1
|
Sharma G, Paganin M, Lauria F, Perenthaler E, Viero G. The SMN-ribosome interplay: a new opportunity for Spinal Muscular Atrophy therapies. Biochem Soc Trans 2024; 52:465-479. [PMID: 38391004 PMCID: PMC10903476 DOI: 10.1042/bst20231116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
The underlying cause of Spinal Muscular Atrophy (SMA) is in the reduction of survival motor neuron (SMN) protein levels due to mutations in the SMN1 gene. The specific effects of SMN protein loss and the resulting pathological alterations are not fully understood. Given the crucial roles of the SMN protein in snRNP biogenesis and its interactions with ribosomes and translation-related proteins and mRNAs, a decrease in SMN levels below a specific threshold in SMA is expected to affect translational control of gene expression. This review covers both direct and indirect SMN interactions across various translation-related cellular compartments and processes, spanning from ribosome biogenesis to local translation and beyond. Additionally, it aims to outline deficiencies and alterations in translation observed in SMA models and patients, while also discussing the implications of the relationship between SMN protein and the translation machinery within the context of current and future therapies.
Collapse
|
2
|
Sakthivel D, Brown-Suedel A, Bouchier-Hayes L. The role of the nucleolus in regulating the cell cycle and the DNA damage response. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:203-241. [PMID: 37061332 DOI: 10.1016/bs.apcsb.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The nucleolus has long been perceived as the site for ribosome biogenesis, but numerous studies suggest that the nucleolus carefully sequesters crucial proteins involved in multiple cellular functions. Among these, the role of nucleolus in cell cycle regulation is the most evident. The nucleolus is the first responder of growth-related signals to mediate normal cell cycle progression. The nucleolus also senses different cellular stress insults by activating diverse pathways that arrest the cell cycle, promote DNA repair, or initiate apoptosis. Here, we review the emerging concepts on how the ribosomal and nonribosomal nucleolar proteins mediate such cellular effects.
Collapse
|
3
|
Monteiro LF, Ferruzo PYM, Russo LC, Farias JO, Forti FL. DUSP3/VHR: A Druggable Dual Phosphatase for Human Diseases. Rev Physiol Biochem Pharmacol 2018; 176:1-35. [PMID: 30069819 DOI: 10.1007/112_2018_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein tyrosine kinases (PTK), discovered in the 1970s, have been considered master regulators of biological processes with high clinical significance as targets for human diseases. Their actions are countered by protein tyrosine phosphatases (PTP), enzymes yet underrepresented as drug targets because of the high homology of their catalytic domains and high charge of their catalytic pocket. This scenario is still worse for some PTP subclasses, for example, for the atypical dual-specificity phosphatases (ADUSPs), whose biological functions are not even completely known. In this sense, the present work focuses on the dual-specificity phosphatase 3 (DUSP3), also known as VH1-related phosphatase (VHR), an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 expression and activities are suggestive of a tumor suppressor or tumor-promoting enzyme in different types of human cancers. Furthermore, DUSP3 has other biological functions involving immune response mediation, thrombosis, hemostasis, angiogenesis, and genomic stability that occur through either MAPK-dependent or MAPK-independent mechanisms. This broad spectrum of actions is likely due to the large substrate diversity and molecular mechanisms that are still under scrutiny. The growing advances in characterizing new DUSP3 substrates will allow the development of pharmacological inhibitors relevant for possible future clinical trials. This review covers all aspects of DUSP3, since its gene cloning and crystallographic structure resolution, in addition to its classical and novel substrates and the biological processes involved, followed by an update of what is currently known about the DUSP3/VHR-inhibiting compounds that might be considered potential drugs to treat human diseases.
Collapse
Affiliation(s)
- Lucas Falcão Monteiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | | | - Lilian Cristina Russo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Jessica Oliveira Farias
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Fábio Luís Forti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Sirri V, Jourdan N, Hernandez-Verdun D, Roussel P. Sharing the mitotic pre-ribosomal particles between daughter cells. J Cell Sci 2016; 129:1592-604. [DOI: 10.1242/jcs.180521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/20/2016] [Indexed: 01/05/2023] Open
Abstract
Ribosome biogenesis is a fundamental multistep process initiated by the synthesis of 90S pre-ribosomal particles in the nucleoli of higher eukaryotes. Even though synthesis of ribosomes stops during mitosis while nucleoli disappear, mitotic pre-ribosomal particles persist as observed in prenucleolar bodies (PNBs) during telophase. To further understand the relationship between the nucleolus and the PNBs, the presence and the fate of the mitotic pre-ribosomal particles during cell division was investigated. We demonstrate that the recently synthesized 45S precursor ribosomal RNAs (pre-rRNAs) but also the 32S and 30S pre-rRNAs are maintained during mitosis and associated with the chromosome periphery together with pre-rRNA processing factors. Maturation of the mitotic pre-ribosomal particles, as assessed by the stability of the mitotic pre-rRNAs, is transiently arrested during mitosis by a cyclin-dependent kinase (CDK)1-cyclin B-dependent mechanism and may be restored by CDK inhibitor treatments. At the M/G1 transition, the resumption of mitotic pre-rRNA processing in PNBs does not induce the disappearance of PNBs that only occurs when functional nucleoli reform. Strikingly, during their maturation process, mitotic pre-rRNAs localize in reforming nucleoli.
Collapse
Affiliation(s)
- Valentina Sirri
- Univ. Paris Diderot, Unit of Functional and Adaptive Biology, UMR 8251 CNRS, 4 rue Marie-Andrée Lagroua Weill-Hallé, F-75205 Paris, France
| | - Nathalie Jourdan
- UPMC Univ. Paris 06, Institut de Biologie Paris Seine, UMR 8256 CNRS, 9 quai St Bernard, F-75252 Paris, France
| | - Danièle Hernandez-Verdun
- Univ. Paris Diderot, Institut Jacques Monod, UMR 7592 CNRS, 15 rue Hélène Brion, F‑75205 Paris, France
| | - Pascal Roussel
- Univ. Paris Diderot, Unit of Functional and Adaptive Biology, UMR 8251 CNRS, 4 rue Marie-Andrée Lagroua Weill-Hallé, F-75205 Paris, France
| |
Collapse
|
5
|
Su L, Zheng H, Li Z, Qiu J, Chen S, Liu J, Ou TM, Tan JH, Gu LQ, Huang ZS, Li D. Mechanistic studies on the anticancer activity of 2,4-disubstituted quinazoline derivative. Biochim Biophys Acta Gen Subj 2014; 1840:3123-30. [PMID: 25018006 DOI: 10.1016/j.bbagen.2014.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/23/2014] [Accepted: 07/02/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Accelerated proliferation of solid tumor and hematologic cancer cells is related to accelerated transcription of ribosomal DNA by the RNA polymerase I to produce elevated level of ribosomal RNA. Therefore, down-regulation of RNA polymerase I transcription in cancer cells is an important anticancer therapeutic strategy. METHODS A variety of methods were used, including cloning, expression and purification of protein, electrophoretic mobility shift assay (EMSA), circular dichroic (CD) spectroscopy, CD-melting, isothermal titration calorimetry (ITC), chromatin immunoprecipitation (Ch-IP), RNA interference, RT-PCR, Western blot, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell assay. RESULTS Our results showed that 2,4-disubstituted quinazoline derivative Sysu12d could down-regulate c-myc through stabilization of c-myc promoter G-quadruplex, resulting in down-regulation of nucleolin expression. Sysu12d could also disrupt nucleolin/G-quadruplex complex. Both of the above contributed to the down-regulation of ribosomal RNA synthesis, followed by activation of p53 and then cancer cell apoptosis. CONCLUSIONS These mechanistic studies set up the basis for further development of Sysu12d as a new type of lead compound for cancer treatment. GENERAL SIGNIFICANCE 2,4-Disubstituted quinazoline derivatives may have multi-functional effect for cancer treatment.
Collapse
Affiliation(s)
- Lijuan Su
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Huaqin Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Zeng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Jun Qiu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Siqi Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Jinggong Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Lian-Quan Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication. Virology 2014; 452-453:212-22. [PMID: 24606698 DOI: 10.1016/j.virol.2014.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/28/2013] [Accepted: 01/17/2014] [Indexed: 01/14/2023]
Abstract
The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process.
Collapse
|
7
|
Panico K, Forti FL. Proteomic, cellular, and network analyses reveal new DUSP3 interactions with nucleolar proteins in HeLa cells. J Proteome Res 2013; 12:5851-66. [PMID: 24245651 DOI: 10.1021/pr400867j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DUSP3 (or Vaccinia virus phosphatase VH1-related; VHR) is a small dual-specificity phosphatase known to dephosphorylate c-Jun N-terminal kinases and extracellular signal-regulated kinases. In human cervical cancer cells, DUSP3 is overexpressed, localizes preferentially to the nucleus, and plays a key role in cellular proliferation and senescence triggering. Other DUSP3 functions are still unknown, as illustrated by recent and unpublished results from our group showing that this enzyme mediates DNA damage response or repair processes. In this study, we sought to identify new interactions between DUSP3 and proteins directly or indirectly involved in or correlated with its biological roles in HeLa cells exposed to gamma or UV radiation. By using GST-DUSP as bait, we pulled down interacting proteins and identified them by LC-MS/MS. Of the 46 proteins obtained, six hits were extensively validated by immune techniques; the proteins Nucleophosmin, HnRNP C1/C2, and Nucleolin were the most promising targets found to directly interact with DUSP3. We then analyzed the DUSP3 interactomes using physical protein-protein interaction networks using our hits as the seed list. The validated hits as well as unvalidated hits fluctuated on the DUSP3 interactomes of HeLa cells, independent of the time post radiation, which confirmed our proteomic and experimental data and clearly showed the proximity of DUSP3 to proteins involved in processes intimately related to DNA repair and senescence, such as Ku70 and Tert, via interactions with nucleolar proteins, which were identified in this study, that regulate DNA/RNA structure and functions.
