1
|
Kleinau G, Chini B, Andersson L, Scheerer P. The role of G protein-coupled receptors and their ligands in animal domestication. Anim Genet 2024; 55:893-906. [PMID: 39324206 DOI: 10.1111/age.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The domestication of plants and animals has resulted in one of the most significant cultural and socio-economical transitions in human history. Domestication of animals, including human-supervised reproduction, largely uncoupled particular animal species from their natural, evolutionary history driven by environmental and ecological factors. The primary motivations for domesticating animals were, and still are, producing food and materials (e.g. meat, eggs, honey or milk products, wool, leather products, jewelry and medication products) to support plowing in agriculture or in transportation (e.g. horse, cattle, camel and llama) and to facilitate human activities (for hunting, rescuing, therapeutic aid, guarding behavior and protecting or just as a companion). In recent years, decoded genetic information from more than 40 domesticated animal species have become available; these studies have identified genes and mutations associated with specific physiological and behavioral traits contributing to the complex genetic background of animal domestication. These breeding-altered genomes provide insights into the regulation of different physiological areas, including information on links between e.g. endocrinology and behavior, with important pathophysiological implications (e.g. for obesity and cancer), extending the interest in domestication well beyond the field. Several genes that have undergone selection during domestication and breeding encode specific G protein-coupled receptors, a class of membrane-spanning receptors involved in the regulation of a number of overarching functions such as reproduction, development, body homeostasis, metabolism, stress responses, cognition, learning and memory. Here we summarize the available literature on variations in G protein-coupled receptors and their ligands and how these have contributed to animal domestication.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| | - Bice Chini
- CNR, Institute of Neuroscience, Vedano al Lambro, Italy, and NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| |
Collapse
|
2
|
Chang Q, Li J, Zhao Z, Zhu Q, Zhang Y, Sheng R, Yang Z, Dai M, Wang P, Fan X, He J. Elevated temperature affects the expression of signaling molecules in quail testes meiosis I prophase, but spermatogenesis remains normal. Theriogenology 2024; 229:16-22. [PMID: 39142066 DOI: 10.1016/j.theriogenology.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Spermatogenesis in eukaryotes is a process that occurs within a very narrow temperature threshold, typically not exceeding 36 °C. SPO11 was isolated from the temperature-sensitive mutant receptor of Saccharomyces cerevisiae and is thought to be the only protein that functions during meiosis. This suggested that SPO11 may be the key protein that influenced the temperature of spermatogenesis not exceeding 36 °C. Elevated temperatures typically damage the spermatogenic cells. Birds have a core body temperature of 41-42 °C, and their testis are located inside their bodies, providing an alternative perspective to investigate the potential impact of temperature threshold on spermatogenesis. The objective of this study was to ascertain whether elevated ambient temperatures affect spermatogenesis in birds and whether SPO11 is the key gene affecting the temperature threshold for spermatogenesis. STRA8, SCP3, SPO11, γ-H2AX, and RAD51 were all crucial components in the process of meiotic initiation, synapsis, DNA double-strand break (DSB) induction, homologous chromosome crossover recombination, and repair of DSB. In this study, 39-day-old Japanese quail were subjected to heat stress (HS) at 38 °C for 8 h per day for 3 (3d HS) and 13 (13d HS) consecutive days and analyzed the expression of meiotic signaling molecules (STRA8, SCP3, SPO11, γ-H2AX, and RAD51) using molecular biology techniques, including Immunohistochemistry (IHC), Western Blot (WB), and Real-time Quantitative Polymerase Chain Reaction (qRT-PCR). We found that spermatogenesis was normal in both groups exposed to HS. Meiotic signaling molecules were expressed normally in the 3d HS group. All detected signaling molecules were normally expressed in the 13d HS group, except for SPO11, which showed a significant increase in expression, indicating that SPO11 was temperature-sensitive. We examined the localized expression of each meiotic signaling molecule in quail testis, explored the temperature sensitivity of SPO11, and determined that quail testis can undergo normal spermatogenesis at ambient temperatures exceeding 36 °C. This study concluded that SPO11 is not the key protein influencing spermatogenesis in birds. These findings enhance our understanding of avian spermatogenesis.
Collapse
Affiliation(s)
- Qianwen Chang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Jiarong Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Zihui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Qi Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Yaning Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Ruimin Sheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Ziyin Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Mingcheng Dai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Pengchao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Xiaorui Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Junping He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| |
Collapse
|
3
|
Zheng K, Mao J. Comparison and Analysis of Clinical Features of Papillary Thyroid Cancer Complicated With Hashimoto's Thyroiditis. Clin Med Insights Oncol 2024; 18:11795549241287085. [PMID: 39429680 PMCID: PMC11489922 DOI: 10.1177/11795549241287085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Abstract
Background Hashimoto thyroiditis (HT) combined with papillary thyroid cancer (PTC) is more common in clinical practice, maybe posing a serious threat to the health of patients. It is uncertain whether HT is a risk factor or protective factor for PTC. The aim of the study was to retrospectively explore the effect of HT on the biological behavior of PTC. Methods A total of 200 patients were included in the study. Among them, 100 patients with PTC without HT were in the control group (PTC group), and 100 cases diagnosed as PTC with HT were in the experimental group (HT + PTC group). The following data were counted and analyzed, respectively: (1) the basic clinicopathologic characteristics of patients; (2) postoperative thyroid function indicators; (3) blood biochemical indicators; (4) liver function indicators; and (5) histopathological report. Results Compared with the PTC group, women were predominant in the PTC + HT group (P < .05). In addition, the central lymph node metastasis rate, the number of cervical lymph node metastases, and the lateral cervical lymph node metastasis rate were significantly decreased (P < .05). Thyroid peroxidase antibody (TPOAb), thyroid-stimulating hormone (TSH), and thyroglobulin antibody (TGAb) of the thyroid function index were significantly increased, while the thyroglobulin (TG) value was significantly decreased (P < .05). The alkaline phosphatase (ALP) level of the liver function index was significantly decreased, while the lactate dehydrogenase (LDH) level was significantly increased (P < .05). In the pathological examination, a large number of mononuclear cells infiltrated in the lymphocyte follicular stroma. In an ultrasound examination, the boundary definition rate is lower. Conclusion Women may be more susceptible to PTC or PTC and HT than men. Patients under 55 years old accounted for a larger proportion in PTC + HT than PTC. Hashimoto thyroiditis may play an inhibitory role in the occurrence of PTC, and the presence of HT is a protective factor for PTC.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Liu-Fu S, Pan JQ, Sun JF, Shen X, Jiang DL, Ouyang HJ, Xu DN, Tian YB, Huang YM. Effect of immunization against OPN5 on the reproductive performance in Shan Partridge ducks under different photoperiods. Poult Sci 2024; 103:103413. [PMID: 38442558 DOI: 10.1016/j.psj.2023.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 03/07/2024] Open
