1
|
Creff J, Besson A. Functional Versatility of the CDK Inhibitor p57 Kip2. Front Cell Dev Biol 2020; 8:584590. [PMID: 33117811 PMCID: PMC7575724 DOI: 10.3389/fcell.2020.584590] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The cyclin/CDK inhibitor p57Kip2 belongs to the Cip/Kip family, with p21Cip1 and p27Kip1, and is the least studied member of the family. Unlike the other family members, p57Kip2 has a unique role during embryogenesis and is the only CDK inhibitor required for embryonic development. p57Kip2 is encoded by the imprinted gene CDKN1C, which is the gene most frequently silenced or mutated in the genetic disorder Beckwith-Wiedemann syndrome (BWS), characterized by multiple developmental anomalies. Although initially identified as a cell cycle inhibitor based on its homology to other Cip/Kip family proteins, multiple novel functions have been ascribed to p57Kip2 in recent years that participate in the control of various cellular processes, including apoptosis, migration and transcription. Here, we will review our current knowledge on p57Kip2 structure, regulation, and its diverse functions during development and homeostasis, as well as its potential implication in the development of various pathologies, including cancer.
Collapse
Affiliation(s)
- Justine Creff
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| | - Arnaud Besson
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| |
Collapse
|
2
|
Velicky P, Meinhardt G, Plessl K, Vondra S, Weiss T, Haslinger P, Lendl T, Aumayr K, Mairhofer M, Zhu X, Schütz B, Hannibal RL, Lindau R, Weil B, Ernerudh J, Neesen J, Egger G, Mikula M, Röhrl C, Urban AE, Baker J, Knöfler M, Pollheimer J. Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genet 2018; 14:e1007698. [PMID: 30312291 PMCID: PMC6200260 DOI: 10.1371/journal.pgen.1007698] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/24/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Genome amplification and cellular senescence are commonly associated with pathological processes. While physiological roles for polyploidization and senescence have been described in mouse development, controversy exists over their significance in humans. Here, we describe tetraploidization and senescence as phenomena of normal human placenta development. During pregnancy, placental extravillous trophoblasts (EVTs) invade the pregnant endometrium, termed decidua, to establish an adapted microenvironment required for the developing embryo. This process is critically dependent on continuous cell proliferation and differentiation, which is thought to follow the classical model of cell cycle arrest prior to terminal differentiation. Strikingly, flow cytometry and DNAseq revealed that EVT formation is accompanied with a genome-wide polyploidization, independent of mitotic cycles. DNA replication in these cells was analysed by a fluorescent cell-cycle indicator reporter system, cell cycle marker expression and EdU incorporation. Upon invasion into the decidua, EVTs widely lose their replicative potential and enter a senescent state characterized by high senescence-associated (SA) β-galactosidase activity, induction of a SA secretory phenotype as well as typical metabolic alterations. Furthermore, we show that the shift from endocycle-dependent genome amplification to growth arrest is disturbed in androgenic complete hydatidiform moles (CHM), a hyperplastic pregnancy disorder associated with increased risk of developing choriocarinoma. Senescence is decreased in CHM-EVTs, accompanied by exacerbated endoreduplication and hyperploidy. We propose induction of cellular senescence as a ploidy-limiting mechanism during normal human placentation and unravel a link between excessive polyploidization and reduced senescence in CHM.
Collapse
Affiliation(s)
- Philipp Velicky
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Kerstin Plessl
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Tamara Weiss
- Children's Cancer Research Institute, St. Anna Children´s Hospital, Vienna, Austria
| | - Peter Haslinger
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Thomas Lendl
- Biooptics Facility of Institute of Molecular Pathology, Institute of Molecular Biotechnology and Gregor Mendel Institute, Vienna, Austria
| | - Karin Aumayr
- Biooptics Facility of Institute of Molecular Pathology, Institute of Molecular Biotechnology and Gregor Mendel Institute, Vienna, Austria
| | - Mario Mairhofer
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Vienna, Vienna, Austria
| | - Xiaowei Zhu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Birgit Schütz
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Roberta L. Hannibal
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Robert Lindau
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Beatrix Weil
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jürgen Neesen
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Mario Mikula
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Clemens Röhrl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Alexander E. Urban
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Tasha and John Morgridge Faculty Scholar, Stanford Child Health Research Institute, Stanford, California, United States of America
| | - Julie Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Nucleosomes of polyploid trophoblast giant cells mostly consist of histone variants and form a loose chromatin structure. Sci Rep 2018; 8:5811. [PMID: 29643413 PMCID: PMC5895725 DOI: 10.1038/s41598-018-23832-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
Trophoblast giant cells (TGCs) are one of the cell types that form the placenta and play multiple essential roles in maintaining pregnancy in rodents. TGCs have large, polyploid nuclei resulting from endoreduplication. While previous studies have shown distinct gene expression profiles of TGCs, their chromatin structure remains largely unknown. An appropriate combination of canonical and non-canonical histones, also known as histone variants, allows each cell to exert its cell type-specific functions. Here, we aimed to reveal the dynamics of histone usage and chromatin structure during the differentiation of trophoblast stem cells (TSCs) into TGCs. Although the expression of most genes encoding canonical histones was downregulated, the expression of a few genes encoding histone variants such as H2AX, H2AZ, and H3.3 was maintained at a relatively high level in TGCs. Both the micrococcal nuclease digestion assay and nucleosome stability assay using a microfluidic device indicated that chromatin became increasingly loose as TSCs differentiated. Combinatorial experiments involving H3.3-knockdown and -overexpression demonstrated that variant H3.3 resulted in the formation of loose nucleosomes in TGCs. In conclusion, our study revealed that TGCs possessed loose nucleosomes owing to alterations in their histone composition during differentiation.