Collapse
Affiliation(s)
- Karine Panico
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Rua Santa Adélia, 166, Bairro Bangu, Santo Andre-SP 09210-170, Brazil
| | | |
Collapse
|
8
|
Alawi F, Lin P. Dyskerin localizes to the mitotic apparatus and is required for orderly mitosis in human cells. PLoS One 2013; 8:e80805. [PMID: 24303026 PMCID: PMC3841160 DOI: 10.1371/journal.pone.0080805] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022] Open
Abstract
Dyskerin is a highly conserved, nucleolar RNA-binding protein with established roles in small nuclear ribonucleoprotein biogenesis, telomerase and telomere maintenance and precursor rRNA processing. Telomerase is functional during S phase and the bulk of rRNA maturation occurs during G1 and S phases; both processes are inactivated during mitosis. Yet, we show that during the course of cell cycle progression, human dyskerin expression peaks during G2/M in parallel with the upregulation of pro-mitotic factors. Dyskerin redistributed from the nucleolus in interphase cells to the perichromosomal region during prometaphase, metaphase and anaphase. With continued anaphase progression, dyskerin also localized to the cytoplasm within the mid-pole region. Loss of dyskerin function via siRNA-mediated depletion promoted G2/M accumulation and this was accompanied by an increased mitotic index and activation of the spindle assembly checkpoint. Live cell imaging further revealed an array of mitotic defects including delayed prometaphase progression, a significantly increased incidence of multi-polar spindles, and anaphase bridges culminating in micronucleus formation. Together, these findings suggest that dyskerin is a highly dynamic protein throughout the cell cycle and increases the repertoire of fundamental cellular processes that are disrupted by absence of its normal function.
Collapse
Affiliation(s)
- Faizan Alawi
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Ping Lin
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Tulchin N, Ornstein L, Dikman S, Strauchen J, Jaffer S, Nagi C, Bleiweiss I, Kornreich R, Edelmann L, Brown K, Bodian C, Nair VD, Chambon M, Woods NT, Monteiro ANA. Localization of BRCA1 protein in breast cancer tissue and cell lines with mutations. Cancer Cell Int 2013; 13:70. [PMID: 23855721 PMCID: PMC3720266 DOI: 10.1186/1475-2867-13-70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/12/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The breast and ovarian cancer susceptibility gene (BRCA1) encodes a tumor suppressor. The BRCA1 protein is found primarily in cell nuclei and plays an important role in the DNA damage response and transcriptional regulation. Deficiencies in DNA repair capabilities have been associated with higher histopathological grade and worse prognosis in breast cancer. METHODS In order to investigate the subcellular distribution of BRCA1 in tumor tissue we randomly selected 22 breast carcinomas and tested BRCA1 protein localization in frozen and contiguous formalin-fixed, paraffin embedded (FFPE) tissue, using pressure cooker antigen-retrieval and the MS110 antibody staining. To assess the impact of BRCA1 germline mutations on protein localization, we retrospectively tested 16 of the tumor specimens to determine whether they contained the common Ashkenazi Jewish founder mutations in BRCA1 (185delAG, 5382insC), and BRCA2 (6174delT). We also compared co-localization of BRCA1 and nucleolin in MCF7 cells (wild type) and a mutant BRCA1 cell line, HCC1937 (5382insC). RESULTS In FFPE tissue, with MS110 antibody staining, we frequently found reduced BRCA1 nuclear staining in breast tumor tissue compared to normal tissue, and less BRCA1 staining with higher histological grade in the tumors. However, in the frozen sections, BRCA1 antibody staining showed punctate, intra-nuclear granules in varying numbers of tumor, lactating, and normal cells. Two mutation carriers were identified and were confirmed by gene sequencing. We have also compared co-localization of BRCA1 and nucleolin in MCF7 cells (wild type) and a mutant BRCA1 cell line, HCC1937 (5382insC) and found altered sub-nuclear and nucleolar localization patterns consistent with a functional impact of the mutation on protein localization. CONCLUSIONS The data presented here support a role for BRCA1 in the pathogenesis of sporadic and inherited breast cancers. The use of well-characterized reagents may lead to further insights into the function of BRCA1 and possibly the further development of targeted therapeutics.
Collapse
Affiliation(s)
- Natalie Tulchin
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Leonard Ornstein
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Steven Dikman
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - James Strauchen
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Shabnam Jaffer
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Chandandeep Nagi
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Ira Bleiweiss
- Department of Pathology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Ruth Kornreich
- Department of Genetics, Mount Sinai School of Medicine, New York, NY, USA
| | - Lisa Edelmann
- Department of Genetics, Mount Sinai School of Medicine, New York, NY, USA
| | - Karen Brown
- Department of Genetics, Mount Sinai School of Medicine, New York, NY, USA
| | - Carol Bodian
- Department of Anesthesiology, Mount Sinai School of Medicine, New York, NY, USA
| | - Venugopalan D Nair
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Nicholas T Woods
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Oncological Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Alvaro NA Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
10
|
Carron C, Balor S, Delavoie F, Plisson-Chastang C, Faubladier M, Gleizes PE, O'Donohue MF. Post-mitotic dynamics of pre-nucleolar bodies is driven by pre-rRNA processing. J Cell Sci 2012; 125:4532-42. [PMID: 22767511 DOI: 10.1242/jcs.106419] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the relationship between the topological dynamics of nuclear subdomains and their molecular function is a central issue in nucleus biology. Pre-nucleolar bodies (PNBs) are transient nuclear subdomains, which form at telophase and contain nucleolar proteins, snoRNPs and pre-ribosomal RNAs (pre-rRNAs). These structures gradually disappear in early G1 phase and are currently regarded as reservoirs of nucleolar factors that participate to post-mitotic reassembly of the nucleolus. Here, we provide evidence from fluorescence in situ hybridization and loss-of-function experiments in HeLa cells that PNBs are in fact active ribosome factories in which maturation of the pre-rRNAs transiting through mitosis resumes at telophase. We show that the pre-rRNA spacers are sequentially removed in PNBs when cells enter G1 phase, indicating regular pre-rRNA processing as in the nucleolus. Accordingly, blocking pre-rRNA maturation induces accumulation in PNBs of stalled pre-ribosomes characterised by specific pre-rRNAs and pre-ribosomal factors. The presence of pre-ribosomal particles in PNBs is corroborated by observation of these domains by correlative electron tomography. Most importantly, blocking pre-rRNA maturation also prevents the gradual disappearance of PNBs, which persist for several hours in the nucleoplasm. In a revised model, we propose that PNBs are autonomous extra-nucleolar ribosome maturation sites, whose orderly disassembly in G1 phase is driven by the maturation and release of their pre-ribosome content.
Collapse
Affiliation(s)
- Coralie Carron
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, F-31000 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Hernandez-Verdun D. Assembly and disassembly of the nucleolus during the cell cycle. Nucleus 2012; 2:189-94. [PMID: 21818412 DOI: 10.4161/nucl.2.3.16246] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 01/01/2023] Open
Abstract
The nucleolus is a large nuclear domain in which transcription, maturation and assembly of ribosomes take place. In higher eukaryotes, nucleolar organization in three sub-domains reflects the compartmentation of the machineries related to active or inactive transcription of the ribosomal DNA, ribosomal RNA processing and assembly with ribosomal proteins of the two (40S and 60S) ribosomal subunits. The assembly of the nucleoli during telophase/early G(1) depends on pre-existing machineries inactivated during prophase (the transcription machinery and RNP processing complexes) and on partially processed 45S rRNAs inherited throughout mitosis. In telophase, the 45S rRNAs nucleate the prenucleolar bodies and order the dynamics of nucleolar assembly. The assembly/disassembly processes of the nucleolus depend on the equilibrium between phosphorylation/dephosphorylation of the transcription machinery and on the RNP processing complexes under the control of the CDK1-cyclin B kinase and PP1 phosphatases. The dynamics of assembly/disassembly of the nucleolus is time and space regulated.
Collapse
|
12
|
Shishova KV, Zharskaya COCО, Zatsepina COCV. The Fate of the Nucleolus during Mitosis: Comparative Analysis of Localization of Some Forms of Pre-rRNA by Fluorescent in Situ Hybridization in NIH/3T3 Mouse Fibroblasts. Acta Naturae 2011; 3:100-6. [PMID: 22649709 PMCID: PMC3347620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Nucleolus is the major structural domain of the cell nucleus, which in addition to proteins contains ribosomal RNA (rRNA) at different stages of maturation (or pre-rRNA). In mammals, the onset of mitosis is accompanied by the inhibition of rRNA synthesis, nucleolus disassembly, and the migration of pre-rRNA to the cytoplasm. However, the precise role of cytoplasmic pre-rRNA in mitosis remains unclear, and no comparative analysis of its different forms at consequent mitotic stages has thus far been performed. The focus of this research was the study of the localization of pre-rRNA in mitotic NIH/3T3 mouse fibroblasts by fluorescentin situhybridization (FISH) with probes to several regions of mouse primary 47S pre-rRNA transcripts and by confocal laser microscopy. The results reveal that all types of pre-rRNA appear in the cytoplasm at the beginning of mitosis, following the breakdown of the nucleolus and nuclear envelope. However, not all pre-rRNA are transported by chromosomes from maternal cells into daughter cells. At the end of mitosis, all types of pre-rRNA and 28S rRNA can be visualized in nucleolus-derived foci (NDF), structures containing many proteins of mature nucleoli the appearance of which indicates the commencement of nucleologenesis. However, early NDF are enriched in less processed pre-RNA, whereas late NDF contain predominantly 28S rRNA. Altogether, the results of this study strengthen the hypotheses that postulate that different forms of pre-rRNA may play various roles in mitosis, and that NDF can be involved in the maturation of pre-rRNA, remaining preserved in the cytoplasm of dividing cells.
