1
|
Milholland KL, Waddey BT, Velázquez-Marrero KG, Lihon MV, Danzeisen EL, Naughton NH, Adams TJ, Schwartz JL, Liu X, Hall MC. Cdc14 phosphatases use an intramolecular pseudosubstrate motif to stimulate and regulate catalysis. J Biol Chem 2024; 300:107644. [PMID: 39122012 PMCID: PMC11407943 DOI: 10.1016/j.jbc.2024.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Cdc14 phosphatases are related structurally and mechanistically to protein tyrosine phosphatases (PTPs) but evolved a unique specificity for phosphoSer-Pro-X-Lys/Arg sites primarily deposited by cyclin-dependent kinases. This specialization is widely conserved in eukaryotes. The evolutionary reconfiguration of the Cdc14 active site to selectively accommodate phosphoSer-Pro likely required modification to the canonical PTP catalytic cycle. While studying Saccharomyces cerevisiae Cdc14, we discovered a short sequence in the disordered C terminus, distal to the catalytic domain, which mimics an optimal substrate. Kinetic analyses demonstrated this pseudosubstrate binds the active site and strongly stimulates rate-limiting phosphoenzyme hydrolysis, and we named it "substrate-like catalytic enhancer" (SLiCE). The SLiCE motif is found in all Dikarya fungal Cdc14 orthologs and contains an invariant glutamine, which we propose is positioned via substrate-like contacts to assist orientation of the hydrolytic water, similar to a conserved active site glutamine in other PTPs that Cdc14 lacks. AlphaFold2 predictions revealed vertebrate Cdc14 orthologs contain a conserved C-terminal alpha helix bound to the active site. Although apparently unrelated to the fungal sequence, this motif also makes substrate-like contacts and has an invariant glutamine in the catalytic pocket. Altering these residues in human Cdc14A and Cdc14B demonstrated that it functions by the same mechanism as the fungal motif. However, the fungal and vertebrate SLiCE motifs were not functionally interchangeable, illuminating potential active site differences during catalysis. Finally, we show that the fungal SLiCE motif is a target for phosphoregulation of Cdc14 activity. Our study uncovered evolution of an unusual stimulatory pseudosubstrate motif in Cdc14 phosphatases.
Collapse
Affiliation(s)
| | - Benjamin T Waddey
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Michelle V Lihon
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Emily L Danzeisen
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Noelle H Naughton
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Timothy J Adams
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Jack L Schwartz
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA; Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA; Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
2
|
Dong J, Jassim BA, Milholland KL, Qu Z, Bai Y, Miao Y, Miao J, Ma Y, Lin J, Hall MC, Zhang ZY. Development of Novel Phosphonodifluoromethyl-Containing Phosphotyrosine Mimetics and a First-In-Class, Potent, Selective, and Bioavailable Inhibitor of Human CDC14 Phosphatases. J Med Chem 2024; 67:8817-8835. [PMID: 38768084 DOI: 10.1021/acs.jmedchem.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes. In this study, starting from a well-known nonhydrolyzable phosphotyrosine (pTyr) mimetic, phosphonodifluoromethyl phenylalanine (F2Pmp), we synthesized 7 novel phosphonodifluoromethyl-containing bicyclic/tricyclic aryl derivatives with improved cell permeability and potency toward various PTPs. Furthermore, with fragment- and structure-based design strategies, we advanced compound 9 to compound 15, a first-in-class, potent, selective, and bioavailable inhibitor of human CDC14A and B phosphatases. This study demonstrates the applicability of the fragment-based design strategy in creating potent, selective, and bioavailable PTP inhibitors and provides a valuable probe for interrogating the biological roles of hCDC14 phosphatases and assessing their potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brenson A Jassim
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kedric L Milholland
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinmin Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuan Ma
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianping Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Ganga AK, Sweeney LK, Ramos AR, Bishop CS, Hamel V, Guichard P, Breslow DK. A disease-associated PPP2R3C-MAP3K1 phospho-regulatory module controls centrosome function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587836. [PMID: 38617270 PMCID: PMC11014585 DOI: 10.1101/2024.04.02.587836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Centrosomes have critical roles in microtubule organization and in cell signaling.1-8 However, the mechanisms that regulate centrosome function are not fully defined, and thus how defects in centrosomal regulation contribute to disease is incompletely understood. From functional genomic analyses, we find here that PPP2R3C, a PP2A phosphatase subunit, is a distal centriole protein and functional partner of centriolar proteins CEP350 and FOP. We further show that a key function of PPP2R3C is to counteract the kinase activity of MAP3K1. In support of this model, MAP3K1 knockout suppresses growth defects caused by PPP2R3C inactivation, and MAP3K1 and PPP2R3C have opposing effects on basal and microtubule stress-induced JNK signaling. Illustrating the importance of balanced MAP3K1 and PPP2R3C activities, acute overexpression of MAP3K1 severely inhibits centrosome function and triggers rapid centriole disintegration. Additionally, inactivating PPP2R3C mutations and activating MAP3K1 mutations both cause congenital syndromes characterized by gonadal dysgenesis.9-15 As a syndromic PPP2R3C variant is defective in centriolar localization and binding to centriolar protein FOP, we propose that imbalanced activity of this centrosomal kinase-phosphatase pair is the shared cause of these disorders. Thus, our findings reveal a new centrosomal phospho-regulatory module, shed light on disorders of gonadal development, and illustrate the power of systems genetics to identify previously unrecognized gene functions.
Collapse
Affiliation(s)
- Anil Kumar Ganga
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Lauren K. Sweeney
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Armando Rubio Ramos
- Department of Molecular and Cellular Biology, University of Geneva, Faculty of Sciences, Geneva, Switzerland
| | - Cassandra S. Bishop
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Faculty of Sciences, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Faculty of Sciences, Geneva, Switzerland
| | - David K. Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Partscht P, Schiebel E. The diverging role of CDC14B: from mitotic exit in yeast to cell fate control in humans. EMBO J 2023; 42:e114364. [PMID: 37493185 PMCID: PMC10425841 DOI: 10.15252/embj.2023114364] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
CDC14, originally identified as crucial mediator of mitotic exit in budding yeast, belongs to the family of dual-specificity phosphatases (DUSPs) that are present in most eukaryotes. Contradicting data have sparked a contentious discussion whether a cell cycle role is conserved in the human paralogs CDC14A and CDC14B but possibly masked due to redundancy. Subsequent studies on CDC14A and CDC14B double knockouts in human and mouse demonstrated that CDC14 activity is dispensable for mitotic progression in higher eukaryotes and instead suggested functional specialization. In this review, we provide a comprehensive overview of our current understanding of how faithful cell division is linked to phosphorylation and dephosphorylation and compare functional similarities and divergences between the mitotic phosphatases CDC14, PP2A, and PP1 from yeast and higher eukaryotes. Furthermore, we review the latest discoveries on CDC14B, which identify this nuclear phosphatase as a key regulator of gene expression and reveal its role in neuronal development. Finally, we discuss CDC14B functions in meiosis and possible implications in other developmental processes.
Collapse
Affiliation(s)
- Patrick Partscht
- Zentrum für Molekulare BiologieUniversität Heidelberg, DKFZ‐ZMBH AllianzHeidelbergGermany
| | - Elmar Schiebel
- Zentrum für Molekulare BiologieUniversität Heidelberg, DKFZ‐ZMBH AllianzHeidelbergGermany
| |
Collapse
|
5
|
Campos A, Ramos F, Iglesias L, Delgado C, Merino E, Esperilla-Muñoz A, Correa-Bordes J, Clemente-Blanco A. Cdc14 phosphatase counteracts Cdk-dependent Dna2 phosphorylation to inhibit resection during recombinational DNA repair. Nat Commun 2023; 14:2738. [PMID: 37173316 PMCID: PMC10182099 DOI: 10.1038/s41467-023-38417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cyclin-dependent kinase (Cdk) stimulates resection of DNA double-strand breaks ends to generate single-stranded DNA (ssDNA) needed for recombinational DNA repair. Here we show in Saccharomyces cerevisiae that lack of the Cdk-counteracting phosphatase Cdc14 produces abnormally extended resected tracts at the DNA break ends, involving the phosphatase in the inhibition of resection. Over-resection in the absence of Cdc14 activity is bypassed when the exonuclease Dna2 is inactivated or when its Cdk consensus sites are mutated, indicating that the phosphatase restrains resection by acting through this nuclease. Accordingly, mitotically activated Cdc14 promotes Dna2 dephosphorylation to exclude it from the DNA lesion. Cdc14-dependent resection inhibition is essential to sustain DNA re-synthesis, thus ensuring the appropriate length, frequency, and distribution of the gene conversion tracts. These results establish a role for Cdc14 in controlling the extent of resection through Dna2 regulation and demonstrate that the accumulation of excessively long ssDNA affects the accurate repair of the broken DNA by homologous recombination.
