cell therapy supply chain. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Stacey GN, Connon CJ, Coopman K, Dickson AJ, Fuller B, Hunt CJ, Kemp P, Kerby J, Man J, Matejtschuk P, Moore H, Morris J, Oreffo ROC, Slater N, Ward S, Wiggins C, Zimmermann H. Preservation and stability of cell therapy products: recommendations from an expert workshop. Regen Med 2017; 12:553-564. [DOI: 10.2217/rme-2017-0073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
If the field of regenerative medicine is to deliver therapies, rapid expansion and delivery over considerable distances to large numbers of patients is needed. This will demand efficient stabilization and shipment of cell products. However, cryopreservation science is poorly understood by life-scientists in general and in recent decades only limited progress has been made in the technology of preservation and storage of cells. Rapid translation of new developments to a broader range of cell types will be vital, as will assuring a deeper knowledge of the fundamental cell biology relating to successful preservation and recovery of cell cultures. This report presents expert consensus on these and other issues which need to be addressed for more efficient delivery of cell therapies.
Collapse
Affiliation(s)
- Glyn N Stacey
- UK Stem Cell Bank, Division of Advanced Therapies, NIBSC, South Mimms, Hertfordshire, UK
| | - Che J Connon
- Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Karen Coopman
- Chemical Engineering, Loughborough University, Loughborough, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Barry Fuller
- Department of Surgery, University College London, London, UK
| | - Charles J Hunt
- UK Stem Cell Bank, Division of Advanced Therapies, NIBSC, South Mimms, Hertfordshire, UK
| | - Paul Kemp
- Intercytex Ltd & HairClone, Manchester, UK
| | - Julie Kerby
- Cell Therapy Manufacturing Development, Pfizer, Cambridge, UK
| | - Jennifer Man
- UK Stem Cell Bank, Division of Advanced Therapies, NIBSC, South Mimms, Hertfordshire, UK
| | - Paul Matejtschuk
- Standardisation Science, National Institute for Biological Standards and Control (NIBSC) a centre of the MHRA, South Mimms, Hertfordshire, UK
| | - Harry Moore
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | | - Richard OC Oreffo
- Centre for Human Development, Stem Cells & Regeneration, University of Southampton, Southampton, UK
| | - Nigel Slater
- The Bioscience Engineering Group, University of Cambridge, Cambridge, UK
| | | | - Claire Wiggins
- National Health Service – Blood & Transplant, Watford, UK
| | - Heiko Zimmermann
- Fraunhofer-Institute for Biomedical Engineering, Sulzbach, Germany
- Department of Molecular & Cellular Biotechnology/Nanotechnology, Saarland University, Saarbrücken, Germany
- Department of Marine Sciences, Universidad Católica del Norte, Antafogasta/Coquimbo, Chile
| |
Collapse
|
25
|
Hejbøl EK, Sellathurai J, Nair PD, Schrøder HD. Injectable scaffold materials differ in their cell instructive effects on primary human myoblasts. J Tissue Eng 2017; 8:2041731417717677. [PMID: 28717506 PMCID: PMC5502935 DOI: 10.1177/2041731417717677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/06/2017] [Indexed: 12/15/2022] Open
Abstract
Scaffolds are materials used for delivery of cells for regeneration of tissues. They support three-dimensional organization and improve cell survival. For the repair of small skeletal muscles, injections of small volumes of cells are attractive, and injectable scaffolds for delivery of cells offer a minimally invasive technique. In this study, we examined in vitro the cell instructive effects of three types of injectable scaffolds, fibrin, alginate, and poly(lactic-co-glycolic acid)-based microparticles on primary human myoblasts. The myoblast morphology and progression in the myogenic program differed, depending on the type of scaffold material. In alginate gel, the cells obtained a round morphology, they ceased to proliferate, and entered quiescence. In the fibrin gels, differentiation was promoted, and myotubes were observed within a few days in culture, while poly(lactic-co-glycolic acid)-based microparticles supported prolonged proliferation. Myoblasts released from the alginate and fibrin gels were studied, and cells released from these scaffolds had retained the ability to proliferate and differentiate. Thus, the study shows that human myogenic cells combined with injectable scaffold materials are guided into different states depending on the choice of scaffold. This opens for in vivo experiments, including testing of the significance of the cell state on regeneration potential of primary human myoblasts.
