1
|
Kalisz G, Budzynska B, Sroka-Bartnicka A. The optimization of sample preparation on zebrafish larvae in vibrational spectroscopy imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125288. [PMID: 39437695 DOI: 10.1016/j.saa.2024.125288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
The zebrafish (Danio rerio) larvae are widely used in biomedical, pharmaceutical, and ecotoxicological studies. Their transparency and translational potential make them particularly valuable for fluorescence imaging. In addition to fluorescence imaging, microspectroscopy, which combines vibrational spectroscopy: Raman or Fourier transform infrared (FT-IR) with microscopy, allows the collection of spatially resolved, label-free information. According to available literature, it was the first application of FT-IR imaging in zebrafish larvae. This study aims to compare different fixation methods for 10-day post-fertilization (dpf) zebrafish larvae using vibrational spectroscopy imaging. Paraformaldehyde (PFA), glutaraldehyde (GA), low temperature, and embedding in gelatin and agarose were investigated. Amides, lipids, and phosphates distribution were more informative in embedded samples but with challenging handling of the sample due to stiffness at -20 °C. FT-IR and Raman mapping revealed that frozen samples had better-preserved tissue structure than chemical fixation. PFA showed uniform amide distribution, while GA treatment exhibited tissue disruptions and denser protein networks in both. Handling of embedded samples is challenging for an operator, but provides more reliable results in developmental biology or disease modeling, compared to chemical treatment.
Collapse
Affiliation(s)
- Grzegorz Kalisz
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland; Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland.
| | - Barbara Budzynska
- Independent Unit of Behavioral Studies, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland.
| |
Collapse
|
2
|
Teicher G, Riffe RM, Barnaby W, Martin G, Clayton BE, Trapani JG, Downes GB. Marigold: a machine learning-based web app for zebrafish pose tracking. BMC Bioinformatics 2025; 26:30. [PMID: 39875867 PMCID: PMC11773884 DOI: 10.1186/s12859-025-06042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise. Here, we introduce Marigold, a free and open source web app for high-throughput behavioral analysis of embryonic and larval zebrafish. RESULTS Marigold features an intuitive graphical user interface, tracks up to 10 user-defined keypoints, supports both single- and multiwell formats, and exports a range of kinematic parameters in addition to publication-quality data visualizations. By leveraging a highly efficient, custom-designed neural network architecture, Marigold achieves reasonable training and inference speeds even on modestly powered computers lacking a discrete graphics processing unit. Notably, as a web app, Marigold does not require any installation and runs within popular web browsers on ChromeOS, Linux, macOS, and Windows. To demonstrate Marigold's utility, we used two sets of biological experiments. First, we examined novel aspects of the touch-evoked escape response in techno trousers (tnt) mutant embryos, which contain a previously described loss-of-function mutation in the gene encoding Eaat2b, a glial glutamate transporter. We identified differences and interactions between touch location (head vs. tail) and genotype. Second, we investigated the effects of feeding on larval visuomotor behavior at 5 and 7 days post-fertilization (dpf). We found differences in the number and vigor of swimming bouts between fed and unfed fish at both time points, as well as interactions between developmental stage and feeding regimen. CONCLUSIONS In both biological experiments presented here, the use of Marigold facilitated novel behavioral findings. Marigold's ease of use, robust pose tracking, amenability to diverse experimental paradigms, and flexibility regarding hardware requirements make it a powerful tool for analyzing zebrafish behavior, especially in low-resource settings such as course-based undergraduate research experiences. Marigold is available at: https://downeslab.github.io/marigold/ .
Collapse
Affiliation(s)
- Gregory Teicher
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA.
| | - R Madison Riffe
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Wayne Barnaby
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Gabrielle Martin
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Benjamin E Clayton
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Josef G Trapani
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
- Biology Department, Amherst College, Amherst, MA, USA
- Neuroscience Program, Amherst College, Amherst, MA, USA
| | - Gerald B Downes
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA.
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
3
|
De Russi G, Bertolucci C, Lucon-Xiccato T. Artificial light at night impairs visual lateralisation in a fish. J Exp Biol 2025; 228:JEB249272. [PMID: 39698928 DOI: 10.1242/jeb.249272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Environmental light, particularly during early development, significantly influences lateralisation, the asymmetric information processing between brain hemispheres. We hypothesised that lateralisation could be affected by artificial light at night (ALAN), a widespread form of environmental pollution. In our experiment, we exposed eggs and larvae of zebrafish to either control or ALAN conditions and then tested them in a rotational test to assess motor lateralisation, and a mirror test to assess lateralisation in response to visual stimuli. The control group exhibited a significant lateralisation bias at the population level, prioritising the processing of visual information with their right hemisphere. In contrast, the zebrafish exposed to ALAN did not show this bias, leading to a notable reduction in lateralisation. Additionally, we found evidence of reduced individual differences in lateralisation in the ALAN group. Overall, our findings demonstrate that ALAN disrupts the natural lateralisation in fish larvae, possibly affecting their behaviour and survival.
Collapse
Affiliation(s)
- Gaia De Russi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Zhao X, Li Z, Cao B, Jin Y, Wang W, Tian J, Dai L, Sun D, Zhang C. A high-throughput system for drug screening based on the movement analysis of zebrafish. Heliyon 2024; 10:e36495. [PMID: 39253173 PMCID: PMC11382040 DOI: 10.1016/j.heliyon.2024.e36495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Zebrafish is a highly advantageous model animal for drug screening and toxicity evaluation thanks to its amenability to optical imaging (i.e., transparency), possession of organ structures similar to humans, and the ease with which disease models can be established. However, current zebrafish drug screening technologies and devices suffer from limitations such as low level of automation and throughput, and low accuracy caused by the heterogeneity among individual zebrafish specimens. To address these issues, we herein develop a high-throughput zebrafish drug screening system. This system is capable of maintaining optimal culturing conditions and simultaneously monitoring and analyzing the movement of 288 zebrafish larvae under various external conditions, such as drug combinations. Moreover, to eliminate the effect of heterogeneity, locomotion of participating zebrafish is assessed and grouped before experiments. It is demonstrated that in contrast to the experimental results without pre-selection, which shows ∼20 % damaged motor function (i.e., degree of attenuation), the drug-induced variations among zebrafish with equivalent mobility reaches ∼80 %. Overall, our high-throughput zebrafish drug screening system overcomes current limitations by improving automation, throughput, and accuracy, resulting in enhanced detection of drug-induced variations in zebrafish motor function.
Collapse
Affiliation(s)
- Xinkai Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an, 710127, Shaanxi, China
| | - Ziyu Li
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an, 710127, Shaanxi, China
| | - Bingbing Cao
- Hunter Laboratory Technology (Nanjing) Co., Ltd., No. 182, Innovation Center, No. 2 Qiande Road, Nanjing, 211122, Jiangsu, China
| | - Yichao Jin
- Hunter Laboratory Technology (Nanjing) Co., Ltd., No. 182, Innovation Center, No. 2 Qiande Road, Nanjing, 211122, Jiangsu, China
| | - Wenxing Wang
- Huaxin Micro-fish (Suzhou) Biotechnology Co., Ltd., No. 5-4-417, Science and Education New City, Taicang, 215411, Jiangsu, China
| | - Jing Tian
- Center for Automated and Innovative Drug Discovery, Northwest University, No. 1, Xuefu Avenue, Xi'an, 710127, Shaanxi, China
- Huaxin Micro-fish (Suzhou) Biotechnology Co., Ltd., No. 5-4-417, Science and Education New City, Taicang, 215411, Jiangsu, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an, 710127, Shaanxi, China
- Center for Automated and Innovative Drug Discovery, Northwest University, No. 1, Xuefu Avenue, Xi'an, 710127, Shaanxi, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi'an, 710127, Shaanxi, China
| |
Collapse
|
5
|
Garg V, Geurten BRH. Diving deep: zebrafish models in motor neuron degeneration research. Front Neurosci 2024; 18:1424025. [PMID: 38966756 PMCID: PMC11222423 DOI: 10.3389/fnins.2024.1424025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
In the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research. Despite the difference in locomotion-zebrafish undulate while humans use limbs, the zebrafish presents relevant phenotypic parallels to human motor control disorders, providing valuable insights into neurodegenerative diseases. This review explores the zebrafish's inherent traits and how they facilitate profound insights into the complex behavioral and cellular phenotypes associated with these disorders. Furthermore, we examine recent advancements in high-throughput drug screening using the zebrafish model, a promising avenue for identifying therapeutically potent compounds.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
6
|
Gomes SDS, da Silva JF, Padilha RMO, de Vasconcelos JVA, de Negreiros Neto LG, Marrs JA, Cadena PG. Behavioral Effects of the Mixture and the Single Compounds Carbendazim, Fipronil, and Sulfentrazone on Zebrafish ( Danio rerio) Larvae. Biomedicines 2024; 12:1176. [PMID: 38927383 PMCID: PMC11200900 DOI: 10.3390/biomedicines12061176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Pesticides are often detected in freshwater, but their impact on the aquatic environment is commonly studied based on single compounds, underestimating the potential additive effects of these mixtures. Even at low concentrations, pesticides can negatively affect organisms, altering important behaviors that can have repercussions at the population level. This study used a multi-behavioral approach to evaluate the effects of zebrafish larvae exposure to carbendazim (C), fipronil (F), and sulfentrazone (S), individually and mixed. Five behavioral tests, thigmotaxis, touch sensitivity, optomotor response, bouncing ball test, and larval exploratory behavior, were performed to assess potential effects on anxiety, fear, and spatial and social interaction. Significant changes were observed in the performance of larvae exposed to all compounds and their mixtures. Among the single pesticides, exposure to S produced the most behavioral alterations, followed by F and C, respectively. A synergistic effect between the compounds was observed in the C + F group, which showed more behavioral effects than the groups exposed to pesticides individually. The use of behavioral tests to evaluate pesticide mixtures is important to standardize methods and associate behavioral changes with ecologically relevant events, thus creating a more realistic scenario for investigating the potential environmental impacts of these compounds.
