1
|
Fang YW, Wang C, Lin CY. Association between urinary glyphosate levels and hand grip strength in a representative sample of US adults: NHANES 2013-2014. Front Public Health 2024; 12:1352570. [PMID: 38450138 PMCID: PMC10915012 DOI: 10.3389/fpubh.2024.1352570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Glyphosate, a widely utilized herbicide globally, has been linked to various health issues, including cancer, birth abnormalities, and reproductive issues. Additionally, there is growing experimental support indicating potential harm to skeletal muscles. Despite this, the impact of glyphosate on human muscle health remains unclear. Methods We examined information gathered from the 2013-2014 National Health and Nutrition Examination Survey (NHANES), which included 1466 adults aged 18 or older. Our primary aim was to investigate the relationship between glyphosate exposure and hand grip strength, as well as its influence on lean muscle mass. Results and discussion Our investigation uncovered a detrimental correlation between glyphosate exposure and all measures of grip strength, except for the second test of the first hand. Specifically, we observed a statistically significant adverse association between glyphosate exposure and combined grip strength, which is calculated as the sum of the highest readings from both hands (ß coefficient of -2.000, S.E. = 0.891, p = 0.040). We did not observe a significant correlation between glyphosate levels, lean muscle mass, and the likelihood of reaching maximum grip strength meeting sarcopenia criteria. Additionally, we observed an interaction between age and glyphosate, as well as between body mass index (BMI) and glyphosate, concerning the association with combined grip strength. In this comprehensive analysis of NHANES data, our study reveals a potential association between glyphosate exposure and hand grip strength in the adult population. Our findings suggest the need for deeper exploration into the health effects of glyphosate exposure and its impact on muscle strength, shedding light on possible public health concerns.
Collapse
Affiliation(s)
- Yu-Wei Fang
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - ChiKang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| |
Collapse
|
2
|
Feng JX, Li P, Liu Y, Liu L, Li ZH. A latest progress in the study of fish behavior: cross-generational effects of behavior under pollution pressure and new technologies for behavior monitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11529-11542. [PMID: 38214862 DOI: 10.1007/s11356-024-31885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
With the development of agriculture and industry, an increasing number of pollutants are being discharged into the aquatic environment. These pollutants can harm aquatic life. The behavioral characteristics of animals are an external manifestation of their internal mechanisms. Changes in behavior reflect damage and changes in the internal mechanisms. Environmental pollution may lead to behavioral changes not only in the parental generation but also in the offspring that has not been exposed to the pollutants. That is, the intrinsic mechanism that leads to behavioral changes is inheritable. Fish are representative species of aquatic organisms and are commonly used in various research studies. The behavior of fish has also received extensive attention, and the monitoring technology for fish behavior has developed rapidly. This article summarizes the development process of behavior monitoring technology and introduces some of the latest technologies for studying fish behavior. This article also summarizes the intergenerational effects of pollutants on fish behavior, as well as the potential intrinsic and genetic mechanisms that may lead to behavioral changes. This article provides a reference for future relevant neurobehavioral studies.
Collapse
Affiliation(s)
- Jian-Xue Feng
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Yuan Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
3
|
Moraes JS, da Costa Silva DG, Dos Santos Vaz B, Mizuschima CW, de Martinez Gaspar Martins C. Glyphosate is Harmful to Early Life Stages of the Viviparous Fish Jenynsia Multidentata: Biochemical and Locomotor Effects. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:417-428. [PMID: 37603055 DOI: 10.1007/s00244-023-01015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/04/2023] [Indexed: 08/22/2023]
Abstract
Glyphosate is the most widely used herbicide worldwide due to its efficacy in weed control in agriculture. This herbicide has been consistently detected in the aquatic environment, causing harmful consequences to nontarget organisms residing in agricultural regions. In this study, we assessed the effects of environmentally relevant concentrations of glyphosate (30-100 µg/L) on the early life stages of the viviparous fish Jenynsia multidentata through biochemical and locomotor endpoints. At 96 h of exposure, 30 and 65 µg/L glyphosate caused an increase in acetylcholinesterase (AChE) activity, and 65 µg/L glyphosate also augmented the levels of lipid peroxidation. Glyphosate at 100 µg/L did not alter the activity of acetylcholinesterase or the levels of lipid peroxidation, but it stimulated the activity of the cellular detoxification enzyme glutathione S-transferase. In addition, all concentrations affected the swimming of the fish. Under light conditions, glyphosate caused hypolocomotion at all concentrations tested, whereas under dark conditions, this was observed at 30 and 100 µg/L. Hyperlocomotion was observed at 65 µg/L glyphosate. These findings are alarming for the health of fish, such as J. multidentata that inhabit streams that pass through agricultural areas, especially for the early life stages of these fish. Research studying the effects of pollutants on native species is relevant to improve regulation that protects aquatic ecosystems.
Collapse
Affiliation(s)
- Jenifer Silveira Moraes
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil.