Abstract
Photoperiod is an important environmental factor that influences seasonal reproduction behavior in birds. Birds translate photoperiodic information into neuroendocrine signals through deep brain photoreceptors (DBPs). OPN5 has been considered candidate DBPs involved in regulating seasonal reproduction in birds. We found that OPN5 could mediate light to regulate the follicle development in ducks. In this study, we further verified the effect of OPN5 on follicular development in Shan Partridge ducks by immunizing against the extracellular domain (ECD) of OPN5. We investigated the specific regulatory mechanism of photoperiod mediated by OPN5 on the reproductive activity of ducks. The trial randomly divided 120 Shan Partridge ducks into 3 groups with different treatments: the immunization of OPN5 group was done at d0, d15, d30, and d40 with 1 mL of vaccine containing OPN5 protein (thus containing 1, 1, 0.5, and 0.5 mg of OPN5-KLH protein), and the control group (CS and CL groups) was injected at the same time with the same dose of OPN5-uncontained blank vaccine. The group of CS (900 lux), OPN5 (600 lux), and CL (600 lux) lasted for 40 d in 12 L:12 D photoperiods, respectively. Then, the groups of CS, OPN5, and CL subsequently received 12 L:12 D, 12 L:12 D, and 17 L:7 D light treatments for 33 d, respectively. The ducks were caged in 3 constant rooms with the same feeding conditions for each group, free water, and limited feeding (150 g per duck each day). Duck serum and tissue samples were collected at d 40, d 62, and d 73 (n = 12). It was found that before prolonged light, the group of immunization (group OPN5) and the group of strong light intensity (group CS) were higher than the group of CL in egg production. Subsequent to prolonged light, the group CL in egg production rose about the same as the group immunization, while the strong light group (group CS) was lower. Group OPN5 increased the ovarian index of ducks, and both the immunization of group OPN5 and group CL (extended light) increased the thickness of the granular layer and promoted the secretion of E2, P4, LH, and PRL hormones. Compared with group CS, group CL and OPN5 increased the mRNA level and protein expression of OPN5 in the hypothalamus on d 62 and d 73 (P < 0.05). The gene or protein expression patterns of GnRH, TRH, TSHβ, DIO2, THRβ, VIP, and PRL were positively correlated with OPN5, whereas the gene expression patterns of GnIH and DIO3 were negatively correlated with OPN5. The results showed that immunization against OPN5 could activate the corresponding transmembrane receptors to promote the expression of OPN5, up-regulate the expression of TSHβ and DIO2, and then regulate the HPG axis-related genes to facilitate the follicular development of Shan Partridge ducks. In addition, in this experiment, prolonging the photoperiod or enhancing the light intensity could also enhance follicle development, but the effect was not as significant as immunizing against OPN5. Our results will offer beneficial data and more supportive shreds of evidence in favor of elucidating the role of OPN5 in relation to photoperiods and reproduction.
Collapse
Affiliation(s)
- Sui Liu-Fu
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jian-Qiu Pan
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jun-Feng Sun
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xu Shen
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dan-Li Jiang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hong-Jia Ouyang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dan-Ning Xu
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yun-Bo Tian
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yun-Mao Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
5
|
Schmidt R, Welzel B, Löscher W. Effects of season, daytime, sex, and stress on the incidence, latency, frequency, severity, and duration of neonatal seizures in a rat model of birth asphyxia. Epilepsy Behav 2023; 147:109415. [PMID: 37729684 DOI: 10.1016/j.yebeh.2023.109415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023]
Abstract
Neonatal seizures are common in newborn infants after birth asphyxia. They occur more frequently in male than female neonates, but it is not known whether sex also affects seizure severity or duration. Furthermore, although stress and diurnal, ultradian, circadian, or multidien cycles are known to affect epileptic seizures in adults, their potential impact on neonatal seizures is not understood. This prompted us to examine the effects of season, daytime, sex, and stress on neonatal seizures in a rat model of birth asphyxia. Seizures monitored in 176 rat pups exposed to asphyxia on 40 experimental days performed over 3 years were evaluated. All rat pups exhibited seizures when exposed to asphyxia at postnatal day 11 (P11), which in terms of cortical development corresponds to term human babies. A first examination of these data indicated a seasonal variation, with the highest seizure severity in the spring. Sex and daytime did not affect seizure characteristics. However, when rat pups were subdivided into animals that were exposed to acute (short-term) stress after asphyxia (restraint and i.p. injection of vehicle) and animals that were not exposed to this stress, the seizures in stress-exposed rats were more severe but less frequent. Acute stress induced an increase in hippocampal microglia density in sham-exposed rat pups, which may have an additive effect on microglia activation induced by asphyxia. When seasonal data were separately analyzed for stress-exposed vs. non-stress-exposed rat pups, no significant seasonal variation was observed. This study illustrates that without a detailed analysis of all factors, the data would have erroneously indicated significant seasonal variability in the severity of neonatal seizures. Instead, the study demonstrates that even mild, short-lasting postnatal stress has a profound effect on asphyxia-induced seizures, most likely by increasing the activity of the hypothalamic-pituitary-adrenal axis. It will be interesting to examine how postnatal stress affects the treatment and adverse outcomes of birth asphyxia and neonatal seizures in the rat model used here.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Björn Welzel
- Center for Systems Neuroscience Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Peng Z, Ziros PG, Martini T, Liao XH, Stoop R, Refetoff S, Albrecht U, Sykiotis GP, Kellenberger S. ASIC1a affects hypothalamic signaling and regulates the daily rhythm of body temperature in mice. Commun Biol 2023; 6:857. [PMID: 37591947 PMCID: PMC10435469 DOI: 10.1038/s42003-023-05221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
The body temperature of mice is higher at night than during the day. We show here that global deletion of acid-sensing ion channel 1a (ASIC1a) results in lower body temperature during a part of the night. ASICs are pH sensors that modulate neuronal activity. The deletion of ASIC1a decreased the voluntary activity at night of mice that had access to a running wheel but did not affect their spontaneous activity. Daily rhythms of thyrotropin-releasing hormone mRNA in the hypothalamus and of thyroid-stimulating hormone β mRNA in the pituitary, and of prolactin mRNA in the hypothalamus and pituitary were suppressed in ASIC1a-/- mice. The serum thyroid hormone levels were however not significantly changed by ASIC1a deletion. Our findings indicate that ASIC1a regulates activity and signaling in the hypothalamus and pituitary. This likely leads to the observed changes in body temperature by affecting the metabolism or energy expenditure.