Collapse
Affiliation(s)
- Samara da Silva Gomes
- Department of Morphology and Animal Physiology, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife 52171-900, PE, Brazil; (S.d.S.G.); (J.F.d.S.); (R.M.O.P.)
| | - Jadson Freitas da Silva
- Department of Morphology and Animal Physiology, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife 52171-900, PE, Brazil; (S.d.S.G.); (J.F.d.S.); (R.M.O.P.)
| | - Renata Meireles Oliveira Padilha
- Department of Morphology and Animal Physiology, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife 52171-900, PE, Brazil; (S.d.S.G.); (J.F.d.S.); (R.M.O.P.)
| | - João Victor Alves de Vasconcelos
- Department of Physics, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife 52171-900, PE, Brazil; (J.V.A.d.V.); (L.G.d.N.N.)
| | - Luís Gomes de Negreiros Neto
- Department of Physics, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife 52171-900, PE, Brazil; (J.V.A.d.V.); (L.G.d.N.N.)
| | - James A. Marrs
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN 46202, USA;
| | - Pabyton Gonçalves Cadena
- Department of Morphology and Animal Physiology, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife 52171-900, PE, Brazil; (S.d.S.G.); (J.F.d.S.); (R.M.O.P.)
| |
Collapse
|
7
|
Purifoy EJ, Mruk K. Differential Roles of Diet on Development and Spinal Cord Regeneration in Larval Zebrafish. Zebrafish 2024; 21:214-222. [PMID: 38621204 PMCID: PMC11035855 DOI: 10.1089/zeb.2023.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
The zebrafish is a powerful model organism for studying development and regeneration. However, there is a lack of a standardized reference diet for developmental and regeneration experiments. Most studies evaluate the rate of growth, survival, and fecundity. In this study, we compare three diets and their effects on growth and regeneration after a spinal cord injury (SCI). Fish were fed daily for 1 week with daily measurements of overall length and width of spinal injury. Fish fed a live rotifer diet grew 32%, whereas a commercially available diet only led to a 4% increase in body length. Similarly, differences in rate of regeneration were observed with over 80% of rotifer-fed larvae forming a glial bridge after injury compared to <10% of zebrafish fed with the commercial diet. Our data highlight the need for establishing a standardized diet for regeneration studies to improve research reproducibility.
Collapse
Affiliation(s)
- Emily J. Purifoy
- Wyoming Research Scholars Program and University of Wyoming, Laramie, Wyoming, USA
| | - Karen Mruk
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
8
|
Gore SV, Del Rosario Hernández T, Creton R. Behavioral effects of visual stimuli in adult zebrafish using a novel eight-tank imaging system. Front Behav Neurosci 2024; 18:1320126. [PMID: 38529416 PMCID: PMC10962262 DOI: 10.3389/fnbeh.2024.1320126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Animals respond to various environmental cues. Animal behavior is complex, and behavior analysis can greatly help to understand brain function. Most of the available behavioral imaging setups are expensive, provide limited options for customization, and allow for behavioral imaging of one animal at a time. Methods The current study takes advantage of adult zebrafish as a model organism to study behavior in a novel behavioral setup allowing one to concurrently image 8 adult zebrafish. Results Our results indicate that adult zebrafish show a unique behavioral profile in response to visual stimuli such as moving lines. In the presence of moving lines, the fish spent more time exploring the tank and spent more time toward the edges of the tanks. In addition, the fish moved and oriented themselves against the direction of the moving lines, indicating a negative optomotor response (OMR). With repeated exposure to moving lines, we observed a reduced optomotor response in adult zebrafish. Discussion Our behavioral setup is relatively inexpensive, provides flexibility in the presentation of various animated visual stimuli, and offers improved throughput for analyzing behavior in adult zebrafish. This behavioral setup shows promising potential to quantify various behavioral measures and opens new avenues to understand complex behaviors.
Collapse
Affiliation(s)
- Sayali V. Gore
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | | | | |
Collapse
|
9
|
Del Rosario Hernández T, Gore SV, Kreiling JA, Creton R. Drug repurposing for neurodegenerative diseases using Zebrafish behavioral profiles. Biomed Pharmacother 2024; 171:116096. [PMID: 38185043 PMCID: PMC10922774 DOI: 10.1016/j.biopha.2023.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Khalili A, Safarian N, van Wijngaarden E, Zoidl GS, Zoidl GR, Rezai P. Loss of Panx1 function in zebrafish alters motor behavior in a lab-on-chip model of Parkinson's disease. J Neurosci Res 2023; 101:1814-1825. [PMID: 37688406 DOI: 10.1002/jnr.25241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play roles in purinergic signaling in the nervous system. A link between Panx1 activity and neurodegenerative disorders including Parkinson's disease (PD) has been suggested, but experimental evidence is limited. Here, a zebrafish model of PD was produced by exposing panx1a+/+ and panx1a-/- zebrafish larvae to 6-hydroxydopamine (6-OHDA). Electrical stimulation in a microfluidic chip and quantitative real-time-qPCR of zebrafish larvae tested the role of Panx1 in both pathological and normal conditions. After 72-h treatment with 6-OHDA, the electric-induced locomotor activity of 5 days post fertilization (5dpf) panx1a+/+ larvae were reduced, while the stimulus did not affect locomotor activity of age-matched panx1a-/- larvae. A RT-qPCR analysis showed an increase in the expression of genes that are functionally related to dopaminergic signaling, like the tyrosine hydroxylase (th2) and the leucine-rich repeat kinase 2 (lrrk2). Extending the 6-OHDA treatment duration to 120 h caused a significant reduction in the locomotor response of 7dpf panx1a-/- larvae compared to the untreated panx1a-/- group. The RT-qPCR data showed a reduced expression of dopaminergic signaling genes in both genotypes. It was concluded that the absence of Panx1a channels compromised dopaminergic signaling in 6-OHDA-treated zebrafish larvae and that the increase in the expression of dopaminergic genes was transient, most likely due to a compensatory upregulation. We propose that zebrafish Panx1a models offer opportunities to shed light on PD's physiological and molecular basis. Panx1a might play a role on the progression of PD, and therefore deserves further investigation.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, Ontario, Canada
| | - Nickie Safarian
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Georg S Zoidl
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Georg R Zoidl
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Hernández TDR, Gore SV, Kreiling JA, Creton R. Finding Drug Repurposing Candidates for Neurodegenerative Diseases using Zebrafish Behavioral Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557235. [PMID: 37745452 PMCID: PMC10515830 DOI: 10.1101/2023.09.12.557235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
12
|
Widrick JJ, Lambert MR, Kunkel LM, Beggs AH. Optimizing assays of zebrafish larvae swimming performance for drug discovery. Expert Opin Drug Discov 2023; 18:629-641. [PMID: 37183669 PMCID: PMC10485652 DOI: 10.1080/17460441.2023.2211802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Zebrafish larvae are one of the few vertebrates amenable to large-scale drug discovery screens. Larval swimming behavior is often used as an outcome variable and many fields of study have developed assays for evaluating swimming performance. An unintended consequence of this wide interest is that details related to assay methodology and interpretation become scattered across the literature. The aim of this review is to consolidate this information, particularly as it relates to high-throughput approaches. AREAS COVERED The authors describe larval swimming behaviors as this forms the basis for understanding their experimentally evoked swimming or spontaneous activity. Next, they detail how swimming activity can serve as an outcome variable, particularly in the multi-well formats used in large-scale screening studies. They also highlight biological and technical factors that can impact the sensitivity and variability of these measurements. EXPERT OPINION Careful attention to animal husbandry, experimental design, data acquisition, and interpretation of results can improve screen outcomes by maximizing swimming activity while minimizing intra- and inter-larval variability. The development of more sensitive, quantitative methods of assessing swimming performance that can be incorporated into high-throughput workflows will be important in order to take full advantage of the zebrafish model.
Collapse
Affiliation(s)
- Jeffrey J. Widrick
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthias R. Lambert
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Louis M. Kunkel
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- The Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alan H. Beggs
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Pintos S, Lucon-Xiccato T, Vera LM, Bertolucci C. Daily rhythms in the behavioural stress response of the zebrafish Danio rerio. Physiol Behav 2023; 268:114241. [PMID: 37201692 DOI: 10.1016/j.physbeh.2023.114241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
In nature, animals are exposed to stressors that occur with different likelihood throughout the day, such as risk of predation and human disturbance. Hence, the stress response is expected to vary plastically to adaptively match these challenges. Several studies have supported this hypothesis in a wide range of vertebrate species, including some teleost fish, mostly through evidence of circadian variation in physiology. However, in teleost fish, circadian variation in behavioural stress responses is less understood. Here, we investigated the daily rhythm of stress response at the behavioural level in the zebrafish Danio rerio. We exposed individuals and shoals to an open field test every 4h over a 24h cycle, recording three behavioural indicators of stress and anxiety levels in novel environments (thigmotaxis, activity and freezing). Thigmotaxis and activity significantly varied throughout the day with a similar pattern, in line with a stronger stress response in the night phase. The same was suggested by analysis of freezing in shoals, but not in individual fish, in which variation appeared mostly driven by a single peak in the light phase. In a control experiment, we observed a set of subjects after familiarisation with the open-field apparatus. This experiment indicated that activity and freezing might present a daily rhythmicity that is unrelated to environmental novelty, and thus to stress responses. However, the thigmotaxis was constant through the day in the control condition, suggesting that the daily variation of this indicator is mostly attributable to the stress response. Overall, this research indicates that behavioural stress response of zebrafish does follow a daily rhythm, although this may be masked using behavioural indicators other than thigmotaxis. This rhythmicity can be relevant to improve welfare in aquaculture and reliability of behavioural research in fish models.