Collapse
|
4
|
Links between DNA Replication, Stem Cells and Cancer. Genes (Basel) 2017; 8:genes8020045. [PMID: 28125050 PMCID: PMC5333035 DOI: 10.3390/genes8020045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells.
Collapse
|
5
|
Cross JC. Adaptability and potential for treatment of placental functions to improve embryonic development and postnatal health. Reprod Fertil Dev 2017; 28:75-82. [PMID: 27062876 DOI: 10.1071/rd15342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For an organ that is so critical for life in eutherian mammals, the placenta hardly gets the attention that it deserves. The placenta does a series of remarkable things, including implanting the embryo in the uterus, negotiating with the mother for nutrients but also protecting her health during pregnancy, helping establish normal metabolic and cardiovascular function for life postnatally (developmental programming) and initiating changes that prepare the mother to care for and suckle her young after birth. Different lines of evidence in experimental animals suggest that the development and function of the placenta are adaptable. This means that some of the changes observed in pathological pregnancies may represent attempts to mitigate the impact of fetal growth and development. Key and emerging concepts are reviewed here concerning how we may view the placenta diagnostically and therapeutically in pregnancy complications, focusing on information from experimental studies in mice, sheep and cattle, as well as association studies from humans. Hundreds of different genes have been shown to underlie normal placental development and function, some of which have promise as tractable targets for intervention in pregnancies at risk for poor fetal growth.
Collapse
Affiliation(s)
- James C Cross
- Departments of Comparative Biology and Experimental Medicine, Biochemistry and Molecular Biology, Medical Genetics, and Obstetrics and Gynecology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
6
|
Chen S, Stout JR, Dharmaiah S, Yde S, Calvi BR, Walczak CE. Transient endoreplication down-regulates the kinesin-14 HSET and contributes to genomic instability. Mol Biol Cell 2016; 27:2911-23. [PMID: 27489338 PMCID: PMC5042578 DOI: 10.1091/mbc.e16-03-0159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022] Open
Abstract
Polyploid cancer cells exhibit chromosomal instability (CIN), which is associated with tumorigenesis and therapy resistance. The mechanisms that induce polyploidy and how these mechanisms contribute to CIN are not fully understood. Here we evaluate CIN in human cells that become polyploid through an experimentally induced endoreplication cycle. When these induced endoreplicating cells (iECs) returned to mitosis, it resulted in aneuploidy in daughter cells. This aneuploidy resulted from multipolar divisions, chromosome missegregation, and failure in cytokinesis. The iECs went through several rounds of division, ultimately spawning proliferative cells of reduced ploidy. iECs have reduced levels of the kinesin-14 HSET, which likely accounts for the multipolar divisions, and overexpression of HSET reduced spindle multipolarity. However, HSET overexpression had only mild effects on CIN, suggesting that additional defects must contribute to genomic instability in dividing iECs. Overall our results suggest that transient endoreplication cycles generate a diverse population of proliferative aneuploid cells that have the potential to contribute to tumor heterogeneity.
Collapse
Affiliation(s)
- Shengyao Chen
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jane R Stout
- Medical Sciences Program, Indiana University, Bloomington, IN 47405
| | | | - Sarah Yde
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Claire E Walczak
- Medical Sciences Program, Indiana University, Bloomington, IN 47405
| |
Collapse
|
7
|
Saunders ACE, McGonnigal B, Uzun A, Padbury J. The developmental expression of the CDK inhibitor p57(kip2) (Cdkn1c) in the early mouse placenta. Mol Reprod Dev 2016; 83:405-12. [PMID: 26988311 DOI: 10.1002/mrd.22637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/10/2016] [Indexed: 11/07/2022]
Abstract
p57(kip2) (encoded by the Cdkn1c gene) is a member of the cip/kip family of cyclin-dependent kinase inhibitors that mediates cell cycle arrest in G1, allowing cells to differentiate. In the placenta, p57(kip2) is involved in endoreduplication, formation of trophoblast giant cells, trophoblast invasion, and expansion of placental cell layers. Here, we quantitatively and qualitatively define the cell- and region-specific expression of mouse placental p57(kip2) using laser-capture microdissection, in situ hybridization, and immunohistochemistry. Cdkn1c RNA was quantified by real-time quantitative PCR. Co-expression of Pl1 was used to identify trophoblast giant cells while Tbpba was used to identify spongiotrophoblast cells. Timed sacrifices were also carried out at embryonic days E7.5, E8.5, E9.5, and E12.5 to profile the expression in embryos and their placentas. At E8.5, intense expression of Cdkn1c was seen in invasive TGCs and the ectoplacental cone. Cdkn1c expression was more diffuse and more abundant in the labyrinth that in the junctional zone at both E9.5 and E12.5. Immunohistochemistry revealed robust p57(kip2) staining in trophoblast giant cells and in the ectoplacental cone at E8.5. p57(kip2) protein was seen in giant cells and throughout the labyrinth, although its abundance was reduced in the junctional zone at E9.5, and became more diffuse by E12.5. The early and intense expression in trophoblast giant cells is consistent with a role for p57(kip2) in the invasive phenotype of these cells. Mol. Reprod. Dev. 83: 405-412, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ann Catherine Eugenia Saunders
- Department of Pediatrics, Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island.,Division of Biology and Medicine Graduate Program in Pathobiology, Brown University Providence, Providence, Rhode Island
| | - Bethany McGonnigal
- Department of Pediatrics, Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island
| | - Alper Uzun
- Department of Pediatrics, Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island
| | - James Padbury
- Department of Pediatrics, Brown University, Women and Infants Hospital of Rhode Island, Providence, Rhode Island.,Division of Biology and Medicine Graduate Program in Pathobiology, Brown University Providence, Providence, Rhode Island
| |
Collapse
|
8
|
Abstract