Collapse
Affiliation(s)
- K V Shishova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | | | | |
Collapse
|
13
|
CIGB-300, a synthetic peptide-based drug that targets the CK2 phosphoaceptor domain. Translational and clinical research. Mol Cell Biochem 2011; 356:45-50. [PMID: 21735096 DOI: 10.1007/s11010-011-0950-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
CK2 represents an oncology target scientifically validated. However, clinical research with inhibitors of the CK2-mediated phosphorylation event is still insufficient to recognize it as a clinically validated target. CIGB-300, an investigational peptide-based drug that targets the phosphoaceptor site, binds to a CK2 substrate array in vitro but mainly to B23/nucleophosmin in vivo. The CIGB-300 proapoptotic effect is preceded by its nucleolar localization, inhibition of the CK2-mediated phosphorylation on B23/nucleophosmin and nucleolar disassembly. Importantly, CIGB-300 shifted a protein array linked to apoptosis, ribosome biogenesis, cell proliferation, glycolisis, and cell motility in proteomic studies which helped to understand its mechanism of action. In the clinical ground, CIGB-300 has proved to be safe and well tolerated in a First-in-Human trial in women with cervical malignancies who also experienced signs of clinical benefit. In a second Phase 1 clinical trial in women with cervical cancer stage IB2/II, the MTD and DLT have been also identified in the clinical setting. Interestingly, in cervical tumors the B23/nucleophosmin protein levels were significantly reduced after CIGB-300 treatment at the nucleus compartment. In addition, expanded use of CIGB-300 in case studies has evidenced antitumor activity when administered as compassional option. Collectively, our data outline important clues on translational and clinical research from this novel peptide-based drug reinforcing its perspectives to treat cancer and paving the way to validate CK2 as a promising target in oncology.
Collapse
|
14
|
Chennupati V, Datta D, Rao MRS, Boddapati N, Kayasani M, Sankaranarayanan R, Mishra M, Seth P, Mani C, Mahalingam S. Signals and pathways regulating nucleolar retention of novel putative nucleolar GTPase NGP-1(GNL-2). Biochemistry 2011; 50:4521-36. [PMID: 21495629 DOI: 10.1021/bi200425b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
NGP-1(GNL-2) is a putative GTPase, overexpressed in breast carcinoma and localized in the nucleolus. NGP-1 belongs to the MMR1-HSR1 family of large GTPases that are emerging as crucial coordinators of signaling cascades in different cellular compartments. The members of this family share very closely related G-domains, but the signals and pathways regulating their subcellular localization and their functional relevance remain unknown. To improve our understanding of the nuclear transport mechanism of NGP-1, we have identified two nucleolar localization signals (NoLS) that are independently shown to translocate NGP-1 as well the heterologous protein to the nucleolus. Site-specific mutagenesis and immunofluorescence studies suggest that the tandem repeats of positively charged amino acids are critical for NGP-1 NoLS function. Interestingly, amino-terminal (NGP-1(1-100)) and carboxyl-terminal (NGP-1(661-731)) signals independently interact with receptors importin-β and importin-α, respectively. This investigation, for the first time, provides evidence that the interaction of importin-α with C-terminal NoLS (NGP-1(661-731)) was able to target the heterologous protein to the nucleolar compartment. Structural modeling analysis and alanine scanning mutagenesis of conserved G-domains suggest that G4 and G5 motifs are critical for GTP binding of NGP-1 and further show that the nucleolar localization of NGP-1 is regulated by a GTP gating-mediated mechanism. In addition, our data suggest that an ongoing transcription is essential for efficient localization of NGP-1 to the nucleolus. We have observed a high level of NGP-1 expression in the mitogen-activated primary human peripheral blood mononuclear cells (hPBMC) as well as in human fetal brain-derived neural precursor cells (hNPCs) in comparison to cells undergoing differentiation. Overall, the results suggest that multiple mechanisms are involved in the localization of NGP-1 to the nucleolus for the regulation of nucleolar function in cell growth and proliferation.
Collapse
Affiliation(s)
- Vijaykumar Chennupati
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Narayan V, Halada P, Hernychová L, Chong YP, Žáková J, Hupp TR, Vojtesek B, Ball KL. A multiprotein binding interface in an intrinsically disordered region of the tumor suppressor protein interferon regulatory factor-1. J Biol Chem 2011; 286:14291-303. [PMID: 21245151 DOI: 10.1074/jbc.m110.204602] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.
Collapse
Affiliation(s)
- Vikram Narayan
- CRUK Interferon and Cell Signalling Group, Cell Signalling Unit, Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tulchin N, Chambon M, Juan G, Dikman S, Strauchen J, Ornstein L, Billack B, Woods NT, Monteiro ANA. BRCA1 protein and nucleolin colocalize in breast carcinoma tissue and cancer cell lines. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1203-14. [PMID: 20075200 PMCID: PMC2832143 DOI: 10.2353/ajpath.2010.081063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2009] [Indexed: 12/20/2022]
Abstract
The breast and ovarian cancer susceptibility gene BRCA1 encodes a tumor suppressor. BRCA1 protein, which is involved in DNA damage response, has been thought to be found primarily in cell nuclei. In the present investigation, immunohistological studies of BRCA1 protein in frozen breast cancer tissue and MCF7 and HeLa cell lines revealed BRCA1 expression in both nucleoli and nucleoplasmic foci. Immunoelectron microscopic studies of estrogen-stimulated MCF7 cells demonstrated BRCA1 protein localization in the granular components of the nucleolus. Moreover, immunofluorescence of BRCA1 and nucleolin double-labeling showed colocalization in both nucleoli and nucleoplasmic foci in breast tumor cells and asynchronously growing MCF7 and HeLa cells. Multiparameter analysis of BRCA1 and nucleolin in relation to cell cycle position (DNA content) showed expression during G1-S and persistence of BRCA1 during G2/M. After gamma-irradiation of MCF7 cells, BRCA1 protein dispersed from nucleoli and nucleoplasmic foci to other nucleoplasmic sites, which did not colocalize with nucleolin. Small interfering RNA-mediated knockdown of BRCA1 protein resulted in decreased immunofluorescence staining, which was confirmed by Western blotting. The observed colocalization of BRCA1 and nucleolin raises new possibilities for the nucleoplasm-nucleolus pathways of these proteins and their functional significance.
Collapse
Affiliation(s)
- Natalie Tulchin
- Department of Pathology, Box 1194, Mt. Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cisterna B, Biggiogera M. Ribosome biogenesis: from structure to dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:67-111. [PMID: 20875629 DOI: 10.1016/s1937-6448(10)84002-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we describe the status of the research concerning the nucleolus, the major nuclear body. The nucleolus has been recognized as a dynamic organelle with many more functions than one could imagine. In fact, in addition to its fundamental role in the biogenesis of preribosomes, the nucleolus takes part in many other cellular processes and functions, such as the cell-cycle control and the p53 pathway: the direct or indirect involvement of the nucleolus in these various processes makes it sensitive to their alteration. Moreover, it is worth noting that the different nucleolar factors participating to independent mechanisms show different dynamics of association/disassociation with the nucleolar body.
Collapse
Affiliation(s)
- Barbara Cisterna
- Laboratory of Cell Biology and Neurobiology, Department of Animal Biology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
18
|
Hoffmann MH, Trembleau S, Muller S, Steiner G. Nucleic acid-associated autoantigens: pathogenic involvement and therapeutic potential. J Autoimmun 2009; 34:J178-206. [PMID: 20031372 DOI: 10.1016/j.jaut.2009.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Autoimmunity to ubiquitously expressed macromolecular nucleic acid-protein complexes such as the nucleosome or the spliceosome is a characteristic feature of systemic autoimmune diseases. Disease-specificity and/or association with clinical features of some of these autoimmune responses suggest pathogenic involvement which, however, has been proven in only a few cases so far. Although the mechanisms leading to autoimmunity against nucleic acid-containing complexes are still far from being fully understood, there is increasing experimental evidence that the nucleic acid component may act as a co-stimulator or adjuvans via activation of nucleic acid-binding receptor systems such as Toll-like receptors in antigen-presenting cells. Dysregulated apoptosis and inappropriate stimulation of nucleic acid-sensing receptors may lead to loss of tolerance against the protein components of such complexes, activation of autoreactive T cells and formation of autoantibodies. This has been demonstrated to occur in systemic lupus erythematosus and seems to represent a general mechanism that may be crucial for the development of systemic autoimmune diseases. This review provides a comprehensive overview of the most thoroughly-characterized nucleic acid-associated autoantigens, describing their structure and biological function, as well as the nature and pathogenic importance of the reactivities directed against them. Furthermore, recent advances in immunotherapy such as antigen-specific approaches targeted at nucleic acid-binding antigens are discussed.
Collapse
Affiliation(s)
- Markus H Hoffmann
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
19
|
Perera Y, Farina HG, Gil J, Rodriguez A, Benavent F, Castellanos L, Gómez RE, Acevedo BE, Alonso DF, Perea SE. Anticancer peptide CIGB-300 binds to nucleophosmin/B23, impairs its CK2-mediated phosphorylation, and leads to apoptosis through its nucleolar disassembly activity. Mol Cancer Ther 2009; 8:1189-96. [PMID: 19417160 DOI: 10.1158/1535-7163.mct-08-1056] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CIGB-300, formerly known as P15-tat, is a proapoptotic peptide with established antiproliferative activity in vitro and antitumoral activity in vivo. This hypothesis-driven peptide was initially selected for its ability to impair the in vitro CK2-mediated phosphorylation in one of its substrates through direct binding to the conserved acidic phosphoaceptor domain. However, the actual in vivo target(s) on human cancer cells among the hundreds of CK2 substrates as well as the subsequent events that lead to apoptosis on tumor cells remains to be determined. In this work, we identified the multifunctional oncoprotein nucleophosmin/B23 as a major target for CIGB-300. In vivo, the CIGB-300-B23 interaction was shown by pull-down experiments and confirmed by the early in situ colocalization of both molecules in the cell nucleolus. Moreover, CIGB-300 inhibits the CK2-mediated phosphorylation of B23 in a dose-dependent fashion both in vitro and in vivo as shown using the recombinant GST fusion protein and the metabolic labeling approach, respectively. Such phosphorylation impairment was correlated with the ability of CIGB-300 to induce nucleolar disassembly as documented by the use of established markers for nucleolar structure. Finally, we showed that such a sequence of events leads to the rapid and massive onset of apoptosis both at the molecular and cellular levels. Collectively, these findings provide important clues by which the CIGB-300 peptide exerts its proapoptotic effect on tumor cells and highlights the suitability of the B23/CK2 pathway for cancer-targeted therapy.