Collapse
Affiliation(s)
- Santiago Pintos
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Luisa María Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Bansal P, Roitman MF, Jung EE. Caloric state modulates locomotion, heart rate and motor neuron responses to acute administration of d-amphetamine in zebrafish larvae. Physiol Behav 2023; 264:114144. [PMID: 36889488 PMCID: PMC10070120 DOI: 10.1016/j.physbeh.2023.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Psychostimulant drugs increase behavioral, cardiac and brain responses in humans and other animals. Acute food deprivation or chronic food restriction potentiates the stimulatory effects of abused drugs and increases the propensity for relapse to drug seeking in drug-experienced animals. The mechanisms by which hunger affects cardiac and behavioral activities are only beginning to be elucidated. Moreover, changes in motor neuron activities at the single neuron level induced by psychostimulants, and their modulation by food restriction, remain unknown. Here we investigated how food deprivation affects responses to d-amphetamine by measuring locomotor activity, cardiac output, and individual motor neuron activity in zebrafish larvae. We used wild-type larval zebrafish to record behavioral and cardiac responses and the larvae of Tg(mnx1:GCaMP5) transgenic zebrafish to record motor neuron responses. Physiological state gated responses to d-amphetamine. That is, d-amphetamine evoked significant increases in motor behavior (swimming distances), heart rate and motor neuron firing frequency in food-deprived but not fed zebrafish larvae. The results extend the finding that signals arising from food deprivation are a key potentiator of the drug responses induced by d-amphetamine to the zebrafish model. The larval zebrafish is an ideal model to further elucidate this interaction and identify key neuronal substrates that may increase vulnerability to drug reinforcement, drug-seeking and relapse.
Collapse
Affiliation(s)
- Pushkar Bansal
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607, USA
| | - Mitchell F Roitman
- Department of Psychology, The University of Illinois at Chicago, 1007 W. Harrison St., Chicago, IL 60607, USA
| | - Erica E Jung
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607, USA; Department of Biomedical Engineering, The University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607, USA.
| |
Collapse
|
15
|
Gore SV, Kakodkar R, Del Rosario Hernández T, Edmister ST, Creton R. Zebrafish Larvae Position Tracker (Z-LaP Tracker): a high-throughput deep-learning behavioral approach for the identification of calcineurin pathway-modulating drugs using zebrafish larvae. Sci Rep 2023; 13:3174. [PMID: 36823315 PMCID: PMC9950053 DOI: 10.1038/s41598-023-30303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Brain function studies greatly depend on quantification and analysis of behavior. While behavior can be imaged efficiently, the quantification of specific aspects of behavior is labor-intensive and may introduce individual biases. Recent advances in deep learning and artificial intelligence-based tools have made it possible to precisely track individual features of freely moving animals in diverse environments without any markers. In the current study, we developed Zebrafish Larvae Position Tracker (Z-LaP Tracker), a modification of the markerless position estimation software DeepLabCut, to quantify zebrafish larval behavior in a high-throughput 384-well setting. We utilized the high-contrast features of our model animal, zebrafish larvae, including the eyes and the yolk for our behavioral analysis. Using this experimental setup, we quantified relevant behaviors with similar accuracy to the analysis performed by humans. The changes in behavior were organized in behavioral profiles, which were examined by K-means and hierarchical cluster analysis. Calcineurin inhibitors exhibited a distinct behavioral profile characterized by increased activity, acoustic hyperexcitability, reduced visually guided behaviors, and reduced habituation to acoustic stimuli. The developed methodologies were used to identify 'CsA-type' drugs that might be promising candidates for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sayali V. Gore
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Rohit Kakodkar
- grid.40263.330000 0004 1936 9094Center for Computation and Visualization, Brown University, Providence, RI USA
| | - Thaís Del Rosario Hernández
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Sara Tucker Edmister
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Robbert Creton
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| |
Collapse
|
16
|
Loganathan D, Wu SH, Chen CY. Behavioural responses of zebrafish with sound stimuli in microfluidics. LAB ON A CHIP 2022; 23:106-114. [PMID: 36453125 DOI: 10.1039/d2lc00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neuronal activities of the human brain responsible for cognitive features have been theorized through several animal models that exhibited various complementary spatial learning modes by generating a flexible repertoire of behavioral strategies. However, for such studies associated with a neurodegenerative disease, which can be further manipulated to provide therapeutic strategies, the animal models employed in their developmental stages have been preferred over the adult ones. This pilot work was incepted to underscore the spatial memory capabilities that strengthened the intricate mechanism of memory acquisition potential in one of the low-order evolutionarily conserved species, such as zebrafish larvae. Initially, a reliable and more easily reproducible microfluidic platform integrating simple and intricate paths was designed to learn and test the spatial information in zebrafish larvae of 4-6 d.p.f. under non-invasive acoustic stimuli. Further, to acquire spatial information as the representation of spatial memory formation in zebrafish larvae, the acoustic startle responses were evaluated by quantifying various dynamic behaviors under distinct operating parameters. After significant conditioning sessions, the spatial memory was tested by employing variable 'freezing'. By the end of the 30 min-long test session, 6 d.p.f. larvae were found to exhibit the highest value of freezing of approximately 43% and 20% in the short and long paths, respectively. Even though a substantial rate of memory loss was observed, it can be envisaged to serve several behavioral strategies that process the dynamic cognitive memory among distinct spatiotemporal environments. Further, the proposed behavioral paradigm had the advantage of being more adaptable and reliably replicable by other researchers. As a consequence, different hypotheses can be readily tested to generate more reproducible findings towards distinct neurobehavioral characteristics. Therefore, the proposed paradigm for the consolidation of spatial memory based on the non-invasive spatial avoidance strategies could provide an enduring framework of reference for behavioral studies using zebrafish larvae.
Collapse
Affiliation(s)
- Dineshkumar Loganathan
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Shu-Heng Wu
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chia-Yuan Chen
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
17
|
Edmister ST, Creton R. Modulation of calcineurin signaling during development. Dev Neurobiol 2022; 82:505-516. [PMID: 35785416 PMCID: PMC9922048 DOI: 10.1002/dneu.22895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/07/2022]
Abstract
Calcineurin signaling pathways are suppressed in Down syndrome (trisomy 21), by overexpression of genes that are located on chromosome 21. Two key genes are the regulator of calcineurin 1 (RCAN1), also called the Down syndrome critical region 1 (DSCR1), and the dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A). The suppressed calcineurin pathway may potentially be restored using small-molecule DYRK inhibitors, which have been proposed as therapeutics in Down syndrome. However, little is known about the benefits and risks of such treatments during various stages of embryonic development, fetal development, and childhood. We examined the modulation of calcineurin signaling during development, using zebrafish as a model system. To mimic suppressed calcineurin signaling in Down syndrome, zebrafish were exposed to the calcineurin inhibitors cyclosporine and tacrolimus during development. We found that suppression of calcineurin signaling changed specific larval behaviors, including activity and responses to acoustic and visual stimuli, depending on the period of exposure. Cotreatment with the DYRK inhibitor proINDY restored a few of these behaviors but also induced a range of adverse side effects including decreased activity and reduced optomotor responses to visual stimuli. Based on these results, we conclude that proINDY has limited benefits and substantial risks when used during development. We propose that zebrafish is an efficient model system for preliminary safety and efficacy tests of other DYRK inhibitors that aim to restore calcineurin signaling during neural development.
Collapse
Affiliation(s)
- Sara Tucker Edmister
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
18
|
Licitra R, Marchese M, Naef V, Ogi A, Martinelli M, Kiferle C, Fronte B, Santorelli FM. A Review on the Bioactivity of Cannabinoids on Zebrafish Models: Emphasis on Neurodevelopment. Biomedicines 2022; 10:biomedicines10081820. [PMID: 36009367 PMCID: PMC9404760 DOI: 10.3390/biomedicines10081820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
For centuries, the cannabis plant has been used as a source of food, fiber, and medicine. Recently, scientific interest in cannabis has increased considerably, as its bioactive compounds have shown promising potential in the treatment of numerous musculoskeletal and neurological diseases in humans. However, the mechanisms that underlie its possible effects on neurodevelopment and nervous-system functioning remain poorly understood and need to be further investigated. Although the bulk of research on cannabis and cannabinoids is based on in vitro or rodent models, the zebrafish has now emerged as a powerful in vivo model for drug-screening studies and translational research. We here review the available literature on the use of cannabis/cannabinoids in zebrafish, and particularly in zebrafish models of neurological disorders. A critical analysis suggests that zebrafish could serve as an experimental tool for testing the bioactivity of cannabinoids, and they could thus provide important insights into the safety and efficacy of different cannabis-extract-based products. The review showed that zebrafish exhibit similar behaviors to rodents following cannabinoid exposure. The authors stress the importance of analyzing the full spectrum of naturally occurring cannabinoids, rather than just the main ones, THC and CBD, and they offer some pointers on performing behavioral analysis in zebrafish.
Collapse
Affiliation(s)
- Rosario Licitra
- Molecular Medicine and Neurobiology—ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (R.L.); (V.N.); (A.O.)
| | - Maria Marchese
- Molecular Medicine and Neurobiology—ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (R.L.); (V.N.); (A.O.)
- Correspondence: (M.M.); (F.M.S.)
| | - Valentina Naef
- Molecular Medicine and Neurobiology—ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (R.L.); (V.N.); (A.O.)
| | - Asahi Ogi
- Molecular Medicine and Neurobiology—ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (R.L.); (V.N.); (A.O.)
| | - Marco Martinelli
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy; (M.M.); (C.K.)
| | - Claudia Kiferle
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy; (M.M.); (C.K.)
| | - Baldassare Fronte
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy;
| | - Filippo Maria Santorelli
- Molecular Medicine and Neurobiology—ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (R.L.); (V.N.); (A.O.)