Collapse
Affiliation(s)
- Zhong Peng
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tomaz Martini
- Department of Biology/Unit of Biochemistry, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Ron Stoop
- Center for Psychiatric Neurosciences, Hôpital de Cery, Lausanne University Hospital, Lausanne, Switzerland
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
- Committee on Genetics, The University of Chicago, Chicago, IL, USA
| | - Urs Albrecht
- Department of Biology/Unit of Biochemistry, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Fröhlich E, Wahl R. Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation. Int J Mol Sci 2023; 24:11699. [PMID: 37511458 PMCID: PMC10380753 DOI: 10.3390/ijms241411699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Thyroid-stimulating hormone (TSH) and thyroid hormone levels are standard parameters in blood analysis. However, the immunoassays employed may lead to false-positive or false-negative results when the sample contains certain materials that interfere with the assay. Macro-TSH, a complex of TSH with immunoglobulin or albumin, may cause apparently increased TSH concentrations. TSH is produced in the pars tuberalis (PT) of the pituitary gland and by thyrotrophs of the pars distalis (PD). It was found that variable glycosylation can render the molecule more strongly bound to antibodies or albumin in the blood, leading to the hypothesis that macro-TSH consists mainly of PT-TSH. Although less known than PD-TSH, PT-TSH plays an important role in the central regulation of thyroid metabolism. The present review summarizes the physiological function of human PT-TSH and its role in macro-TSH formation. The prevalence of macro-hyperthyrotropinemia, the structure of PT-TSH and macro-TSH, problems in the measurement of TSH, and the action of PT-TSH in animals with seasonal breeding are discussed. Despite the absence of a specific function of macro-TSH in the organism, the identification of macro-TSH is important for avoiding unnecessary treatment based on a falsified readout of increased TSH concentrations as numerous individual case reports describe.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Richard Wahl
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Wang S, Xu J, Zhao X, Feng Y, Xu W, Xue H, Wu M, Xu L. Small RNA-seq and hormones in the testes of dwarf hamsters ( Cricetulus barabensis) reveal the potential pathways in photoperiod regulated reproduction. Heliyon 2023; 9:e15687. [PMID: 37144180 PMCID: PMC10151367 DOI: 10.1016/j.heliyon.2023.e15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 03/26/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Photoperiod regulates the functions and development of gonadal organs of seasonally breeding animals, resulting in breeding peaks in specific seasons. miRNA plays an important role in the regulation of testicular physiological functions. However, the relationship between photoperiods and miRNA levels in testes has yet to be conclusively determined. We investigated testicular miRNA of striped dwarf hamster (Cricetulus barabensis) responses to different photoperiods (long daylength [LD], moderate daylength [MD], and short daylength [SD]) and the potential pathways involved in photoperiod regulated reproduction. Testicular weights and reproductive hormone levels were measured in each of photoperiod treatments after 30 days. The concentrations of testosterone (T) and dihydrogen testosterone (DHT) in testes and Gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in serum were higher in MD than in the other two groups. Testicular weights were heaviest in MD. Small RNA-seq was performed for the testes of hamsters in three groups. A total of 769 miRNAs were identified, of which 83 were differentially expressed between LD, MD, and SD. GO and KEGG analysis of target genes revealed that some miRNAs influence testicular activities by regulating the pathways related to cell apoptosis and metabolism. Gene expression pattern analysis showed that the MAPK signaling pathway may be the core pathway for photoperiodic regulation of reproduction. These results suggest that moderate daylength is more suitable for hamster reproduction while long daylength and short daylength may regulate reproduction through different molecular pathways.
Collapse
|
9
|
Hidalgo S, Anguiano M, Tabuloc CA, Chiu JC. Seasonal cues act through the circadian clock and pigment-dispersing factor to control EYES ABSENT and downstream physiological changes. Curr Biol 2023; 33:675-687.e5. [PMID: 36708710 PMCID: PMC9992282 DOI: 10.1016/j.cub.2023.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Organisms adapt to seasonal changes in photoperiod and temperature to survive; however, the mechanisms by which these signals are integrated in the brain to alter seasonal biology are poorly understood. We previously reported that EYES ABSENT (EYA) shows higher levels in cold temperature or short photoperiod and promotes winter physiology in Drosophila. Nevertheless, how EYA senses seasonal cues is unclear. Pigment-dispersing factor (PDF) is a neuropeptide important for regulating circadian output rhythms. Interestingly, PDF has also been shown to regulate seasonality, suggesting that it may mediate the function of the circadian clock in modulating seasonal physiology. In this study, we investigated the role of EYA in mediating the function of PDF on seasonal biology. We observed that PDF abundance is lower on cold and short days as compared with warm and long days, contrary to what was previously observed for EYA. We observed that manipulating PDF signaling in eya+ fly brain neurons, where EYA and PDF receptor are co-expressed, modulates seasonal adaptations in daily activity rhythm and ovary development via EYA-dependent and EYA-independent mechanisms. At the molecular level, altering PDF signaling impacted EYA protein abundance. Specifically, we showed that protein kinase A (PKA), an effector of PDF signaling, phosphorylates EYA promoting its degradation, thus explaining the opposite responses of PDF and EYA abundance to changes in seasonal cues. In summary, our results support a model in which PDF signaling negatively modulates EYA levels to regulate seasonal physiology, linking the circadian clock to the modulation of seasonal adaptations.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Maribel Anguiano
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christine A Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
10
|
Liu J, Dai S, Shao X, Wei C, Dai Z, Yang P, Lei M, Chen R, Zhu H. Spexin mRNA profile and its response to different photoperiods in Chinese Yangzhou geese (Anas cygnoides). Front Vet Sci 2022; 9:961431. [PMID: 36118333 PMCID: PMC9479540 DOI: 10.3389/fvets.2022.961431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/29/2022] [Indexed: 11/14/2022] Open
Abstract
Spexin (SPX, NPQ), a novel neuropeptide composed of 14 amino acid residues, is evolutionarily conserved among different species. Spexin has been suggested to have pleiotropic functions in mammals. However, reports on spexin in birds are limited. To clarify the role of spexin in goose reproduction, the spexin gene was cloned and analyzed. Analysis of tissue distribution by RT-PCR showed that the expression of spexin and its two receptors was widespread. During the long photoperiod, the expression levels of spexin in the pituitary and hypothalamus and of GALR2/3 in the pituitary decreased, and the GnRH, LHβ, and FSHβ expression levels increased significantly. This suggests that a long photoperiod regulates reproductive activities by activating the gonadotrope-axis, which is modulated by decreased spexin levels.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shudi Dai
- School of Life Science, Jiangsu University, Zhenjiang, China
| | - Xibing Shao
- Anhui Tianzhi-jiao Goose Industry Co., Ltd., Chuzhou, China
| | - Chuankun Wei
- Anhui Tianzhi-jiao Goose Industry Co., Ltd., Chuzhou, China
| | - Zichun Dai
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pengxia Yang
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mingming Lei
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huanxi Zhu
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Huanxi Zhu
| |
Collapse
|
11
|
Hoermann R, Pekker MJ, Midgley JEM, Larisch R, Dietrich JW. Principles of Endocrine Regulation: Reconciling Tensions Between Robustness in Performance and Adaptation to Change. Front Endocrinol (Lausanne) 2022; 13:825107. [PMID: 35757421 PMCID: PMC9219553 DOI: 10.3389/fendo.2022.825107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/02/2022] [Indexed: 02/06/2023] Open
Abstract
Endocrine regulation in the hypothalamic-pituitary-thyroid (HPT) axis is orchestrated by physiological circuits which integrate multiple internal and external influences. Essentially, it provides either of the two responses to overt biological challenges: to defend the homeostatic range of a target hormone or adapt it to changing environmental conditions. Under certain conditions, such flexibility may exceed the capability of a simple feedback control loop, rather requiring more intricate networks of communication between the system's components. A new minimal mathematical model, in the form of a parametrized nonlinear dynamical system, is here formulated as a proof-of-concept to elucidate the principles of the HPT axis regulation. In particular, it allows uncovering mechanisms for the homeostasis of the key biologically active hormone free triiodothyronine (FT3). One mechanism supports the preservation of FT3 homeostasis, whilst the other is responsible for the adaptation of the homeostatic state to a new level. Together these allow optimum resilience in stressful situations. Preservation of FT3 homeostasis, despite changes in FT4 and TSH levels, is found to be an achievable system goal by joining elements of top-down and bottom-up regulation in a cascade of targeted feedforward and feedback loops. Simultaneously, the model accounts for the combination of properties regarded as essential to endocrine regulation, namely sensitivity, the anticipation of an adverse event, robustness, and adaptation. The model therefore offers fundamental theoretical insights into the effective system control of the HPT axis.