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Bernardo Dos Santos Vaz
- Instituto Federal Sul-Rio-Grandense, Campus Pelotas. Praça Vinte de Setembro, Centro Pelotas, RS, 96015360, Brazil
| | - Catiúscia Weinert Mizuschima
- Instituto Federal Sul-Rio-Grandense, Campus Pelotas. Praça Vinte de Setembro, Centro Pelotas, RS, 96015360, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
4
|
Flach H, Dietmann P, Liess M, Kühl M, Kühl SJ. Glyphosate without Co-formulants affects embryonic development of the south african clawed frog Xenopus laevis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115080. [PMID: 37262967 DOI: 10.1016/j.ecoenv.2023.115080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Glyphosate (GLY) is the most widely used herbicide in the world. Due to its mode of action as an inhibitor of the 5-enolpyruvylshikimate-3-phosphate synthase, an important step in the shikimate pathway, specifically in plants, GLY is considered to be of low toxicity to non-target organisms. However, various studies have shown the negative effects of GLY on the mortality and development of different non-target organisms, including insects, rodents, fish and amphibians. To better understand the various effects of GLY in more detail, we studied the effects of GLY without co-formulants during the embryogenesis of the aquatic model organism Xenopus laevis. RESULTS A treatment with GLY affected various morphological endpoints in X. laevis tadpoles (body length, head width and area, eye area). Additionally, GLY interfered with the mobility as well as the neural and cardiac development of the embryos at stage 44/45. We were able to detect detailed structural changes in the cranial nerves and the heart and gained insights into the negative effects of GLY on cardiomyocyte differentiation. CONCLUSION The application of GLY without co-formulants resulted in negative effects on several endpoints in the early embryonic development of X. laevis at concentrations that are environmentally relevant and concentrations that reflect the worst-case scenarios. This indicates that GLY could have a strong negative impact on the survival and lives of amphibians in natural waters. As a result, future GLY approvals should consider its impact on the environment.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Liess
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
5
|
Rainio MJ, Margus A, Tikka S, Helander M, Lindström L. The effects of short-term glyphosate-based herbicide exposure on insect gene expression profiles. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104503. [PMID: 36935035 DOI: 10.1016/j.jinsphys.2023.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/25/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most frequently used herbicides worldwide. The use of GBHs is intended to tackle weeds, but GBHs have been shown to affect the life-history traits and antioxidant defense system of invertebrates found in agroecosystems. Thus far, the effects of GBHs on detoxification pathways among invertebrates have not been sufficiently investigated. We performed two different experiments-1) the direct pure glyphosate and GBH treatment, and 2) the indirect GBH experiment via food-to examine the possible effects of environmentally relevant GBH levels on the survival of the Colorado potato beetle (Leptinotarsa decemlineata) and the expression profiles of their detoxification genes. As candidate genes, we selected four cytochrome P450 (CYP), three glutathione-S-transferase (GST), and two acetylcholinesterase (AChE) genes that are known to be related to metabolic or target-site resistances in insects. We showed that environmentally relevant levels of pure glyphosate and GBH increased the probability for higher mortality in the Colorado potato beetle larvae in the direct experiment, but not in the indirect experiment. The GBHs or glyphosate did not affect the expression profiles of the studied CYP, GST, or AChE genes; however, we found a large family-level variation in expression profiles in both the direct and indirect treatment experiments. These results suggest that the genes selected for this study may not be the ones expressed in response to glyphosate or GBHs. It is also possible that the relatively short exposure time did not affect gene expression profiles, or the response may have already occurred at a shorter exposure time. Our results show that glyphosate products may affect the survival of the herbivorous insect already at lower levels, depending on their sensitivity to pesticides.
Collapse
Affiliation(s)
- Miia J Rainio
- Department of Biology, University of Turku, FI-20014 Turku, Finland; Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Aigi Margus
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Santtu Tikka
- Department of Mathematics and Statistics, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| |
Collapse
|
6
|
Feng P, Wang Y, Zou H, Zhu Q, Ren Y, Shu Q, Su W, Liu W, Hu Y, Li B. The effects of glyphosate exposure on gene transcription and immune function of the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21990. [PMID: 36537163 DOI: 10.1002/arch.21990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is a widely used herbicide and crop desiccant. However, whether its extensive use has any effect on the species diversity of nontarget organisms is still unclear. In this study, we used the silkworm, Bombyx mori, as the research subject, and performed RNA sequencing to analyze the transcriptional profile of silkworm midgut after exposure to glyphosate at 2975.20 mg/L (a concentration commonly used at mulberry fields). A total of 125 significantly differentially expressed genes (DEGs) were detected in the midgut of glyphosate-exposed silkworm (q < 0.05), of which 53 were upregulated and 72 were downregulated. Gene ontology enrichment analysis showed that the DEGs were mainly enriched in biological process, cellular component, and molecular function. Kyoto encyclopedia of genes and genomes analysis showed that the differential genes were mainly related to oxidative stress, nutrient metabolism, and immune defense pathways, including oxidative stress-related Cat and Jafrac1, nutrient metabolism-related Fatp and Scpx, and immune-related CYP6AN2, UGT40B4, CTL11, serpin-2, and so forth. Experimental verification showed that glyphosate exposure led to a 4.35-fold increase in the mortality of silkworm after Beauveria bassiana infection, which might be caused by the decreased PO (phenoloxidase) activity and impaired immunity. These results provide evidence for the potential effects of residue glyphosate on the physiological functions of silkworm, and also provide a reference for the biosafety evaluation of glyphosate.