The mechanism that duplicates the nuclear genome during the trillions of cell divisions required to develop from zygote to adult is the same throughout the eukarya, but the mechanisms that determine where, when and how much nuclear genome duplication occur regulate development and differ among the eukarya. They allow organisms to change the rate of cell proliferation during development, to activate zygotic gene expression independently of DNA replication, and to restrict nuclear DNA replication to once per cell division. They allow specialized cells to exit their mitotic cell cycle and differentiate into polyploid cells, and in some cases, to amplify the number of copies of specific genes. It is genome duplication that drives evolution, by virtue of the errors that inevitably occur when the same process is repeated trillions of times. It is, unfortunately, the same errors that produce age-related genetic disorders such as cancer.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
9
|
|
10
|
Hutchins JRA, Aze A, Coulombe P, Méchali M. Characteristics of Metazoan DNA Replication Origins. DNA REPLICATION, RECOMBINATION, AND REPAIR 2016. [PMCID: PMC7120227 DOI: 10.1007/978-4-431-55873-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Ogawa H, Takyu R, Morimoto H, Toei S, Sakon H, Goto S, Moriya S, Kono T. Cell proliferation potency is independent of FGF4 signaling in trophoblast stem cells derived from androgenetic embryos. J Reprod Dev 2015; 62:51-8. [PMID: 26498204 PMCID: PMC4768778 DOI: 10.1262/jrd.2015-097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously established trophoblast stem cells from mouse androgenetic embryos (AGTS cells). In this study, to further characterize AGTS cells, we compared cell proliferation activity between trophoblast stem (TS) cells and AGTS cells under fibroblast growth factor 4 (FGF4) signaling. TS cells continued to proliferate and maintained mitotic cell division in the presence of FGF4. After FGF4 deprivation, the cell proliferation stopped, the rate of M-phase cells decreased, and trophoblast giant cells formed. In contrast, some of AGTS cells continued to proliferate, and the rate of M-phase cells did not decrease after FGF4 deprivation, although the other cells differentiated into giant cells. RO3306, an ATP competitor that selectively inhibits CDK1, inhibited the cell proliferation of both TS and AGTS cells. Under RO3306 treatment, cell death was induced in AGTS cells but not in TS cells. These results indicate that RO3306 caused TS cells to shift mitotic cell division to endoreduplication but that some of AGTS cells did not shift to endoreduplication and induced cell death. In conclusion, the paternal genome facilitated the proliferation of trophoblast cells without FGF4 signaling.
Collapse
Affiliation(s)
- Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Swanson CI, Meserve JH, McCarter PC, Thieme A, Mathew T, Elston TC, Duronio RJ. Expression of an S phase-stabilized version of the CDK inhibitor Dacapo can alter endoreplication. Development 2015; 142:4288-98. [PMID: 26493402 DOI: 10.1242/dev.115006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
Abstract
In developing organisms, divergence from the canonical cell division cycle is often necessary to ensure the proper growth, differentiation, and physiological function of a variety of tissues. An important example is endoreplication, in which endocycling cells alternate between G and S phase without intervening mitosis or cytokinesis, resulting in polyploidy. Although significantly different from the canonical cell cycle, endocycles use regulatory pathways that also function in diploid cells, particularly those involved in S phase entry and progression. A key S phase regulator is the Cyclin E-Cdk2 kinase, which must alternate between periods of high (S phase) and low (G phase) activity in order for endocycling cells to achieve repeated rounds of S phase and polyploidy. The mechanisms that drive these oscillations of Cyclin E-Cdk2 activity are not fully understood. Here, we show that the Drosophila Cyclin E-Cdk2 inhibitor Dacapo (Dap) is targeted for destruction during S phase via a PIP degron, contributing to oscillations of Dap protein accumulation during both mitotic cycles and endocycles. Expression of a PIP degron mutant Dap attenuates endocycle progression but does not obviously affect proliferating diploid cells. A mathematical model of the endocycle predicts that the rate of destruction of Dap during S phase modulates the endocycle by regulating the length of G phase. We propose from this model and our in vivo data that endo S phase-coupled destruction of Dap reduces the threshold of Cyclin E-Cdk2 activity necessary to trigger the subsequent G-S transition, thereby influencing endocycle oscillation frequency and the extent of polyploidy.
Collapse
Affiliation(s)
- Christina I Swanson
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joy H Meserve
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Patrick C McCarter
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alexis Thieme
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tony Mathew
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy C Elston
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Zybina TG, Zybina EV. Genome variation in the trophoblast cell lifespan: Diploidy, polyteny, depolytenization, genome segregation. World J Med Genet 2014; 4:77-93. [DOI: 10.5496/wjmg.v4.i4.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/11/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023] Open
Abstract
The lifespan of mammalian trophoblast cells includes polyploidization, its degree and peculiarities are, probably, accounted for the characteristics of placenta development. The main ways of genome multiplication-endoreduplication and reduced mitosis-that basically differ by the extent of repression of mitotic events, play, most probably, different roles in the functionally different trophoblast cells in a variety of mammalian species. In the rodent placenta, highly polyploid (512-2048c) trophoblast giant cells (TGC) undergoing endoreduplication serve a barrier with semiallogenic maternal tissues whereas series of reduced mitoses allow to accumulate a great number of low-ploid junctional zone and labyrinth trophoblast cells. Endoreduplication of TGC comes to the end with formation of numerous low-ploid subcellular compartments that show some signs of viable cells though mitotically inactive; it makes impossible their ectopic proliferation inside maternal tissues. In distinct from rodent trophoblast, deviation from (2n)c in human and silver fox trophoblast suggests a possibility of aneuploidy and other chromosome changes (aberrations, etc.). It suggests that in mammalian species with lengthy period of pregnancy, polyploidy is accompanied by more diverse genome changes that may be useful to select a more specific response to stressful factors that may appear occasionally during months of intrauterine development.