Collapse
Affiliation(s)
- Rudolf Hoermann
- Department for Nuclear Medicine, Klinikum Lüdenscheid, Lüdenscheid, Germany
| | - Mark J. Pekker
- Mathematical Sciences Department, University of Alabama, Huntsville, AL, United States
| | | | - Rolf Larisch
- Department for Nuclear Medicine, Klinikum Lüdenscheid, Lüdenscheid, Germany
| | - Johannes W. Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Medicine I, St. Josef Hospital, Ruhr-University of Bochum, Bochum, Germany
- Diabetes Centre Bochum/Hattingen, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| |
Collapse
|
12
|
Pang X, Ge M, Wang C, He J. Effects of geographical factors on reference values of the thyroid stimulating hormone in healthy adults in China and its clinical significance. GEOSPATIAL HEALTH 2022; 17. [PMID: 35532019 DOI: 10.4081/gh.2022.1030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The thyroid stimulating hormone (TSH) plays an important regulatory role in maintaining normal function of the thyroid gland. The purpose of this study was to explore the geographical, spatial distribution of TSH normal values in healthy Chinese adults to be used for the formulation of a standard reference. TSH values of 9321 healthy adults from 120 cities in China were collected together with 24 topographic, climatic and soil variables and used for the determination of spatial, significant relationships between TSH and these geographical factors by correlation analysis. Eleven significant factors were extracted and subjected to ridge regression and construction of vector machine models. The predicted values were tested for normality, with the disjunctive Kriging interpolation method used for geographical distribution. The values found showed a spatial pattern of higher values in the North and west but lower in the South and east We concluded that ridge regression models are useful for this kind of investigations and that certain geographical factors determine the level of TSH in healthy adults in a large expanse of land where topography, climate and soil indices vary.
Collapse
Affiliation(s)
- Xinrui Pang
- School of Geographic Sciences and Tourism, Shaanxi Normal University, Xian.
| | - Miao Ge
- School of Geographic Sciences and Tourism, Shaanxi Normal University, Xian.
| | - Congxia Wang
- Medical College of Xi'an Jiao tong University, Xian.
| | - Jinwei He
- Medical College of Yan'an University, Shaanxi, Xian.
| |
Collapse
|
13
|
He X, Di R, Guo X, Cao X, Zhou M, Li X, Xia Q, Wang X, Zhang J, Zhang X, Liu Q, Chu M. Transcriptomic Changes of Photoperiodic Response in the Hypothalamus Were Identified in Ovariectomized and Estradiol-Treated Sheep. Front Mol Biosci 2022; 9:848144. [PMID: 35480892 PMCID: PMC9036065 DOI: 10.3389/fmolb.2022.848144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 01/11/2023] Open
Abstract
Accurate timing of seasonal changes is an essential ability for an animal’s survival, and the change in the photoperiod is the key factor affecting reproductive seasonality in mammals. Emerging evidence has suggested that multiple hypothalamic genes participate in the photoperiod-induced regulation of reproductive activities in sheep, but the mechanism is still unclear. In this study, we initially examined the plasma level of two major reproductive hormones, namely, follicle-stimulating hormone (FSH) and prolactin (PRL), under different photoperiods in ovariectomized and estradiol-treated (OVX + E2) sheep using radioimmunoassay (RIA). Of the two hormones, the concentration of PRL significantly increased with the extension of the photoperiod, while FSH showed the opposite trend. Subsequently, an examination of the transcriptomic variation between the short photoperiod (SP) and long photoperiod (LP) was conducted. Differential expression analyses and functional annotation showed that several key genes in the insulin secretion (VAMP2, PRKACB, PRKCG, and PLCB1), GnRH (MAPK13, CGA, CDC42, ATF4, and LHB) pathways, and circadian entrainment (KCNJ5, PER1, GNB2, MTNR1A, and RASD1), as well as numerous lncRNAs, including XR_173257.3, XR_173415.3, XR_001435315.1, XR_001024596.2, and XR_001023464.2, were shown potentially vital for the hypothalamic photoperiodic response. Four of the differentially expressed mRNAs and lncRNAs were validated by qPCR. The constructed mRNA–mRNA interaction networks further revealed that transcripts potentially participated in hypothalamic thyroid hormone synthesis, endocrine resistance, and neuroactive ligand–receptor interactions. The interactome analysis of lncRNAs and their targets implied that XR_173257.3 and its target arylalkylamine N-acetyltransferase (AANAT) and XR_173415.3 and its target TH might participate in the regulation of seasonal reproduction. Together, the changes in reproductive hormones and transcriptome will help to determine the important photoperiod-induced lncRNAs and mRNAs and provide a valuable resource for further research on reproductive seasonality in sheep.
Collapse
Affiliation(s)
- Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Guo
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiaohan Cao
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Zhou
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyu Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Xia
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Qiuyue Liu, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Qiuyue Liu, ; Mingxing Chu,
| |
Collapse
|
14
|
Transcriptome Analysis Revealed Long Non-Coding RNAs Associated with mRNAs in Sheep Thyroid Gland under Different Photoperiods. Genes (Basel) 2022; 13:genes13040606. [PMID: 35456411 PMCID: PMC9024850 DOI: 10.3390/genes13040606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
The thyroid gland is a vital endocrine organ involved in the reproduction of animals via the regulation of hormone synthesis and secretion. LncRNAs have been proven to play important roles in reproductive regulation; however, the associated mechanism in the thyroid gland has not been clarified. In this study, we investigated to identify photoperiod-induced lncRNAs and mRNAs in the thyroid gland in Sunite ewes by comparing the expression profiles of short photoperiod (SP) and long photoperiods (LP). A total of 41,088 lncRNAs were identified in the thyroid gland through RNA-Seq. Functional analysis of differentially expressed lncRNAs using the R package revealed that reproductive hormone- and photoperiod response-related pathways, including the prolactin signaling, cAMP signaling, and circadian rhythm pathways, were significantly enriched. An mRNA-lncRNA interaction analysis suggested that the lncRNA LOC1056153S88 trans targets ARG2 and CCNB3, and the lncRNA LOC105607004 trans targets DMXL2, both of these might be involved in seasonal sheep breeding reproduction. Together, these results will provide resources for further studies on seasonal reproduction in sheep.
Collapse
|
15
|
Beltran-Frutos E, Casarini L, Santi D, Brigante G. Seasonal reproduction and gonadal function: A focus on humans starting from animal studies. Biol Reprod 2021; 106:47-57. [PMID: 34718419 DOI: 10.1093/biolre/ioab199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photoperiod impacts reproduction in many species of mammals. Mating occurs at specific seasons to achieve reproductive advantages, such as optimization of offspring survival. Light is the main regulator of these changes during the photoperiod. Seasonally breeding mammals detect and transduce light signals through extraocular photoreceptor, regulating downstream melatonin-dependent peripheral circadian events. In rodents, hormonal reduction and gonadal atrophy occur quickly, and consensually with short-day periods. It remains unclear whether photoperiod influences human reproduction. Seasonal fluctuations of sex hormones have been described in humans, although they seem to not imply adaptative seasonal pattern in human gonads. This review discusses current knowledge about seasonal changes in the gonadal function of vertebrates, including humans. The photoperiod-dependent regulation of hypothalamic-pituitary-gonadal axis, as well as morphological and functional changes of the gonads are evaluated herein. Endocrine and morphological variations of reproductive functions, in response to photoperiod, are of interest as they may reflect the nature of past population selection for adaptative mechanisms that occurred during evolution.