Collapse
Affiliation(s)
- Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Hongbin Zou
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Wujie Su
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Wei Liu
- Suzhou Taihu snow silk Co., Ltd, Suzhou, Jiangsu, P.R. China
| | - Yufang Hu
- Suzhou Taihu snow silk Co., Ltd, Suzhou, Jiangsu, P.R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
7
|
Lopes AR, Moraes JS, Martins CDMG. Effects of the herbicide glyphosate on fish from embryos to adults: a review addressing behavior patterns and mechanisms behind them. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106281. [PMID: 36103761 DOI: 10.1016/j.aquatox.2022.106281] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The use of agrochemicals has grown in recent years following the increase in agricultural productivity, to eliminate weeds that can compromise crop yields. The intensive use of these products combined with the lack of treatment of agricultural wastewater is causing contamination of the natural environments, especially the aquatics. Glyphosate [N-(phosphonomethyl) glycine] is the most commonly used herbicide in agriculture worldwide. Studies have shown that this compound is toxic to a variety of fish species at the concentrations of environmental relevance. Glyphosate-based herbicides can affect fish biochemical, physiological, endocrine, and behavioral pathways. Changes in behaviors such as foraging, escaping from predators, and courtship can compromise the survival of species and even communities. The behavior patterns of fish has been shown to be a sensitive tool for risk assessment. In this sense, this review summarizes and discusses the toxic effects of glyphosate and its formulations on the behavior of fish in different life stages. Additionally, behavioral impairments were associated with other negative effects of glyphosate such as energy imbalance, stress responses, AChE inhibition, and physiological and endocrine disturbances, which are evidenced and described in the literature. Graphical abstract.
Collapse
Affiliation(s)
- Andressa Rubim Lopes
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande RS, Brazil.
| | - Jenifer Silveira Moraes
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande RS, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande RS, Brazil
| |
Collapse
|
8
|
Ivantsova E, Wengrovitz AS, Souders CL, Martyniuk CJ. Developmental and behavioral toxicity assessment of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) in zebrafish embryos/larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103873. [PMID: 35504511 DOI: 10.1016/j.etap.2022.103873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
The relative toxicity of glyphosate (GLY) and its metabolite aminomethylphosphonic acid (AMPA) to zebrafish were compared. Embryos/larvae were exposed to one dose of either GLY (0.1, 1, or 10 μM), AMPA (0.1, 1, or 10 μM), or a 1 μM mixture for 7-days post-fertilization. Survival, success of hatch, and deformity frequency were not different from controls. Neither chemical induced reactive oxygen species in larval fish. GLY increased superoxide dismutase 2 mRNA in larvae while AMPA increased catalase and superoxide dismutase 1 in a concentration-specific manner. GLY increased cytochrome c oxidase subunit 4 isoform 1 and citrate synthase mRNA in larvae while AMPA decreased cytochrome c oxidase I and increased 3-hydroxyacyl CoA dehydrogenase transcripts. Hyperactivity was noted in fish treated with GLY, but not AMPA nor the mixture. Anxiety-like behaviors were absent with exposure to GLY or AMPA. GLY and AMPA may exert different effects at the molecular and behavioral level.
Collapse
Affiliation(s)
- Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew S Wengrovitz
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
9
|
Costas-Ferreira C, Durán R, Faro LRF. Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. Int J Mol Sci 2022; 23:4605. [PMID: 35562999 PMCID: PMC9101768 DOI: 10.3390/ijms23094605] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
Glyphosate, a non-selective systemic biocide with broad-spectrum activity, is the most widely used herbicide in the world. It can persist in the environment for days or months, and its intensive and large-scale use can constitute a major environmental and health problem. In this systematic review, we investigate the current state of our knowledge related to the effects of this pesticide on the nervous system of various animal species and humans. The information provided indicates that exposure to glyphosate or its commercial formulations induces several neurotoxic effects. It has been shown that exposure to this pesticide during the early stages of life can seriously affect normal cell development by deregulating some of the signaling pathways involved in this process, leading to alterations in differentiation, neuronal growth, and myelination. Glyphosate also seems to exert a significant toxic effect on neurotransmission and to induce oxidative stress, neuroinflammation and mitochondrial dysfunction, processes that lead to neuronal death due to autophagy, necrosis, or apoptosis, as well as the appearance of behavioral and motor disorders. The doses of glyphosate that produce these neurotoxic effects vary widely but are lower than the limits set by regulatory agencies. Although there are important discrepancies between the analyzed findings, it is unequivocal that exposure to glyphosate produces important alterations in the structure and function of the nervous system of humans, rodents, fish, and invertebrates.