Collapse
Affiliation(s)
- Adrián Campos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Facundo Ramos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Lydia Iglesias
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Celia Delgado
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | - Eva Merino
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | | | - Jaime Correa-Bordes
- Departamento de Ciencias Biomédicas, Universidad de Extremadura, Badajoz, Spain
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain.
| |
Collapse
|
6
|
JENKINSON F, ZEGERMAN P. Roles of phosphatases in eukaryotic DNA replication initiation control. DNA Repair (Amst) 2022; 118:103384. [DOI: 10.1016/j.dnarep.2022.103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
|
7
|
Yamada C, Morooka A, Miyazaki S, Nagai M, Mase S, Iemura K, Tasnin MN, Takuma T, Nakamura S, Morshed S, Koike N, Mostofa MG, Rahman MA, Sharmin T, Katsuta H, Ohara K, Tanaka K, Ushimaru T. TORC1 inactivation promotes APC/C-dependent mitotic slippage in yeast and human cells. iScience 2022; 25:103675. [PMID: 35141499 PMCID: PMC8814761 DOI: 10.1016/j.isci.2021.103675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Unsatisfied kinetochore-microtubule attachment activates the spindle assembly checkpoint to inhibit the metaphase-anaphase transition. However, some cells eventually override mitotic arrest by mitotic slippage. Here, we show that inactivation of TORC1 kinase elicits mitotic slippage in budding yeast and human cells. Yeast mitotic slippage was accompanied with aberrant aspects, such as degradation of the nucleolar protein Net1, release of phosphatase Cdc14, and anaphase-promoting complex/cyclosome (APC/C)-Cdh1-dependent degradation of securin and cyclin B in metaphase. This mitotic slippage caused chromosome instability. In human cells, mammalian TORC1 (mTORC1) inactivation also invoked mitotic slippage, indicating that TORC1 inactivation-induced mitotic slippage is conserved from yeast to mammalian cells. However, the invoked mitotic slippage in human cells was not dependent on APC/C-Cdh1. This study revealed an unexpected involvement of TORC1 in mitosis and provides information on undesirable side effects of the use of TORC1 inhibitors as immunosuppressants and anti-tumor drugs. Yeast TORC1 inhibition promotes Net1 degradation and Cdc14 release Yeast TORC1 inhibition invokes mitotic slippage in an APC/C-Cdh1-dependent manner Human mTORC1 inhibition also elicits mitotic slippage
Collapse
Affiliation(s)
- Chihiro Yamada
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Aya Morooka
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Seira Miyazaki
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Masayoshi Nagai
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan.,Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Satoru Mase
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Most Naoshia Tasnin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Tsuneyuki Takuma
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Shotaro Nakamura
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Shamsul Morshed
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Naoki Koike
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Md Golam Mostofa
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Muhammad Arifur Rahman
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Tasnuva Sharmin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Haruko Katsuta
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Kotaro Ohara
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takashi Ushimaru
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan.,Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| |
Collapse
|
8
|
Xiao Y, Dong J. The Hippo Signaling Pathway in Cancer: A Cell Cycle Perspective. Cancers (Basel) 2021; 13:cancers13246214. [PMID: 34944834 PMCID: PMC8699626 DOI: 10.3390/cancers13246214] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Cancer is increasingly viewed as a cell cycle disease in that the dysregulation of the cell cycle machinery is a common feature in cancer. The Hippo signaling pathway consists of a core kinase cascade as well as extended regulators, which together control organ size and tissue homeostasis. The aberrant expression of cell cycle regulators and/or Hippo pathway components contributes to cancer development, and for this reason, we specifically focus on delineating the roles of the Hippo pathway in the cell cycle. Improving our understanding of the Hippo pathway from a cell cycle perspective could be used as a powerful weapon in the cancer battlefield. Abstract Cell cycle progression is an elaborate process that requires stringent control for normal cellular function. Defects in cell cycle control, however, contribute to genomic instability and have become a characteristic phenomenon in cancers. Over the years, advancement in the understanding of disrupted cell cycle regulation in tumors has led to the development of powerful anti-cancer drugs. Therefore, an in-depth exploration of cell cycle dysregulation in cancers could provide therapeutic avenues for cancer treatment. The Hippo pathway is an evolutionarily conserved regulator network that controls organ size, and its dysregulation is implicated in various types of cancers. Although the role of the Hippo pathway in oncogenesis has been widely investigated, its role in cell cycle regulation has not been comprehensively scrutinized. Here, we specifically focus on delineating the involvement of the Hippo pathway in cell cycle regulation. To that end, we first compare the structural as well as functional conservation of the core Hippo pathway in yeasts, flies, and mammals. Then, we detail the multi-faceted aspects in which the core components of the mammalian Hippo pathway and their regulators affect the cell cycle, particularly with regard to the regulation of E2F activity, the G1 tetraploidy checkpoint, DNA synthesis, DNA damage checkpoint, centrosome dynamics, and mitosis. Finally, we briefly discuss how a collective understanding of cell cycle regulation and the Hippo pathway could be weaponized in combating cancer.
Collapse
Affiliation(s)
| | - Jixin Dong
- Correspondence: ; Tel.: +402-559-5596; Fax: +402-559-4651
| |
Collapse
|
9
|
Partscht P, Uddin B, Schiebel E. Human cells lacking CDC14A and CDC14B show differences in ciliogenesis but not in mitotic progression. J Cell Sci 2021; 134:224108. [PMID: 33328327 DOI: 10.1242/jcs.255950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
The budding yeast phosphatase Cdc14 has a central role in mitotic exit and cytokinesis. Puzzlingly, a uniform picture for the three human CDC14 paralogues CDC14A, CDC14B and CDC14C in cell cycle control has not emerged to date. Redundant functions between the three CDC14 phosphatases could explain this unclear picture. To address the possibility of redundancy, we tested expression of CDC14 and analysed cell cycle progression of cells with single and double deletions in CDC14 genes. Our data suggest that CDC14C is not expressed in human RPE1 cells, excluding a function in this cell line. Single- and double-knockouts (KO) of CDC14A and CDC14B in RPE1 cells indicate that both phosphatases are not important for the timing of mitotic phases, cytokinesis and cell proliferation. However, cycling CDC14A KO and CDC14B KO cells show altered ciliogenesis compared to wild-type cells. The cilia of cycling CDC14A KO cells are longer, whereas CDC14B KO cilia are more frequent and disassemble faster. In conclusion, this study demonstrates that the cell cycle functions of CDC14 proteins are not conserved between yeast and human cells.
Collapse
Affiliation(s)
- Patrick Partscht
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Borhan Uddin
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
| |
Collapse
|
10
|
Wen Z, Zhu H, Zhang A, Lin J, Zhang G, Liu D, Xiao Y, Ye C, Sun D, Wu B, Zhang J, Gao J. Cdc14a has a role in spermatogenesis, sperm maturation and male fertility. Exp Cell Res 2020; 395:112178. [PMID: 32679235 DOI: 10.1016/j.yexcr.2020.112178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 11/29/2022]
Abstract
Cdc14a is an evolutionarily conserved dual-specific protein phosphatase, and it plays different roles in different organisms. Cdc14a mutations in human have been reported to cause male infertility, while the specific role of Cdc14a in regulation of the male reproductive system remains elusive. In the present study, we established a knockout mouse model to study the function of Cdc14a in male reproductive system. Cdc14a-/- male mice were subfertile and they could only produce very few offspring. The number of sperm was decreased, the sperm motility was impaired, and the proportion of sperm with abnormal morphology was elevated in Cdc14a-/- mice. When we mated Cdc14a-/- male mice with wild-type (WT) female mice, fertilized eggs could be found in female fallopian tubes, however, the majority of these embryos died during development. Some empty spaces were observed in seminiferous tubule of Cdc14a-/- testes. Compared with WT male mice, the proportions of pachytene spermatocytes were increased and germ cells stained with γH2ax were decreased in Cdc14a-/- male mice, indicating that knockout of Cdc14a inhibited meiotic initiation. Subsequently, we analyzed the expression levels of some substrate proteins of Cdc14a, including Cdc25a, Wee1, and PR-Set7, and compared those with WT testes, in which the expression levels of these proteins were significantly increased in Cdc14a-/- testes. Our results revealed that Cdc14a-/- male mice are highly subfertile, and Cdc14a is essential for normal spermatogenesis and sperm function.
Collapse
Affiliation(s)
- Zongzhuang Wen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Jing Lin
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Guangkai Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Dongyue Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Yu Xiao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Chao Ye
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300041, PR China.
| | - Bin Wu
- Department of Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, PR China.
| | - Jian Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China.
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
11
|
Rincón AM, Monje-Casas F. A guiding torch at the poles: the multiple roles of spindle microtubule-organizing centers during cell division. Cell Cycle 2020; 19:1405-1421. [PMID: 32401610 DOI: 10.1080/15384101.2020.1754586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The spindle constitutes the cellular machinery that enables the segregation of the chromosomes during eukaryotic cell division. The microtubules that form this fascinating and complex genome distribution system emanate from specialized structures located at both its poles and known as microtubule-organizing centers (MTOCs). Beyond their structural function, the spindle MTOCs play fundamental roles in cell cycle control, the activation and functionality of the mitotic checkpoints and during cellular aging. This review highlights the pivotal importance of spindle-associated MTOCs in multiple cellular processes and their central role as key regulatory hubs where diverse intracellular signals are integrated and coordinated to ensure the successful completion of cell division and the maintenance of the replicative lifespan.
Collapse
Affiliation(s)
- Ana M Rincón
- Centro Andaluz de Biología Molecular Y Medicina Regenerativa (CABIMER) / CSIC - Universidad de Sevilla - Universidad Pablo de Olavide , Sevilla, Spain.,Dpto. de Genética / Universidad de Sevilla , Sevilla, Spain
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular Y Medicina Regenerativa (CABIMER) / CSIC - Universidad de Sevilla - Universidad Pablo de Olavide , Sevilla, Spain.,Consejo Superior de Investigaciones Científicas (CSIC) , Sevilla, Spain
| |
Collapse
|
12
|
The Multiple Roles of the Cdc14 Phosphatase in Cell Cycle Control. Int J Mol Sci 2020; 21:ijms21030709. [PMID: 31973188 PMCID: PMC7038166 DOI: 10.3390/ijms21030709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
The Cdc14 phosphatase is a key regulator of mitosis in the budding yeast Saccharomyces cerevisiae. Cdc14 was initially described as playing an essential role in the control of cell cycle progression by promoting mitotic exit on the basis of its capacity to counteract the activity of the cyclin-dependent kinase Cdc28/Cdk1. A compiling body of evidence, however, has later demonstrated that this phosphatase plays other multiple roles in the regulation of mitosis at different cell cycle stages. Here, we summarize our current knowledge about the pivotal role of Cdc14 in cell cycle control, with a special focus in the most recently uncovered functions of the phosphatase.