Collapse
Affiliation(s)
- Ester Beltran-Frutos
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca. School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia. Spain
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| |
Collapse
|
16
|
van der Spoel E, Roelfsema F, van Heemst D. Relationships Between 24-hour LH and Testosterone Concentrations and With Other Pituitary Hormones in Healthy Older Men. J Endocr Soc 2021; 5:bvab075. [PMID: 34337275 PMCID: PMC8315483 DOI: 10.1210/jendso/bvab075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/04/2022] Open
Abstract
Objective To investigate the relationship between LH and testosterone (T), which characteristics associate with the strength of this relationship, and their interrelationships with GH, TSH, cortisol, and ACTH. Design Hormones were measured in serum samples collected every 10 minutes during 24 hours from 20 healthy men, comprising 10 offspring of long-lived families and 10 control subjects, with a mean (SD) age of 65.6 (5.3) years. We performed cross-correlation analyses to assess the relative strength between 2 timeseries for all possible time shifts. Results Mean (95% CI) maximal correlation was 0.21 (0.10-0.31) at lag time of 60 minutes between LH and total T concentrations. Results were comparable for calculated free, bioavailable, or secretion rates of T. Men with strong LH-T cross-correlations had, compared with men with no cross-correlation, lower fat mass (18.5 [14.9-19.7] vs. 22.3 [18.4-29.4] kg), waist circumference (93.6 [5.7] vs. 103.1 [12.0] cm), high-sensitivity C-reactive protein (0.7 [0.4-1.3] vs. 1.8 [0.8-12.3] mg/L), IL-6 (0.8 [0.6-1.0] vs. 1.2 [0.9-3.0] pg/mL), and 24-hour mean LH (4.3 [2.0] vs. 6.1 [1.5] U/L), and stronger LH-T feedforward synchrony (1.5 [0.3] vs. 1.9 [0.2]). Furthermore, T was positively cross-correlated with TSH (0.32 [0.21-0.43]), cortisol (0.26 [0.19-0.33]), and ACTH (0.26 [0.19-0.32]). Conclusions LH is followed by T with a delay of 60 minutes in healthy older men. Men with a strong LH-T relationship had more favorable body composition, inflammatory markers, LH levels, and LH-T feedforward synchrony. We observed positive correlations between T and TSH, cortisol, and ACTH.
Collapse
Affiliation(s)
- Evie van der Spoel
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferdinand Roelfsema
- Section Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Diana van Heemst
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Taubenheim J, Kortmann C, Fraune S. Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development. Front Cell Dev Biol 2021; 9:653792. [PMID: 34178983 PMCID: PMC8222990 DOI: 10.3389/fcell.2021.653792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.
Collapse
Affiliation(s)
| | | | - Sebastian Fraune
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
He X, Tao L, Zhong Y, Di R, Xia Q, Wang X, Guo X, Gan S, Zhang X, Zhang J, Liu Q, Chu M. Photoperiod induced the pituitary differential regulation of lncRNAs and mRNAs related to reproduction in sheep. PeerJ 2021; 9:e10953. [PMID: 33976954 PMCID: PMC8067910 DOI: 10.7717/peerj.10953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The pituitary is a vital endocrine organ that regulates animal seasonal reproduction by controlling the synthesis and secretion of the hormone. The change of photoperiod is the key factor affecting the function of the pituitary in animals, but the mechanism is unclear. Here, we studied the transcriptomic variation in pars distalis (PD) of the pituitary between short photoperiod (SP) and long photoperiod (LP) using RNA sequencing based on the OVX+E2 sheep. 346 differentially expressed (DE) lncRNAs and 186 DE-mRNA were found in the PD. Moreover, function annotation analysis indicated that the reproductive hormones and photoperiod response-related pathways including aldosterone synthesis and secretion, insulin secretion, thyroid hormone synthesis, and circadian entrainment were enriched. The interaction analysis of mRNA-lncRNA suggested that MSTRG.240648, MSTRG.85500, MSTRG.32448, and MSTRG.304959 targeted CREB3L1 and DUSP6, which may be involved in the photoperiodic regulation of the PD. These findings provide resources for further study on the seasonal reproductive in ewes.
Collapse
Affiliation(s)
- Xiaoyun He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Tao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingjie Zhong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Xia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Guo
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Shangquan Gan
- Xinjiang Academy of Agricultural and Reclamation Sciences, Xinjiang, China
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Qiuyue Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Pernold K, Rullman E, Ulfhake B. Major oscillations in spontaneous home-cage activity in C57BL/6 mice housed under constant conditions. Sci Rep 2021; 11:4961. [PMID: 33654141 PMCID: PMC7925671 DOI: 10.1038/s41598-021-84141-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
The mouse is the most important mammalian model in life science research and the behavior of the mouse is a key read-out of experimental interventions and genetic manipulations. To serve this purpose a solid understanding of the mouse normal behavior is a prerequisite. Using 14-19 months of cumulative 24/7 home-cage activity recorded with a non-intrusive technique, evidence is here provided for a highly significant circannual oscillation in spontaneous activity (1-2 SD of the mean, on average 65% higher during peak of highs than lows; P = 7E-50) of male and female C57BL/6 mice held under constant conditions. The periodicity of this hitherto not recognized oscillation is in the range of 2-4 months (average estimate was 97 days across cohorts of cages). It off-sets responses to environmental stimuli and co-varies with the feeding behavior but does not significantly alter the preference for being active during the dark hours. The absence of coordination of this rhythmicity between cages with mice or seasons of the year suggest that the oscillation of physical activity is generated by a free-running intrinsic oscillator devoid of external timer. Due to the magnitude of this rhythmic variation it may be a serious confounder in experiments on mice if left unrecognized.