Collapse
Affiliation(s)
| | | | - Lilian R. F. Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (C.C.-F.); (R.D.)
| |
Collapse
|
10
|
Viana NP, da Silva LCM, Portruneli N, Soares MP, Cardoso IL, Bonansea RI, Goulart BV, Montagner CC, Espíndola ELG, Wunderlin DA, Fernandes MN. Bioconcentration and toxicological impacts of fipronil and 2,4-D commercial formulations (single and in mixture) in the tropical fish, Danio rerio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11685-11698. [PMID: 34546525 DOI: 10.1007/s11356-021-16352-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The insecticide fipronil and the herbicide 2,4-D are the most applied pesticides in sugarcane crops leading to aquatic contamination. The whole-body bioconcentration of fipronil and 2,4-D, single and in mixture, was evaluated in Danio rerio after 96-h exposure. The activities of catalase (CAT) and glutathione S-transferase(GST) in whole body and in the gills and the acetylcholinesterase (AChE) in muscle were determined. The gill histopathology and the morphology of the pavement (PVC) and the mitochondria-rich(MRC) cells at gill surface were analyzed. Bioconcentration occurred after exposure to fipronil (2.69 L kg-1) and 2,4-D (1.73 L kg-1) single and in mixture of fipronil (3.10 L kg-1) and 2,4-D (1.27 L kg-1). Whole-body CAT activity was unchanged, and its activity decreased in the gills after exposure to fipronil and increased after exposure to 2,4-D and mixture. GST and AChE increased after single exposure to each pesticide and mixture of both. Fish exposed to mixture increased the MRC fractional area (MRCFA) which suggested possible ionic regulation disturbance and reduced the microridge of the PVC surface. Synergistic interactions occurred in the CAT activity and MRCFA after exposure to mixture of pesticides. The results indicate that the recommended application dose of fipronil and 2,4-D, single or in mixture, for sugarcane crops affects this fish species altering its homeostasis.
Collapse
Affiliation(s)
- Natália Prudêncio Viana
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Laís Conceição Menezes da Silva
- Programa de Pós-graduação em Ciências da Engenharia Ambiental, Escola de Engenharia de São Carlos (NEEA/CRHEA/SHS), Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Natália Portruneli
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Michelly Pereira Soares
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- Programa Interinstitucional de Pós-graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Israel Luz Cardoso
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- Programa Interinstitucional de Pós-graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Rocío Inés Bonansea
- Faculdade de Ciências Químicas, Universidade Nacional de Córdoba, Córdoba, Argentina
| | - Bianca Veloso Goulart
- Instituto de Química, Universidade de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Cassiana Carolina Montagner
- Instituto de Química, Universidade de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- Programa de Pós-graduação em Ciências da Engenharia Ambiental, Escola de Engenharia de São Carlos (NEEA/CRHEA/SHS), Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | | | - Marisa Narciso Fernandes
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil.
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
11
|
Nozdrenko D, Abramchuk O, Prylutska S, Vygovska O, Soroca V, Bogutska K, Khrapatyi S, Prylutskyy Y, Scharff P, Ritter U. Analysis of Biomechanical Parameters of Muscle Soleus Contraction and Blood Biochemical Parameters in Rat with Chronic Glyphosate Intoxication and Therapeutic Use of C 60 Fullerene. Int J Mol Sci 2021; 22:4977. [PMID: 34067082 PMCID: PMC8124638 DOI: 10.3390/ijms22094977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
The widespread use of glyphosate as a herbicide in agriculture can lead to the presence of its residues and metabolites in food for human consumption and thus pose a threat to human health. It has been found that glyphosate reduces energy metabolism in the brain, its amount increases in white muscle fibers. At the same time, the effect of chronic use of glyphosate on the dynamic properties of skeletal muscles remains practically unexplored. The selected biomechanical parameters (the integrated power of muscle contraction, the time of reaching the muscle contraction force its maximum value and the reduction of the force response by 50% and 25% of the initial values during stimulation) of muscle soleus contraction in rats, as well as blood biochemical parameters (the levels of creatinine, creatine phosphokinase, lactate, lactate dehydrogenase, thiobarbituric acid reactive substances, hydrogen peroxide, reduced glutathione and catalase) were analyzed after chronic glyphosate intoxication (oral administration at a dose of 10 μg/kg of animal weight) for 30 days. Water-soluble C60 fullerene, as a poweful antioxidant, was used as a therapeutic nanoagent throughout the entire period of intoxication with the above herbicide (oral administration at doses of 0.5 or 1 mg/kg). The data obtained show that the introduction of C60 fullerene at a dose of 0.5 mg/kg reduces the degree of pathological changes by 40-45%. Increasing the dose of C60 fullerene to 1 mg/kg increases the therapeutic effect by 55-65%, normalizing the studied biomechanical and biochemical parameters. Thus, C60 fullerenes can be effective nanotherapeutics in the treatment of glyphosate-based herbicide poisoning.