- Correspondence: (M.M.); (F.M.S.)
| |
Collapse
|
19
|
Tan JXM, Ang RJW, Wee CL. Larval Zebrafish as a Model for Mechanistic Discovery in Mental Health. Front Mol Neurosci 2022; 15:900213. [PMID: 35813062 PMCID: PMC9263853 DOI: 10.3389/fnmol.2022.900213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Animal models are essential for the discovery of mechanisms and treatments for neuropsychiatric disorders. However, complex mental health disorders such as depression and anxiety are difficult to fully recapitulate in these models. Borrowing from the field of psychiatric genetics, we reiterate the framework of 'endophenotypes' - biological or behavioral markers with cellular, molecular or genetic underpinnings - to reduce complex disorders into measurable behaviors that can be compared across organisms. Zebrafish are popular disease models due to the conserved genetic, physiological and anatomical pathways between zebrafish and humans. Adult zebrafish, which display more sophisticated behaviors and cognition, have long been used to model psychiatric disorders. However, larvae (up to 1 month old) are more numerous and also optically transparent, and hence are particularly suited for high-throughput screening and brain-wide neural circuit imaging. A number of behavioral assays have been developed to quantify neuropsychiatric phenomena in larval zebrafish. Here, we will review these assays and the current knowledge regarding the underlying mechanisms of their behavioral readouts. We will also discuss the existing evidence linking larval zebrafish behavior to specific human behavioral traits and how the endophenotype framework can be applied. Importantly, many of the endophenotypes we review do not solely define a diseased state but could manifest as a spectrum across the general population. As such, we make the case for larval zebrafish as a promising model for extending our understanding of population mental health, and for identifying novel therapeutics and interventions with broad impact.
Collapse
Affiliation(s)
| | | | - Caroline Lei Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
20
|
Tamagno WA, de Oliveira Sofiatti JR, Alves C, Sutorillo NT, Vanin AP, Bilibio D, Pompermaier A, Barcellos LJG. Synthetic estrogen bioaccumulates and changes the behavior and biochemical biomarkers in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103857. [PMID: 35342012 DOI: 10.1016/j.etap.2022.103857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Estrogen is considered to be an endocrine disrupter and is becoming increasingly more prevalent in the daily life of humans. In some cases, estrogen is not fully metabolized by organisms and may be excreted in either its original form or in organic complex forms, into water residue systems reaching concentrations of 0.05 ng.L-1 to 75 ng.L-1. However, estrogen 17α-ethinylestradiol (EE2), which is used in oral contraceptives, is very difficult to remove from water. Here, we evaluated whether the synthetic hormone, EE2, affects the nervous system and the behavior of adult zebrafish. We established a range of concentrations (0.05, 0.5, 5, 50, and 75 ng.L-1), in addition to the control, to evaluate the effect of this compound and its bioaccumulation in zebrafish tissues. Here we show that EE2 bioaccumulates in fish and can change its behavior with an increased time in the upper zone (novel tank test) and far from the shoal segment (social preference test), demonstrating a clear anxiolytic pattern. The anxiolytic effect of EE2 can be harmful as it can affect the stress response of the species. The results presented herein reinforce the idea that the presence of EE2 in environmental water can be dangerous for non-target animals.
Collapse
Affiliation(s)
- Wagner Antonio Tamagno
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil; Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil.
| | - Jessica Reis de Oliveira Sofiatti
- Graduate Program in Environmental Science and Technology, Federal University of Fronteira Sul (UFFS) - Erechim Campus, City of Erechim, State of Rio Grande do Sul, Brazil.
| | - Carla Alves
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| | - Nathália Tafarel Sutorillo
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil.
| | - Ana Paula Vanin
- Graduate Program in Environmental Science and Technology, Federal University of Fronteira Sul (UFFS) - Erechim Campus, City of Erechim, State of Rio Grande do Sul, Brazil.
| | - Denise Bilibio
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil.
| | - Aline Pompermaier
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| | - Leonardo José Gil Barcellos
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil; Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
21
|
Tucker Edmister S, Del Rosario Hernández T, Ibrahim R, Brown CA, Gore SV, Kakodkar R, Kreiling JA, Creton R. Novel use of FDA-approved drugs identified by cluster analysis of behavioral profiles. Sci Rep 2022; 12:6120. [PMID: 35449173 PMCID: PMC9023506 DOI: 10.1038/s41598-022-10133-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Repurposing FDA-approved drugs is an efficient and cost-effective approach in the development of therapeutics for a broad range of diseases. However, prediction of function can be challenging, especially in the brain. We screened a small-molecule library with FDA-approved drugs for effects on behavior. The studies were carried out using zebrafish larvae, imaged in a 384-well format. We found that various drugs affect activity, habituation, startle responses, excitability, and optomotor responses. The changes in behavior were organized in behavioral profiles, which were examined by hierarchical cluster analysis. One of the identified clusters includes the calcineurin inhibitors cyclosporine (CsA) and tacrolimus (FK506), which are immunosuppressants and potential therapeutics in the prevention of Alzheimer's disease. The calcineurin inhibitors form a functional cluster with seemingly unrelated drugs, including bromocriptine, tetrabenazine, rosiglitazone, nebivolol, sorafenib, cabozantinib, tamoxifen, meclizine, and salmeterol. We propose that drugs with 'CsA-type' behavioral profiles are promising candidates for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sara Tucker Edmister
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Rahma Ibrahim
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Cameron A Brown
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Rohit Kakodkar
- Center for Computation and Visualization, Brown University, Providence, Rhode Island, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
22
|
Edmister ST, Ibrahim R, Kakodkar R, Kreiling JA, Creton R. A zebrafish model for calcineurin-dependent brain function. Behav Brain Res 2022; 416:113544. [PMID: 34425181 PMCID: PMC8903086 DOI: 10.1016/j.bbr.2021.113544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 01/09/2023]
Abstract
Small-molecule modulators of calcineurin signaling have been proposed as potential therapeutics in Down syndrome and Alzheimer's disease. Models predict that in Down syndrome, suppressed calcineurin-NFAT signaling may be mitigated by proINDY, which activates NFAT, the nuclear factor of activated T-cells. Conversely, elevated calcineurin signaling in Alzheimer's disease may be suppressed with the calcineurin inhibitors cyclosporine and tacrolimus. Such small-molecule treatments may have both beneficial and adverse effects. The current study examines the effects of proINDY, cyclosporine and tacrolimus on behavior, using zebrafish larvae as a model system. To suppress calcineurin signaling, larvae were treated with cyclosporine and tacrolimus. We found that these calcineurin inhibitors induced hyperactivity, suppressed visually-guided behaviors, acoustic hyperexcitability and reduced habituation to acoustic stimuli. To activate calcineurin-NFAT signaling, larvae were treated with proINDY. ProINDY treatment reduced activity and stimulated visually-guided behaviors, opposite to the behavioral changes induced by calcineurin inhibitors. The opposing effects suggest that activity and visually-guided behaviors are regulated by the calcineurin-NFAT signaling pathway. A central role of calcineurin-NFAT signaling is further supported by co-treatments of calcineurin inhibitors and proINDY, which had therapeutic effects on activity and visually-guided behaviors. However, these co-treatments adversely increased excitability, suggesting that some behaviors are regulated by other calcineurin signaling pathways. Overall, the developed methodologies provide an efficient high-throughput platform for the evaluation of modulators of calcineurin signaling that restore neural function, while avoiding adverse side effects, in a complex neural system.
Collapse
Affiliation(s)
- Sara Tucker Edmister
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Rahma Ibrahim
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Rohit Kakodkar
- Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Corresponding author.
| |
Collapse
|
23
|
Kasprzak R, Grzeszkiewicz AB, Górecka A. Performance of Co-Housed Neon Tetras ( Paracheirodon innesi) and Glowlight Rasboras ( Trigonostigma hengeli) Fed Commercial Flakes and Lyophilized Natural Food. Animals (Basel) 2021; 11:ani11123520. [PMID: 34944294 PMCID: PMC8697964 DOI: 10.3390/ani11123520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Little to no research has been conducted thus far regarding aquarium fish nutrition. In order to ensure the welfare of house-kept ornamentals, such studies should take into account that there are distinct biological differences occurring between different fish species/taxa, especially in regard to the structure of their digestive organs. Accordingly, a 12-week trial was executed to assess the effects of two commercial flakes and a mix of lyophilized natural food on the condition of co-reared neon tetras, Paracheirodon innesi (Characidae), and glowlight rasboras, Trigonostigma hengeli (Danionidae). The four feeding groups were as follows: (T)-Tetra flakes; (O)-Omega flakes; (TO)-Tetra + Omega; (TOL)-Tetra + Omega + Lyophilizate (twice a week). There were no differences in final body weight (FBW) between the feeding groups of either species, but in the case of neon tetras, FBW increased significantly from the initial value only for the T group. However, histological observations and measurements of digestive organs (livers, intestines) showed pronounced differences between the two species. The supplementation with natural food in group TOL caused lipoid hepatic degeneration only in the rasboras. The healthiest histological structure of livers and longest intestinal folds were found in group T of the tetras and group TO of the rasboras. Whole-mount staining for bone and cartilage did not reveal any significant deformities or differences in terms of bone mineralization. In conclusion, it was outlined that concurrent feeding of co-housed, anatomically diverse ornamental fish species is a highly ambiguous task, because the nutritional strategy applied for a community tank may yield radically divergent effects, most of which may remain unnoticed when depending only on external body observations and measurements. Most emphatically, this was highlighted in regard to the dietary supplementation with natural food-although no significant effects were observed in neon tetras, severe lipoid liver degeneration occurred in glowlight rasboras.