Collapse
Affiliation(s)
- Yasser Perera
- Laboratory of Molecular Oncology, Division of Pharmaceuticals, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana CP10600, Cuba.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vascotto C, Fantini D, Romanello M, Cesaratto L, Deganuto M, Leonardi A, Radicella JP, Kelley MR, D'Ambrosio C, Scaloni A, Quadrifoglio F, Tell G. APE1/Ref-1 interacts with NPM1 within nucleoli and plays a role in the rRNA quality control process. Mol Cell Biol 2009; 29:1834-54. [PMID: 19188445 PMCID: PMC2655621 DOI: 10.1128/mcb.01337-08] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 09/29/2008] [Accepted: 01/20/2009] [Indexed: 12/18/2022] Open
Abstract
APE1/Ref-1 (hereafter, APE1), a DNA repair enzyme and a transcriptional coactivator, is a vital protein in mammals. Its role in controlling cell growth and the molecular mechanisms that fine-tune its different cellular functions are still not known. By an unbiased proteomic approach, we have identified and characterized several novel APE1 partners which, unexpectedly, include a number of proteins involved in ribosome biogenesis and RNA processing. In particular, a novel interaction between nucleophosmin (NPM1) and APE1 was characterized. We observed that the 33 N-terminal residues of APE1 are required for stable interaction with the NPM1 oligomerization domain. As a consequence of the interaction with NPM1 and RNA, APE1 is localized within the nucleolus and this localization depends on cell cycle and active rRNA transcription. NPM1 stimulates APE1 endonuclease activity on abasic double-stranded DNA (dsDNA) but decreases APE1 endonuclease activity on abasic single-stranded RNA (ssRNA) by masking the N-terminal region of APE1 required for stable RNA binding. In APE1-knocked-down cells, pre-rRNA synthesis and rRNA processing were not affected but inability to remove 8-hydroxyguanine-containing rRNA upon oxidative stress, impaired translation, lower intracellular protein content, and decreased cell growth rate were found. Our data demonstrate that APE1 affects cell growth by directly acting on RNA quality control mechanisms, thus affecting gene expression through posttranscriptional mechanisms.
Collapse
MESH Headings
- Binding, Competitive
- Cell Cycle
- Cell Nucleolus/metabolism
- Cell Proliferation
- DNA/metabolism
- DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry
- DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
- Electrophoresis, Gel, Two-Dimensional
- HeLa Cells
- Humans
- Nuclear Proteins/chemistry
- Nuclear Proteins/metabolism
- Nucleophosmin
- Oxidation-Reduction
- Peptide Mapping
- Protein Binding
- Protein Biosynthesis
- Protein Interaction Mapping
- Protein Multimerization
- Protein Structure, Tertiary
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 28S/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Carlo Vascotto
- Department of Biomedical Sciences and Technologies, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stepiński D. Immunodetection of nucleolar proteins and ultrastructure of nucleoli of soybean root meristematic cells treated with chilling stress and after recovery. PROTOPLASMA 2009; 235:77-89. [PMID: 19241118 DOI: 10.1007/s00709-009-0033-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 01/19/2009] [Indexed: 05/03/2023]
Abstract
The nucleolar proteins, fibrillarin and nucleophosmin, have been identified immunofluorescently in the root meristematic cells of soybean seedlings under varying experimental conditions: at 25 degrees C (control), chilling at 10 degrees C for 3 h and 4 days and recovery from the chilling stress at 25 degrees C. In each experimental variant, the immunofluorescence signals were present solely at the nucleolar territories. Fluorescent staining for both proteins was mainly in the shape of circular domains that are assumed to correspond to the dense fibrillar component of the nucleoli. The fewest fluorescent domains were observed in the nucleoli of chilled plants, and the highest number was observed in the plants recovered after chilling. This difference in the number of circular domains in the nucleoli of each variant may indicate various levels of these proteins in each variant. Both the number of circular domains and the level of these nucleolar proteins changed with changes in the transcriptional activity of the nucleoli, with the more metabolically active cell having higher numbers of active areas in the nucleolus and higher levels of nucleolar proteins, and conversely. Electron microscopic studies revealed differences in the ultrastructure of the nucleoli in all experimental variants and confirmed that the number of fibrillar centres surrounded by dense fibrillar component was the lowest in the nucleoli of chilled plants, and the highest in the nucleoli of recovered seedlings.
Collapse
Affiliation(s)
- Dariusz Stepiński
- Department of Cytophysiology, University of Łódź, Pilarskiego 14, 90-231, Łódź, Poland.
| |
Collapse
|
22
|
Guffanti E, Kittur N, Brodt ZN, Polotsky AJ, Kuokkanen SM, Heller DS, Young SL, Santoro N, Meier UT. Nuclear pore complex proteins mark the implantation window in human endometrium. J Cell Sci 2008; 121:2037-45. [PMID: 18505792 PMCID: PMC2657873 DOI: 10.1242/jcs.030437] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleolar channel systems (NCSs) are membranous organelles appearing transiently in the epithelial cell nuclei of postovulatory human endometrium. Their characterization and use as markers for a healthy receptive endometrium have been limited because they are only identifiable by electron microscopy. Here we describe the light microscopic detection of NCSs using immunofluorescence. Specifically, the monoclonal nuclear pore complex antibody 414 shows that NCSs are present in about half of all human endometrial epithelial cells but not in any other cell type, tissue or species. Most nuclei contain only a single NCS of uniform 1 microm diameter indicating a tightly controlled organelle. The composition of NCSs is as unique as their structure; they contain only a subset each of the proteins of nuclear pore complexes, inner nuclear membrane, nuclear lamina and endoplasmic reticulum. Validation of our robust NCS detection method on 95 endometrial biopsies defines a 6-day window, days 19-24 (+/-1) of an idealized 28 day cycle, wherein NCSs occur. Therefore, NCSs precede and overlap with the implantation window and serve as potential markers of uterine receptivity. The immunodetection assay, combined with the hitherto underappreciated prevalence of NCSs, now enables simple screening and further molecular and functional dissection.
Collapse
Affiliation(s)
- Elisa Guffanti
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nupur Kittur
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Z. Nilly Brodt
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Alex J. Polotsky
- Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Satu M. Kuokkanen
- Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Debra S. Heller
- Department of Pathology, UMDNJ – New Jersey Medical School, Newark, NJ 07101, USA
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Nanette Santoro
- Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - U. Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
23
|
Nucleolin – Characteristics of Protein and its Role in Biology of Cancers and Viral Infections. ACTA ACUST UNITED AC 2008. [DOI: 10.2478/v10052-008-0003-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Svarcova O, Strejcek F, Petrovicova I, Avery B, Pedersen H, Lucas-Hahn A, Niemann H, Laurincik J, Maddox-Hyttel P. The role of RNA polymerase I transcription and embryonic genome activation in nucleolar development in bovine preimplantation embryos. Mol Reprod Dev 2008; 75:1095-103. [DOI: 10.1002/mrd.20865] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Okada M, Jang SW, Ye K. Ebp1 association with nucleophosmin/B23 is essential for regulating cell proliferation and suppressing apoptosis. J Biol Chem 2007; 282:36744-54. [PMID: 17951246 DOI: 10.1074/jbc.m706169200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ebp1 and NPM/B23 are essential for cell proliferation and survival. Ebp1 possesses p42 and p48 isoforms. Whereas p42 exclusively resides in the cytoplasm, p48 localizes in both the cytoplasm and the nucleolus. Here, we show that Ebp1 forms a complex with B23, and this complex plays a critical role in cell proliferation and survival. p42 specifically associates with B23 upon epidermal growth factor stimulation, while p48 constantly binds B23. Moreover, Ser360 phosphorylation in p42, but not p48, is critical for the interaction. p48 constitutively binds B23 in the nucleolus, for which B23 Lys263 sumoylation is indispensable. By contrast, p42 selectively binds unsumoylated B23 mutants. Interestingly, B23 K263R, an unsumoylated mutant, triggers p42 nuclear translocation and interacts with it in the nucleus even in the absence of epidermal growth factor. In contrast, the nucleolar residency of p48 is abolished in B23 K263R cells. During the cell cycle, p42 selectively colocalizes with B23 in the mitotic cells, correlating with its phosphorylation status in mitosis. Knocking down of B23 or Ebp1 substantially decreases ribosome biogenesis and cell survival. Thus, B23 distinctively binds Ebp1 isoforms and regulates cell proliferation and survival through p42 and p48, respectively.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
26
|
Dialynas GK, Terjung S, Brown JP, Aucott RL, Baron-Luhr B, Singh PB, Georgatos SD. Plasticity of HP1 proteins in mammalian cells. J Cell Sci 2007; 120:3415-24. [PMID: 17855382 DOI: 10.1242/jcs.012914] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have compared the distribution of endogenous heterochromatin protein 1 (HP1) proteins (α, β and γ) in different epithelial lines, pluripotent stem cells and embryonic fibroblasts. In parallel, we have interrogated assembly and dynamics of newly expressed HP1-GFP proteins in cells lacking both HP1α and HP1β alleles, blocked at the G1-S boundary, or cultured in the presence of HDAC and HAT inhibitors. The results reveal a range of cell type and differentiation state-specific patterns that do not correlate with `fast' or `slow' subunit exchange in heterochromatin. Furthermore, our observations show that targeting of HP1γ to heterochromatic sites depends on HP1α and H1β and that, on an architectural level, HP1α is the most polymorphic variant of the HP1 family. These data provide evidence for HP1 plasticity under shifting microenvironmental conditions and offer a new conceptual framework for understanding chromatin dynamics at the molecular level.