Collapse
|
13
|
Holder J, Poser E, Barr FA. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett 2019; 593:2908-2924. [PMID: 31494926 DOI: 10.1002/1873-3468.13595] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Here, we will review the evidence showing that mitotic exit is initiated by regulated proteolysis and then driven by the PPP family of phosphoserine/threonine phosphatases. Rapid APC/CCDC20 and ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid separation, the first step of mitotic exit. Because proteolysis of Aurora and Polo family kinases dependent on APC/CCDH1 is relatively slow, this creates a new regulatory state, anaphase, different to G2 and M-phase. We will discuss how the CDK1-counteracting phosphatases PP1 and PP2A-B55, together with Aurora and Polo kinases, contribute to the temporal regulation and order of events in the different stages of mitotic exit from anaphase to cytokinesis. For PP2A-B55, these timing properties are created by the ENSA-dependent inhibitory pathway and differential recognition of phosphoserine and phosphothreonine. Finally, we will discuss how Aurora B and PP2A-B56 are needed for the spatial regulation of anaphase spindle formation and how APC/C-dependent destruction of PLK1 acts as a timer for abscission, the final event of cytokinesis.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, UK
| | - Elena Poser
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
14
|
Imtiaz A, Belyantseva IA, Beirl AJ, Fenollar-Ferrer C, Bashir R, Bukhari I, Bouzid A, Shaukat U, Azaiez H, Booth KT, Kahrizi K, Najmabadi H, Maqsood A, Wilson EA, Fitzgerald TS, Tlili A, Olszewski R, Lund M, Chaudhry T, Rehman AU, Starost MF, Waryah AM, Hoa M, Dong L, Morell RJ, Smith RJH, Riazuddin S, Masmoudi S, Kindt KS, Naz S, Friedman TB. CDC14A phosphatase is essential for hearing and male fertility in mouse and human. Hum Mol Genet 2019; 27:780-798. [PMID: 29293958 DOI: 10.1093/hmg/ddx440] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
The Cell Division-Cycle-14 gene encodes a dual-specificity phosphatase necessary in yeast for exit from mitosis. Numerous disparate roles of vertebrate Cell Division-Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer cells in vitro. The in vivo functions of vertebrate CDC14A are largely unknown. We generated and analyzed mutations of zebrafish and mouse CDC14A, developed a computational structural model of human CDC14A protein and report four novel truncating and three missense alleles of CDC14A in human families segregating progressive, moderate-to-profound deafness. In five of these families segregating pathogenic variants of CDC14A, deaf males are infertile, while deaf females are fertile. Several recessive mutations of mouse Cdc14a, including a CRISPR/Cas9-edited phosphatase-dead p.C278S substitution, result in substantial perinatal lethality, but survivors recapitulate the human phenotype of deafness and male infertility. CDC14A protein localizes to inner ear hair cell kinocilia, basal bodies and sound-transducing stereocilia. Auditory hair cells of postnatal Cdc14a mutants develop normally, but subsequently degenerate causing deafness. Kinocilia of germ-line mutants of mouse and zebrafish have normal lengths, which does not recapitulate the published cdc14aa knockdown morphant phenotype of short kinocilia. In mutant male mice, degeneration of seminiferous tubules and spermiation defects result in low sperm count, and abnormal sperm motility and morphology. These findings for the first time define a new monogenic syndrome of deafness and male infertility revealing an absolute requirement in vivo of vertebrate CDC14A phosphatase activity for hearing and male fertility.
Collapse
Affiliation(s)
- Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA.,School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular and Cellular Neurobiology, Section on Molecular and Cellular Signaling, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Rasheeda Bashir
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Ihtisham Bukhari
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Amal Bouzid
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax 3451, Tunisia
| | - Uzma Shaukat
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, 52242, IA, USA
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, 52242, IA, USA.,The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran 1987513834, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran 1987513834, Iran
| | - Azra Maqsood
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA.,School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Elizabeth A Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | | | - Abdelaziz Tlili
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax 3451, Tunisia
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Merete Lund
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Taimur Chaudhry
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Atteeq U Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Matthew F Starost
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ali M Waryah
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, 52242, IA, USA.,The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Sheikh Riazuddin
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan.,Pakistan Institute of Medical Sciences, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan.,Laboratory for Research in Genetic Diseases, Burn Centre, Allama Iqbal Medical College, University of Health Sciences, Lahore 54590, Pakistan
| | - Saber Masmoudi
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax 3451, Tunisia
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Ovejero S, Ayala P, Malumbres M, Pimentel-Muiños FX, Bueno A, Sacristán MP. Biochemical analyses reveal amino acid residues critical for cell cycle-dependent phosphorylation of human Cdc14A phosphatase by cyclin-dependent kinase 1. Sci Rep 2018; 8:11871. [PMID: 30089874 PMCID: PMC6082843 DOI: 10.1038/s41598-018-30253-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
Cdc14 enzymes compose a family of highly conserved phosphatases that are present in a wide range of organisms, including yeast and humans, and that preferentially reverse the phosphorylation of Cyclin-Dependent Kinase (Cdk) substrates. The budding yeast Cdc14 orthologue has essential functions in the control of late mitosis and cytokinesis. In mammals, however, the two Cdc14 homologues, Cdc14A and Cdc14B, do not play a prominent role in controlling late mitotic events, suggesting that some Cdc14 functions are not conserved across species. Moreover, in yeast, Cdc14 is regulated by changes in its subcellular location and by phosphorylation events. In contrast, little is known about the regulation of human Cdc14 phosphatases. Here, we have studied how the human Cdc14A orthologue is regulated during the cell cycle. We found that Cdc14A is phosphorylated on Ser411, Ser453 and Ser549 by Cdk1 early in mitosis and becomes dephosphorylated during late mitotic stages. Interestingly, in vivo and in vitro experiments revealed that, unlike in yeast, Cdk1-mediated phosphorylation of human Cdc14A did not control its catalytic activity but likely modulated its interaction with other proteins in early mitosis. These findings point to differences in Cdk1-mediated mechanisms of regulation between human and yeast Cdc14 orthologues.
Collapse
Affiliation(s)
- Sara Ovejero
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Institute of Human Genetics, CNRS, Université de Montpellier, Montpellier, France
| | - Patricia Ayala
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Marcos Malumbres
- Centro Nacional de Investigaciones Oncológicas (CNIO), E-28029, Madrid, Spain
| | - Felipe X Pimentel-Muiños
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - María P Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007, Salamanca, Spain. .,Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
16
|
Regulation of Mammalian DNA Replication via the Ubiquitin-Proteasome System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:421-454. [PMID: 29357069 DOI: 10.1007/978-981-10-6955-0_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proper regulation of DNA replication ensures the faithful transmission of genetic material essential for optimal cellular and organismal physiology. Central to this regulation is the activity of a set of enzymes that induce or reverse posttranslational modifications of various proteins critical for the initiation, progression, and termination of DNA replication. This is particularly important when DNA replication proceeds in cancer cells with elevated rates of genomic instability and increased proliferative capacities. Here, we describe how DNA replication in mammalian cells is regulated via the activity of the ubiquitin-proteasome system as well as the consequence of derailed ubiquitylation signaling involved in this important cellular activity.
Collapse
|
17
|
Abstract
Mitotic exit requires the inactivation of cyclin-dependent kinase (Cdk) activity and reversal of Cdk-mediated phosphorylation events by protein phosphatases. In Saccharomyces cerevisiae the mitotic exit network (MEN) leads to activation and dispersal of the Cdc14 phosphatase throughout the cell following successful chromosome segregation. MEN-released Cdc14 is required for both full Cdk inactivation and dephosphorylation of Cdk substrates. While Cdc14 originally was thought to act broadly on mitotic Cdk substrates, recent biochemical studies revealed that Cdc14 possesses a strong preference for a subset of Cdk phosphorylation sites. This intrinsic specificity appears well conserved across fungi and animals. Identifying the direct physiological substrates of Cdc14 is an important step in fully understanding its biological functions, both in yeast and other species. Despite its strict specificity for phosphoserine Cdk sites, Cdc14 is structurally and mechanistically related to protein tyrosine phosphatases (PTPs). Like other PTPs, mutation of catalytic residues in the Cdc14 active site creates an inactive enzyme that retains high affinity substrate binding. Here we describe a protocol for using such "substrate trap" variants to biochemically isolate and detect direct substrates by co-immunopurification. The protocol is written for use in S. cerevisiae, but should be easily adaptable to other research organisms.
Collapse
|
18
|
Powers BL, Hall MC. Re-examining the role of Cdc14 phosphatase in reversal of Cdk phosphorylation during mitotic exit. J Cell Sci 2017; 130:2673-2681. [PMID: 28663385 DOI: 10.1242/jcs.201012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/26/2017] [Indexed: 01/12/2023] Open
Abstract
Inactivation of cyclin-dependent kinase (Cdk) and reversal of Cdk phosphorylation are universally required for mitotic exit. In budding yeast (Saccharomyces cerevisiae), Cdc14 is essential for both and thought to be the major Cdk-counteracting phosphatase. However, Cdc14 is not required for mitotic exit in many eukaryotes, despite highly conserved biochemical properties. The question of how similar enzymes could have such disparate influences on mitotic exit prompted us to re-examine the contribution of budding yeast Cdc14. By using an auxin-inducible degron, we show that severe Cdc14 depletion has no effect on the kinetics of mitotic exit and bulk Cdk substrate dephosphorylation, but causes a cell separation defect and is ultimately lethal. Phosphoproteomic analysis revealed that Cdc14 is highly selective for distinct Cdk sites in vivo and does not catalyze widespread Cdk substrate dephosphorylation. We conclude that additional phosphatases likely contribute substantially to Cdk substrate dephosphorylation and coordination of mitotic exit in budding yeast, similar to in other eukaryotes, and the critical mitotic exit functions of Cdc14 require trace amounts of enzyme. We propose that Cdc14 plays very specific, and often different, roles in counteracting Cdk phosphorylation in all species.