Collapse
Affiliation(s)
- Dmytro Nozdrenko
- Department of Biophysics and Medical Informatic, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (D.N.); (S.P.); (V.S.); (K.B.); (Y.P.)
| | - Olga Abramchuk
- Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine;
| | - Svitlana Prylutska
- Department of Biophysics and Medical Informatic, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (D.N.); (S.P.); (V.S.); (K.B.); (Y.P.)
- National University of Life and Environmental Science of Ukraine, 03041 Kyiv, Ukraine
| | - Oksana Vygovska
- Bogomolets National Medical University of Kyiv, 01601 Kyiv, Ukraine;
| | - Vasil Soroca
- Department of Biophysics and Medical Informatic, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (D.N.); (S.P.); (V.S.); (K.B.); (Y.P.)
| | - Kateryna Bogutska
- Department of Biophysics and Medical Informatic, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (D.N.); (S.P.); (V.S.); (K.B.); (Y.P.)
| | - Sergii Khrapatyi
- Interregional Academy of Personnel Management, 03039 Kyiv, Ukraine;
| | - Yuriy Prylutskyy
- Department of Biophysics and Medical Informatic, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (D.N.); (S.P.); (V.S.); (K.B.); (Y.P.)
| | - Peter Scharff
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 98693 Ilmenau, Germany;
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 98693 Ilmenau, Germany;
| |
Collapse
|
12
|
Disner GR, Falcão MAP, Andrade-Barros AI, Leite Dos Santos NV, Soares ABS, Marcolino-Souza M, Gomes KS, Lima C, Lopes-Ferreira M. The Toxic Effects of Glyphosate, Chlorpyrifos, Abamectin, and 2,4-D on Animal Models: A Systematic Review of Brazilian Studies. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:507-520. [PMID: 33006436 DOI: 10.1002/ieam.4353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Brazil is a global agricultural commodity producer and the largest consumer of pesticides. Pesticide use in Brazil comprised 549 280 tons in 2018. In the country, soybean, corn, and sugar cane are extensively produced, which are the most pesticides demanding crops. In the last years, the records of new pesticides were the highest in the historical series. They can persist in soil or water, accumulate in organisms, and contaminate workers and the general population through the air, water, or food. This review aimed to gather toxicological data obtained by animal models exposed to 4 pesticides: glyphosate, chlorpyrifos, abamectin, and 2,4-D. An additional goal was to compose an overview of how this subject has been approached, surveying which research groups are working on this field, where they are located, and relations with pesticides used in those regions. We collected the papers from the platforms PubMed, Scopus, Scielo, and Web of Science, performed in Brazil from 2014 to 2019. After two-step blind selection using the software Rayyan QCRI by different authors, 67 studies were selected to extract data. We observed that research is more concentrated in the South region, followed by the Southeast and Midwest, with 43%, 32%, and 23% of the studies, respectively. The prevalent institutions are from the states of Rio Grande do Sul, São Paulo, and Goiás. The effects on a variety of biomarkers help predict the potential risks to humans and nontarget organisms. The prevalent animal model was fish (36%). Overall, the main toxic effects evaluated were mortality, abnormalities in the blood cells, developmental abnormalities, and behavior alterations. Integr Environ Assess Manag 2021;17:507-520. © 2020 SETAC.
Collapse
Affiliation(s)
- Geonildo Rodrigo Disner
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, Butantan, São Paulo, Brazil
| | - Maria Alice Pimentel Falcão
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, Butantan, São Paulo, Brazil
| | - Aline Ingrid Andrade-Barros
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, Butantan, São Paulo, Brazil
| | | | - Amanda Beatriz Silva Soares
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, Butantan, São Paulo, Brazil
| | - Milena Marcolino-Souza
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, Butantan, São Paulo, Brazil
| | - Kamila Sousa Gomes
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, Butantan, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, Butantan, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, Butantan, São Paulo, Brazil
| |
Collapse
|
13
|
Agostini JF, Santo GD, Baldin SL, Bernardo HT, de Farias ACS, Rico EP, Wanderley AG. Gallic Acid Reverses Neurochemical Changes Induced by Prolonged Ethanol Exposure in the Zebrafish Brain. Neuroscience 2020; 455:251-262. [PMID: 33285238 DOI: 10.1016/j.neuroscience.2020.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/23/2023]
Abstract
Gallic acid (GA) is a polyphenolic compound that has attracted significant interest due to its antioxidant action through free radical elimination and metal chelation. Ethanol is a highly soluble psychoactive substance, and its toxicity is associated with oxidative stress. In this context, the purpose of the present study was to investigate the effect of GA on neurochemical changes in zebrafish brains exposed to ethanol. GA was first analyzed in isolation by treating the animals at concentrations of 5, 10, and 20 mg/L for 24 h and 48 h. The results revealed that the group exposed to 20 mg/L over a 24/48 h period exhibited increases in thiobarbituric acid reactive substance (TBA-RS) levels and 2',7'-dichlorofluorescein (DCFH) oxidation, demonstrating a pro-oxidant profile. Moreover, decrease in acetylcholinesterase (AChE) enzyme activity was observed. To investigate the effects of GA after ethanol exposure, the animals were divided into four groups: control; those exposed to 0.5% ethanol for 7 days; those exposed to 0.5% ethanol for 7 days and treated with GA at 5 and 10 mg/L on day 8. Treatment with GA at 5 and 10 mg/L reversed impairment of choline acetyltransferase activity and the damage to TBA-RS levels, DCFH oxidation, and superoxide dismutase activity induced by ethanol. Results of the present study suggest that GA treatment (20 mg/L) appeared to disrupt oxidative parameters in the zebrafish brain. GA treatment at 5 and 10 mg/L reversed alterations to the cholinergic system induced by prolonged exposure to ethanol in the zebrafish brain, probably through an antioxidant mechanism.