Collapse
Affiliation(s)
- Eva Kildall Hejbøl
- Institute of Clinical Research, SDU Muscle Research Cluster, University of Southern Denmark, Odense, Denmark
| | - Jeeva Sellathurai
- Institute of Clinical Research, SDU Muscle Research Cluster, University of Southern Denmark, Odense, Denmark
| | - Prabha Damodaran Nair
- Division of Tissue Engineering and Regeneration Technologies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Henrik Daa Schrøder
- Institute of Clinical Research, SDU Muscle Research Cluster, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
26
|
Huang H, Yu Y, Hu Y, He X, Usta OB, Yarmush ML. Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. LAB ON A CHIP 2017; 17:1913-1932. [PMID: 28509918 PMCID: PMC5548188 DOI: 10.1039/c7lc00262a] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogel microcapsules provide miniaturized and biocompatible niches for three-dimensional (3D) in vitro cell culture. They can be easily generated by droplet-based microfluidics with tunable size, morphology, and biochemical properties. Therefore, microfluidic generation and manipulation of cell-laden microcapsules can be used for 3D cell culture to mimic the in vivo environment towards applications in tissue engineering and high throughput drug screening. In this review of recent advances mainly since 2010, we will first introduce general characteristics of droplet-based microfluidic devices for cell encapsulation with an emphasis on the fluid dynamics of droplet breakup and internal mixing as they directly influence microcapsule's size and structure. We will then discuss two on-chip manipulation strategies: sorting and extraction from oil into aqueous phase, which can be integrated into droplet-based microfluidics and significantly improve the qualities of cell-laden hydrogel microcapsules. Finally, we will review various applications of hydrogel microencapsulation for 3D in vitro culture on cell growth and proliferation, stem cell differentiation, tissue development, and co-culture of different types of cells.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Yin Yu
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Yong Hu
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University,
Columbus, USA
| | - O. Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
- Department of Biomedical Engineering, Rutgers University,
Piscataway, New Jersey 08854, United States
| |
Collapse
|
27
|
Jiang B, Yan L, Miao Z, Li E, Wong KH, Xu RH. Spheroidal formation preserves human stem cells for prolonged time under ambient conditions for facile storage and transportation. Biomaterials 2017; 133:275-286. [PMID: 28460350 DOI: 10.1016/j.biomaterials.2017.03.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/31/2017] [Indexed: 12/13/2022]
Abstract
Human stem cells are vulnerable to unfavorable conditions, and their transportation relies on costly and inconvenient cryopreservation. We report here that human mesenchymal stem cells (MSC) in spheroids survived ambient conditions (AC) many days longer than in monolayer. Under AC, the viability of MSC in spheroids remained >90% even after seven days, whereas MSC in monolayer mostly died fast. AC-exposed MSC spheroids, after recovery under normal monolayer culture conditions with controlled carbon dioxide and humidity contents, resumed typical morphology and proliferation, and retained differentiating and immunosuppressive capabilities. RNA-sequencing and other assays demonstrate that reduced cell metabolism and proliferation correlates to the enhanced survival of AC-exposed MSC in spheroids versus monolayer. Moreover, AC-exposed MSC, when injected as either single cells or spheroids, retained therapeutic effects in vivo in mouse colitis models. Spheroidal formation also prolonged survival and sustained pluripotency of human embryonic stem cells kept under AC. Therefore, this work offers an alternative and relatively simple method termed spheropreservation versus the conventional method cryopreservation. It shall remarkably simplify long-distance transportation of stem cells of these and probably also other types within temperature-mild areas, and facilitate therapeutic application of MSC as spheroids without further processing.
Collapse
Affiliation(s)
- Bin Jiang
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Li Yan
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Enqin Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
28
|
Swioklo S, Constantinescu A, Connon CJ. Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells. Stem Cells Transl Med 2016; 5:339-49. [PMID: 26826163 DOI: 10.5966/sctm.2015-0131] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022] Open
Abstract
Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C-23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 10(6) cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state.
Collapse
Affiliation(s)
- Stephen Swioklo
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Andrei Constantinescu
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Che J Connon
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
29
|
Hashemi M, Kalalinia F. Application of encapsulation technology in stem cell therapy. Life Sci 2015; 143:139-46. [DOI: 10.1016/j.lfs.2015.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/15/2015] [Accepted: 11/06/2015] [Indexed: 11/26/2022]
|
30
|
Zeng J, Yin Y, Zhang L, Hu W, Zhang C, Chen W. A Supramolecular Gel Approach to Minimize the Neural Cell Damage during Cryopreservation Process. Macromol Biosci 2015; 16:363-70. [DOI: 10.1002/mabi.201500277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/01/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Jie Zeng
- School of Materials Science and Engineering; Wuhan University of Technology; Wuhan Hubei 430070 China
| | - Yixia Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan Hubei 430070 China
| | - Li Zhang
- School of Materials Science and Engineering; Wuhan University of Technology; Wuhan Hubei 430070 China
| | - Wanghui Hu
- School of Materials Science and Engineering; Wuhan University of Technology; Wuhan Hubei 430070 China
| | - Chaocan Zhang
- School of Materials Science and Engineering; Wuhan University of Technology; Wuhan Hubei 430070 China
| | - Wanyu Chen
- School of Materials Science and Engineering; Wuhan University of Technology; Wuhan Hubei 430070 China
| |
Collapse
|
31
|
Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery. ACS NANO 2015; 9:4686-97. [PMID: 25938172 DOI: 10.1021/acsnano.5b01433] [Citation(s) in RCA: 492] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Considerable progress in the synthesis and technology of hydrogels makes these materials attractive structures for designing controlled-release drug delivery systems. In particular, this review highlights the latest advances in nanocomposite hydrogels as drug delivery vehicles. The inclusion/incorporation of nanoparticles in three-dimensional polymeric structures is an innovative means for obtaining multicomponent systems with diverse functionality within a hybrid hydrogel network. Nanoparticle-hydrogel combinations add synergistic benefits to the new 3D structures. Nanogels as carriers for cancer therapy and injectable gels with improved self-healing properties have also been described as new nanocomposite systems.