Collapse
Affiliation(s)
- Brendan L Powers
- Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C Hall
- Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
The anaphase promoting complex impacts repair choice by protecting ubiquitin signalling at DNA damage sites. Nat Commun 2017; 8:15751. [PMID: 28604711 PMCID: PMC5472795 DOI: 10.1038/ncomms15751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/25/2017] [Indexed: 01/06/2023] Open
Abstract
Double-strand breaks (DSBs) are repaired through two major pathways, homology-directed recombination (HDR) and non-homologous end joining (NHEJ). While HDR can only occur in S/G2, NHEJ can happen in all cell cycle phases (except mitosis). How then is the repair choice made in S/G2 cells? Here we provide evidence demonstrating that APCCdh1 plays a critical role in choosing the repair pathways in S/G2 cells. Our results suggest that the default for all DSBs is to recruit 53BP1 and RIF1. BRCA1 is blocked from being recruited to broken ends because its recruitment signal, K63-linked poly-ubiquitin chains on histones, is actively destroyed by the deubiquitinating enzyme USP1. We show that the removal of USP1 depends on APCCdh1 and requires Chk1 activation known to be catalysed by ssDNA-RPA-ATR signalling at the ends designated for HDR, linking the status of end processing to RIF1 or BRCA1 recruitment. The choice between homologous recombination and non-homologous end-joining is largely influenced by cell cycle. Here the authors show that APCCdh1 promotes homologous recombination by removing USP1, allowing polyubiquitinated histones to recruit BRCA1.
Collapse
|
20
|
Delmaghani S, Aghaie A, Bouyacoub Y, El Hachmi H, Bonnet C, Riahi Z, Chardenoux S, Perfettini I, Hardelin JP, Houmeida A, Herbomel P, Petit C. Mutations in CDC14A, Encoding a Protein Phosphatase Involved in Hair Cell Ciliogenesis, Cause Autosomal-Recessive Severe to Profound Deafness. Am J Hum Genet 2016; 98:1266-1270. [PMID: 27259055 DOI: 10.1016/j.ajhg.2016.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022] Open
Abstract
By genetic linkage analysis in a large consanguineous Iranian family with eleven individuals affected by severe to profound congenital deafness, we were able to define a 2.8 Mb critical interval (at chromosome 1p21.2-1p21.1) for an autosomal-recessive nonsyndromic deafness locus (DFNB). Whole-exome sequencing allowed us to identify a CDC14A biallelic nonsense mutation, c.1126C>T (p.Arg376(∗)), which was present in the eight clinically affected individuals still alive. Subsequent screening of 115 unrelated individuals affected by severe or profound congenital deafness of unknown genetic cause led us to identify another CDC14A biallelic nonsense mutation, c.1015C>T (p.Arg339(∗)), in an individual originating from Mauritania. CDC14A encodes a protein tyrosine phosphatase. Immunofluorescence analysis of the protein distribution in the mouse inner ear showed a strong labeling of the hair cells' kinocilia. By using a morpholino strategy to knockdown cdc14a in zebrafish larvae, we found that the length of the kinocilia was reduced in inner-ear hair cells. Therefore, deafness caused by loss-of-function mutations in CDC14A probably arises from a morphogenetic defect of the auditory sensory cells' hair bundles, whose differentiation critically depends on the proper growth of their kinocilium.
Collapse
Affiliation(s)
- Sedigheh Delmaghani
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France; UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France
| | - Asadollah Aghaie
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France; Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Yosra Bouyacoub
- Institut Pasteur de Tunis, LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory, Tunis 1002, Tunisia; Université de Monastir, Institut Supérieur de Biotechnologie, BP 56 Monastir 5000, Tunisia
| | - Hala El Hachmi
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences et Techniques, Nouakchott 5026, Mauritania
| | - Crystel Bonnet
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France; Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Zied Riahi
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France; Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Sebastien Chardenoux
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France; UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France
| | - Isabelle Perfettini
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France; UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France
| | - Jean-Pierre Hardelin
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France; UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France
| | - Ahmed Houmeida
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences et Techniques, Nouakchott 5026, Mauritania
| | - Philippe Herbomel
- Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France; Unité des Macrophages et Développement de l'Immunité, Institut Pasteur, 75015 Paris, France; UMR 3738, Centre National de la Recherche Scientifique, 75015 Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France; UMRS 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Complexité du Vivant, 75005 Paris, France; Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France; Collège de France, 75005 Paris, France.
| |
Collapse
|
21
|
Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion. Proc Natl Acad Sci U S A 2016; 113:990-5. [PMID: 26747605 DOI: 10.1073/pnas.1515605113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell adhesion and migration are highly dynamic biological processes that play important roles in organ development and cancer metastasis. Their tight regulation by small GTPases and protein phosphorylation make interrogation of these key processes of great importance. We now show that the conserved dual-specificity phosphatase human cell-division cycle 14A (hCDC14A) associates with the actin cytoskeleton of human cells. To understand hCDC14A function at this location, we manipulated native loci to ablate hCDC14A phosphatase activity (hCDC14A(PD)) in untransformed hTERT-RPE1 and colorectal cancer (HCT116) cell lines and expressed the phosphatase in HeLa FRT T-Rex cells. Ectopic expression of hCDC14A induced stress fiber formation, whereas stress fibers were diminished in hCDC14A(PD) cells. hCDC14A(PD) cells displayed faster cell migration and less adhesion than wild-type controls. hCDC14A colocalized with the hCDC14A substrate kidney- and brain-expressed protein (KIBRA) at the cell leading edge and overexpression of KIBRA was able to reverse the phenotypes of hCDC14A(PD) cells. Finally, we show that ablation of hCDC14A activity increased the aggressive nature of cells in an in vitro tumor formation assay. Consistently, hCDC14A is down-regulated in many tumor tissues and reduced hCDC14A expression is correlated with poorer survival of patients with cancer, to suggest that hCDC14A may directly contribute to the metastatic potential of tumors. Thus, we have uncovered an unanticipated role for hCDC14A in cell migration and adhesion that is clearly distinct from the mitotic and cytokinesis functions of Cdc14/Flp1 in budding and fission yeast.
Collapse
|
22
|
Machín F, Quevedo O, Ramos-Pérez C, García-Luis J. Cdc14 phosphatase: warning, no delay allowed for chromosome segregation! Curr Genet 2015; 62:7-13. [PMID: 26116076 PMCID: PMC4723626 DOI: 10.1007/s00294-015-0502-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 01/08/2023]
Abstract
Cycling events in nature start and end to restart again and again. In the cell cycle, whose purpose is to become two where there was only one, cyclin-dependent kinases (CDKs) are the beginning and, therefore, phosphatases must play a role in the ending. Since CDKs are drivers of the cell cycle and cancer cells uncontrollably divide, much attention has been put into knocking down CDK activity. However, much less is known on the consequences of interfering with the phosphatases that put an end to the cell cycle. We have addressed in recent years the consequences of transiently inactivating the only master cell cycle phosphatase in the model yeast Saccharomyces cerevisiae, Cdc14. Transient inactivation is expected to better mimic the pharmacological action of drugs. Interestingly, we have found that yeast cells tolerate badly a relatively brief inactivation of Cdc14 when cells are already committed into anaphase, the first cell cycle stage where this phosphatase plays important roles. First, we noticed that the segregation of distal regions in the chromosome arm that carries the ribosomal DNA array was irreversibly impaired, leading to an anaphase bridge (AB). Next, we found that this AB could eventually be severed by cytokinesis and led to two different types of genetically compromised daughter cells. All these previous studies were done in haploid cells. We have now recently expanded this analysis to diploid cells and used the advantage of making hybrid diploids to study chromosome rearrangements and changes in the ploidy of the surviving progeny. We have found that the consequences for the genome integrity were far more dramatic than originally envisioned.
Collapse
Affiliation(s)
- Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de la Candelaria, Ctra del Rosario 145, 38010, Santa Cruz de Tenerife, Spain.
| | - Oliver Quevedo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de la Candelaria, Ctra del Rosario 145, 38010, Santa Cruz de Tenerife, Spain.,Center for Chromosome Stability and Department of Biology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Cristina Ramos-Pérez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de la Candelaria, Ctra del Rosario 145, 38010, Santa Cruz de Tenerife, Spain
| | - Jonay García-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de la Candelaria, Ctra del Rosario 145, 38010, Santa Cruz de Tenerife, Spain.,Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
23
|
The Transient Inactivation of the Master Cell Cycle Phosphatase Cdc14 Causes Genomic Instability in Diploid Cells of Saccharomyces cerevisiae. Genetics 2015; 200:755-69. [PMID: 25971663 DOI: 10.1534/genetics.115.177626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022] Open
Abstract
Genomic instability is a common feature found in cancer cells . Accordingly, many tumor suppressor genes identified in familiar cancer syndromes are involved in the maintenance of the stability of the genome during every cell division and are commonly referred to as caretakers. Inactivating mutations and epigenetic silencing of caretakers are thought to be the most important mechanisms that explain cancer-related genome instability. However, little is known of whether transient inactivation of caretaker proteins could trigger genome instability and, if so, what types of instability would occur. In this work, we show that a brief and reversible inactivation, during just one cell cycle, of the key phosphatase Cdc14 in the model organism Saccharomyces cerevisiae is enough to result in diploid cells with multiple gross chromosomal rearrangements and changes in ploidy. Interestingly, we observed that such transient loss yields a characteristic fingerprint whereby trisomies are often found in small-sized chromosomes, and gross chromosome rearrangements, often associated with concomitant loss of heterozygosity, are detected mainly on the ribosomal DNA-bearing chromosome XII. Taking into account the key role of Cdc14 in preventing anaphase bridges, resetting replication origins, and controlling spindle dynamics in a well-defined window within anaphase, we speculate that the transient loss of Cdc14 activity causes cells to go through a single mitotic catastrophe with irreversible consequences for the genome stability of the progeny.