Collapse
|
24
|
Robea MA, Ciobica A, Curpan AS, Plavan G, Strungaru S, Lefter R, Nicoara M. Preliminary Results Regarding Sleep in a Zebrafish Model of Autism Spectrum Disorder. Brain Sci 2021; 11:brainsci11050556. [PMID: 33924776 PMCID: PMC8146635 DOI: 10.3390/brainsci11050556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is one of the most salient developmental neurological diseases and remarkable similarities have been found between humans and model animals of ASD. A common method of inducing ASD in zebrafish is by administrating valproic acid (VPA), which is an antiepileptic drug that is strongly linked with developmental defects in children. In the present study we replicated and extended the findings of VPA on social behavior in zebrafish by adding several sleep observations. Juvenile zebrafish manifested hyperactivity and an increase in ASD-like social behaviors but, interestingly, only exhibited minimal alterations in sleep. Our study confirmed that VPA can generate specific ASD symptoms, indicating that the zebrafish is an alternative model in this field of research.
Collapse
Affiliation(s)
- Madalina Andreea Robea
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (A.-S.C.); (G.P.); (M.N.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (A.-S.C.); (G.P.); (M.N.)
- Correspondence:
| | - Alexandrina-Stefania Curpan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (A.-S.C.); (G.P.); (M.N.)
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (A.-S.C.); (G.P.); (M.N.)
| | - Stefan Strungaru
- Department of Interdisciplinary Research in Science, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I Avenue, 11, 700505 Iasi, Romania;
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, Bd. Carol I, No 8, 700505 Iasi, Romania;
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania; (M.A.R.); (A.-S.C.); (G.P.); (M.N.)
| |
Collapse
|
25
|
Jia H, Luo KQ. Fluorescence resonance energy transfer-based sensor zebrafish for detecting toxic agents with single-cell sensitivity. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124826. [PMID: 33421851 DOI: 10.1016/j.jhazmat.2020.124826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Zebrafish are widely used for detecting toxic agents because of their unique advantages. The conventional zebrafish-based tests use lethal rates and morphological changes as criteria to evaluate the toxicity. To increase the sensitivity of using zebrafish to detect toxic agents, a fluorescence resonance energy transfer-based apoptotic biosensor was introduced into zebrafish genome to generate transgenic sensor zebrafish. Seven chemicals including heavy metals, nanomaterials and DNA-damaging agents were used to treat the sensor zebrafish to determine the sensitivity of the sensor zebrafish. The results showed that sensor zebrafish can detect the toxicity of the tested agents with single-cell sensitivity. Using the sensor zebrafish, we found that, at 100 nM, heavy metal cadmium (Cd) induced apoptosis of zebrafish cells, while no obvious morphological or behavioral changes were observed from the sensor zebrafish. Even at 44.5 nM (the maximum allowable concentration in drinking water), Cd induced a significant increase of apoptosis in sensor zebrafish. ZnO nanoparticles caused apoptosis in sensor zebrafish at a very low concentration of 100 ng/mL. DNA-damaging agents induced the apoptosis of many cells in sensor zebrafish. The sensor zebrafish are much more sensitive than the conventional zebrafish-based tests and can serve as a powerful tool for detecting toxic agents.
Collapse
Affiliation(s)
- Hao Jia
- Faculty of Health Sciences, University of Macau, Taipa, Macao
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao.
| |
Collapse
|
26
|
Minski VT, Garbinato C, Thiel N, Siebel AM. Erythromycin in the aquatic environment: deleterious effects on the initial development of zebrafish. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:56-66. [PMID: 33073732 DOI: 10.1080/15287394.2020.1834477] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to the large volume of erythromycin continuously reaching waterbodies and its high persistence, this antibiotic drug has been detected in the aquatic environment at elevated concentrations. Although the problem of the presence of erythromycin in the environment is evident due to its influence in development of antimicrobial resistance, the toxicological consequences on non-target organisms remain to be determined. There are no apparent data on the impact of environmentally relevant concentrations of erythromycin on developing fish. Data on toxic effects during development are essential for evaluation of environmental risk to organisms. Therefore, the aim of this study was to investigate the effects of exposure to erythromycin on certain parameters including hatchability, survival rate, heart rate, and behavior in developing zebrafish. Zebrafish were exposed to a range of environmentally relevant concentrations of antibiotic (0.001, 0.01, 0.1, 1 μg/L) and one concentration 10-fold higher (10 μg/L). Exposure to erythromycin at 0.1 μg/L delayed hatching and decreased survival rate. Exposure to all tested concentrations increased heart rate. Further, exposure to erythromycin at 1 or 10 μg/L enhanced swimming activity. Our results indicated that erythromycin present in the aquatic environment might lead to disabling consequences in developing fish organisms and subsequently may result in ecological imbalance in the natural environment.
Collapse
Affiliation(s)
- Valeska Toffolo Minski
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação Em Ciências Ambientais, Universidade Comunitária da Região de Chapecó , Chapecó, Brazil
| | - Cristiane Garbinato
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação Em Ciências Ambientais, Universidade Comunitária da Região de Chapecó , Chapecó, Brazil
| | - Nathana Thiel
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação Em Ciências Ambientais, Universidade Comunitária da Região de Chapecó , Chapecó, Brazil
| | - Anna Maria Siebel
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação Em Ciências Ambientais, Universidade Comunitária da Região de Chapecó , Chapecó, Brazil
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó , Chapecó, Brazil
| |
Collapse
|
27
|
Pompermaier A, Kirsten K, Soares SM, Fortuna M, Kalichak F, Idalencio R, Koakoski G, Barreto RE, Barcellos LJG. Waterborne agrichemicals compromise the anti-predatory behavior of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38559-38567. [PMID: 32623676 DOI: 10.1007/s11356-020-09862-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Due to human activities, there is an increasing presence of agrochemicals residues in water bodies, which could be attributed to an increased use of these chemicals, incorrect disposal of packaging materials, and crop leaching. The effects of these residues on prey-predator relationship of aquatic animals are poorly known. Here, we show that fish acutely exposed to glyphosate, 2,4-D, and methylbenzoate-based agrichemicals have their anti-predatory responses impaired. We exposed zebrafish to sub-lethal concentrations of agrichemicals and evaluated their behavioral reaction against a simulated bird predatory strike. We observed that agrichemical-exposed fish spent more time in a risky area, suggesting that the pesticides interfered with their ability of risk perception. Our results highlight the impairment and environmental consequences of agrochemical residues, which can affect aquatic life and crucial elements for life (food web) such as the prey-predator relationship.
Collapse
Affiliation(s)
- Aline Pompermaier
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Karina Kirsten
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Fabiana Kalichak
- Curso de Medicina Veterinária, Faculdades Integradas do Vale do Iguaçu (Uniguaçu), Rua Padre Saporiti, 717, Rio D'Areia, União da Vitória, PR, 84600-904, Brazil
| | - Renan Idalencio
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Rodrigo Egydio Barreto
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, CAUNESP, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil.
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
| |
Collapse
|
28
|
Frizzo IB, Koakoski G, Freddo N, Maffi VC, Bertol CD, Barcellos LJG, Rossato-Grando LG. CHRONIC EXPOSURE TO METHYLPHENIDATE-CONTAMINATED WATER ELICITS SOCIAL IMPAIRMENT TO ZEBRAFISH. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103473. [PMID: 32860936 DOI: 10.1016/j.etap.2020.103473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Residual contamination of water with MPH represents a severe environmental issue because it can affect non-target animals. Here we describe the behavioral effects in zebrafish after chronic contamination of water containing residues of MPH (0.1875, 1.875 and 3 ug/L). These doses are environmentally relevant since they reflect those found in wastewaters. We evaluated the behavioral effect through the novel tank test (NTT) and social preference test (SPT), and after euthanasia we analyzed oxidative stress parameters. Zebrafish exposed to MPH presented a social impairment, avoiding the conspecifics segment in the social preference test. In addition, MPH in the lowest concentration provoked an anxiolytic effect in the novel tank test. Oxidative stress is not related to these changes. Since the maintenance of an intact behavioral repertoire is crucial for species survival and fitness, our results demonstrate that residual contamination of water by MPH can be a threat to zebrafish, impacting directly to its well-being and survival in the aquatic environment.
Collapse
Affiliation(s)
- Izadora Borgmann Frizzo
- Institute of Biological Sciences, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
| | - Gessi Koakoski
- Institute of Biological Sciences, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil; Post-Graduation Program in Bioexperimentation, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
| | - Natália Freddo
- Post-Graduation Program in Bioexperimentation, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
| | - Victoria Costa Maffi
- School of Veterinary Medicine, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
| | - Charise Dallazem Bertol
- Institute of Biological Sciences, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Leonardo José Gil Barcellos
- Post-Graduation Program in Bioexperimentation, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil; School of Veterinary Medicine, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil; Post-Graduation Program in Environmental Sciences, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil; Post-Graduation Program in Pharmacology, Federal University of Santa Maria, (UFSM), Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil.
| | - Luciana Grazziotin Rossato-Grando
- Institute of Biological Sciences, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil; Post-Graduation Program in Bioexperimentation, University of Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
| |
Collapse
|
29
|
A vertebrate model to reveal neural substrates underlying the transitions between conscious and unconscious states. Sci Rep 2020; 10:15789. [PMID: 32978423 PMCID: PMC7519646 DOI: 10.1038/s41598-020-72669-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
The field of neuropharmacology has not yet achieved a full understanding of how the brain transitions between states of consciousness and drug-induced unconsciousness, or anesthesia. Many small molecules are used to alter human consciousness, but the repertoire of underlying molecular targets, and thereby the genes, are incompletely understood. Here we describe a robust larval zebrafish model of anesthetic action, from sedation to general anesthesia. We use loss of movement under three different conditions, spontaneous movement, electrical stimulation or a tap, as a surrogate for sedation and general anesthesia, respectively. Using these behavioral patterns, we find that larval zebrafish respond to inhalational and IV anesthetics at concentrations similar to mammals. Additionally, known sedative drugs cause loss of spontaneous larval movement but not to the tap response. This robust, highly tractable vertebrate model can be used in the detection of genes and neural substrates involved in the transition from consciousness to unconsciousness.