Collapse
Affiliation(s)
- George K Dialynas
- The Stem Cell and Chromatin Group, Laboratory of Biology, The University of Ioannina, School of Medicine and The Institute of Biomedical Research (FORTH/BRI), 45 110 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
27
|
Ma N, Matsunaga S, Takata H, Ono-Maniwa R, Uchiyama S, Fukui K. Nucleolin functions in nucleolus formation and chromosome congression. J Cell Sci 2007; 120:2091-105. [PMID: 17535846 DOI: 10.1242/jcs.008771] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A complex structure, designated the chromosome periphery, surrounds each chromosome during mitosis. Although several proteins have been shown to localize to the chromosome periphery, their functions during mitosis remain unclear. Here, we used a combination of high-resolution microscopy and RNA-interference-mediated depletion to study the functions of nucleolin, a nucleolar protein localized at the chromosome periphery, in interphase and mitosis. During mitosis, nucleolin was localized in the peripheral region including the vicinity of the outer kinetochore of chromosomes. Staining with an antibody specific for nucleolin phosphorylated by CDC2 revealed that nucleolin was also associated with the spindle poles from prometaphase to anaphase. Nucleolin depletion resulted in disorganization of the nucleoli at interphase. Furthermore, nucleolin-depleted cells showed a prolonged cell cycle with misaligned chromosomes and defects in spindle organization. The misaligned chromosomes showed syntelic kinetochore-microtubule attachments with reduced centromere stretching. Taken together, our results indicate that nucleolin is required for nucleolus formation, and is also involved in chromosome congression and spindle formation.
Collapse
Affiliation(s)
- Nan Ma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Ganapathi KA, Austin KM, Lee CS, Dias A, Malsch MM, Reed R, Shimamura A. The human Shwachman-Diamond syndrome protein, SBDS, associates with ribosomal RNA. Blood 2007; 110:1458-65. [PMID: 17475909 PMCID: PMC1975835 DOI: 10.1182/blood-2007-02-075184] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic dysfunction, and leukemia predisposition. Mutations in the SBDS gene are identified in most patients with SDS. SBDS encodes a highly conserved protein of unknown function. Data from SBDS orthologs suggest that SBDS may play a role in ribosome biogenesis or RNA processing. Human SBDS is enriched in the nucleolus, the major cellular site of ribosome biogenesis. Here we report that SBDS nucleolar localization is dependent on active rRNA transcription. Cells from patients with SDS or Diamond-Blackfan anemia are hypersensitive to low doses of actinomycin D, an inhibitor of rRNA transcription. The addition of wild-type SBDS complements the actinomycin D hypersensitivity of SDS patient cells. SBDS migrates together with the 60S large ribosomal subunit in sucrose gradients and coprecipitates with 28S ribosomal RNA (rRNA). Loss of SBDS is not associated with a discrete block in rRNA maturation or with decreased levels of the 60S ribosomal subunit. SBDS forms a protein complex with nucleophosmin, a multifunctional protein implicated in ribosome biogenesis and leukemogenesis. Our studies support the addition of SDS to the growing list of human bone marrow failure syndromes involving the ribosome.
Collapse
Affiliation(s)
- Karthik A Ganapathi
- Department of Pediatric Hematology, Children's Hospital Boston, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Sakita-Suto S, Kanda A, Suzuki F, Sato S, Takata T, Tatsuka M. Aurora-B regulates RNA methyltransferase NSUN2. Mol Biol Cell 2007; 18:1107-17. [PMID: 17215513 PMCID: PMC1805108 DOI: 10.1091/mbc.e06-11-1021] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/15/2006] [Accepted: 12/29/2006] [Indexed: 01/03/2023] Open
Abstract
Disassembly of the nucleolus during mitosis is driven by phosphorylation of nucleolar proteins. RNA processing stops until completion of nucleolar reformation in G(1) phase. Here, we describe the RNA methyltransferase NSUN2, a novel substrate of Aurora-B that contains an NOL1/NOP2/sun domain. NSUN2 was concentrated in the nucleolus during interphase and was distributed in the perichromosome and cytoplasm during mitosis. Aurora-B phosphorylated NSUN2 at Ser139. Nucleolar proteins NPM1/nucleophosmin/B23 and nucleolin/C23 were associated with NSUN2 during interphase. In mitotic cells, association between NPM1 and NSUN2 was inhibited, but NSUN2-S139A was constitutively associated with NPM1. The Aurora inhibitor Hesperadin induced association of NSUN2 with NPM1 even in mitosis, despite the silver staining nucleolar organizer region disassembly. In vitro methylation experiments revealed that the Aurora-B-phosphorylation and the phosphorylation-mimic mutation (S139E) suppressed methyltransferase activities of NSUN2. These results indicate that Aurora-B participates to regulate the assembly of nucleolar RNA-processing machinery and the RNA methyltransferase activity of NSUN2 via phosphorylation at Ser139 during mitosis.
Collapse
Affiliation(s)
- Shiho Sakita-Suto
- *Department of Molecular Radiobiology, Division of Genome Biology, Research Institute for Radiation Biology and Medicine, and
| | - Akifumi Kanda
- *Department of Molecular Radiobiology, Division of Genome Biology, Research Institute for Radiation Biology and Medicine, and
| | - Fumio Suzuki
- *Department of Molecular Radiobiology, Division of Genome Biology, Research Institute for Radiation Biology and Medicine, and
| | - Sunao Sato
- Department of Oral Maxillofacial Pathobiology, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takashi Takata
- Department of Oral Maxillofacial Pathobiology, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masaaki Tatsuka
- *Department of Molecular Radiobiology, Division of Genome Biology, Research Institute for Radiation Biology and Medicine, and
| |
Collapse
|
30
|
Mayer D, Molawi K, Martínez-Sobrido L, Ghanem A, Thomas S, Baginsky S, Grossmann J, García-Sastre A, Schwemmle M. Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J Proteome Res 2007; 6:672-82. [PMID: 17269724 PMCID: PMC2577182 DOI: 10.1021/pr060432u] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellular factors that associate with the influenza A viral ribonucleoprotein (vRNP) are presumed to play important roles in the viral life cycle. To date, interaction screens using individual vRNP components, such as the nucleoprotein or viral polymerase subunits, have revealed few cellular interaction partners. To improve this situation, we performed comprehensive, proteomics-based screens to identify cellular factors associated with the native vRNP and viral polymerase complexes. Reconstituted vRNPs were purified from human cells using Strep-tagged viral nucleoprotein (NP-Strep) as bait, and co-purified cellular factors were identified by mass spectrometry (MS). In parallel, reconstituted native influenza A polymerase complexes were isolated using tandem affinity purification (TAP)-tagged polymerase subunits as bait, and co-purified cellular factors were again identified by MS. Using these techniques, we identified 41 proteins that co-purified with NP-Strep-enriched vRNPs and four cellular proteins that co-purified with the viral polymerase complex. Two of the polymerase-associated factors, importin-beta3 and PARP-1, represent novel interaction partners. Most cellular proteins previously shown to interact with either viral NP and/or vRNP were also identified using our method, demonstrating its sensitivity. Co-immunoprecipitation studies in virus-infected cells using selected novel interaction partners, including nucleophosmin (NPM), confirmed their association with vRNP. Immunofluorescence analysis further revealed that NPM is recruited to sites of viral transcription and replication in infected cells. Additionally, overexpression of NPM resulted in increased viral polymerase activity, indicating its role in viral RNA synthesis. In summary, the proteomics-based approaches used in this study represent powerful tools to identify novel vRNP-associated cellular factors for further characterization.
Collapse
Affiliation(s)
- Daniel Mayer
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Germany
| | - Kaaweh Molawi
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Germany
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L Levy Place, New York, NY 10029
| | - Luis Martínez-Sobrido
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L Levy Place, New York, NY 10029
| | - Alexander Ghanem
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Germany
| | - Stefan Thomas
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Germany
| | - Sacha Baginsky
- Institute of Plant Sciences, Swiss Federal Institute of Technology. ETH Zentrum, LFW E, CH-8092 Zurich, Switzerland
| | - Jonas Grossmann
- Institute of Plant Sciences, Swiss Federal Institute of Technology. ETH Zentrum, LFW E, CH-8092 Zurich, Switzerland
| | - Adolfo García-Sastre
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L Levy Place, New York, NY 10029
| | - Martin Schwemmle
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Germany
| |
Collapse
|
31
|
Bunimov N, Smith JE, Gosselin D, Laneuville O. Translational regulation of PGHS-1 mRNA: 5′ untranslated region and first two exons conferring negative regulation. ACTA ACUST UNITED AC 2007; 1769:92-105. [PMID: 17320986 DOI: 10.1016/j.bbaexp.2007.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/11/2006] [Accepted: 01/17/2007] [Indexed: 11/30/2022]
Abstract
Prostaglandin endoperoxide H synthase-1 gene expression is described as inducible in a few contexts such as differentiation of megakaryoblastic MEG-01 cells into platelet-like structures. In the MEG-01 cells model of PGHS-1 gene induction, we previously reported a delay in protein synthesis and identified the translational step of gene expression as being regulated. In the current study, we mapped PGHS-1 mRNA sequences regulating translational efficiency and identified an RNA binding protein. The 5'UTR and first two exons of the PGHS-1 5' mRNA decreased the synthesis of Luciferase protein by approximately 80% without significant changes in mRNA levels when compared to controls. Both the PGHS-1 5'-UTR and the first two exons were required for activity. Sucrose density gradient fractionations of cytoplasmic extracts from MEG-01 cells infected with reporter constructs, either controls or containing PGHS-1 sequence, presented a similar profile of distribution of reporter transcripts between polysomal and non-polysomal fractions. RNA/protein interaction studies revealed nucleolin binding to the 135 nt PGHS-1 sequence. Mutation of the two NRE elements located in the 5'end of PGHS-1 mRNA sequence partially reduced the negative activity of the 135 nt sequence. Stable secondary structures predicted at the 5' end of the transcript are potentially involved in translational regulation. We propose that the 5'end of PGHS-1 mRNA represses translation and could delay the synthesis of PGHS-1 enzyme.