Collapse
Affiliation(s)
- Jotele Fontana Agostini
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Glaucia Dal Santo
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Ana Caroline Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Almir Gonçalves Wanderley
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
14
|
Moutinho MF, de Almeida EA, Espíndola ELG, Daam MA, Schiesari L. Herbicides employed in sugarcane plantations have lethal and sublethal effects to larval Boana pardalis (Amphibia, Hylidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1043-1051. [PMID: 32405782 DOI: 10.1007/s10646-020-02226-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The increasing demand for biofuels favored the expansion of sugarcane and, as a consequence, in the consumption of pesticides in Brazil. Amphibians are subject to pesticide exposure for occurring in or around sugarcane fields, and for breeding at the onset of the rainy season when pesticide consumption is common. We tested the hypothesis that herbicides used in sugarcane crops, although employed for weed control and manipulated at doses recommended by the manufacturers, can cause lethal and sublethal effects on amphibian larvae. Boana pardalis was exposed to glyphosate, ametryn, 2,4-D, metribuzin and acetochlor which account to up to 2/3 of the volume of herbicides employed in sugarcane production. High mortality was observed following prolonged exposure to ametryn (76%), acetochlor (68%) and glyphosate (15%); ametryn in addition significantly reduced activity rates and slowed developmental and growth rates. AChE activity was surprisingly stimulated by glyphosate, ametryn and 2,4-D, and GST activity by ametryn and acetochlor. Some of these sublethal effects, including the decrease in activity, growth and developmental rates, may have important consequences for individual performance for extending the larval period, and hence the risk of dessication, in the temporary and semi-permanent ponds where the species develops. Future studies should seek additional realism towards a risk analysis of the environmental contamination by herbicides through experiments manipulating not only active ingredients but also commercial formulations, as well as interactions among contaminants and other environmental stressors across the entire life cycle of native amphibian species.
Collapse
Affiliation(s)
- Mariana F Moutinho
- Programa de Pós-Graduação em Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo A de Almeida
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, Brazil
- Fundação Universidade Regional de Blumenau, Blumenau, Brazil
| | - Evaldo L G Espíndola
- Centro de Recursos Hídricos e Ecologia Aplicada, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo, Brazil
| | - Michiel A Daam
- Departamento de Ciências Ambientais e Engenharia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Luis Schiesari
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Avenida Arlindo Béttio 1000, São Paulo, 03828-000, Brazil.
| |
Collapse
|
15
|
Cai W, Zhang F, Zhong L, Chen D, Guo H, Zhang H, Zhu B, Liu X. Correlation between CYP1A1 polymorphisms and susceptibility to glyphosate-induced reduction of serum cholinesterase: A case-control study of a Chinese population. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:23-28. [PMID: 31836050 DOI: 10.1016/j.pestbp.2019.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/02/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate (GLP) is one of the most common herbicides worldwide. The serum cholinesterase (ChE) may be affected when exposed to glyphosate. Reduction of serum ChE by herbicides is probably related to cytochrome P450 (CYP450) family polymorphisms. We suspect that the abnormal ChE caused by GLP could be correlated with the CYP family members. To determine whether CYP1B1 (rs1056827 and rs1056836) and CYP1A1 (rs1048943) gene polymorphisms and individual susceptibility to GLP-induced ChE abnormalities were interrelated in the Chinese Han population, we performed this genetic association study on a total of 230 workers previously exposed to GLP, including 115 cases with reduced serum ChE and 115 controls with normal serum ChE. Two even groups of cases and controls were enrolled. The CYP1A1 and CYP1B1 polymorphisms in both groups were genotyped using TaqMan. Subjects with the CYP1A1 rs619586 genotypes showed an increased risk of GLP-induced reduction of serum ChE, which was more evident in the following subgroups: female, > 35 years old, history of GLP exposure time <10 years and >10 years, nonsmoker and nondrinker. The results show that CYP1A1 rs619586 was significantly associated with the GLP-induced reduction in serum ChE and could be a biomarker of susceptibility for Chinese GLP exposed workers. Because of a large number of people exposed to glyphosate, this study has a significance in protecting their health.