Collapse
|
24
|
WU WEI, HU HAIYING, YE ZI, LEONG MANCHEONG, HE MIN, LI QIN, HU RENMING, ZHANG SHUO. Zipper-interacting protein kinase interacts with human cell division cycle 14A phosphatase. Mol Med Rep 2014; 11:2775-80. [DOI: 10.3892/mmr.2014.3067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 11/04/2014] [Indexed: 11/06/2022] Open
|
25
|
Kuilman T, Maiolica A, Godfrey M, Scheidel N, Aebersold R, Uhlmann F. Identification of Cdk targets that control cytokinesis. EMBO J 2014; 34:81-96. [PMID: 25371407 PMCID: PMC4291482 DOI: 10.15252/embj.201488958] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The final event of the eukaryotic cell cycle is cytokinesis, when two new daughter cells are born. How the timing and execution of cytokinesis is controlled is poorly understood. Here, we show that downregulation of cyclin-dependent kinase (Cdk) activity, together with upregulation of its counteracting phosphatase Cdc14, controls each of the sequential steps of cytokinesis, including furrow ingression, membrane resolution and cell separation in budding yeast. We use phosphoproteome analysis of mitotic exit to identify Cdk targets that are dephosphorylated at the time of cytokinesis. We then apply a new and widely applicable tool to generate conditionally phosphorylated proteins to identify those whose dephosphorylation is required for cytokinesis. This approach identifies Aip1, Ede1 and Inn1 as cytokinetic regulators. Our results suggest that cytokinesis is coordinately controlled by the master cell cycle regulator Cdk together with its counteracting phosphatase and that it is executed by concerted dephosphorylation of Cdk targets involved in several cell biological processes.
Collapse
Affiliation(s)
- Thomas Kuilman
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories, London, UK
| | - Alessio Maiolica
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Molly Godfrey
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories, London, UK
| | - Noémie Scheidel
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories, London, UK
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories, London, UK
| |
Collapse
|
26
|
HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia. Cell Signal 2014; 27:47-60. [PMID: 25463242 DOI: 10.1016/j.cellsig.2014.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/15/2014] [Accepted: 10/01/2014] [Indexed: 11/21/2022]
Abstract
Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury.
Collapse
|
27
|
Ye Z, Wu W, He M, Leong M, Hu R, Li Y, Zhang S. The effect of zipper-interacting protein kinase on high glucose-stimulated human aortic smooth muscle cells. Int J Mol Med 2014; 33:1305-11. [PMID: 24626840 DOI: 10.3892/ijmm.2014.1697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/04/2014] [Indexed: 11/06/2022] Open
Abstract
Biologic abnormalities in vascular smooth muscle cells (VSMC) may perform a crucial role in the pathogenesis of diabetic vascular disease. The principal aim of this study was to determine the effects of zipper-interacting protein kinase (ZIPK) on human aortic smooth muscle cells (HASMCs) stimulated by high glucose (HG). To elucidate the role of ZIPK in HG-treated HASMCs, we overexpressed ZIPK by lentivirus infection and knocked down ZIPK by gene deletion using ZIPK shRNA. Flow cytometry and Cell Counting kit-8 (CCK-8) were separately used to analyze cell apoptosis and proliferation. Migratory activity was examined using transwell migration chamber assays. The results showed that ZIPK overexpression inhibited cell growth and migration, enhanced cell apoptosis, and reversed cell cycle disturbance by regulating the related proteins of cellular physiological process, such as human cell division cycle 14A phosphatase (Hcdc14A) and intercellular adhesion molecule 1 (ICAM-1). In conclusion, the results suggested that ZIPK plays a role in HG-treated HASMCs, indicating ZIPK is a potential therapeutic target for the treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Zi Ye
- Institute of Endocrinology and Diabetology, Huashan Hospital, School of Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Wei Wu
- Institute of Endocrinology and Diabetology, Huashan Hospital, School of Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Min He
- Institute of Endocrinology and Diabetology, Huashan Hospital, School of Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Mancheong Leong
- Department of Endocrinology, City University of Macau, Macau 000853, P.R. China
| | - Renming Hu
- Institute of Endocrinology and Diabetology, Huashan Hospital, School of Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Yiming Li
- Institute of Endocrinology and Diabetology, Huashan Hospital, School of Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Shuo Zhang
- Institute of Endocrinology and Diabetology, Huashan Hospital, School of Medicine, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
28
|
Eissler CL, Mazón G, Powers BL, Savinov SN, Symington LS, Hall MC. The Cdk/cDc14 module controls activation of the Yen1 holliday junction resolvase to promote genome stability. Mol Cell 2014; 54:80-93. [PMID: 24631283 DOI: 10.1016/j.molcel.2014.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
Faithful genome transmission during cell division requires precise, coordinated action of DNA metabolic enzymes, including proteins responsible for DNA damage detection and repair. Dynamic phosphorylation plays an important role in controlling repair enzymes during the DNA damage response (DDR). Cdc14 phosphatases oppose cyclin-dependent kinase (Cdk) phosphorylation and have been implicated in the DDR in several model systems. Here, we have refined the substrate specificity of budding yeast Cdc14 and, using this insight, identified the Holliday junction resolvase Yen1 as a DNA repair target of Cdc14. Cdc14 activation at anaphase triggers nuclear accumulation and enzymatic activation of Yen1, likely to resolve persistent recombinational repair intermediates. Consistent with this, expression of a phosphomimetic Yen1 mutant increased sister chromatid nondisjunction. In contrast, lack of Cdk phosphorylation resulted in constitutive activity and elevated crossover-associated repair. The precise timing of Yen1 activation, governed by core cell-cycle regulators, helps coordinate DNA repair with chromosome segregation and safeguards against genome destabilization.
Collapse
Affiliation(s)
- Christie L Eissler
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Gerard Mazón
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Brendan L Powers
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Sergey N Savinov
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
29
|
Marquis M, Boulet S, Mathien S, Rousseau J, Thébault P, Daudelin JF, Rooney J, Turgeon B, Beauchamp C, Meloche S, Labrecque N. The non-classical MAP kinase ERK3 controls T cell activation. PLoS One 2014; 9:e86681. [PMID: 24475167 PMCID: PMC3903551 DOI: 10.1371/journal.pone.0086681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
The classical mitogen-activated protein kinases (MAPKs) ERK1 and ERK2 are activated upon stimulation of cells with a broad range of extracellular signals (including antigens) allowing cellular responses to occur. ERK3 is an atypical member of the MAPK family with highest homology to ERK1/2. Therefore, we evaluated the role of ERK3 in mature T cell response. Mouse resting T cells do not transcribe ERK3 but its expression is induced in both CD4⁺ and CD8⁺ T cells following T cell receptor (TCR)-induced T cell activation. This induction of ERK3 expression in T lymphocytes requires activation of the classical MAPK ERK1 and ERK2. Moreover, ERK3 protein is phosphorylated and associates with MK5 in activated primary T cells. We show that ERK3-deficient T cells have a decreased proliferation rate and are impaired in cytokine secretion following in vitro stimulation with low dose of anti-CD3 antibodies. Our findings identify the atypical MAPK ERK3 as a new and important regulator of TCR-induced T cell activation.
Collapse
Affiliation(s)
- Miriam Marquis
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
| | - Salix Boulet
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Simon Mathien
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Justine Rousseau
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Paméla Thébault
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | | | - Julie Rooney
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Benjamin Turgeon
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | | | - Sylvain Meloche
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
30
|
Wang J, Liu J, Hu Y, Ying SH, Feng MG. Cytokinesis-required Cdc14 is a signaling hub of asexual development and multi-stress tolerance in Beauveria bassiana. Sci Rep 2013; 3:3086. [PMID: 24169500 PMCID: PMC3812655 DOI: 10.1038/srep03086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/14/2013] [Indexed: 12/16/2022] Open
Abstract
A dual-specificity, paralogue-free Cdc14 phosphatase was located in the nuclei of Beauveria bassiana (filamentous entomopathogen) and functionally characterized. Inactivation of cdc14 caused defective cytokinesis due to multinucleate cells formed in Δcdc14 and 89% decrease of blastospore production, followed by slower growth and a loss of ≥ 96% conidial yield under normal conditions. These defects coincided well with drastic down-regulation of 25 genes required for mitosis and conidiation. Moreover, Δcdc14 became hypersensitive to oxidative, osmotic, and cell wall and mitosis perturbing stresses, and lost 41−70% of conidial thermotolerance, UV-B resistance and virulence, accompanied with transcriptional down-regualtion of various signaling factors and stress-responsive effectors and depressed phosphorylation signals of Hog1 and Slt2 in high-osmolarity glycerol and cell-wall integrity pathways. All changes were well restored by rescuing cdc14. Our findings indicate that Cdc14 vital for the fungal cytokinesis acts as a signaling hub in regulating not only asexual development but multi-stress responses and virulence.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Ovejero S, Ayala P, Bueno A, Sacristán MP. Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation. Mol Biol Cell 2012; 23:4515-25. [PMID: 23051732 PMCID: PMC3510014 DOI: 10.1091/mbc.e12-04-0260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 01/21/2023] Open
Abstract
The activity of Cdk1-cyclin B1 mitotic complexes is regulated by the balance between the counteracting activities of Wee1/Myt1 kinases and Cdc25 phosphatases. These kinases and phosphatases must be strictly regulated to ensure proper mitotic timing. One masterpiece of this regulatory network is Cdk1, which promotes Cdc25 activity and suppresses inhibitory Wee1/Myt1 kinases through direct phosphorylation. The Cdk1-dependent phosphorylation of Wee1 primes phosphorylation by additional kinases such as Plk1, triggering Wee1 degradation at the onset of mitosis. Here we report that Cdc14A plays an important role in the regulation of Wee1 stability. Depletion of Cdc14A results in a significant reduction in Wee1 protein levels. Cdc14A binds to Wee1 at its amino-terminal domain and reverses CDK-mediated Wee1 phosphorylation. In particular, we found that Cdc14A inhibits Wee1 degradation through the dephosphorylation of Ser-123 and Ser-139 residues. Thus the lack of phosphorylation of these two residues prevents the interaction with Plk1 and the consequent efficient Wee1 degradation at the onset of mitosis. These data support the hypothesis that Cdc14A counteracts Cdk1-cyclin B1 activity through Wee1 dephosphorylation.