Collapse
Affiliation(s)
- Natalia Bunimov
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
32
|
Kittur N, Darzacq X, Roy S, Singer RH, Meier UT. Dynamic association and localization of human H/ACA RNP proteins. RNA (NEW YORK, N.Y.) 2006; 12:2057-62. [PMID: 17135485 PMCID: PMC1664726 DOI: 10.1261/rna.249306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mammalian H/ACA RNPs are essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. To form mature RNA-protein complexes, one H/ACA RNA associates with four core proteins. In the cell, this process is assisted by at least one nuclear assembly factor, NAF1. Here we report several unanticipated dynamic aspects of H/ACA RNP proteins. First, when overexpressed, NAF1 delocalizes to the cytoplasm. However, its nucleocytoplasmic shuttling properties remain unaffected. These observations demonstrate a subtle equilibrium between NAF1 expression levels and the availability of NAF1 nuclear binding sites. Second, although NAF1 is excluded from mature RNPs in nucleoli and Cajal bodies, NAF1 associates with mature H/ACA RNA in cell lysates. This association occurs post-lysis because it is observed even when NAF1 and the H/ACA RNA are expressed in separate cells. This documents a protein-RNP association in cell lysates that is absent from intact cells. Third, in similar experiments, all H/ACA core proteins, except NAP57, exchange with their exogenous counterparts, portraying an unexpected dynamic picture of H/ACA RNPs. Finally, the irreversible association of only NAP57 with H/ACA RNA and the conundrum that only NAP57 is mutated in X-linked dyskeratosis congenita (even though most core proteins are required for maintaining H/ACA RNAs) may be more than a coincidence.
Collapse
Affiliation(s)
- Nupur Kittur
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, New York 10461, USA
| | | | | | | | | |
Collapse
|
33
|
Bergstralh DT, Conti BJ, Moore CB, Brickey WJ, Taxman DJ, Ting JPY. Global functional analysis of nucleophosmin in Taxol response, cancer, chromatin regulation, and ribosomal DNA transcription. Exp Cell Res 2006; 313:65-76. [PMID: 17069796 PMCID: PMC1805482 DOI: 10.1016/j.yexcr.2006.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 11/28/2022]
Abstract
Analysis of lung cancer response to chemotherapeutic agents showed the accumulation of a Taxol-induced protein that reacted with an anti-phospho-MEK1/2 antibody. Mass spectroscopy identified the protein as nucleophosmin/B23 (NPM), a multifunctional protein with diverse roles: ribosome biosynthesis, p53 regulation, nuclear-cytoplasmic shuttling, and centrosome duplication. Our work demonstrates that following cellular exposure to mitosis-arresting agents, NPM is phosphorylated and its chromatographic property is altered, suggesting changes in function during mitosis. To determine the functional relevance of NPM, its expression in tumor cells was reduced by siRNA. Cells with reduced NPM were treated with Taxol followed by microarray profiling accompanied by gene/protein pathway analyses. These studies demonstrate several expected and unexpected consequences of NPM depletion. The predominant downstream effectors of NPM are genes involved in cell proliferation, cancer, and the cell cycle. In congruence with its role in cancer, NPM is over-expressed in primary malignant lung cancer tissues. We also demonstrate a role for NPM in the expression of genes encoding SET (TAF1beta) and the histone methylase SET8. Additionally, we show that NPM is required for a previously unobserved G2/M upregulation of TAF1A, which encodes the rDNA transcription factor TAF(I)48. These results demonstrate multi-faceted functions of NPM that can affect cancer cells.
Collapse
Affiliation(s)
- Daniel T Bergstralh
- Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Negi SS, Olson MOJ. Effects of interphase and mitotic phosphorylation on the mobility and location of nucleolar protein B23. J Cell Sci 2006; 119:3676-85. [PMID: 16912078 DOI: 10.1242/jcs.03090] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B23 (or nucleophosmin, NPM) is a multifunctional protein involved in ribosome biogenesis, control of centrosome duplication and in sensing cellular stress. It is phosphorylated during interphase by casein kinase 2 (CK2) and during mitosis by cyclin-dependent kinase (CDK). In this study we have addressed the role of these phosphorylation events in the dynamics and location of protein B23. Mutation of the CK2 phosphorylation site to alanine results in slower recovery of the mutant compared with the wild-type protein as measured by fluorescence recovery after photobleaching (FRAP). Immunofluorescence studies using an antibody against phosphorylated Thr199 revealed that B23 is phosphorylated at this CDK1 site at the start of mitosis and is dephosphorylated during anaphase. The CDK1-type phosphorylation sites are in the nucleic acid binding region of B23 and may contribute to its dissociation from the nucleolus during mitosis. A Thr to Glu mutant of the CDK1-type sites as well as other members of the nucleoplasmin family that lack the C-terminal nucleic-acid-binding region showed a greater mobility and/or faster recovery than wild-type B23.1, the longer variant. These results provide evidence that phosphorylation at these sites reduces the affinity of B23 for nucleolar components and might be a factor in regulating its location during the cell cycle.
Collapse
Affiliation(s)
- Sandeep S Negi
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | |
Collapse
|
35
|
Hernandez-Verdun D. The nucleolus: a model for the organization of nuclear functions. Histochem Cell Biol 2006; 126:135-48. [PMID: 16835752 DOI: 10.1007/s00418-006-0212-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs (rRNAs) are synthesized, processed and assembled with ribosomal proteins. The size and organization of the nucleolus are directly related to ribosome production. The organization of the nucleolus reveals the functional compartmentation of the nucleolar machineries that depends on nucleolar activity. When this activity is blocked, disrupted or impossible, the nucleolar proteins have the capacity to interact independently of the processing activity. In addition, nucleoli are dynamic structures in which nucleolar proteins rapidly associate and dissociate with nucleolar components in continuous exchanges with the nucleoplasm. At the time of nucleolar assembly, the processing machineries are recruited in a regulated manner in time and space, controlled by different kinases and form intermediate structures, the prenucleolar bodies. The participation of stable pre-rRNAs in nucleolar assembly was demonstrated after mitosis and during development but this is an intriguing observation since the role of these pre-rRNAs is presently unknown. A brief report on the nucleolus and diseases is proposed as well as of nucleolar functions different from ribosome biogenesis.
Collapse
Affiliation(s)
- Danièle Hernandez-Verdun
- Nuclei and Cell Cycle, Institut Jacques Monod, CNRS, Université Paris VI, Université Paris VII, 2 place Jussieu, 75251 Paris Cedex 05, France.
| |
Collapse
|
36
|
Gonda K, Wudel J, Nelson D, Katoku-Kikyo N, Reed P, Tamada H, Kikyo N. Requirement of the protein B23 for nucleolar disassembly induced by the FRGY2a family proteins. J Biol Chem 2006; 281:8153-60. [PMID: 16415342 PMCID: PMC2222668 DOI: 10.1074/jbc.m512890200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Xenopus somatic cell nuclear cloning, the nucleoli of donor nuclei rapidly and almost completely disappear in egg cytoplasm. We previously showed that the germ cell-specific proteins FRGY2a and FRGY2b were responsible for this unusually drastic nucleolar disassembly. The nucleolar disassembly occurs without inhibition of pre-rRNA transcription, a well known trigger for nucleolar segregation, and the mechanism for the nucleolar disassembly by FRGY2a and FRGY2b remains largely unknown. In this study, we searched for FRGY2a-interacting proteins and investigated the functional consequences of their interactions through a series of experiments. We showed that during the nucleolar disassembly, FRGY2a localized to the nucleoli of isolated nuclei and was capable of disassembling purified nucleoli, suggesting a direct interaction between FRGY2a and nucleolar components. Using a His tag pulldown approach, we identified the abundant and multifunctional nucleolar protein B23 as a potential target of FRGY2a and its related human protein YB1. A specific interaction between FRGY2a/YB1 and B23 was confirmed by co-immunoprecipitation. Finally, B23 knockdown using short interfering RNA and a subsequent add-back experiment confirmed that B23 was necessary for nucleolar disassembly by YB1. We propose that FRGY2a and YB1 disassemble nucleoli by sequestering B23, which is associated with pre-ribosomes and other structurally important nucleolar components.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nobuaki Kikyo
- To whom correspondence should be addressed: Stem Cell Institute, Division of Hematology, Oncology and Transplantation, Dept. of Medicine, University of Minnesota, MMC 716, 420 Delaware St. SE, Minneapolis, MN 55455. Tel.: 612-624-0498; Fax: 612-624-2436; E-mail:
| |
Collapse
|
37
|
Abstract
The nucleolus, a large nuclear domain, is the ribosome factory of the cells. Ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins in the nucleolus, and the ribosome subunits are then transported to the cytoplasm. In this review, the structural organization of the nucleolus and the dynamics of the nucleolar proteins are discussed in an attempt to link both information. By electron microscopy, three main nucleolar components corresponding to different steps of ribosome biogenesis are identified and the nucleolar organization reflects its activity. Time-lapse videomicroscopy and fluorescent recovery after photobleaching (FRAP) demonstrate that mobility of GFP-tagged nucleolar proteins is slower in the nucleolus than in the nucleoplasm. Fluorescent recovery rates change with inhibition of transcription, decreased temperature and depletion of ATP, indicating that recovery is correlated with cell activity. At the exit of mitosis, the nucleolar processing machinery is first concentrated in prenucleolar bodies (PNBs). The dynamics of the PNBs suggests a steady state favoring residence of processing factors that are then released in a control- and time-dependent manner. Time-lapse analysis of fluorescence resonance energy transfer demonstrates that processing complexes are formed in PNBs. Finally, the nucleolus appears at the center of several trafficking pathways in the nucleus.