Collapse
Affiliation(s)
- Karin Pernold
- grid.465198.7Division Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| | - Eric Rullman
- grid.465198.7Division Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| | - Brun Ulfhake
- grid.465198.7Division Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
20
|
Characterization of hypothalamo-pituitary-thyroid axis gene expression in the hypothalamus, pituitary gland, and ovarian follicles of turkey hens during the preovulatory surge and in hens with low and high egg production. Poult Sci 2021; 100:100928. [PMID: 33588341 PMCID: PMC7896151 DOI: 10.1016/j.psj.2020.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
Dysregulation of the preovulatory surge (PS) leads to lowered egg production. The hypothalamo-pituitary-thyroid (HPT) axis has been shown to influence plasma progesterone levels and follicle ovulation. The presence of thyroid hormone receptors (THR) in the reproductive axis suggests possible effects of thyroid hormone. To further understand the potential role of thyroid hormone on the PS, HPT axis plasma hormone concentrations and gene expression were characterized surrounding the PS in average egg producing hens (AEPH), low egg producing hens (LEPH), and high egg producing hens (HEPH) (n = 3 hens/group). Data were analyzed using the mixed models procedure of SAS, with significance indicated at P < 0.05. Average egg producing hens and HEPH displayed lower levels of triiodothyronine (T3) and higher levels of thyroxine (T4) inside of the PS, whereas LEPH showed inverse T3 and T4 levels relative to the PS. Expression of mRNA for hypothalamic thyrotropin-releasing hormone (TRH), pituitary thyrotropin (TSHB), and the main thyroid hormone metabolism enzyme (DIO2) were downregulated during the PS in AEPH and HEPH. Low egg producing hens displayed higher expression of mRNA for hypothalamic TRH as well as pituitary TSHB and DIO2 compared with HEPH. Average egg producing hens expression of THR mRNAs was upregulated during the PS in the hypothalamus but downregulated in the pituitary. High egg producing hens showed decreased expression of THR mRNAs in both the hypothalamus and pituitary when compared with LEPH. In ovarian follicles, THR mRNAs were more prevalent in the thecal layer of the follicle wall compared with the granulosa layer, and expression tended to decrease with follicle maturity. Minimal differences in follicular THR expression were seen between LEPH and HEPH, indicating that THR expression is unlikely to be responsible for steroid hormone production differences occurring between LEPH and HEPH. Generally, downregulation of the HPT axis was seen during the PS in AEPH and HEPH, whereas upregulation of the HPT axis was seen in LEPH. Further studies will be required to clarify the role of the HPT axis in the regulation of ovulation and egg production rates in turkey hens.
Collapse
|
21
|
Oishi A, Gbahou F, Jockers R. Melatonin receptors, brain functions, and therapies. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:345-356. [PMID: 34225974 DOI: 10.1016/b978-0-12-819975-6.00022-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In mammals, including humans, the neurohormone melatonin is mainly secreted from the pineal gland at night and acts on two high-affinity G protein-coupled receptors, the melatonin MT1 and MT2 receptors. Major functions of melatonin receptors in the brain are the regulation of circadian rhythms and sleep. Correspondingly, the main indications of the currently available drugs for these receptors indicate this as targets. Yet these drugs may not only improve circadian rhythm- and sleep-related disorders but may also be beneficial for complex diseases like major depression, Alzheimer's disease, autism, and attention-deficit/hyperactivity disorders. Here, we will focus on the hypothalamic functions of melatonin receptors by updating our knowledge on their hypothalamic expression pattern at normal, aged, and disease states, by discussing their capacity to regulate circadian rhythms and sleep and by presenting the clinical applications of the melatonin receptor-targeting drugs ramelteon, tasimelteon, and agomelatine or of prolonged-release melatonin formulations. Finally, we speculate about future trends in the field of melatonin receptor drugs.
Collapse
Affiliation(s)
- Atsuro Oishi
- Institut Cochin, Université de Paris, Paris, France
| | | | - Ralf Jockers
- Institut Cochin, Université de Paris, Paris, France.
| |
Collapse
|
22
|
van der Spoel E, Roelfsema F, van Heemst D. Within-Person Variation in Serum Thyrotropin Concentrations: Main Sources, Potential Underlying Biological Mechanisms, and Clinical Implications. Front Endocrinol (Lausanne) 2021; 12:619568. [PMID: 33716972 PMCID: PMC7945716 DOI: 10.3389/fendo.2021.619568] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/08/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Individuals exhibit fluctuations in the concentration of serum thyroid-stimulating hormone (TSH) over time. The scale of these variations ranges from minutes to hours, and from months to years. The main factors contributing to the observed within-person fluctuations in serum TSH comprise pulsatile secretion, circadian rhythm, seasonality, and ageing. In clinical practice and clinical research however, such within-person biological variation in serum TSH concentrations is often not considered. The aim of this review is to present an overview of the main sources of within-person variation in TSH levels, as well as the potential underlying biological mechanisms, and the clinical implications. SUMMARY In euthyroid individuals, the circadian rhythm, with a nocturnal surge around 02:00-04:00 h and a nadir during daytime has the greatest impact on variations in serum TSH concentrations. Another source of within-person variation in TSH levels is seasonality, with generally higher levels during the cold winter months. Since TSH is secreted in a pulsatile manner, TSH levels also fluctuate over minutes. Furthermore, elevated TSH levels have been observed with ageing. Other factors that affect TSH levels include thyroid peroxidase (TPO)-antibody positivity, BMI, obesity, smoking, critical illness, and many xenobiotics, including environmental pollutants and drugs. Potential underlying biological mechanisms of within-person variation in TSH levels can be safely concluded from the ability of TSH to respond quickly to changes in cues from the internal or external environment in order to maintain homeostasis. Such cues include the biological clock, environmental temperature, and length of day. The observed increase in TSH level with ageing can be explained at a population level and at an organism level. In clinical practice, the season for thyroid testing can influence a patient's test result and it occurs frequently that subclinical hypothyroid patients normalize to euthyroid levels over time without intervention. CONCLUSIONS Serum TSH concentrations vary over time within an individual, which is caused by multiple different internal and external factors. It is important to take the within-person variations in serum TSH concentrations into account when testing a patient in clinical practice, but also in performing clinical research.
Collapse
Affiliation(s)
- Evie van der Spoel
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Evie van der Spoel,
| | - Ferdinand Roelfsema
- Section Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Diana van Heemst
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
23
|
Fu J, Zhang G, Xu P, Guo R, Li J, Guan H, Li Y. Seasonal Changes of Thyroid Function Parameters in Women of Reproductive Age Between 2012 and 2018: A Retrospective, Observational, Single-Center Study. Front Endocrinol (Lausanne) 2021; 12:719225. [PMID: 34539571 PMCID: PMC8443767 DOI: 10.3389/fendo.2021.719225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Thyroid function can be influenced by external stimuli such as light and temperature. However, it is currently unknown whether there is seasonal variation of thyroid function in women of reproductive age. Adequate thyroid function in reproductive-aged women is necessary for optimal fetal-maternal outcomes. Therefore, this study aims to evaluate the seasonal changes in levels of thyrotropin (TSH), free triiodothyronine (FT3), free thyroxine (FT4), and TSH index (TSHI) in women of reproductive age. METHODS A large retrospective study was conducted that included women aged 20-49 years who visited our outpatient or checkup center between 2012 and 2018. Thyroid function was measured using the automated immunochemiluminescent assay kit. Subjects with overt thyroid dysfunction, pregnancy, thyroid disease, cancer, and severe infectious or psychological disease were excluded. Seasonal differences of thyroid function were analyzed using the Kruskal-Wallis test or the analysis of means with transformed ranks. Spearman's correlation was performed to evaluate the association between thyroid function parameters and age. A subset of 181 subjects was included in the longitudinal analyses. Differences in thyroid function between summer and winter were analyzed using the Wilcoxon signed-rank test. RESULTS A total of 48,990 women with a median age of 39 years were included. The prevalence of subclinical hypothyroidism was lower in summer but higher in winter (5.6% vs. 7.0%, p < 0.05). The TSH, FT3, and FT4 levels and TSHI reached a peak in winter, while they declined to trough in summer. The TSH concentrations (r = 0.044, p < 0.001) and TSHI (r = 0.025, p < 0.001) were positively correlated with age, whereas FT3 (r = -0.073, p < 0.001) and FT4 (r = -0.059, p < 0.001) were negatively correlated with age. The associations of thyroid parameters with age were similar between subjects with positive thyroid peroxidase antibody (TPOAb) and those with negative TPOAb. In the matched longitudinal analysis of 181 subjects, no differences were detected in the thyroid parameters between summer and winter. CONCLUSIONS This retrospective single-center study showed that thyroid hormone levels and central sensitivity to thyroid hormones are influenced by age and seasonal fluctuations among women of reproductive age, while their impact on reproductive health remains to be elucidated in future studies.