Collapse
|
30
|
Tomasello DL, Sive H. Noninvasive Multielectrode Array for Brain and Spinal Cord Local Field Potential Recordings from Live Zebrafish Larvae. Zebrafish 2020; 17:271-277. [PMID: 32758083 PMCID: PMC7455471 DOI: 10.1089/zeb.2020.1874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Zebrafish are an important and expanding experimental system for brain research. We describe a noninvasive electrophysiology technique that can be used in living larvae to measure spontaneous activity in the brain and spinal cord simultaneously. This easy-to-use method uses a commercially available multielectrode array to detect local field potential parameters, and allows for relative coordinated (network) measurements of activity. We demonstrate sensitivity of this system by measuring activity in larvae treated with the antiepileptic drug valproic acid. Valproic acid decreased larval movement and startle response, and decreased spontaneous brain activity. Spinal cord activity did not change after treatment, suggesting valproic acid primarily affects brain function. The observed differences in brain activity, but not spinal cord activity, after valproic acid treatment indicates that brain activity differences are not a secondary effect of decreased startle response and movement. We provide a step-by-step protocol for experiments presented that a novice could easily follow. This electrophysiological method will be useful to the zebrafish neuroscience community.
Collapse
Affiliation(s)
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
Garbinato C, Schneider SE, Sachett A, Decui L, Conterato GM, Müller LG, Siebel AM. Exposure to ractopamine hydrochloride induces changes in heart rate and behavior in zebrafish embryos and larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21468-21475. [PMID: 32277412 DOI: 10.1007/s11356-020-08634-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Different veterinary drugs have been widely found in surface and groundwater, affecting non-target organisms. Ractopamine (RAC) is one of these drugs found in water bodies. It is a β-adrenergic agonist used as a feed additive to modulate the metabolism, redirect nutrients from the adipose tissue towards muscles, and increase protein synthesis in swine, cattle, and turkeys. RAC shows toxicological potential, but there is no data about its impacts on the development of non-target organisms, such as zebrafish (Danio rerio). In this study, we evaluated the effect of the exposure to this feed additive on critical parameters (hatching, survival, spontaneous movement, heart rate, and exploratory and locomotor behavior) in zebrafish embryos and larvae. The animals were exposed to RAC hydrochloride at 0.1, 0.2, 0.85, 8.5, and 85 μg/L. Zebrafish exposed to the drug showed increased heart rate at all tested concentrations and alterations on locomotion and exploratory behavior at 85 μg/L. No changes were observed in the survival, hatching rate and spontaneous movement. Our results suggest that RAC present in the environment can induce disabling effects on non-target organisms and elicit an ecological imbalance by increasing the animals' vulnerability to predation due to greater visibility.
Collapse
Affiliation(s)
- Cristiane Garbinato
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
| | - Sabrina Ester Schneider
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
| | - Adrieli Sachett
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Decui
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
| | - Greicy M Conterato
- Laboratório de Fisiologia da Reprodução Animal, Departamento de Agricultura, Biodiversidade e Floresta, Universidade Federal de Santa Catarina, Campus de Curitibanos, Curitibanos, SC, Brazil
| | - Liz Girardi Müller
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil
| | - Anna Maria Siebel
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Chapecó, SC, 89809-900, Brazil.
| |
Collapse
|
32
|
Jia H, Song Y, Huang B, Ge W, Luo KQ. Engineered Sensor Zebrafish for Fast Detection and Real-Time Tracking of Apoptosis at Single-Cell Resolution in Live Animals. ACS Sens 2020; 5:823-830. [PMID: 32090557 DOI: 10.1021/acssensors.9b02489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis plays crucial roles during development and in disease conditions. While there are some methods to detect apoptosis in vitro, most of them are end-point assays that cannot be used to detect apoptosis in the physiological context of live animals. In this study, transgenic sensor zebrafish were generated that specifically produce a fluorescence resonance energy transfer (FRET)-based biosensor in the zebrafish skin. Under normal conditions, the skin cells of the sensor zebrafish emit green fluorescence; when caspase-3 is activated during apoptosis, the skin cells of the sensor zebrafish switch to emitting blue fluorescence. Through time-lapse FRET imaging with the sensor zebrafish, we observed that caspase-3 can be activated within 5 min and apoptosis can be completed in around 30 min in live zebrafish, no matter the apoptosis occurs several hours after UV irradiation or during the normal development. Using the sensor zebrafish, we found that apoptosis can occur in different parts of the zebrafish skin including the skin covering the trunk, eye, yolk sac, and head during development. Interestingly, we observed that the yolk sac diameter of the zebrafish reduced from 723.8 ± 25.1 μm at 24 h postfertilization (hpf) to 346.1 ± 24.6 μm at 120 hpf. To accommodate this dramatic reduction of the yolk sac size, we found that some excess skin cells on the surface of the yolk sac were removed by apoptosis during this process. The sensor zebrafish provide a powerful and convenient tool for the noninvasive and real-time detection of apoptosis at the single-cell resolution in live zebrafish.
Collapse
Affiliation(s)
- Hao Jia
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yanlong Song
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Bin Huang
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| |
Collapse
|
33
|
de Souza Lima ACM, de Alvarenga KAF, Codo BC, Sacramento EK, Rosa DVF, Souza RP, Romano-Silva MA, Souza BR. Impairment of motor but not anxiety-like behavior caused by the increase of dopamine during development is sustained in zebrafish larvae at later stages. Int J Dev Neurosci 2020; 80:106-122. [PMID: 31990423 DOI: 10.1002/jdn.10009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022] Open
Abstract
Many neuropsychiatric disorders are associated with both dopaminergic (DAergic) and developmental hypotheses. Since DAergic receptors are expressed in the developing brain, it is possible that alterations in dopamine (DA) signaling may impair brain development and consequent behavior. In our previous study, using a zebrafish model, we showed that an increase of DA during the 3 to 5 days postfertilization (dpf) developmental window (an important window for GABAergic neuronal differentiation) affects the motor behavior of 5 dpf larvae. In this study, we set out to determine whether these behavioral alterations were sustained in larvae at older stages (7 and 14 dpf). To test this hypothesis, we chronically treated zebrafish larvae from 3 to 5 dpf with DA. After washing the drug, we recorded and analyzed the first 5 and 30 min of the motor behavior of 5, 7, and 14 dpf subjects. We analyzed mobile episodes, distance traveled, time mobile, distance traveled per mobile episode, time in movement per mobile episode, and distance traveled per time mobile. We showed, once again, that an increase of DA during the 3 to 5 dpf developmental window reduces the number of movement episodes initiated by 5 dpf larvae. We also detected a decrease of other motor behavior parameters in 5 dpf DA-treated larvae. We observed that these alterations are sustained in the 7 dpf larvae. However, we did not see these general locomotor alterations in the 14 dpf larvae. Moreover, we detected a decrease of distance traveled and an increase of time of locomotion per episode in the first 5 min of behavioral analyses in 14 dpf DA-treated larvae. To test if the alterations in the first 5 min were due to anxiety-like behavior, we used a light/dark preference paradigm. We recorded 5dpf, 7dpf, and 14dpf larvae for 5 min and analyzed time of freezing, preference for light or dark, number of entries to the dark, percentage of time in the light. We observed that 5dpf larvae treated with DA showed more freezing, less passages to the dark, and more time spent in the light as compared to their control counterparts. But 7dpf and 14dpf larvae did not show these alterations. Taken overall, therefore, our results suggest that DA does play a role in the development of zebrafish motor behavior, and, furthermore, that some behaviors are more sensitive than others to the effects of DAergic imbalances during development.
Collapse
Affiliation(s)
| | - Kevin Augusto Farias de Alvarenga
- Laboratório de Neurociências and Centro de Tecnologia em Medicina Molecular, Department of Mental Health, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Beatriz Campos Codo
- Núcleo de Neurociências, Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erika Kelmer Sacramento
- Laboratório de Neurociências and Centro de Tecnologia em Medicina Molecular, Department of Mental Health, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniela Valadão Freitas Rosa
- Laboratório de Neurociências and Centro de Tecnologia em Medicina Molecular, Department of Mental Health, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renan Pedra Souza
- Department of Genetics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marco Aurélio Romano-Silva
- Laboratório de Neurociências and Centro de Tecnologia em Medicina Molecular, Department of Mental Health, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Rezende Souza
- Núcleo de Neurociências, Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
34
|
Kim SS, Hwang KS, Yang JY, Chae JS, Kim GR, Kan H, Jung MH, Lee HY, Song JS, Ahn S, Shin DS, Lee KR, Kim SK, Bae MA. Neurochemical and behavioral analysis by acute exposure to bisphenol A in zebrafish larvae model. CHEMOSPHERE 2020; 239:124751. [PMID: 31518922 DOI: 10.1016/j.chemosphere.2019.124751] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is a chemical monomer widely used in the production of hard plastics for food containers and personal items. Through improper industrial control and disposal, BPA has become a pervasive environmental contaminant, and toxicological studies have shown potent xenobiotic endocrine disruptor activity. Prenatal exposure in particular can lead to infertility and nervous system disorders characterized by behavioral aggression, depression, and cognitive impairment, thus necessitating careful hazard assessment. In this study, we evaluated BPA accumulation rate, blood-brain barrier (BBB) permeability, lethality, cardiotoxicity, behavioral effects, and impacts on multiple neurochemical pathways in zebrafish larvae. The bioconcentration factor (BCF) ranged from 1.95 to 10.0, resulting in a high rate of accumulation in the larval body. Also, high BBB permeability allowed BPA to accumulate at similar rates in both zebrafish and adult mouse (blood to brain concentration ratios of 3.2-6.7 and 1.8 to 5.5, respectively). In addition, BPA-exposed zebrafish larvae exhibited developmental deformities, reduced heart rate, and impaired behavioral patterns, including decreased total distance traveled, slower movement velocity, and altered color-preference. These impairments were associated with inhibition of the phenylalanine to dopamine synthesis pathway and an imbalance between excitatory and inhibitory neurotransmitter systems. Our results suggest that behavioral alteration in BPA-exposed zebrafish result from high accumulation and ensuing dysregulation of serotonergic, kynurenergic, dopaminergic, cholinergic, and GABAergic neurotransmitter systems. In conclusion, similarities in toxic responses to mammalian models highlight the utility of the zebrafish larva as a convenient model for screening environmental toxins.