Collapse
Affiliation(s)
- Danièle Hernandez-Verdun
- Nuclei and Cell Cycle, Institut Jacques Monod, CNRS, Université Paris VI et Paris VII, 2 place Jussieu, 75251, Paris, Cedex 05, France.
| |
Collapse
|
38
|
Van Hooser AA, Yuh P, Heald R. The perichromosomal layer. Chromosoma 2005; 114:377-88. [PMID: 16136320 DOI: 10.1007/s00412-005-0021-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 02/05/2023]
Abstract
In addition to genetic information, mitotic chromosomes transmit essential components for nuclear assembly and function in a new cell cycle. A specialized chromosome domain, called the perichromosomal layer, perichromosomal sheath, chromosomal coat, or chromosome surface domain, contains proteins required for a variety of cellular processes, including the synthesis of messenger RNA, assembly of ribosomes, repair of DNA double-strand breaks, telomere maintenance, and apoptosis regulation. The layer also contains many proteins of unknown function and is a major target in autoimmune disease. Perichromosomal proteins are found along the entire length of chromosomes, excluding centromeres, where sister chromatids are paired and spindle microtubules attach. Targeting of proteins to the perichromosomal layer occurs primarily during prophase, and they generally remain associated until telophase. During interphase, perichromosomal proteins localize to nucleoli, the nuclear envelope, nucleoplasm, heterochromatin, centromeres, telomeres, and/or the cytoplasm. It has been suggested that the perichromosomal layer may contribute to chromosome structure, as several of the associated proteins have functions in chromatin remodeling during interphase. We review the identified proteins associated with this chromosome domain and briefly discuss their known functions during interphase and mitosis.
Collapse
Affiliation(s)
- Aaron A Van Hooser
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | | | | |
Collapse
|
39
|
Uchiyama S, Kobayashi S, Takata H, Ishihara T, Hori N, Higashi T, Hayashihara K, Sone T, Higo D, Nirasawa T, Takao T, Matsunaga S, Fukui K. Proteome analysis of human metaphase chromosomes. J Biol Chem 2005; 280:16994-7004. [PMID: 15687487 DOI: 10.1074/jbc.m412774200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA is packaged as chromatin in the interphase nucleus. During mitosis, chromatin fibers are highly condensed to form metaphase chromosomes, which ensure equal segregation of replicated chromosomal DNA into the daughter cells. Despite >1 century of research on metaphase chromosomes, information regarding the higher order structure of metaphase chromosomes is limited, and it is still not clear which proteins are involved in further folding of the chromatin fiber into metaphase chromosomes. To obtain a global view of the chromosomal proteins, we performed proteome analyses on three types of isolated human metaphase chromosomes. We first show the results from comparative proteome analyses of two types of isolated human metaphase chromosomes that have been frequently used in biochemical and morphological analyses. 209 proteins were quantitatively identified and classified into six groups on the basis of their known interphase localization. Furthermore, a list of 107 proteins was obtained from the proteome analyses of highly purified metaphase chromosomes, the majority of which are essential for chromosome structure and function. Based on the information obtained on these proteins and on their localizations during mitosis as assessed by immunostaining, we present a four-layer model of metaphase chromosomes. According to this model, the chromosomal proteins have been newly classified into each of four groups: chromosome coating proteins, chromosome peripheral proteins, chromosome structural proteins, and chromosome fibrous proteins. This analysis represents the first compositional view of human metaphase chromosomes and provides a protein framework for future research on this topic.
Collapse
Affiliation(s)
- Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Huang N, Negi S, Szebeni A, Olson MOJ. Protein NPM3 interacts with the multifunctional nucleolar protein B23/nucleophosmin and inhibits ribosome biogenesis. J Biol Chem 2004; 280:5496-502. [PMID: 15596447 DOI: 10.1074/jbc.m407856200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein B23/nucleophosmin is a multifunctional protein that plays roles in ribosome biogenesis, control of centrosome duplication, and regulation of p53 expression. A yeast two-hybrid screen was performed in a search for interaction partners of B23. The complementary DNA for a highly acidic protein, nucleoplasmin 3 (NPM3), was found in multiple positive clones. Protein NPM3 and its interaction with B23 were further characterized. Endogenous B23 was able to be co-immunoprecipitated with NPM3, and this complex was resistant to ribonuclease treatment and high concentrations of salt. The N-terminal 35-90 amino acids of B23 were found to be required for their interaction. Separate co-immunoprecipitation studies of B23 and NPM3 suggested the existence of two different complexes, one containing B23 and 28 S ribosomal RNA (rRNA) and another composed of B23, NPM3, and other proteins, but no RNA. NPM3 was localized in the nucleolus, and its nucleolar localization depended on active rRNA transcription. In the cells overexpressing NPM3, there were decreased rates of pre-rRNA synthesis and processing. Overexpression of a mutant of NPM3 that did not interact with B23 did not alter pre-rRNA synthesis and processing, suggesting that the interaction of NPM3 with B23 plays a role in the ribosome biogenesis.
Collapse
Affiliation(s)
- Nian Huang
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MI 39216, USA
| | | | | | | |
Collapse
|
41
|
Sheng Z, Lewis JA, Chirico WJ. Nuclear and Nucleolar Localization of 18-kDa Fibroblast Growth Factor-2 Is Controlled by C-terminal Signals. J Biol Chem 2004; 279:40153-60. [PMID: 15247275 DOI: 10.1074/jbc.m400123200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Members of high (22-, 22.5-, 24-, and 34-kDa) and low (18-kDa) molecular mass forms of fibroblast growth factor-2 (FGF-2) regulate cell proliferation, differentiation, and migration. FGF-2s have been previously shown to accumulate in the nucleus and nucleolus. Although high molecular weight forms of FGF-2 contain at least one nuclear localization signal (NLS) in their N-terminal extension, the 18-kDa FGF-2 does not contain a standard NLS. To determine signals controlling the nuclear and subnuclear localization of the 18-kDa FGF-2, its full-length cDNA was fused to that of green fluorescent protein (GFP). The fusion protein was primarily localized to the nucleus of COS-7 and HeLa cells and accumulated in the nucleolus. The subcellular distribution was confirmed using wild type FGF-2 and FGF-2 tagged with a FLAG epitope. A 17-amino acid sequence containing two groups of basic amino acid residues separated by eight amino acid residues directed GFP and a GFP dimer into the nucleus. We systematically mutated the basic amino acid residues in this nonclassical NLS and determined the effect on nuclear and nucleolar accumulation of 18-kDa FGF-2. Lys(119) and Arg(129) are the key amino acid residues in both nuclear and nucleolar localization, whereas Lys(128) regulates only nucleolar localization of 18-kDa FGF-2. Together, these results demonstrate that the 18-kDa FGF-2 harbors a C-terminal nonclassical bipartite NLS, a portion of which also regulates its nucleolar localization.
Collapse
Affiliation(s)
- Zhi Sheng
- Molecular and Cellular Biology Program, School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | |
Collapse
|
42
|
|
43
|
Squatrito M, Mancino M, Donzelli M, Areces LB, Draetta GF. EBP1 is a nucleolar growth-regulating protein that is part of pre-ribosomal ribonucleoprotein complexes. Oncogene 2004; 23:4454-65. [PMID: 15064750 DOI: 10.1038/sj.onc.1207579] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
EBP1 was identified as a protein that interacts with the ErbB-3 receptor and possibly contributes to transducing growth regulatory signals. The existence of EBP1 homologs across species from simple eukaryotes to humans and its wide tissue expression pattern suggest that EBP1 acts as a general signaling molecule. We provide evidence that EBP1 is localized to the cytoplasm and to the nucleolus, and that its nucleolar localization requires amino-acid sequences present at both the amino- and carboxy-terminus of the molecule. We also show that EBP1 overexpression inhibits proliferation of human fibroblasts, and that this effect is linked to its nucleolar localization. Using mass spectrometry we demonstrate that EBP1 is part of ribonucleoprotein complexes and associates with different rRNA species. It is becoming clear that cell growth and proliferation are actively coordinated with rRNA processing and ribosome assembly. Our findings indicate that EBP1 is a nucleolar growth-regulating protein, and we propose that it could represent a new link between ribosome biosynthesis and cell proliferation.
Collapse
Affiliation(s)
- Massimo Squatrito
- European Institute of Oncology, 435 Via Ripamonti, 20141 Milan, Italy
| | | | | | | | | |
Collapse
|
44
|
Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, Laiho M. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 2004; 5:465-75. [PMID: 15144954 DOI: 10.1016/s1535-6108(04)00110-2] [Citation(s) in RCA: 323] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2003] [Revised: 02/12/2004] [Accepted: 03/17/2004] [Indexed: 01/23/2023]
Abstract
Nucleophosmin (NPM, B23) is an abundant nucleolar phosphoprotein involved in ribosome biogenesis, and interacts with tumor suppressor proteins p53 and Rb. Here we show that NPM is a UV damage response protein that undergoes nucleoplasmic redistribution and regulates p53 and HDM2 levels and their interaction. By utilizing RNAi approaches and analyses of endogenous and ectopically expressed proteins, we demonstrate that NPM binds HDM2 and acts as a negative regulator of p53-HDM2 interaction. Viral stress, enforced by expression of Kaposi's sarcoma virus K cyclin, causes NPM redistribution, K cyclin-NPM association, and p53 stabilization by dissociation of HDM2-p53 complexes. The results demonstrate novel associations of HDM2 and K cyclin with NPM and implicate NPM as a crucial controller of p53 through inhibition of HDM2.