Collapse
Affiliation(s)
- Jinrong Fu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Endocrinology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guofeng Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pei Xu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rui Guo
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiarong Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Haixia Guan, ; Yushu Li,
| | - Yushu Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Haixia Guan, ; Yushu Li,
| |
Collapse
|
24
|
Xu JH, Wang Z, Mou JJ, Zhao XY, Geng XC, Wu M, Xue HL, Chen L, Xu LX. The effect of autophagy and mitochondrial fission on Harderian gland is greater than apoptosis in male hamsters during different photoperiods. PLoS One 2020; 15:e0241561. [PMID: 33253255 PMCID: PMC7704011 DOI: 10.1371/journal.pone.0241561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/18/2020] [Indexed: 11/28/2022] Open
Abstract
Photoperiod is an important factor of mammalian seasonal rhythm. Here, we studied morphological differences in the Harderian gland (HG), a vital photosensitive organ, in male striped dwarf hamsters (Cricetulus barabensis) under different photoperiods (short photoperiod, SP; moderate photoperiod, MP; long photoperiod, LP), and investigated the underlying molecular mechanisms related to these morphological differences. Results showed that carcass weight and HG weight were lower under SP and LP conditions. There was an inverse correlation between blood melatonin levels and photoperiod in the order SP > MP > LP. Protein expression of hydroxyindole-O-methyltransferase (HIOMT), a MT synthesis-related enzyme, was highest in the SP group. Protein expression of bax/bcl2 showed no significant differences, indicating that the level of apoptosis remained stable. Protein expression of LC3II/LC3I was higher in the SP group than that in the MP group. Furthermore, comparison of changes in the HG ultrastructure demonstrated autolysosome formation in the LP, suggesting the lowest autophagy level in under MP. Furthermore, the protein expression levels of ATP synthase and mitochondrial fission factor were highest in the MP group, whereas citrate synthase, dynamin-related protein1, and fission1 remained unchanged in the three groups. The change trends of ATP synthase and citrate synthase activity were similar to that of protein expression among the three groups. In summary, the up-regulation of autophagy under SP and LP may be a primary factor leading to loss of HG weight and reduced mitochondrial energy supply capacity.
Collapse
Affiliation(s)
- Jin-Hui Xu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Zhe Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jun-Jie Mou
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xiang-Yu Zhao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xiao-Cui Geng
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
- Yiheyuan School, Yiyuan, Shandong, China
| | - Ming Wu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Hui-Liang Xue
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lei Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lai-Xiang Xu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
- * E-mail:
| |
Collapse
|
25
|
Chen J, Okimura K, Yoshimura T. Light and Hormones in Seasonal Regulation of Reproduction and Mood. Endocrinology 2020; 161:5879749. [PMID: 32738138 PMCID: PMC7442225 DOI: 10.1210/endocr/bqaa130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
Organisms that inhabit the temperate zone exhibit various seasonal adaptive behaviors, including reproduction, hibernation, molting, and migration. Day length, known as photoperiod, is the most noise-free and widely used environmental cue that enables animals to anticipate the oncoming seasons and adapt their physiologies accordingly. Although less clear, some human traits also exhibit seasonality, such as birthrate, mood, cognitive brain responses, and various diseases. However, the molecular basis for human seasonality is poorly understood. Herein, we first review the underlying mechanisms of seasonal adaptive strategies of animals, including seasonal reproduction and stress responses during the breeding season. We then briefly summarize our recent discovery of signaling pathways involved in the winter depression-like phenotype in medaka fish. We believe that exploring the regulation of seasonal traits in animal models will provide insight into human seasonality and aid in the understanding of human diseases such as seasonal affective disorder (SAD).
Collapse
Affiliation(s)
- Junfeng Chen
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kousuke Okimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
26
|
Wang Z, Xu JH, Mou JJ, Kong XT, Wu M, Xue HL, Xu LX. Photoperiod Affects Harderian Gland Morphology and Secretion in Female Cricetulus barabensis: Autophagy, Apoptosis, and Mitochondria. Front Physiol 2020; 11:408. [PMID: 32435203 PMCID: PMC7218128 DOI: 10.3389/fphys.2020.00408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Photoperiod is an important factor of mammalian seasonal rhythm. The Harderian gland (HG) appears to act as a “standby” structure of the retinal-pineal axis, mediating light signals in vitro and neuroendocrine regulation in vivo; however, the effect of photoperiod on the HG is not clear. Here, we studied morphological differences in the HG of female striped dwarf hamsters (Cricetulus barabensis), a small mammal that experiences an annual rhythm, under different photoperiods (i.e., SP, short photoperiod; MP, moderate photoperiod; LP, long photoperiod), and further investigated the molecular mechanisms related to these morphological differences. Results showed that body weight, carcass weight, and HG weight were higher in the SP and LP groups than that in the MP group. Protein expression of hydroxyindole-o-methyltransferase, a key enzyme in melatonin synthesis, was higher in the SP group than in the other two groups. Somatostatin showed highest expression in the LP group. Furthermore, comparison of changes in the HG ultrastructure demonstrated autolysosome formation in the SP group. Protein aggregation and mRNA expression of LC3 and protein expression of LC3II/LC3I were higher in the SP group than in the MP group, indicating elevated autophagy under SP. Chromatin agglutination and mitochondrial damage were observed and bax/bcl2 and cytochrome C expression increased at the protein and mRNA levels in the SP and LP groups, suggesting increased apoptosis. Protein expression of dynamin-related protein 1 and mitochondrial fission factor (Mff) were highest in the SP group, suggesting elevated mitochondrial fission. Protein expression levels of adenosine triphosphate (ATP) synthase and citrate synthase were lower in the LP group than in the SP and MP groups. These results indicated that autophagy and apoptosis imbalance under SP and LP conditions may have led to HG weight loss and up-regulation of mitochondrial apoptosis may have weakened mitochondrial function under LP conditions. Finally, melatonin synthesis appeared to be positively correlated with the time hamsters entered darkness.