Collapse
|
14
|
de Renty C, DePamphilis ML, Ullah Z. Cytoplasmic localization of p21 protects trophoblast giant cells from DNA damage induced apoptosis. PLoS One 2014; 9:e97434. [PMID: 24848107 PMCID: PMC4029599 DOI: 10.1371/journal.pone.0097434] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/17/2014] [Indexed: 01/05/2023] Open
Abstract
Proliferating trophoblast stem cells (TSCs) can differentiate into nonproliferating but viable trophoblast giant cells (TGCs) that are resistant to DNA damage induced apoptosis. Differentiation is associated with selective up-regulation of the Cip/Kip cyclin-dependent kinase inhibitors p57 and p21; expression of p27 remains constant. Previous studies showed that p57 localizes to the nucleus in TGCs where it is essential for endoreplication. Here we show that p27 also remains localized to the nucleus during TSC differentiation where it complements the role of p57. Unexpectedly, p21 localized to the cytoplasm where it was maintained throughout both the G- and S-phases of endocycles, and where it prevented DNA damage induced apoptosis. This unusual status for a Cip/Kip protein was dependent on site-specific phosphorylation of p21 by the Akt1 kinase that is also up-regulated in TGCs. Although cytoplasmic p21 is widespread among cancer cells, among normal cells it has been observed only in monocytes. The fact that it also occurs in TGCs reveals that p57 and p21 serve nonredundant functions, and suggests that the role of p21 in suppressing apoptosis is restricted to terminally differentiated cells.
Collapse
Affiliation(s)
- Christelle de Renty
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melvin L. DePamphilis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zakir Ullah
- Department of Biology, School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
15
|
Cross JC. More of a good thing or less of a bad thing: gene copy number variation in polyploid cells of the placenta. PLoS Genet 2014; 10:e1004330. [PMID: 24784435 PMCID: PMC4006710 DOI: 10.1371/journal.pgen.1004330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- James C. Cross
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
16
|
Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 2014; 15:197-210. [PMID: 24556841 DOI: 10.1038/nrm3756] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.
Collapse
|
17
|
The dual roles of geminin during trophoblast proliferation and differentiation. Dev Biol 2014; 387:49-63. [PMID: 24412371 DOI: 10.1016/j.ydbio.2013.12.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/11/2013] [Accepted: 12/22/2013] [Indexed: 11/21/2022]
Abstract
Geminin is a protein involved in both DNA replication and cell fate acquisition. Although it is essential for mammalian preimplantation development, its role remains unclear. In one study, ablation of the geminin gene (Gmnn) in mouse preimplantation embryos resulted in apoptosis, suggesting that geminin prevents DNA re-replication, whereas in another study it resulted in differentiation of blastomeres into trophoblast giant cells (TGCs), suggesting that geminin regulates trophoblast specification and differentiation. Other studies concluded that trophoblast differentiation into TGCs is regulated by fibroblast growth factor-4 (FGF4), and that geminin is required to maintain endocycles. Here we show that ablation of Gmnn in trophoblast stem cells (TSCs) proliferating in the presence of FGF4 closely mimics the events triggered by FGF4 deprivation: arrest of cell proliferation, formation of giant cells, excessive DNA replication in the absence of DNA damage and apoptosis, and changes in gene expression that include loss of Chk1 with up-regulation of p57 and p21. Moreover, FGF4 deprivation of TSCs reduces geminin to a basal level that is required for maintaining endocycles in TGCs. Thus, geminin acts both like a component of the FGF4 signal transduction pathway that governs trophoblast proliferation and differentiation, and geminin is required to maintain endocycles.
Collapse
|
18
|
Sakaue-Sawano A, Hoshida T, Yo M, Takahashi R, Ohtawa K, Arai T, Takahashi E, Noda S, Miyoshi H, Miyawaki A. Visualizing developmentally programmed endoreplication in mammals using ubiquitin oscillators. Development 2013; 140:4624-32. [DOI: 10.1242/dev.099226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The majority of mammalian somatic cells maintain a diploid genome. However, some mammalian cell types undergo multiple rounds of genome replication (endoreplication) as part of normal development and differentiation. For example, trophoblast giant cells (TGCs) in the placenta become polyploid through endoreduplication (bypassed mitosis), and megakaryocytes (MKCs) in the bone marrow become polyploid through endomitosis (abortive mitosis). During the normal mitotic cell cycle, geminin and Cdt1 are involved in ‘licensing’ of replication origins, which ensures that replication occurs only once in a cell cycle. Their protein accumulation is directly regulated by two E3 ubiquitin ligase activities, APCCdh1 and SCFSkp2, which oscillate reciprocally during the cell cycle. Although proteolysis-mediated, oscillatory accumulation of proteins has been documented in endoreplicating Drosophila cells, it is not known whether the ubiquitin oscillators that control normal cell cycle transitions also function during mammalian endoreplication. In this study, we used transgenic mice expressing Fucci fluorescent cell-cycle probes that report the activity of APCCdh1 and SCFSkp2. By performing long-term, high temporal-resolution Fucci imaging, we were able to visualize reciprocal activation of APCCdh1 and SCFSkp2 in differentiating TGCs and MKCs grown in our custom-designed culture wells. We found that TGCs and MKCs both skip cytokinesis, but in different ways, and that the reciprocal activation of the ubiquitin oscillators in MKCs varies with the polyploidy level. We also obtained three-dimensional reconstructions of highly polyploid TGCs in whole, fixed mouse placentas. Thus, the Fucci technique is able to reveal the spatiotemporal regulation of the endoreplicative cell cycle during differentiation.