Collapse
Affiliation(s)
- Sari Kurki
- Haartman Institute and Molecular Cancer Biology Research Program, Biomedicum Helsinki, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
45
|
Padilla PI, Pacheco-Rodriguez G, Moss J, Vaughan M. Nuclear localization and molecular partners of BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors. Proc Natl Acad Sci U S A 2004; 101:2752-7. [PMID: 14973189 PMCID: PMC365693 DOI: 10.1073/pnas.0307345101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1) is an approximately 200-kDa brefeldin A-inhibited guanine nucleotide-exchange protein that preferentially activates ADP-ribosylation factor 1 (ARF1) and ARF3. BIG1 was found in cytosol in a multiprotein complex with a similar ARF-activating protein, BIG2, which is also an A kinase-anchoring protein. In HepG2 cells growing with serum, BIG1 was primarily cytosolic and Golgi-associated. After incubation overnight without serum, a large fraction of endogenous BIG1 was in the nuclei. By confocal immunofluorescence microscopy, BIG1 was localized with nucleoporin p62 at the nuclear envelope (probably during nucleocytoplasmic transport) and also in nucleoli, clearly visible against the less concentrated overall matrix staining. BIG1 was also identified by Western blot analyses in purified subnuclear fractions (e.g., nucleoli and nuclear matrix). Antibodies against BIG1, nucleoporin, or nucleolin coimmunoprecipitated the other two proteins from purified nuclei. In contrast, BIG2 was not associated with nuclear BIG1. Also of note, ARF was never detected among proteins precipitated from purified nuclei by anti-BIG1 antibodies, although microscopically the two proteins do appear sometimes to be colocalized in the nucleus. These data are consistent with independent intracellular movements and actions of BIG1 and BIG2, and they are also evidence of the participation of BIG1 in both Golgi and nuclear functions.
Collapse
Affiliation(s)
- Philip Ian Padilla
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
46
|
Bertwistle D, Sugimoto M, Sherr CJ. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 2004; 24:985-96. [PMID: 14729947 PMCID: PMC321449 DOI: 10.1128/mcb.24.3.985-996.2004] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Arf tumor suppressor inhibits cell cycle progression through both p53-dependent and p53-independent mechanisms, including interference with rRNA processing. Using tandem-affinity-tagged p19(Arf), we purified Arf-associated proteins from mouse NIH 3T3 fibroblasts undergoing cell cycle arrest. Tagged p19(Arf) associated with nucleolar and ribosomal proteins, including nucleophosmin/B23 (NPM), a protein thought to foster the maturation of preribosomal particles. NPM is an abundant protein, only a minor fraction of which binds to p19(Arf); however, a significant proportion of p19(Arf) associates with NPM. The interaction between p19(Arf) and NPM requires amino acid sequences at the Arf amino terminus, which are also required for Mdm2 binding, as well as the central acidic domain of NPM and an adjacent segment that regulates NPM oligomerization. The interaction between p19(Arf) and NPM occurs in primary mouse embryonic fibroblasts, including those lacking both Mdm2 and p53. In an NIH 3T3 derivative cell line (MT-Arf) engineered to conditionally express an Arf transgene, induced p19(Arf) associates with NPM and colocalizes with it in high-molecular-weight complexes (2 to 5 MDa). An NPM mutant lacking its carboxyl-terminal nucleic acid-binding domain oligomerizes with endogenous NPM, inhibits p19(Arf) from entering into 2- to 5-MDa particles, and overrides the ability of p19(Arf) to retard rRNA processing.
Collapse
Affiliation(s)
- David Bertwistle
- Howard Hughes Medical Institute and Department of Genetics & Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
47
|
Dimario PJ. Cell and Molecular Biology of Nucleolar Assembly and Disassembly. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 239:99-178. [PMID: 15464853 DOI: 10.1016/s0074-7696(04)39003-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleoli disassemble in prophase of the metazoan mitotic cycle, and they begin their reassembly (nucleologenesis) in late anaphase?early telophase. Nucleolar disassembly and reassembly were obvious to the early cytologists of the eighteenth and nineteenth centuries, and although this has lead to a plethora of literature describing these events, our understanding of the molecular mechanisms regulating nucleolar assembly and disassembly has expanded immensely just within the last 10-15 years. We briefly survey the findings of nineteenth-century cytologists on nucleolar assembly and disassembly, followed by the work of Heitz and McClintock on nucleolar organizers. A primer review of nucleolar structure and functions precedes detailed descriptions of modern molecular and microscopic studies of nucleolar assembly and disassembly. Nucleologenesis is concurrent with the reinitiation of rDNA transcription in telophase. The perichromosomal sheath, prenucleolar bodies, and nucleolar-derived foci serve as repositories for nucleolar processing components used in the previous interphase. Disassembly of the perichromosomal sheath along with the dynamic movements and compositional changes of the prenucleolar bodies and nucleolus-derived foci coincide with reactivation of rDNA synthesis within the chromosomal nucleolar organizers during telophase. Nucleologenesis is considered in various model organisms to provide breadth to our understanding. Nucleolar disassembly occurs at the onset of mitosis primarily as a result of the mitosis-specific phosphorylation of Pol I transcription factors and processing components. Although we have learned much regarding nucleolar assembly and disassembly, many questions still remain, and these questions are as vibrant for us today as early questions were for nineteenth- and early twentieth-century cytologists.
Collapse
Affiliation(s)
- Patrick J Dimario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803-1715, USA
| |
Collapse
|
48
|
Takahashi N, Yanagida M, Fujiyama S, Hayano T, Isobe T. Proteomic snapshot analyses of preribosomal ribonucleoprotein complexes formed at various stages of ribosome biogenesis in yeast and mammalian cells. MASS SPECTROMETRY REVIEWS 2003; 22:287-317. [PMID: 12949916 DOI: 10.1002/mas.10057] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Proteomic technologies powered by advancements in mass spectrometry and bioinformatics and coupled with accumulated genome sequence data allow a comprehensive study of cell function through large-scale and systematic protein identifications of protein constituents of the cell and tissues, as well as of multi-protein complexes that carry out many cellular function in a higher-order network in the cell. One of the most extensively analyzed cellular functions by proteomics is the production of ribosome, the protein-synthesis machinery, in the nucle(ol)us--the main site of ribosome biogenesis. The use of tagged proteins as affinity bait, coupled with mass spectrometric identification, enabled us to isolate synthetic intermediates of ribosomes that might represent snapshots of nascent ribosomes at particular stages of ribosome biogenesis and to identify their constituents--some of which showed dynamic changes for association with the intermediates at various stages of ribosome biogenesis. In this review, in conjunction with the results from yeast cells, our proteomic approach to analyze ribosome biogenesis in mammalian cells is described.
Collapse
Affiliation(s)
- Nobuhiro Takahashi
- Department of Applied Biological Science, United Graduate School of Agriculture, Tokyo University of Agriculture & Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 1838509, Japan.
| | | | | | | | | |
Collapse
|
49
|
Mili S, Piñol-Roma S. LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs. Mol Cell Biol 2003; 23:4972-82. [PMID: 12832482 PMCID: PMC162214 DOI: 10.1128/mcb.23.14.4972-4982.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Revised: 04/14/2003] [Accepted: 04/25/2003] [Indexed: 11/20/2022] Open
Abstract
LRP130 (also known as LRPPRC) is an RNA-binding protein that is a constituent of postsplicing nuclear RNP complexes associated with mature mRNA. It belongs to a growing family of pentatricopeptide repeat (PPR) motif-containing proteins, several of which have been implicated in organellar RNA metabolism. We show here that only a fraction of LRP130 proteins are in nuclei and are directly bound in vivo to at least some of the same RNA molecules as the nucleocytoplasmic shuttle protein hnRNP A1. The majority of LRP130 proteins are located within mitochondria, where they are directly bound to polyadenylated RNAs in vivo. In vitro, LRP130 binds preferentially to polypyrimidines. This RNA-binding activity maps to a domain in its C-terminal region that does not contain any previously described RNA-binding motifs and that contains only 2 of the 11 predicted PPR motifs. Therefore, LRP130 is a novel type of RNA-binding protein that associates with both nuclear and mitochondrial mRNAs and as such is a potential candidate for coordinating nuclear and mitochondrial gene expression. These findings provide the first identification of a mammalian protein directly bound to mitochondrial RNA in vivo and provide a possible molecular explanation for the recently described association of mutations in LRP130 with cytochrome c oxidase deficiency in humans.
Collapse
Affiliation(s)
- Stavroula Mili
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | |
Collapse
|
50
|
Ulanet DB, Wigley FM, Gelber AC, Rosen A. Autoantibodies against B23, a nucleolar phosphoprotein, occur in scleroderma and are associated with pulmonary hypertension. ARTHRITIS AND RHEUMATISM 2003; 49:85-92. [PMID: 12579598 DOI: 10.1002/art.10914] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To determine whether the abundant nucleolar phosphoprotein B23 is a target of autoantibodies in scleroderma, and to examine the clinical phenotype associated with these antibodies. METHODS Ninety-two randomly selected scleroderma sera were screened by enzyme-linked immunosorbent assay against recombinant human B23. Demographic, clinical, and serologic parameters associated with B23 autoantibody status were examined. RESULTS We demonstrated that autoantibodies against B23 occur in approximately 11% of sera obtained from patients with scleroderma. B23 seropositivity was related to pulmonary hypertension, antifibrillarin antibody, anti-RNP antibody, and decreased lung capacity. In multivariate analysis, B23 autoantibodies remained strongly associated with moderate-to-severe pulmonary hypertension and antifibrillarin antibodies. CONCLUSION These data unite B23 with the group of nucleolar autoantigens targeted in scleroderma and thus focus attention on changes in the nucleolus that render its components immunogenic in this disease. The demonstration that antibodies to B23 are associated with an increased prevalence of pulmonary hypertension points to anti-B23 antibodies as a possible marker of a specific phenotype in scleroderma.
Collapse
Affiliation(s)
- Danielle B Ulanet
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|