Collapse
Affiliation(s)
- Sara Ovejero
- Instituto de Biología Molecular y Celular del Cáncer and Departamento de Microbiología y Genética, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| | - Patricia Ayala
- Instituto de Biología Molecular y Celular del Cáncer and Departamento de Microbiología y Genética, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer and Departamento de Microbiología y Genética, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| | - María P. Sacristán
- Instituto de Biología Molecular y Celular del Cáncer and Departamento de Microbiología y Genética, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| |
Collapse
|
32
|
Clément A, Solnica-Krezel L, Gould KL. Functional redundancy between Cdc14 phosphatases in zebrafish ciliogenesis. Dev Dyn 2012; 241:1911-21. [PMID: 23027426 PMCID: PMC3508521 DOI: 10.1002/dvdy.23876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinases (Cdks) and their counteracting phosphatases are key regulators of cell cycle progression. In yeasts, the Cdc14 family of phosphatases promotes exit from mitosis and progression through cytokinesis by reversing phosphorylation of Cdk1 substrates. In vertebrates, CDC14 paralogs, CDC14A and CDC14B, have so far been implicated in processes ranging from DNA damage repair, meiosis, centrosome duplication to ciliogenesis. However, the question of whether CDC14 paralogs can functionally compensate for each other has yet to be addressed. RESULTS Here, using antisense morpholino oligonucleotides to inhibit Cdc14A1 function, we observed that Cdc14A1 depleted zebrafish embryos displayed ventrally curved body and left-right asymmetry defects, similar to Cdc14B deficient embryos and zebrafish mutants with cilia defects. Accordingly, we found that Cdc14A1, like Cdc14B, plays a role in ciliogenesis in the Kupffer's vesicle (KV) and other ciliated tissues, and can do so independently of its function in cell cycle. Furthermore, we observed reciprocal suppression of KV cilia length defects of Cdc14A1 and Cdc14B deficient embryos by cdc14b and cdc14a1 RNAs, respectively. CONCLUSIONS Together, these studies demonstrate for the first time that Cdc14A and Cdc14B have overlapping functions in the ciliogenesis process during zebrafish development.
Collapse
Affiliation(s)
- Aurélie Clément
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
33
|
Broadus MR, Gould KL. Multiple protein kinases influence the redistribution of fission yeast Clp1/Cdc14 phosphatase upon genotoxic stress. Mol Biol Cell 2012; 23:4118-28. [PMID: 22918952 PMCID: PMC3469525 DOI: 10.1091/mbc.e12-06-0475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Nucleolar release of Cdc14 phosphatases allows them access to substrates. Multiple kinases directly affect the Clp1/Cdc14 phosphostate and the nucleolar to nucleoplasmic transition of Clp1 in fission yeast upon genotoxic stress. In addition, Clp1 regulates its own nucleolar sequestration by antagonizing a subset of these networks. The Cdc14 phosphatase family antagonizes Cdk1 phosphorylation and is important for mitotic exit. To access their substrates, Cdc14 phosphatases are released from nucleolar sequestration during mitosis. Clp1/Flp1, the Schizosaccharomyces pombe Cdc14 orthologue, and Cdc14B, a mammalian orthologue, also exit the nucleolus during interphase upon DNA replication stress or damage, respectively, implicating Cdc14 phosphatases in the response to genotoxic insults. However, a mechanistic understanding of Cdc14 phosphatase nucleolar release under these conditions is incomplete. We show here that relocalization of Clp1 during genotoxic stress is governed by complex phosphoregulation. Specifically, the Rad3 checkpoint effector kinases Cds1 and/or Chk1, the cell wall integrity mitogen-activated protein kinase Pmk1, and the cell cycle kinase Cdk1 directly phosphorylate Clp1 to promote genotoxic stress–induced nucleoplasmic accumulation. However, Cds1 and/or Chk1 phosphorylate RxxS sites preferentially upon hydroxyurea treatment, whereas Pmk1 and Cdk1 preferentially phosphorylate Clp1 TP sites upon H2O2 treatment. Abolishing both Clp1 RxxS and TP phosphosites eliminates any genotoxic stress–induced redistribution. Reciprocally, preventing dephosphorylation of Clp1 TP sites shifts the distribution of the enzyme to the nucleoplasm constitutively. This work advances our understanding of pathways influencing Clp1 localization and may provide insight into mechanisms controlling Cdc14B phosphatases in higher eukaryotes.
Collapse
Affiliation(s)
- Matthew R Broadus
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
34
|
Regulation of APC/C-Cdh1 and its function in neuronal survival. Mol Neurobiol 2012; 46:547-54. [PMID: 22836916 PMCID: PMC3496556 DOI: 10.1007/s12035-012-8309-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/12/2012] [Indexed: 12/22/2022]
Abstract
Neurons are post-mitotic cells that undergo an active downregulation of cell cycle-related proteins to survive. The activity of the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that regulates cell cycle progression in proliferating cells, plays a relevant role in post-mitotic neurons. Recent advances in the study of the regulation of APC/C have documented that the APC/C-activating cofactor, Cdh1, is essential for the function(s) of APC/C in neuronal survival. Here, we review the normal regulation of APC/C activity in proliferating cells and neurons. We conclude that in neurons the APC/C-Cdh1 complex actively downregulates the stability of the cell cycle protein cyclin B1 and the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. Keeping these proteins destabilized is critical both for preventing the aberrant reentry of post-mitotic neurons into the cell cycle and for maintaining their reduced antioxidant status. Further understanding of the pathophysiological regulation of these proteins by APC/C-Cdh1 in neurons will be important for the search for novel therapeutic targets against neurodegeneration.
Collapse
|
35
|
Hergovich A, Hemmings BA. Hippo signalling in the G2/M cell cycle phase: lessons learned from the yeast MEN and SIN pathways. Semin Cell Dev Biol 2012; 23:794-802. [PMID: 22525225 DOI: 10.1016/j.semcdb.2012.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 01/11/2023]
Abstract
Over the past decade Hippo kinase signalling has been established as an essential tumour suppressor pathway controlling tissue growth in flies and mammals. All members of the Hippo core signalling cassette are conserved from yeast to humans, whereby the yeast analogues of Hippo, Mats and Lats are central components of the mitotic exit network and septation initiation network in budding and fission yeast, respectively. Here, we discuss how far core Hippo signalling components in Drosophila melanogaster and mammals have reported similar mitotic functions as already established for their highly conserved yeast counterparts.
Collapse
|
36
|
Bannon JH, O'Donovan DS, Kennelly SME, Mc Gee MM. The peptidyl prolyl isomerase cyclophilin A localizes at the centrosome and the midbody and is required for cytokinesis. Cell Cycle 2012; 11:1340-53. [PMID: 22421161 DOI: 10.4161/cc.19711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Failed cytokinesis leads to tetraploidy, which is an important intermediate preceding aneuploidy and the onset of tumorigenesis. The centrosome is required for the completion of cytokinesis through the transport of important components to the midbody; however, the identity of molecular components and the mechanism involved remains poorly understood. In this study, we report that the peptidyl prolyl isomerase cyclophilin A (cypA) is a centrosome protein that undergoes cell cycle-dependent relocation to the midzone and midbody during cytokinesis in Jurkat cells implicating a role during division. Depletion of cypA does not disrupt mitotic spindle formation or progression through anaphase; however, it leads to cytokinesis defects through an inability to resolve intercellular bridges, culminating in delayed or failed cytokinesis. Defective cytokinesis is also evident by an increased prevalence of midbody-arrested cells. Expression of wild-type cypA reverses the cytokinesis defect in knockout cells, whereas an isomerase mutant does not, indicating that the isomerisation activity of cypA is required for cytokinesis. In contrast, wild-type cypA and the isomerase mutant localize to the centrosome and midbody, suggesting that localization to these structures is independent of isomerase activity. Depletion of cypA also generates tetraploid cells and supernumerary centrosomes. Finally, colony formation in soft agar is impaired in cypA-knockout cells, suggesting that cypA confers clonogenic advantage on tumor cells. Collectively, this data reveals a novel role for cypA isomerase activity in the completion of cytokinesis and the maintenance of genome stability.
Collapse
Affiliation(s)
- John H Bannon
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | |
Collapse
|
37
|
Date D, Dreier MR, Borton MT, Bekier ME, Taylor WR. Effects of phosphatase and proteasome inhibitors on Borealin phosphorylation and degradation. J Biochem 2012; 151:361-9. [PMID: 22383538 DOI: 10.1093/jb/mvs015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The chromosomal passenger complex (CPC) senses tension defects at the kinetochore to activate the spindle assembly checkpoint, and helps to position the cleavage furrow. The CPC, consisting of INCENP, Survivin, Borealin and Aurora B localizes to the inner centromere at metaphase and re-localizes to the spindle midzone at anaphase; several CPC functions are regulated by post-translational modification. Borealin is phosphorylated at multiple sites and phosphorylation at S219 causes Borealin to migrate more slowly upon electrophoresis. Here we find that Cdk1 can induce a mobility shift of Borealin, suggesting that S219 phosphorylation is under Cdk1 control. However, Cdk1 is inefficient at phosphorylating purified Borealin in vitro. A yeast orthologue of Borealin, Npl1, is dephosphorylated by the phosphatase Cdc14. We find no difference in the mobility shift of Borealin in human cells lacking either Cdc14A or Cdc14B. In contrast, the phosphatase inhibitor okadaic acid does delay the dephosphorylation of Borealin as cells exit mitosis. The proteasome inhibitor MG132 reduces Borealin phosphorylation in mitosis and increases the steady-state level of Borealin, especially in mutants lacking the C-terminus. However, a second, structurally unrelated proteasome inhibitor, lactacystin did not up-regulate Borealin. These results suggest that the effect of MG132 on Borealin is due to the inhibition of an intracellular protease other than the proteasome.