Collapse
Affiliation(s)
- Asako Sakaue-Sawano
- Lab for Cell Function Dynamics, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Tetsushi Hoshida
- Lab for Cell Function Dynamics, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Masahiro Yo
- Subteam for Manipulation of Cell Fate, RIKEN BRC, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Reiko Takahashi
- Lab for Cell Function Dynamics, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Kenji Ohtawa
- Research Resource Center, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Takashi Arai
- Research Resource Center, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Eiki Takahashi
- Research Resource Center, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Shinichi Noda
- Subteam for Manipulation of Cell Fate, RIKEN BRC, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Hiroyuki Miyoshi
- Subteam for Manipulation of Cell Fate, RIKEN BRC, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsushi Miyawaki
- Lab for Cell Function Dynamics, BSI, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| |
Collapse
|
19
|
Sher N, Von Stetina JR, Bell GW, Matsuura S, Ravid K, Orr-Weaver TL. Fundamental differences in endoreplication in mammals and Drosophila revealed by analysis of endocycling and endomitotic cells. Proc Natl Acad Sci U S A 2013; 110:9368-73. [PMID: 23613587 PMCID: PMC3677442 DOI: 10.1073/pnas.1304889110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Throughout the plant and animal kingdoms specific cell types become polyploid, increasing their DNA content to attain a large cell size. In mammals, megakaryocytes (MKs) become polyploid before fragmenting into platelets. The mammalian trophoblast giant cells (TGCs) exploit their size to form a barrier between the maternal and embryonic tissues. The mechanism of polyploidization has been investigated extensively in Drosophila, in which a modified cell cycle--the endocycle, consisting solely of alternating S and gap phases--produces polyploid tissues. During S phase in the Drosophila endocycle, heterochromatin and specific euchromatic regions are underreplicated and reduced in copy number. Here we investigate the properties of polyploidization in murine MKs and TGCs. We induced differentiation of primary MKs and directly microdissected TGCs from embryonic day 9.5 implantation sites. The copy number across the genome was analyzed by array-based comparative genome hybridization. In striking contrast to Drosophila, the genome was uniformly and integrally duplicated in both MKs and TGCs. This was true even for heterochromatic regions analyzed by quantitative PCR. Underreplication of specific regions in polyploid cells is proposed to be due to a slower S phase, resulting from low expression of S-phase genes, causing failure to duplicate late replicating genomic intervals. We defined the transcriptome of TGCs and found robust expression of S-phase genes. Similarly, S-phase gene expression is not repressed in MKs, providing an explanation for the distinct endoreplication parameters compared with Drosophila. Consistent with TGCs endocycling rather than undergoing endomitosis, they have low expression of M-phase genes.
Collapse
Affiliation(s)
| | | | | | - Shinobu Matsuura
- Departments of Medicine and Biochemistry, and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118
| | - Katya Ravid
- Departments of Medicine and Biochemistry, and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118
| | - Terry L. Orr-Weaver
- Whitehead Institute and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142; and
| |
Collapse
|
20
|
Renfree MB, Suzuki S, Kaneko-Ishino T. The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120151. [PMID: 23166401 DOI: 10.1098/rstb.2012.0151] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells.
Collapse
Affiliation(s)
- Marilyn B Renfree
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
21
|
Zebrowski DC, Engel FB. The Cardiomyocyte Cell Cycle in Hypertrophy, Tissue Homeostasis, and Regeneration. Rev Physiol Biochem Pharmacol 2013; 165:67-96. [DOI: 10.1007/112_2013_12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Abstract
Developmentally programmed polyploidy occurs by at least four different mechanisms, two of which (endoreduplication and endomitosis) involve switching from mitotic cell cycles to endocycles by the selective loss of mitotic cyclin-dependent kinase (CDK) activity and bypassing many of the processes of mitosis. Here we review the mechanisms of endoreplication, focusing on recent results from Drosophila and mice.
Collapse
Affiliation(s)
- Norman Zielke
- Deutsches Krebsforschungszentrum (DKFZ)-Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
23
|
Depamphilis ML, de Renty CM, Ullah Z, Lee CY. "The Octet": Eight Protein Kinases that Control Mammalian DNA Replication. Front Physiol 2012; 3:368. [PMID: 23055977 PMCID: PMC3458233 DOI: 10.3389/fphys.2012.00368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/27/2012] [Indexed: 01/12/2023] Open
Abstract
Development of a fertilized human egg into an average sized adult requires about 29 trillion cell divisions, thereby producing enough DNA to stretch to the Sun and back 200 times (DePamphilis and Bell, 2011)! Even more amazing is the fact that throughout these mitotic cell cycles, the human genome is duplicated once and only once each time a cell divides. If a cell accidentally begins to re-replicate its nuclear DNA prior to cell division, checkpoint pathways trigger apoptosis. And yet, some cells are developmentally programmed to respond to environmental cues by switching from mitotic cell cycles to endocycles, a process in which multiple S phases occur in the absence of either mitosis or cytokinesis. Endocycles allow production of viable, differentiated, polyploid cells that no longer proliferate. What is surprising is that among the 516 (Manning et al., 2002) to 557 (BioMart web site) protein kinases encoded by the human genome, only eight regulate nuclear DNA replication directly. These are Cdk1, Cdk2, Cdk4, Cdk6, Cdk7, Cdc7, Checkpoint kinase-1 (Chk1), and Checkpoint kinase-2. Even more remarkable is the fact that only four of these enzymes (Cdk1, Cdk7, Cdc7, and Chk1) are essential for mammalian development. Here we describe how these protein kinases determine when DNA replication occurs during mitotic cell cycles, how mammalian cells switch from mitotic cell cycles to endocycles, and how cancer cells can be selectively targeted for destruction by inducing them to begin a second S phase before mitosis is complete.