Collapse
Affiliation(s)
- Wenyan Cai
- Suzhou Municipal Hospital, Suzhou Affiliated Hosptial of Nanjing Medical University, Suzhou, Jiangsu 215001, China; Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Feng Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Lixin Zhong
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Dongya Chen
- Department of Toxicology and Function Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Haoran Guo
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China; Institute of Occupational Disease Prevention, Jiangyin Municipal Center for Disease Control and Prevention, Jiangyin, Jiangsu 214434, China
| | - Hengdong Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Baoli Zhu
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China.
| | - Xin Liu
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
16
|
da Costa Chaulet F, de Alcantara Barcellos HH, Fior D, Pompermaier A, Koakoski G, da Rosa JGS, Fagundes M, Barcellos LJG. Glyphosate- and Fipronil-Based Agrochemicals and Their Mixtures Change Zebrafish Behavior. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:443-451. [PMID: 31190101 DOI: 10.1007/s00244-019-00644-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Environmental contamination caused by the human occupancy and economic activities that generate a wide range of contaminated effluents that reach natural water resources, is a current reality. Residues of agrichemicals used in plant production were detected in different environments and in different countries. Among these agrochemicals, we studied a glyphosate-based herbicide (GBH), a fipronil-based insecticide (FBI), and their mixtures (GBH + FBI). Zebrafish exposed to 3 and 5 mg/L of GBH spend more time in the top zone and less time in the bottom zone. Fish exposed to 0.009 and 0.018 mg/L of FBI spent less time in the bottom zone, whereas zebrafish exposed to the three GBH + FBI mixtures spend more time in the top zone compared with unexposed control fish. This clear anxiolytic pattern, in an environmental context, can directly impair the ability of fish to avoid or evade predators. We concluded that both glyphosate-based herbicide and fipronil-based insecticide and their mixtures alter zebrafish behavior, which may result in significant repercussions on the maintenance of the species as well as on the food chain and the ecosystem.
Collapse
Affiliation(s)
- Fabiele da Costa Chaulet
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Heloísa Helena de Alcantara Barcellos
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Débora Fior
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Aline Pompermaier
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | | | - Michele Fagundes
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil.
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
| |
Collapse
|
17
|
Ma S, Zeng X, Chen H, Geng S, Yan L, Luo Y, Xie L, Zhang Q. The differences in bioaccumulation and effects between Se(IV) and Se(VI) in the topmouth gudgeon Pseudorasbora parva. Sci Rep 2018; 8:13860. [PMID: 30218092 PMCID: PMC6138650 DOI: 10.1038/s41598-018-32270-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/02/2018] [Indexed: 11/09/2022] Open
Abstract
Selenium (Se) might be protective against oxidative stress at nutritional levels, but elevated Se concentrations in the diet has been revealed as the main culprit for the extinction of natural fish populations in Se-contaminated lakes. Though Se predominate as waterborne selenite (IV) and selenate (VI) in the water, the differences in bioaccumulation, effects (e.g., oxidative stress, antioxidants etc.) and molecular mechanisms between Se(IV) and Se(VI) have been relatively understudied in wild fish. In this study, the P. parva were exposed to waterborne Se (10, 200 and 1000 μg/L of Se(IV) or Se(VI)) and sampled at 4, 14 and 28 days. Bioaccumulation, tissue distributions of Se and following effects in different tissues were evaluated. The results showed that the levels of Se in the gills and intestine were significantly elevated with a seemingly concentration-dependent pattern in the Se(IV) treatment, with respectively 173.3% and 57.2% increase after 28 days of exposure, relative to that of Se(VI) treatment. Additionally, significant accumulation of Se was also observed in the muscle of Se(IV) treated fish. Se exposure increased the MDA levels in the brain and gills in the Se(IV) treatment, but less apparent in the Se(VI) treatment. Meanwhile, Se exposure lowered (at least 56%) the activity of GST in the gills, but increased the activity of AChE in the muscle (~69%) and brain (~50%) after 28 d. Most importantly, after 28 d of exposure, Se exposure caused significant decrease in GSH levels in the gills (at least 35%) and in all tissues examined at the highest test concentration. In general, the results showed that Se(IV) led to faster accumulation of Se than Se(VI) in P. parva, and the resulted lipid peroxidation was closely related to the levels of antioxidants, especially GSH. Our results suggest that the ecotoxicological effects of waterborne selenite and selenate differ in this freshwater species in the field.