Collapse
Affiliation(s)
- Dipali Date
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | | | | | | | | |
Collapse
|
38
|
Bremmer SC, Hall H, Martinez JS, Eissler CL, Hinrichsen TH, Rossie S, Parker LL, Hall MC, Charbonneau H. Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine. J Biol Chem 2011; 287:1662-9. [PMID: 22117071 DOI: 10.1074/jbc.m111.281105] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitotic cell division is controlled by cyclin-dependent kinases (Cdks), which phosphorylate hundreds of protein substrates responsible for executing the division program. Cdk inactivation and reversal of Cdk-catalyzed phosphorylation are universal requirements for completing and exiting mitosis and resetting the cell cycle machinery. Mechanisms that define the timing and order of Cdk substrate dephosphorylation remain poorly understood. Cdc14 phosphatases have been implicated in Cdk inactivation and are thought to be generally specific for Cdk-type phosphorylation sites. We show that budding yeast Cdc14 possesses a strong and unusual preference for phosphoserine over phosphothreonine at Pro-directed sites in vitro. Using serine to threonine substitutions in the Cdk consensus sites of the Cdc14 substrate Acm1, we demonstrate that phosphoserine specificity exists in vivo. Furthermore, it appears to be a conserved property of all Cdc14 family phosphatases. An invariant active site residue was identified that sterically restricts phosphothreonine binding and is largely responsible for phosphoserine selectivity. Optimal Cdc14 substrates also possessed a basic residue at the +3 position relative to the phosphoserine, whereas substrates lacking this basic residue were not effectively hydrolyzed. The intrinsic selectivity of Cdc14 may help establish the order of Cdk substrate dephosphorylation during mitotic exit and contribute to roles in other cellular processes.
Collapse
Affiliation(s)
- Steven C Bremmer
- Department of Biochemistry, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nat Cell Biol 2011; 13:1450-6. [PMID: 22020438 PMCID: PMC3232454 DOI: 10.1038/ncb2365] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/22/2011] [Indexed: 02/07/2023]
Abstract
Kinases and phosphatases regulate mRNA synthesis through post-translational modification of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II 1. In yeast, the phosphatase Cdc14 is required for mitotic exit 2,3 and for segregation of repetitive regions 4. Cdc14 is also a subunit of the silencing complex RENT 5,6, but no roles in transcription repression have been described. Here we report that inactivation of Cdc14 causes silencing defects at the intergenic spacer sequences (IGS) of ribosomal genes during interphase and at Y’ repeats in sub-telomeric regions during mitosis. We show that Cdc14 role in silencing is independent from the RENT deacetylase subunit Sir2. Instead, Cdc14 acts directly on RNA Polymerase II by targeting CTD phosphorylation at S2 and S5. We also find that Cdc14 role as a CTD phosphatase is conserved in humans. Finally, telomere segregation defects in cdc14 mutants 4 correlate with the presence of sub-telomeric Y’ elements and can be rescued by transcriptional inhibition of RNA Pol II.
Collapse
|
40
|
Roy SH, Clayton JE, Holmen J, Beltz E, Saito RM. Control of Cdc14 activity coordinates cell cycle and development in Caenorhabditis elegans. Mech Dev 2011; 128:317-26. [PMID: 21723944 PMCID: PMC3199030 DOI: 10.1016/j.mod.2011.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 02/08/2023]
Abstract
Much of our understanding of the function and regulation of the Cdc14 family of dual-specificity phosphatases originates from studies in yeasts. In these unicellular organisms Cdc14 is an important regulator of M-phase events. In contrast, the Caenorhabditis elegans homolog, cdc-14, is not necessary for mitosis, rather it is crucial for G(1)/S regulation to establish developmental cell-cycle quiescence. Despite the importance of integrating cdc-14 regulation with development, the mechanisms by which this coordination occurs are largely unknown. Here, we demonstrate that several processes conspire to focus the activity of cdc-14. First, the cdc-14 locus can produce at least six protein variants through alternative splicing. We find that a single form, CDC-14C, is the key variant acting during vulva development. Second, CDC-14C expression is limited to a subset of cells, including vulva precursors, through post-transcriptional regulation. Lastly, the CDC-14C subcellular location, and thus its potential interactions with other regulatory proteins, is regulated by nucleocytoplasmic shuttling. We find that the active export of CDC-14C from the nucleus during interphase is dependent on members of the Cyclin D and Crm1 families. We propose that these mechanisms collaborate to restrict the activity of cdc-14 as central components of an evolutionarily conserved regulatory network to coordinate cell-cycle progression with development.
Collapse
Affiliation(s)
| | | | - Jenna Holmen
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755
| | - Eleanor Beltz
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755
| | - R. Mako Saito
- Corresponding author. Tel.: (603) 650-1110; fax: (603) 650-1188, (R.M. Saito)
| |
Collapse
|
41
|
Eissler CL, Bremmer SC, Martinez JS, Parker LL, Charbonneau H, Hall MC. A general strategy for studying multisite protein phosphorylation using label-free selected reaction monitoring mass spectrometry. Anal Biochem 2011; 418:267-75. [PMID: 21810403 DOI: 10.1016/j.ab.2011.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 01/26/2023]
Abstract
The majority of eukaryotic proteins are phosphorylated in vivo, and phosphorylation may be the most common regulatory posttranslational modification. Many proteins are phosphorylated at numerous sites, often by multiple kinases, which may have different functional consequences. Understanding biological functions of phosphorylation events requires methods to detect and quantify individual sites within a substrate. Here we outline a general strategy that addresses this need and relies on the high sensitivity and specificity of selected reaction monitoring (SRM) mass spectrometry, making it potentially useful for studying in vivo phosphorylation without the need to isolate target proteins. Our approach uses label-free quantification for simplicity and general applicability, although it is equally compatible with stable isotope quantification methods. We demonstrate that label-free SRM-based quantification is comparable to conventional assays for measuring the kinetics of phosphatase and kinase reactions in vitro. We also demonstrate the capability of this method to simultaneously measure relative rates of phosphorylation and dephosphorylation of substrate mixtures, including individual sites on intact protein substrates in the context of a whole cell extract. This strategy should be particularly useful for characterizing the physiological substrate specificity of kinases and phosphatases and can be applied to studies of other protein modifications as well.
Collapse
Affiliation(s)
- Christie L Eissler
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
42
|
Wurzenberger C, Gerlich DW. Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 2011; 12:469-82. [PMID: 21750572 DOI: 10.1038/nrm3149] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mitosis-to-interphase transition involves dramatic cellular reorganization from a state that supports chromosome segregation to a state that complies with all functions of an interphase cell. This process, termed mitotic exit, depends on the removal of mitotic phosphorylations from a broad range of substrates. Mitotic exit regulation involves inactivation of mitotic kinases and activation of counteracting protein phosphatases. The key mitotic exit phosphatase in budding yeast, Cdc14, is now well understood. By contrast, in animal cells, it is now emerging that mitotic exit relies on distinct regulatory networks, including the protein phosphatases PP1 and PP2A.
Collapse
Affiliation(s)
- Claudia Wurzenberger
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETHZ), HPM D11.3, Schafmattstrasse 18, 8093 Zürich, Switzerland
| | | |
Collapse
|
43
|
Human Cdc14B promotes progression through mitosis by dephosphorylating Cdc25 and regulating Cdk1/cyclin B activity. PLoS One 2011; 6:e14711. [PMID: 21379580 PMCID: PMC3040744 DOI: 10.1371/journal.pone.0014711] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 01/23/2011] [Indexed: 12/18/2022] Open
Abstract
Entry into and progression through mitosis depends on phosphorylation and dephosphorylation of key substrates. In yeast, the nucleolar phosphatase Cdc14 is pivotal for exit from mitosis counteracting Cdk1-dependent phosphorylations. Whether hCdc14B, the human homolog of yeast Cdc14, plays a similar function in mitosis is not yet known. Here we show that hCdc14B serves a critical role in regulating progression through mitosis, which is distinct from hCdc14A. Unscheduled overexpression of hCdc14B delays activation of two master regulators of mitosis, Cdc25 and Cdk1, and slows down entry into mitosis. Depletion of hCdc14B by RNAi prevents timely inactivation of Cdk1/cyclin B and dephosphorylation of Cdc25, leading to severe mitotic defects, such as delay of metaphase/anaphase transition, lagging chromosomes, multipolar spindles and binucleation. The results demonstrate that hCdc14B-dependent modulation of Cdc25 phosphatase and Cdk1/cyclin B activity is tightly linked to correct chromosome segregation and bipolar spindle formation, processes that are required for proper progression through mitosis and maintenance of genomic stability.