Collapse
Affiliation(s)
- Melvin L Depamphilis
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | | | | | | |
Collapse
|
24
|
Sroga JM, Ma X, Das SK. Developmental regulation of decidual cell polyploidy at the site of implantation. Front Biosci (Schol Ed) 2012; 4:1475-86. [PMID: 22652887 DOI: 10.2741/s347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polyploidy has been reported in several animal cells, as well as within humans; however the mechanism of developmental regulation of this process remains poorly understood. Polyploidy occurs in normal biologic processes as well as in pathologic states. Decidual polyploid cells are terminally differentiated cells with a critical role in continued uterine development during embryo implantation and growth. Here we review the mechanisms involved in polyploidy cell formation in normal developmental processes, with focus on known regulatory aspects in decidual cells.
Collapse
Affiliation(s)
- Julie M Sroga
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
25
|
Ullah Z, DePamphilis ML. Checkpoint kinase-1: one actor playing two roles in "maintaining genomic integrity". Cell Cycle 2012; 11:1873. [PMID: 22580458 DOI: 10.4161/cc.20509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Zakir Ullah
- Department of Biology; School of Science and Engineering; Lahore University of Management Sciences; Lahore, Pakistan.
| | | |
Collapse
|
26
|
Logan PC, Steiner M, Ponnampalam AP, Mitchell MD. Cell cycle regulation of human endometrial stromal cells during decidualization. Reprod Sci 2012; 19:883-94. [PMID: 22534328 DOI: 10.1177/1933719112438447] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Differentiation of endometrial stromal cells into decidual cells is crucial for optimal endometrial receptivity. Data from our previous microarray study implied that expression of many cell cycle regulators are changed during decidualization and inhibition of DNA methylation in vitro. In this study, we hypothesized that both the classic progestin treatment and DNA methylation inhibition would inhibit stromal cell proliferation and cell cycle transition. METHODS The human endometrial stromal cell line (HESC) was treated from 2 days to 18 days with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine (AZA), a mixture of estradiol/progestin/cyclic adenosine monophosphate ([cAMP]; medroxy-progesterone acetate [MPA mix]) or both. Cell growth was measured by cell counting, cell cycle transition and apoptosis were analyzed by flow cytometry, expression of cell cycle regulators were analyzed by quantitative polymerase chain reaction (qPCR) and Western blotting, and change in DNA methylation profiles were detected by methylation-specific PCR. RESULTS Both AZA and MPA mix inhibited the proliferation of HESC for at least 7 days. Treatment with MPA mix resulted in an early G0/G1 inhibition followed by G2/M phase inhibition at 18 days. In contrast, AZA treatment inhibited cell cycle progression at the G2/M phase throughout. The protein levels of p21(Cip1)and 14-3-3σ were increased with both AZA and MPA mix treatments without any change in the DNA methylation profiles of the genes. CONCLUSIONS Our data imply that the decidualization of HESC is associated with cell cycle arrest at G0/G1 phase initially and G2/M phase at later stages. Our results also suggest that p53 pathway members play a role in the cell cycle regulation of endometrial stromal cells.
Collapse
Affiliation(s)
- Philip C Logan
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
27
|
Lefebvre L. The placental imprintome and imprinted gene function in the trophoblast glycogen cell lineage. Reprod Biomed Online 2012; 25:44-57. [PMID: 22560119 DOI: 10.1016/j.rbmo.2012.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
Imprinted genes represent a unique class of autosomal genes expressed from only one of the parental alleles during development. The choice of the expressed allele is not random but rather is determined by the parental origin of the allele. Consequently, the mouse genome contains more than 100 genes expressed preferentially or exclusively from the maternally or the paternally inherited allele. Current research efforts are focused on understanding the molecular mechanism of this epigenetic phenomenon as well as the biological functions of the genes under its regulation. Both theoretical considerations and experimental results support a role for genomic imprinting in the regulation of embryonic growth and placental biology. In this review, recent efforts to establish the complete set of genes showing imprinted expression in the mouse placenta are first discussed. Then, the evidence suggesting that imprinted genes might be implicated in the emergence, maintenance and function of trophoblast glycogen cells is presented. Although the origin and functions of this trophoblast cell lineage are currently unknown, the analysis of mutations in imprinted genes in the mouse are providing new insights into these issues. The implications of this work for placental pathologies in human are also discussed.
Collapse
Affiliation(s)
- Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
28
|
De Veylder L, Larkin JC, Schnittger A. Molecular control and function of endoreplication in development and physiology. TRENDS IN PLANT SCIENCE 2011; 16:624-34. [PMID: 21889902 DOI: 10.1016/j.tplants.2011.07.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 05/03/2023]
Abstract
Endoreplication, also called endoreduplication, is a cell cycle variant of multicellular eukaryotes in which mitosis is skipped and cells repeatedly replicate their DNA, resulting in cellular polyploidy. In recent years, research results have shed light on the molecular mechanism of endoreplication control, but the function of this cell-cycle variant has remained elusive. However, new evidence is at last providing insight into the biological relevance of cellular polyploidy, demonstrating that endoreplication is essential for developmental processes, such as cell fate maintenance, and is a prominent response to physiological conditions, such as pathogen attack or DNA damage. Thus, endoreplication is being revealed as an important module in plant growth that contributes to the robustness of plant life.