Collapse
Affiliation(s)
- Sonia Merino
- †Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Cristina Martín
- †Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | | | - Maurizio Prato
- §Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Ester Vázquez
- †Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
32
|
Gálvez P, Martín MJ, Calpena AC, Tamayo JA, Ruiz MA, Clares B. Enhancing effect of glucose microspheres in the viability of human mesenchymal stem cell suspensions for clinical administration. Pharm Res 2014; 31:3515-28. [PMID: 24962511 DOI: 10.1007/s11095-014-1438-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/10/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE A critical limiting factor of cell therapy is the short life of the stem cells. In this study, glucose containing alginate microspheres were developed and characterized to provide a sustained release system prolonging the viability of human mesenchymal stem cells (hMSCs) in a suspension for clinical application. METHODS The glucose microspheres were satisfactorily elaborated with alginate by emulsification/internal gelation method. Particle size was evaluated by light diffraction and optical microscopy. Shape and surface texture by scanning electron microscopy (SEM). Zeta potential, infrared spectra and release studies were also conducted. Also, rheological properties and stability of hMSCs suspensions with microspheres were tested. The viability of hMSCs was determined by trypan blue dye exclusion staining. RESULTS Microspheres of 86.62 μm, spherical shaped and -32.54 mV zeta potential with excellent stability, good encapsulation efficiency and providing an exponential release of glucose were obtained. hMSCs had better survival rate when they were packed with glucose microspheres. Microspheres maintained the aseptic conditions of the cell suspension without rheological, morphological or immunophenotypic disturbances on hMSCs. CONCLUSIONS Developed microspheres were able to enhance the functionality of hMSC suspension. This strategy could be broadly applied to various therapeutic approaches in which prolonged viability of cells is necessary.
Collapse
Affiliation(s)
- Patricia Gálvez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Bissoyi A, Pramanik K, Panda NN, Sarangi S. Cryopreservation of hMSCs seeded silk nanofibers based tissue engineered constructs. Cryobiology 2014; 68:332-42. [DOI: 10.1016/j.cryobiol.2014.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 03/31/2014] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
|
34
|
Vashist A, Vashist A, Gupta YK, Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2014; 2:147-166. [DOI: 10.1039/c3tb21016b] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Wright B, De Bank PA, Luetchford KA, Acosta FR, Connon CJ. Oxidized alginate hydrogels as niche environments for corneal epithelial cells. J Biomed Mater Res A 2013; 102:3393-400. [PMID: 24142706 PMCID: PMC4255301 DOI: 10.1002/jbm.a.35011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 12/13/2022]
Abstract
Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2-0.8 µm) than unmodified gels (pore diameter: 0.05-0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy.
Collapse
Affiliation(s)
- Bernice Wright
- School of Chemistry, Food and Pharmacy, Department of Pharmaceutics, University of Reading, Reading, Berkshire, RG6 6UB, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
The secretome of alginate-encapsulated limbal epithelial stem cells modulates corneal epithelial cell proliferation. PLoS One 2013; 8:e70860. [PMID: 23894686 PMCID: PMC3722209 DOI: 10.1371/journal.pone.0070860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/27/2013] [Indexed: 12/25/2022] Open
Abstract
Limbal epithelial stem cells may ameliorate limbal stem cell deficiency through secretion of therapeutic proteins, delivered to the cornea in a controlled manner using hydrogels. In the present study the secretome of alginate-encapsulated limbal epithelial stem cells is investigated. Conditioned medium was generated from limbal epithelial stem cells encapsulated in 1.2% (w/v) calcium alginate gels. Conditioned medium proteins separated by 1-D gel electrophoresis were visualized by silver staining. Proteins of interest including secreted protein acidic and rich in cysteine, profilin-1, and galectin-1 were identified by immunoblotting. The effect of conditioned medium (from alginate-encapsulated limbal epithelial stem cells) on corneal epithelial cell proliferation was quantified and shown to significantly inhibit (P≤0.05) their growth. As secreted protein acidic and rich in cysteine was previously reported to attenuate proliferation of epithelial cells, this protein may be responsible, at least in part, for inhibition of corneal epithelial cell proliferation. We conclude that limbal epithelial stem cells encapsulated in alginate gels may regulate corneal epithelialisation through secretion of inhibitory proteins.
Collapse
|