Collapse
|
44
|
Mocciaro A, Schiebel E. Cdc14: a highly conserved family of phosphatases with non-conserved functions? J Cell Sci 2011; 123:2867-76. [PMID: 20720150 DOI: 10.1242/jcs.074815] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CDC14 was originally identified by L. Hartwell in his famous screen for genes that regulate the budding yeast cell cycle. Subsequent work showed that Cdc14 belongs to a family of highly conserved dual-specificity phosphatases that are present in a wide range of organisms from yeast to human. Human CDC14B is even able to fulfill the essential functions of budding yeast Cdc14. In budding yeast, Cdc14 counteracts the activity of cyclin dependent kinase (Cdk1) at the end of mitosis and thus has important roles in the regulation of anaphase, mitotic exit and cytokinesis. On the basis of the functional conservation of other cell-cycle genes it seemed obvious to assume that Cdc14 phosphatases also have roles in late mitosis in mammalian cells and regulate similar targets to those found in yeast. However, analysis of the human Cdc14 proteins (CDC14A, CDC14B and CDC14C) by overexpression or by depletion using small interfering RNA (siRNA) has suggested functions that are quite different from those of ScCdc14. Recent studies in avian and human somatic cell lines in which the gene encoding either Cdc14A or Cdc14B had been deleted, have shown - surprisingly - that neither of the two phosphatases on its own is essential for viability, cell-cycle progression and checkpoint control. In this Commentary, we critically review the available data on the functions of yeast and vertebrate Cdc14 phosphatases, and discuss whether they indeed share common functions as generally assumed.
Collapse
Affiliation(s)
- Annamaria Mocciaro
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69117 Heidelberg, Germany
| | | |
Collapse
|
45
|
Clément A, Solnica-Krezel L, Gould KL. The Cdc14B phosphatase contributes to ciliogenesis in zebrafish. Development 2011; 138:291-302. [PMID: 21177342 DOI: 10.1242/dev.055038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progression through the cell cycle relies on oscillation of cyclin-dependent kinase (Cdk) activity. One mechanism for downregulating Cdk signaling is to activate opposing phosphatases. The Cdc14 family of phosphatases counteracts Cdk1 phosphorylation in diverse organisms to allow proper exit from mitosis and cytokinesis. However, the role of the vertebrate CDC14 phosphatases, CDC14A and CDC14B, in re-setting the cell for interphase remains unclear. To understand Cdc14 function in vertebrates, we cloned the zebrafish cdc14b gene and used antisense morpholino oligonucleotides and an insertional mutation to inhibit its function during early development. Loss of Cdc14B function led to an array of phenotypes, including hydrocephaly, curved body, kidney cysts and left-right asymmetry defects, reminiscent of zebrafish mutants with defective cilia. Indeed, we report that motile and primary cilia were shorter in cdc14b-deficient embryos. We also demonstrate that Cdc14B function in ciliogenesis requires its phosphatase activity and can be dissociated from its function in cell cycle control. Finally, we propose that Cdc14B plays a role in the regulation of cilia length in a pathway independent of fibroblast growth factor (FGF). This first study of a loss of function of a Cdc14 family member in a vertebrate organism reveals a new role for Cdc14B in ciliogenesis and consequently in a number of developmental processes.
Collapse
Affiliation(s)
- Aurélie Clément
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
46
|
Early-onset aging and defective DNA damage response in Cdc14b-deficient mice. Mol Cell Biol 2011; 31:1470-7. [PMID: 21262768 DOI: 10.1128/mcb.01330-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cdc14 dual-specificity phosphatase plays a key role in the mitotic exit of budding yeast cells. Mammals have two homologues, Cdc14a and Cdc14b. Unlike the yeast counterpart, neither Cdc14a nor Cdc14b seems to be essential for mitotic exit. To determine the physiological function of Cdc14b, we generated mice deficient in the phosphatase. The mutant mice were viable and did not display overt abnormalities. However, these mice developed signs of aging at much younger ages than the wild-type mice. At the cellular level, the Cdc14b-deficient mouse embryonic fibroblasts (MEFs) grew more slowly than the controls at later passages as a result of increased rates of senescence. Consistent with these premature-aging phenotypes, Cdc14b-deficient cells accumulated more endogenous DNA damage than the wild-type cells, and more Cdc14b-deficient MEFs entered senescence than control MEFs in response to exogenous DNA damage. However, no deficiencies in DNA damage checkpoint response were detected in Cdc14b mutant cells, suggesting that the function of Cdc14b is required for efficient DNA damage repair.
Collapse
|
47
|
Schindler K. Protein kinases and protein phosphatases that regulate meiotic maturation in mouse oocytes. Results Probl Cell Differ 2011; 53:309-341. [PMID: 21630151 DOI: 10.1007/978-3-642-19065-0_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oocytes arrest at prophase of meiosis I (MI) and in vivo do not resume meiosis until they receive ovulatory cues. Meiotic resumption entails two rounds of chromosome segregation without an intervening round of DNA replication and an arrest at metaphase of meiosis II (MII); fertilization triggers exit from MII and entry into interphase. During meiotic resumption, there is a burst of protein phosphorylation and dephosphorylation that dramatically changes during the course of oocyte meiotic maturation. Many of these phosphorylation and dephosphorylation events are key to regulating meiotic cell cycle arrest and/or progression, chromosome dynamics, and meiotic spindle assembly and disassembly. This review, which is subdivided into sections based upon meiotic cell cycle stages, focuses on the major protein kinases and phosphatases that have defined requirements during meiosis in mouse oocytes and, when possible, connects these regulatory pathways.
Collapse
Affiliation(s)
- Karen Schindler
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Chircop M, Malladi CS, Lian AT, Page SL, Zavortink M, Gordon CP, McCluskey A, Robinson PJ. Calcineurin activity is required for the completion of cytokinesis. Cell Mol Life Sci 2010; 67:3725-37. [PMID: 20496096 PMCID: PMC11115608 DOI: 10.1007/s00018-010-0401-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 04/08/2010] [Accepted: 05/04/2010] [Indexed: 11/27/2022]
Abstract
Successful completion of cytokinesis requires the spatio-temporal regulation of protein phosphorylation and the coordinated activity of protein kinases and phosphatases. Many mitotic protein kinases are well characterized while mitotic phosphatases are largely unknown. Here, we show that the Ca(2+)- and calmodulin-dependent phosphatase, calcineurin (CaN), is required for cytokinesis in mammalian cells, functioning specifically at the abscission stage. CaN inhibitors induce multinucleation in HeLa cells and prolong the time cells spend connected via an extended intracellular bridge. Upon Ca(2+) influx during cytokinesis, CaN is activated, targeting a set of proteins for dephosphorylation, including dynamin II (dynII). At the intracellular bridge, phospho-dynII and CaN are co-localized to dual flanking midbody rings (FMRs) that reside on either side of the central midbody ring. CaN activity and disassembly of the FMRs coincide with abscission. Thus, CaN activity at the midbody plays a key role in regulating the completion of cytokinesis in mammalian cells.
Collapse
Affiliation(s)
- Megan Chircop
- Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu S, Wang W, Kong X, Congdon LM, Yokomori K, Kirschner MW, Rice JC. Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression. Genes Dev 2010; 24:2531-42. [PMID: 20966048 DOI: 10.1101/gad.1984210] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although the PR-Set7/Set8/KMT5a histone H4 Lys 20 monomethyltransferase (H4K20me1) plays an essential role in mammalian cell cycle progression, especially during G2/M, it remained unknown how PR-Set7 itself was regulated. In this study, we discovered the mechanisms that govern the dynamic regulation of PR-Set7 during mitosis, and that perturbation of these pathways results in defective mitotic progression. First, we found that PR-Set7 is phosphorylated at Ser 29 (S29) specifically by the cyclin-dependent kinase 1 (cdk1)/cyclinB complex, primarily from prophase through early anaphase, subsequent to global accumulation of H4K20me1. While S29 phosphorylation did not affect PR-Set7 methyltransferase activity, this event resulted in the removal of PR-Set7 from mitotic chromosomes. S29 phosphorylation also functions to stabilize PR-Set7 by directly inhibiting its interaction with the anaphase-promoting complex (APC), an E3 ubiquitin ligase. The dephosphorylation of S29 during late mitosis by the Cdc14 phosphatases was required for APC(cdh1)-mediated ubiquitination of PR-Set7 and subsequent proteolysis. This event is important for proper mitotic progression, as constitutive phosphorylation of PR-Set7 resulted in a substantial delay between metaphase and anaphase. Collectively, we elucidated the molecular mechanisms that control PR-Set7 protein levels during mitosis, and demonstrated that its orchestrated regulation is important for normal mitotic progression.
Collapse
Affiliation(s)
- Shumin Wu
- Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Vázquez-Novelle MD, Mailand N, Ovejero S, Bueno A, Sacristán MP. Human Cdc14A phosphatase modulates the G2/M transition through Cdc25A and Cdc25B. J Biol Chem 2010; 285:40544-53. [PMID: 20956543 PMCID: PMC3003353 DOI: 10.1074/jbc.m110.133009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Cdc14 family of serine-threonine phosphatases antagonizes CDK activity by reversing CDK-dependent phosphorylation events. It is well established that the yeast members of this family bring about the M/G1 transition. Budding yeast Cdc14 is essential for CDK inactivation at the end of mitosis and fission yeast Cdc14 homologue Flp1/Clp1 down-regulates Cdc25 to ensure the inactivation of mitotic CDK complexes to trigger cell division. However, the functions of human Cdc14 homologues remain poorly understood. Here we have tested the hypothesis that Cdc14A might regulate Cdc25 mitotic inducers in human cells. We found that increasing levels of Cdc14A delay entry into mitosis by inhibiting Cdk1-cyclin B1 activity. By contrast, lowering the levels of Cdc14A accelerates mitotic entry. Biochemical analyses revealed that Cdc14A acts through key Cdk1-cyclin B1 regulators. We observed that Cdc14A directly bound to and dephosphorylated Cdc25B, inhibiting its catalytic activity. Cdc14A also regulated the activity of Cdc25A at the G2/M transition. Our results indicate that Cdc14A phosphatase prevents premature activation of Cdk1 regulating Cdc25A and Cdc25B at the entry into mitosis.
Collapse
|