Collapse
|
29
|
Shakina LA, Strashnyuk VY. Genetic, molecular, and humoral endocycle-regulating mechanisms. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411100164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Borriello A, Caldarelli I, Bencivenga D, Criscuolo M, Cucciolla V, Tramontano A, Oliva A, Perrotta S, Della Ragione F. p57(Kip2) and cancer: time for a critical appraisal. Mol Cancer Res 2011; 9:1269-84. [PMID: 21816904 DOI: 10.1158/1541-7786.mcr-11-0220] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p57(Kip2) is a cyclin-dependent kinase inhibitor belonging to the Cip/Kip family, which also includes p21(Cip1) and p27(Kip1). So far, p57(Kip2) is the least-studied Cip/Kip protein, and for a long time its relevance has been related mainly to its unique role in embryogenesis. Moreover, genetic and molecular studies on animal models and patients with Beckwith-Wiedemann syndrome have shown that alterations in CDKN1C (the p57(Kip2) encoding gene) have functional relevance in the pathogenesis of this disease. Recently, a number of investigations have identified and characterized heretofore unexpected roles for p57(Kip2). The protein appears to be critically involved in initial steps of cell and tissue differentiation, and particularly in neuronal development and erythropoiesis. Intriguingly, p27(Kip1), the Cip/Kip member that is most homologous to p57(Kip2), is primarily involved in the process of cell cycle exit. p57(Kip2) also plays a critical role in controlling cytoskeletal organization and cell migration through its interaction with LIMK-1. Furthermore, p57(Kip2) appears to modulate genome expression. Finally, accumulating evidence indicates that p57(Kip2) protein is frequently downregulated in different types of human epithelial and nonepithelial cancers as a consequence of genetic and epigenetic events. In summary, the emerging picture is that several aspects of p57(Kip2)'s functions are only poorly clarified. This review represents an appraisal of the data available on the p57(Kip2) gene and protein structure, and its role in human physiology and pathology. We particularly focus our attention on p57(Kip2) changes in cancers and pharmacological approaches for modulating p57(Kip2) levels.
Collapse
Affiliation(s)
- Adriana Borriello
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Checkpoint kinase 1 prevents cell cycle exit linked to terminal cell differentiation. Mol Cell Biol 2011; 31:4129-43. [PMID: 21791608 DOI: 10.1128/mcb.05723-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trophoblast stem (TS) cells proliferate in the presence of fibroblast growth factor 4, but in its absence, they differentiate into polyploid trophoblast giant (TG) cells that remain viable but nonproliferative. Differentiation is coincident with expression of the cyclin-dependent kinase (CDK)-specific inhibitors p21 and p57, of which p57 is essential for switching from mitotic cell cycles to endocycles. Here, we show that, in the absence of induced DNA damage, checkpoint kinase-1 (CHK1), an enzyme essential for preventing mitosis in response to DNA damage, functions as a mitogen-dependent protein kinase that prevents premature differentiation of TS cells into TG cells by suppressing expression of p21 and p57, but not p27, the CDK inhibitor that regulates mitotic cell cycles. CHK1 phosphorylates p21 and p57 proteins at specific sites, thereby targeting them for degradation by the 26S proteasome. TG cells lack CHK1, and restoring CHK1 activity in TG cells suppresses expression of p57 and restores mitosis. Thus, CHK1 is part of a "G2 restriction point" that prevents premature cell cycle exit in cells programmed for terminal differentiation, a role that CHK2 cannot play.
Collapse
|
32
|
Davoli T, de Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 2011; 27:585-610. [PMID: 21801013 DOI: 10.1146/annurev-cellbio-092910-154234] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although nearly all mammalian species are diploid, whole-genome duplications occur in select mammalian tissues as part of normal development. Such programmed polyploidization involves changes in the regulatory pathways that normally maintain the diploid state of the mammalian genome. Unscheduled whole-genome duplications, which lead primarily to tetraploid cells, also take place in a substantial fraction of human tumors and have been proposed to constitute an important step in the development of cancer aneuploidy. The origins of these polyploidization events and their consequences for tumor progression are explored in this review.
Collapse
Affiliation(s)
- Teresa Davoli
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
33
|
Maqbool SB, Mehrotra S, Kolpakas A, Durden C, Zhang B, Zhong H, Calvi BR. Dampened activity of E2F1-DP and Myb-MuvB transcription factors in Drosophila endocycling cells. J Cell Sci 2010; 123:4095-106. [PMID: 21045111 DOI: 10.1242/jcs.064519] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The endocycle is a variant cell cycle comprised of alternating gap (G) and DNA synthesis (S) phases (endoreplication) without mitosis (M), which results in DNA polyploidy and large cell size. Endocycles occur widely in nature, but much remains to be learned about the regulation of this modified cell cycle. Here, we compared gene expression profiles of mitotic cycling larval brain and disc cells with the endocycling cells of fat body and salivary gland of the Drosophila larva. The results indicated that many genes that are positively regulated by the heterodimeric E2F1-DP or Myb-MuvB complex transcription factors are expressed at lower levels in endocycling cells. Many of these target genes have functions in M phase, suggesting that dampened E2F1 and Myb activity promote endocycles. Many other E2F1 target genes that are required for DNA replication were also repressed in endocycling cells, an unexpected result given that these cells must duplicate up to thousands of genome copies during each S phase. For some EF2-regulated genes, the lower level of mRNA in endocycling cells resulted in lower protein concentration, whereas for other genes it did not, suggesting a contribution of post-transcriptional regulation. Both knockdown and overexpression of E2F1-DP and Myb-MuvB impaired endocycles, indicating that transcriptional activation and repression must be balanced. Our data suggest that dampened transcriptional activation by E2F1-DP and Myb-MuvB is important to repress mitosis and coordinate the endocycle transcriptional and protein stability oscillators.