Collapse
Affiliation(s)
- Zhe Wang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Jin-Hui Xu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Jun-Jie Mou
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xiao-Tong Kong
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Ming Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Hui-Liang Xue
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Lai-Xiang Xu
- College of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
27
|
La Y, He X, Zhang L, Di R, Wang X, Gan S, Zhang X, Zhang J, Hu W, Chu M. Comprehensive Analysis of Differentially Expressed Profiles of mRNA, lncRNA, and circRNA in the Uterus of Seasonal Reproduction Sheep. Genes (Basel) 2020; 11:genes11030301. [PMID: 32178360 PMCID: PMC7140836 DOI: 10.3390/genes11030301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022] Open
Abstract
Photoperiod is one of the important factors leading to seasonal reproduction of sheep. However, the molecular mechanisms underlying the photoperiod regulation of seasonal reproduction remain poorly understood. In this study, we compared the expression profiles of mRNAs, lncRNAs, and circRNAs in uterine tissues from Sunite sheep during three different photoperiods, namely, the short photoperiod (SP), short transfer to long photoperiod (SLP), and long photoperiod (LP). The results showed that 298, 403, and 378 differentially expressed (DE) mRNAs, 171, 491, and 499 DE lncRNAs, and 124, 270, and 400 DE circRNAs were identified between SP and LP, between SP and SLP, and between LP and SLP, respectively. Furthermore, functional enrichment analysis showed that the differentially expressed RNAs were mainly involved in the GnRH signaling pathway, thyroid hormone synthesis, and thyroid hormone signaling pathway. In addition, co-expression networks of lncRNA–mRNA were constructed based on the correlation analysis between the differentially expressed RNAs. Our study provides new insights into the expression changes of RNAs in different photoperiods, which might contribute to understanding the molecular mechanisms of seasonal reproduction in sheep.
Collapse
Affiliation(s)
- Yongfu La
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Wenping Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-15901106848 (W.H.); +86-010-62819850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-15901106848 (W.H.); +86-010-62819850 (M.C.)
| |
Collapse
|
28
|
Pérez JH, Tolla E, Dunn IC, Meddle SL, Stevenson TJ. A Comparative Perspective on Extra-retinal Photoreception. Trends Endocrinol Metab 2019; 30:39-53. [PMID: 30522810 DOI: 10.1016/j.tem.2018.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
Ubiquitous in non-mammalian vertebrates, extra-retinal photoreceptors (ERPs) have been linked to an array of physiological, metabolic, behavioral, and morphological changes. However, the mechanisms and functional roles of ERPs remain one of the enduring questions of modern biology. In this review article, we use a comparative framework to identify conserved roles and distributions of ERPs, highlighting knowledge gaps. We conclude that ERP research can be divided into two largely unconnected categories: (i) identification and localization of photoreceptors and (ii) linkage of non-retinal light reception to behavioral and physiological processes, particularly endocrine systems. However, the emergence of novel gene editing and silencing techniques is enabling the unification of ERP research by allowing the bridging of this divide.
Collapse
Affiliation(s)
- Jonathan H Pérez
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland; The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland.
| | - Elisabetta Tolla
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland
| | - Ian C Dunn
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland
| | - Tyler J Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland
| |
Collapse
|
29
|
Fröhlich E, Wahl R. The forgotten effects of thyrotropin-releasing hormone: Metabolic functions and medical applications. Front Neuroendocrinol 2019; 52:29-43. [PMID: 29935915 DOI: 10.1016/j.yfrne.2018.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022]
Abstract
Thyrotropin-releasing hormone (TRH) causes a variety of thyroidal and non-thyroidal effects, the best known being the feedback regulation of thyroid hormone levels. This was employed in the TRH stimulation test, which is currently little used. The role of TRH as a cancer biomarker is minor, but exaggerated responses to TSH and prolactin levels in breast cancer led to the hypothesis of a potential role for TRH in the pathogenesis of this disease. TRH is a rapidly degraded peptide with multiple targets, limiting its suitability as a biomarker and drug candidate. Although some studies reported efficacy in neural diseases (depression, spinal cord injury, amyotrophic lateral sclerosis, etc.), therapeutic use of TRH is presently restricted to spinocerebellar degenerative disease. Regulation of TRH production in the hypothalamus, patterns of expression of TRH and its receptor in the body, its role in energy metabolism and in prolactin secretion are addressed in this review.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Internal Medicine (Dept. of Endocrinology and Diabetology, Angiology, Nephrology and Clinical Chemistry), University of Tuebingen, Otfried-Muellerstrasse 10, 72076 Tuebingen, Germany; Center for Medical Research, Medical University Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Richard Wahl
- Internal Medicine (Dept. of Endocrinology and Diabetology, Angiology, Nephrology and Clinical Chemistry), University of Tuebingen, Otfried-Muellerstrasse 10, 72076 Tuebingen, Germany.
| |
Collapse
|
30
|
Sun J, Hui C, Xia T, Xu M, Deng D, Pan F, Wang Y. Effect of hypothyroidism on the hypothalamic-pituitary-ovarian axis and reproductive function of pregnant rats. BMC Endocr Disord 2018; 18:30. [PMID: 29793475 PMCID: PMC5968710 DOI: 10.1186/s12902-018-0258-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to detect changes in hormone levels in the hypothalamic-pituitary-ovarian axis in Sprague-Dawley (SD) rats with hypothyroidism, and identify differences in the pregnancy and abortion rates of female adult rats. The potential role of gonadotropin releasing hormone (GnRH) as the link between the hypothalamic-pituitary-ovarian axis and reproductive function regulated by thyroid hormones was also investigated. METHODS Female SD rats (n = 136) were causally classified into two groups: the normal-drinking-water group (n = 60) and the 0.05% propylthiouracil-drinking-water group (PTU 2 mg/kg/day, n = 76) to establish an adult rat model of hypothyroidism (6 weeks). Female and male rats at a ratio of 1:2 were used to establish a hypothyroidism pregnancy model. GnRH mRNA and GnRH receptor (GnRHR) expression in rats was detected using real time quantitative PCR(qRT-PCR) and immunohistochemistry, respectively. RESULTS The abortion rate differed significantly between the hypothyroidism pregnancy group and the normal pregnancy group (P < 0.05). No significant differences were found in the distribution of the GnRHR among the five nuclei (hypothalamic arcuate nucleus, hypothalamic ventromedial nucleus, hypothalamic anterior nucleus, paraventricular nucleus of the hypothalamus, and ventral premammillary nucleus) of the hypothalamus and ovary (P > 0.05). Hypothyroidism had no significant effect on GnRH mRNA expression in the hypothalamic-pituitary-ovarian axis in the four groups (normal control group, normal pregnancy group, hypothyroidism pregnancy group, and hypothyroidism group) (P > 0.05). CONCLUSIONS Hypothyroidism had an adverse impact on pregnancy in rats and may affect the distribution of pituitary GnRHR, whereas it did not obviously affect the distribution of GnRHR in the nuclei of the hypothalamus and ovary. Hypothyroidism had no effect on GnRH mRNA expression.
Collapse
Affiliation(s)
- Jianran Sun
- Department of Endocrinology, Institute of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 Anhui China
| | - Cancan Hui
- Department of Endocrinology, Institute of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 Anhui China
| | - Tongjia Xia
- Department of Endocrinology, Institute of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 Anhui China
| | - Min Xu
- Department of Endocrinology, Institute of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 Anhui China
| | - Datong Deng
- Department of Endocrinology, Institute of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 Anhui China
| | - Faming Pan
- Department of Epidemiology and Biostatistics,School of Public Health, Anhui Medical University,81Meishan Road, Hefei, 230032 Anhui China
| | - Youmin Wang
- Department of Endocrinology, Institute of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 Anhui China
| |
Collapse
|
31
|
Affiliation(s)
- Yoshiharu Murata
- 1 Professor Emeritus of Nagoya University , Nagoya, Japan
- 2 Director, Gikokai Kachi Memorial Hospital , Toyohashi, Japan
| | - Masanobu Yamada
- 3 President of the Japan Thyroid Association , Tokyo, Japan
- 4 Professor of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine , Maebashi, Japan
| |
Collapse
|