Collapse
Affiliation(s)
- Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Kyu-Seok Hwang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jung Yoon Yang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin Sil Chae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Geum Ran Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hyemin Kan
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Myeong Hun Jung
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ha-Yeon Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Sook Song
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea
| | - Sunjoo Ahn
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea
| | - Dae-Seop Shin
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea.
| |
Collapse
|
35
|
Ranasinghe P, Thorn RJ, Seto R, Creton R, Bridges WC, Chapman SC, Lee CM. Embryonic Exposure to 2,2',3,5',6-pentachlorobiphenyl (PCB-95) Causes Developmental Malformations in Zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:162-170. [PMID: 31499578 DOI: 10.1002/etc.4587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/04/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
2,2',3,5',6-Pentachlorobiphenyl (PCB-95) is an environmental neurotoxicant. There is accumulated evidence that some neurotoxic effects of PCB-95 are caused by increased spontaneous Ca2+ oscillations in neurons resulting from modifying ryanodine receptors (RyR) in calcium-releasing channels. However, there are large gaps in explaining brain and other developmental malformations on embryonic PCB-95 exposure. In the present study, we address those deficiencies by studying the toxic effects of PCB-95 using zebrafish as an ontogenetic model. To characterize these effects, zebrafish embryos with intact chorions were exposed to 4 different concentrations of PCB-95 (0.25, 0.5, 0.75, and 1 ppm) for 3 consecutive days. The controls were maintained in 0.5 × E2 medium or egg water and in 0.1% (v/v) dimethyl sulfoxide (DMSO)/0.5 × E2 medium or egg water. PCB-95-treated groups showed dose-dependent decreases in survival and hatching rates, with increased rates of developmental malformations when compared to controls. These include morphological malformations, brain cell necrosis, and smaller eye sizes at 5 d post fertilization. These data suggest potential mechanisms underlying the abnormal behavior observed in a visual stimulus assay. The present study provides insight into PCB-95-induced developmental toxicity and supports the use of the zebrafish model in understanding the effects of PCB-95 exposure. Environ Toxicol Chem 2019;39:162-170. © 2019 SETAC.
Collapse
Affiliation(s)
- Prabha Ranasinghe
- Environmental Toxicology Program, Clemson University, Clemson, South Carolina, USA
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Robert J Thorn
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Renee Seto
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - William C Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, South Carolina, USA
| | - Susan C Chapman
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Cindy M Lee
- Environmental Toxicology Program, Clemson University, Clemson, South Carolina, USA
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
36
|
Emergence of consistent intra-individual locomotor patterns during zebrafish development. Sci Rep 2019; 9:13647. [PMID: 31541136 PMCID: PMC6754443 DOI: 10.1038/s41598-019-49614-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
The analysis of larval zebrafish locomotor behavior has emerged as a powerful indicator of perturbations in the nervous system and is used in many fields of research, including neuroscience, toxicology and drug discovery. The behavior of larval zebrafish however, is highly variable, resulting in the use of large numbers of animals and the inability to detect small effects. In this study, we analyzed whether individual locomotor behavior is stable over development and whether behavioral parameters correlate with physiological and morphological features, with the aim of better understanding the variability and predictability of larval locomotor behavior. Our results reveal that locomotor activity of an individual larva remains consistent throughout a given day and is predictable throughout larval development, especially during dark phases, under which larvae demonstrate light-searching behaviors and increased activity. The larvae’s response to startle-stimuli was found to be unpredictable, with no correlation found between response strength and locomotor activity. Furthermore, locomotor activity was not associated with physiological or morphological features of a larva (resting heart rate, body length, size of the swim bladder). Overall, our findings highlight the areas of intra-individual consistency, which could be used to improve the sensitivity of assays using zebrafish locomotor activity as an endpoint.
Collapse
|
37
|
Kalichak F, de Alcantara Barcellos HH, Idalencio R, Koakoski G, Soares SM, Pompermaier A, Rossini M, Barcellos LJG. Persistent and transgenerational effects of risperidone in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26293-26303. [PMID: 31286368 DOI: 10.1007/s11356-019-05890-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Since behavior is the connection between the internal physiological processes of an animal and its interaction with the environment, a complete behavioral repertoire is crucial for fish survival and fitness, at both the individual and population levels. Thus, unintended exposure of non-target organisms to antipsychotic residues in the environment can impact their normal behavior, and some of these behavioral changes can be seen during the entire life of the animal and passed to subsequent generations. Although there are some reports related to transgenerational toxicology, little is known of the long-term consequences of exposure to pharmaceutical compounds such as risperidone. Here, we show that zebrafish exposed to risperidone (RISP) during embryonic and larval stages presented impaired anti-predatory behavior during adulthood, characterizing a persistent effect. We also show that some of these behavioral changes are present in the following generation, characterizing a transgenerational effect. This suggests that even short exposures to environmentally relevant concentrations, at essential stages of development, can persist throughout the whole life of the zebrafish, including its offspring. From an environmental perspective, our results suggested possible risks and long-term consequences associated with drug residues in water, which can affect aquatic life and endanger species that depend on appropriate behavioral responses for survival.
Collapse
Affiliation(s)
- Fabiana Kalichak
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
- Curso de Medicina Veterinária, Faculdades Integradas do Vale do Iguaçu (Uniguaçu), Rua Padre Saporiti, 717, Rio D'Areia, União da Vitória, PR, 84600-904, Brazil
| | - Heloisa Helena de Alcantara Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Renan Idalencio
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Aline Pompermaier
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Mainara Rossini
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil.
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
| |
Collapse
|
38
|
Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Curr Biol 2017; 27:3796-3811.e5. [PMID: 29225025 DOI: 10.1016/j.cub.2017.11.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Sleep is an essential and evolutionarily conserved behavioral state whose regulation remains poorly understood. To identify genes that regulate vertebrate sleep, we recently performed a genetic screen in zebrafish, and here we report the identification of neuropeptide Y (NPY) as both necessary for normal daytime sleep duration and sufficient to promote sleep. We show that overexpression of NPY increases sleep, whereas mutation of npy or ablation of npy-expressing neurons decreases sleep. By analyzing sleep architecture, we show that NPY regulates sleep primarily by modulating the length of wake bouts. To determine how NPY regulates sleep, we tested for interactions with several systems known to regulate sleep, and provide anatomical, molecular, genetic, and pharmacological evidence that NPY promotes sleep by inhibiting noradrenergic signaling. These data establish NPY as an important vertebrate sleep/wake regulator and link NPY signaling to an established arousal-promoting system.
Collapse
|
39
|
Kalichak F, Idalencio R, da Rosa JGS, Barcellos HHDA, Fagundes M, Piato A, Barcellos LJG. Psychotropic in the environment: risperidone residues affect the behavior of fish larvae. Sci Rep 2017; 7:14121. [PMID: 29074994 PMCID: PMC5658348 DOI: 10.1038/s41598-017-14575-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/04/2017] [Indexed: 11/08/2022] Open
Abstract
The ability to avoid and escape from predators are clearly relevant behaviors from the ecological perspective and directly interfere with the survival of organisms. Detected in the aquatic environment, risperidone can alter the behavior of exposed species. Considering the risk of exposure in the early stages of life, we exposed zebrafish embryos to risperidone during the first 5 days of life. Risperidone caused hyperactivity in exposed larvae, which in an environmental context, the animals may be more vulnerable to predation due to greater visibility or less perception of risk areas.
Collapse
Affiliation(s)
- Fabiana Kalichak
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Renan Idalencio
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
- Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - João Gabriel Santos da Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Heloísa Helena de Alcântara Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
- Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Michele Fagundes
- Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Ciências Ambientais, Instituto de Ciências Biológicas, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil.
- Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Programa de Pós-Graduação em Ciências Ambientais, Instituto de Ciências Biológicas, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Programa de Pós-Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
| |
Collapse
|
40
|
Allen JR, Bhattacharyya KD, Asante E, Almadi B, Schafer K, Davis J, Cox J, Voigt M, Viator JA, Chandrasekhar A. Role of branchiomotor neurons in controlling food intake of zebrafish larvae. J Neurogenet 2017; 31:128-137. [PMID: 28812416 PMCID: PMC5942883 DOI: 10.1080/01677063.2017.1358270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
The physical act of eating or feeding involves the coordinated action of several organs like eyes and jaws, and associated neural networks. Moreover, the activity of the neural networks controlling jaw movements (branchiomotor circuits) is regulated by the visual, olfactory, gustatory and hypothalamic systems, which are largely well characterized at the physiological level. By contrast, the behavioral output of the branchiomotor circuits and the functional consequences of disruption of these circuits by abnormal neural development are poorly understood. To begin to address these questions, we sought to evaluate the feeding ability of zebrafish larvae, a direct output of the branchiomotor circuits, and developed a qualitative assay for measuring food intake in zebrafish larvae at 7 days post-fertilization. We validated the assay by examining the effects of ablating the branchiomotor neurons. Metronidazole-mediated ablation of nitroreductase-expressing branchiomotor neurons resulted in a predictable reduction in food intake without significantly affecting swimming ability, indicating that the assay is robust. Laser-mediated ablation of trigeminal motor neurons resulted in a significant decrease in food intake, indicating that the assay is sensitive. Importantly, in larvae of a genetic mutant with severe loss of branchiomotor neurons, food intake was abolished. These studies establish a foundation for dissecting the neural circuits driving a motor behavior essential for survival.