Collapse
Affiliation(s)
- Shanshan Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,The Key Laboratory of Clean Combustion for Electricity Generation and Heat-Supply Technology, College of Energy and Power, Shenyang Institute of Engineering, Shenyang, 110136, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Hongxing Chen
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Shicong Geng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Liang Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Lingtian Xie
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Qianru Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
18
|
Jaramillo ML, Pereira AG, Davico CE, Nezzi L, Ammar D, Müller YMR, Nazari EM. Evaluation of reference genes for reverse transcription-quantitative PCR assays in organs of zebrafish exposed to glyphosate-based herbicide, Roundup. Animal 2018; 12:1424-1434. [PMID: 29173213 DOI: 10.1017/s1751731117003111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Roundup is a glyphosate-based herbicide (GBH) widely used in agriculture and may cause toxic effects in non-target organisms. Model organisms, as zebrafish, and analysis of gene expression by reverse transcription-quantitative PCR (RT-qPCR) could be used to better understand the Roundup toxicity. A prerequisite for RT-qPCR is the availability of appropriate reference genes; however, they have not been described for Roundup-exposed fish. The aim of this study was to evaluate the expression stability of six reference genes (rpl8, β-act, gapdh, b2m, ef1α, hprt1) and one expressed repetitive element (hatn10) in organs of males (brain, gill, testis) and females (ovary) of zebrafish exposed to Roundup WG at three concentrations (0.065, 0.65 and 6.5 mg N-(phosphonomethyl) glycine/l) for 7 days. Genes were ranked by geNorm, NormFinder, BestKeeper, Delta C t and RefFinder, and their best combinations were determined by geNorm and NormFinder programs. The two most stable ranked genes were specific to each organ: gill (β-act; rpl8); brain (rpl8; β-act); testis (ef1α; gapdh); and ovary (rpl8; hprt1). The cat transcript level was used to evaluate the effect of normalization with these reference genes. These are the first suitable reference genes described for the analysis of gene expression in organs of Roundup-exposed zebrafish, and will allow investigations of the molecular mechanisms of Roundup toxicity.
Collapse
Affiliation(s)
- M L Jaramillo
- 1Departamento de Biologia Celular,Embriologia e Genética,Universidade Federal de Santa Catarina,88040-900 Florianópolis,Santa Catarina,Brazil
| | - A G Pereira
- 1Departamento de Biologia Celular,Embriologia e Genética,Universidade Federal de Santa Catarina,88040-900 Florianópolis,Santa Catarina,Brazil
| | - C E Davico
- 1Departamento de Biologia Celular,Embriologia e Genética,Universidade Federal de Santa Catarina,88040-900 Florianópolis,Santa Catarina,Brazil
| | - L Nezzi
- 1Departamento de Biologia Celular,Embriologia e Genética,Universidade Federal de Santa Catarina,88040-900 Florianópolis,Santa Catarina,Brazil
| | - D Ammar
- 1Departamento de Biologia Celular,Embriologia e Genética,Universidade Federal de Santa Catarina,88040-900 Florianópolis,Santa Catarina,Brazil
| | - Y M R Müller
- 1Departamento de Biologia Celular,Embriologia e Genética,Universidade Federal de Santa Catarina,88040-900 Florianópolis,Santa Catarina,Brazil
| | - E M Nazari
- 1Departamento de Biologia Celular,Embriologia e Genética,Universidade Federal de Santa Catarina,88040-900 Florianópolis,Santa Catarina,Brazil
| |
Collapse
|
19
|
Fiorino E, Sehonova P, Plhalova L, Blahova J, Svobodova Z, Faggio C. Effects of glyphosate on early life stages: comparison between Cyprinus carpio and Danio rerio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8542-8549. [PMID: 29313199 DOI: 10.1007/s11356-017-1141-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Glyphosate (N-(phosphonomethyl)glycine) is an active substance of many herbicides. According to literature studies, glyphosate residues and their metabolites have been commonly detected in surface waters and toxicological reports confirmed negative effects on living organisms. In this study, the acute embryo toxicity of glyphosate into two different fish species-common carp (Cyprinus carpio) and zebrafish (Danio rerio)-was investigated. Lethal endpoints, development disorder, and, in addition, other sublethal endpoints such as hatching rate, formation of somites, and development of eyes, spontaneous movement, heartbeat/blood circulation, pigmentation, and edema were recorded to indicate the mode of action of the toxic compound. Hatching retardation (p < 0.05) was observed in experimental groups of common carp exposed to glyphosate with significant statistical difference especially at the highest concentration after 72, 96, and 120 hpf. The significantly highest cumulative mortality at concentration of 50 mg/l was observed. In contrast, hatching stimulation was observed in embryos of zebrafish exposed to the highest concentration of glyphosate. The significantly highest cumulative mortality for zebrafish was observed only at concentration of 50 mg/l. Based on our results, early life stages of common carp are more sensitive in comparison to zebrafish to the toxic action of glyphosate.
Collapse
Affiliation(s)
- Emma Fiorino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31-98166 S. Agata-, Messina, Italy
| | - Pavla Sehonova
- Department of Animal Protection, Welfare and Behaviour, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- Department of Veterinary Public Health and Forensic Medicine, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Lucie Plhalova
- Department of Animal Protection, Welfare and Behaviour, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection, Welfare and Behaviour, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection, Welfare and Behaviour, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31-98166 S. Agata-, Messina, Italy.
| |
Collapse
|