Collapse
Affiliation(s)
- James R. Allen
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Kiran D. Bhattacharyya
- Department of Biological Engineering, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Emilia Asante
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Badr Almadi
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Kyle Schafer
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy Davis
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jane Cox
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mark Voigt
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - John A. Viator
- Department of Biological Engineering, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Biomedical Engineering Program, Duquesne University, Pittsburgh, PA 15282, USA
| | - Anand Chandrasekhar
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
41
|
McDougall M, Choi J, Truong L, Tanguay R, Traber MG. Vitamin E deficiency during embryogenesis in zebrafish causes lasting metabolic and cognitive impairments despite refeeding adequate diets. Free Radic Biol Med 2017; 110. [PMID: 28645790 PMCID: PMC5548191 DOI: 10.1016/j.freeradbiomed.2017.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vitamin E (α-tocopherol; VitE) is a lipophilic antioxidant required for normal embryonic development in vertebrates, but the long-term effects of embryonic VitE deficiency, and whether they are ameliorated by feeding VitE-adequate diets, remain unknown. We addressed these questions using a zebrafish (Danio rerio) model of developmental VitE deficiency followed by dietary remediation. Adult zebrafish maintained on VitE-deficient (E-) or sufficient (E+) diets were spawned to obtained E- and E+ embryos, respectively, which we evaluated up to 12 days post-fertilization (dpf). The E- group suffered significantly increased morbidity and mortality as well as altered DNA methylation status through 5 dpf when compared to E+ larvae, but upon feeding with a VitE-adequate diet from 5 to 12 dpf both the E- and E+ groups survived and grew normally; the DNA methylation profile also was similar between groups by 12 dpf. However, 12 dpf E- larvae still had behavioral defects. These observations coincided with sustained VitE deficiency in the E- vs. E+ larvae (p < 0.0001), despite adequate dietary supplementation. We also found in E- vs. E+ larvae continued docosahexaenoic acid (DHA) depletion (p < 0.0001) and significantly increased lipid peroxidation. Further, targeted metabolomics analyses revealed persistent dysregulation of the cellular antioxidant network, the CDP-choline pathway, and glucose metabolism. While anaerobic processes were increased, aerobic metabolism was decreased in the E- vs. E+ larvae, indicating mitochondrial damage. Taken together, these outcomes suggest embryonic VitE deficiency causes lasting behavioral impairments due to persistent lipid peroxidation and metabolic perturbations that are not resolved via later dietary VitE supplementation.
Collapse
Affiliation(s)
- Melissa McDougall
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA
| | - Lisa Truong
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Robert Tanguay
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA.
| |
Collapse
|
42
|
Thorn RJ, Clift DE, Ojo O, Colwill RM, Creton R. The loss and recovery of vertebrate vision examined in microplates. PLoS One 2017; 12:e0183414. [PMID: 28817700 PMCID: PMC5560659 DOI: 10.1371/journal.pone.0183414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022] Open
Abstract
Regenerative medicine offers potentially ground-breaking treatments of blindness and low vision. However, as new methodologies are developed, a critical question will need to be addressed: how do we monitor in vivo for functional success? In the present study, we developed novel behavioral assays to examine vision in a vertebrate model system. In the assays, zebrafish larvae are imaged in multiwell or multilane plates while various red, green, blue, yellow or cyan objects are presented to the larvae on a computer screen. The assays were used to examine a loss of vision at 4 or 5 days post-fertilization and a gradual recovery of vision in subsequent days. The developed assays are the first to measure the loss and recovery of vertebrate vision in microplates and provide an efficient platform to evaluate novel treatments of visual impairment.
Collapse
Affiliation(s)
- Robert J. Thorn
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Danielle E. Clift
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Oladele Ojo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Ruth M. Colwill
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, Rhode Island, United States of America
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
43
|
Selvaraj V, Santhakumar K. Analyzing Locomotor Activity in Zebrafish Larvae Using wrMTrck. Zebrafish 2017; 14:287-291. [DOI: 10.1089/zeb.2016.1395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
44
|
A novel method for automated tracking and quantification of adult zebrafish behaviour during anxiety. J Neurosci Methods 2016; 271:65-75. [DOI: 10.1016/j.jneumeth.2016.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 05/22/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022]
|
45
|
Horstick EJ, Mueller T, Burgess HA. Motivated state control in larval zebrafish: behavioral paradigms and anatomical substrates. J Neurogenet 2016; 30:122-32. [PMID: 27293113 DOI: 10.1080/01677063.2016.1177048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the course of each day, animals prioritize different objectives. Immediate goals may reflect fluctuating internal homeostatic demands, prompting individuals to seek out energy supplies or warmth. At other times, the environment may present temporary challenges or opportunities. Homeostatic demands and environmental signals often elicit persistent changes in an animal's behavior to meet needs and challenges over extended periods of time. These changes reflect the underlying motivational state of the animal. The larval zebrafish has been established as an effective genetically tractable vertebrate system to study neural circuits for sensory-motor reflexes. Fewer studies have exploited zebrafish to study brain circuits that control motivated behavior. In part this is because appropriate conceptual frameworks, anatomical knowledge, and behavioral paradigms are not yet well established. This review sketches a general conceptual framework for studying motivated state control in animal models, how this applies to larval zebrafish, and the current knowledge on neuroanatomical substrates for state control in this model.
Collapse
Affiliation(s)
- Eric J Horstick
- a Division of Developmental Biology , Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| | - Thomas Mueller
- b Division of Biology , Kansas State University , Manhattan , KS , USA
| | - Harold A Burgess
- a Division of Developmental Biology , Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| |
Collapse
|
46
|
Spikol ED, Laverriere CE, Robnett M, Carter G, Wolfe E, Glasgow E. Zebrafish Models of Prader-Willi Syndrome: Fast Track to Pharmacotherapeutics. Diseases 2016; 4. [PMID: 27857842 PMCID: PMC5110251 DOI: 10.3390/diseases4010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder characterized by an insatiable appetite, leading to chronic overeating and obesity. Additional features include short stature, intellectual disability, behavioral problems and incomplete sexual development. Although significant progress has been made in understanding the genetic basis of PWS, the mechanisms underlying the pathogenesis of the disorder remain poorly understood. Treatment for PWS consists mainly of palliative therapies; curative therapies are sorely needed. Zebrafish, Danio rerio, represent a promising way forward for elucidating physiological problems such as obesity and identifying new pharmacotherapeutic options for PWS. Over the last decade, an increased appreciation for the highly conserved biology among vertebrates and the ability to perform high-throughput drug screening has seen an explosion in the use of zebrafish for disease modeling and drug discovery. Here, we review recent advances in developing zebrafish models of human disease. Aspects of zebrafish genetics and physiology that are relevant to PWS will be discussed, and the advantages and disadvantages of zebrafish models will be contrasted with current animal models for this syndrome. Finally, we will present a paradigm for drug screening in zebrafish that is potentially the fastest route for identifying and delivering curative pharmacotherapies to PWS patients.
Collapse
|
47
|
Liu X, Lin J, Zhang Y, Peng X, Guo N, Li Q. Effects of diphenylhydantoin on locomotion and thigmotaxis of larval zebrafish. Neurotoxicol Teratol 2016; 53:41-7. [DOI: 10.1016/j.ntt.2015.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/26/2015] [Accepted: 11/16/2015] [Indexed: 11/26/2022]
|
48
|
Lovato AK, Creton R, Colwill RM. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on larval zebrafish behavior. Neurotoxicol Teratol 2015; 53:1-10. [PMID: 26561944 DOI: 10.1016/j.ntt.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023]
Abstract
Developmental disorders such as anxiety, autism, and attention deficit hyperactivity disorders have been linked to exposure to polychlorinated biphenyls (PCBs), a ubiquitous anthropogenic pollutant. The zebrafish is widely recognized as an excellent model system for assessing the effects of toxicant exposure on behavior and neurodevelopment. In the present study, we examined the effect of sub-chronic embryonic exposure to the PCB mixture, Aroclor (A) 1254 on anxiety-related behaviors in zebrafish larvae at 7 days post-fertilization (dpf). We found that exposure to low concentrations of A1254, from 2 to 26 h post-fertilization (hpf) induced specific behavioral defects in two assays. In one assay with intermittent presentations of a moving visual stimulus, 5 ppm and 10 ppm PCB-exposed larvae displayed decreased avoidance behavior but no significant differences in thigmotaxis or freezing relative to controls. In the other assay with intermittent presentations of a moving visual stimulus and a stationary visual stimulus, 5 ppm and 10 ppm PCB-exposed larvae had elevated baseline levels of thigmotaxis but no significant differences in avoidance behavior relative to controls. The 5 ppm larvae also displayed higher terminal levels of freezing relative to controls. Collectively, our results show that exposure to ecologically valid PCB concentrations during embryonic development can induce functional deficits and alter behavioral responses to a visual threat.
Collapse
Affiliation(s)
- Ava K Lovato
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Ruth M Colwill
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States.
| |
Collapse
|
49
|
Wyatt C, Bartoszek EM, Yaksi E. Methods for studying the zebrafish brain: past, present and future. Eur J Neurosci 2015; 42:1746-63. [PMID: 25900095 DOI: 10.1111/ejn.12932] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience.
Collapse
Affiliation(s)
- Cameron Wyatt
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Ewelina M Bartoszek
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emre Yaksi
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,KU Leuven, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
50
|
Richendrfer H, Creton R. Chlorpyrifos and malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity. Neurotoxicology 2015; 49:50-8. [PMID: 25983063 DOI: 10.1016/j.neuro.2015.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/26/2022]
Abstract
Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size.
Collapse
Affiliation(s)
- Holly Richendrfer
- Brown University, Department of Molecular and Cellular Biology and Biochemistry, Providence, RI 02912, United States.
| | - Robbert Creton
- Brown University, Department of Molecular and Cellular Biology and Biochemistry, Providence, RI 02912, United States
| |
Collapse
|