Collapse
|
34
|
Kaneko-Ishino T, Ishino F. Retrotransposon silencing by DNA methylation contributed to the evolution of placentation and genomic imprinting in mammals. Dev Growth Differ 2010; 52:533-43. [PMID: 20646026 DOI: 10.1111/j.1440-169x.2010.01194.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The evolution of two mammalian-specific traits, viviparous reproduction with a placenta and genomic imprinting, have been addressed by multiple studies of two retrotransposon derived, mammalian-specific genes. These gene targeting experiments in mice, together with recent comparative genomic analyses among three mammalian groups, suggest that extremely rare events; namely exaptations from retrotransposons, made crucial contributions to the establishment and diversification of mammals via placental formation. We propose that nearly neutral evolution, as well as Darwinian evolution (natural selection), plays an important role in the exaptation process. Comparative genomic analysis of various imprinted regions has also revealed that an imprinting control element essential for parent-of-origin specific monoallelic expression of imprinted genes emerged in each of the imprinted regions, possibly by the insertion of exogenous DNAs, such as retrotransposons. In both cases, DNA methylation in germ cells must have been of critical importance to repress the exogenous DNAs inserted into the genomes of mammalian ancestors. We propose that the ability of germ line DNA methylation enabled the emergence of certain mammalian-specific features during the course of evolution.
Collapse
Affiliation(s)
- Tomoko Kaneko-Ishino
- School of Health Sciences, Tokai University, Bohseidai, Isehara-shi, Kanagawa, Japan
| | | |
Collapse
|
35
|
Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG. p57KIP2: "Kip"ing the cell under control. Mol Cancer Res 2009; 7:1902-19. [PMID: 19934273 DOI: 10.1158/1541-7786.mcr-09-0317] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p57(KIP2) is an imprinted gene located at the chromosomal locus 11p15.5. It is a cyclin-dependent kinase inhibitor belonging to the CIP/KIP family, which includes additionally p21(CIP1/WAF1) and p27(KIP1). It is the least studied CIP/KIP member and has a unique role in embryogenesis. p57(KIP2) regulates the cell cycle, although novel functions have been attributed to this protein including cytoskeletal organization. Molecular analysis of animal models and patients with Beckwith-Wiedemann Syndrome have shown its nodal implication in the pathogenesis of this syndrome. p57(KIP2) is frequently down-regulated in many common human malignancies through several mechanisms, denoting its anti-oncogenic function. This review is a thorough analysis of data available on p57(KIP2), in relation to p21(CIP1/WAF1) and p27(KIP1), on gene and protein structure, its transcriptional and translational regulation, and its role in human physiology and pathology, focusing on cancer development.
Collapse
Affiliation(s)
- Ioannis S Pateras
- Molecular Carcinogenesis Group, Laboratory of Histology-Embryology, Medical School, University of Athens, Greece
| | | | | | | | | |
Collapse
|
36
|
Abstract
A great many cell types are necessary for the myriad capabilities of complex, multicellular organisms. One interesting aspect of this diversity of cell type is that many cells in diploid organisms are polyploid. This is called endopolyploidy and arises from cell cycles that are often characterized as "variant," but in fact are widespread throughout nature. Endopolyploidy is essential for normal development and physiology in many different organisms. Here we review how both plants and animals use variations of the cell cycle, termed collectively as endoreplication, resulting in polyploid cells that support specific aspects of development. In addition, we discuss briefly how endoreplication occurs in response to certain physiological stresses, and how it may contribute to the development of cancer. Finally, we describe the molecular mechanisms that support the onset and progression of endoreplication.
Collapse
|
37
|
Abstract
The core machinery that drives the eukaryotic cell cycle has been thoroughly investigated over the course of the past three decades. It is only more recently, however, that light has been shed on the mechanisms by which elements of this core machinery are modulated to alter cell cycle progression during development. It has also become increasingly clear that, conversely, core cell cycle regulators can play a crucial role in developmental processes. Here, focusing on findings from Drosophila melanogaster and Caenorhabditis elegans, we review the importance of modulating the cell cycle during development and discuss how core cell cycle regulators participate in determining cell fates.
Collapse
Affiliation(s)
- Yemima Budirahardja
- Swiss Institute for Experimental Cancer Research (ISREC Sciences, Swiss Federal Institute of Technology), Lausanne, Switzerland
| | | |
Collapse
|
38
|
Ullah Z, Lee CY, Depamphilis ML. Cip/Kip cyclin-dependent protein kinase inhibitors and the road to polyploidy. Cell Div 2009; 4:10. [PMID: 19490616 PMCID: PMC2697143 DOI: 10.1186/1747-1028-4-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 06/02/2009] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) play a central role in the orderly transition from one phase of the eukaryotic mitotic cell division cycle to the next. In this context, p27Kip1 (one of the CIP/KIP family of CDK specific inhibitors in mammals) or its functional analogue in other eukarya prevents a premature transition from G1 to S-phase. Recent studies have revealed that expression of a second member of this family, p57Kip2, is induced as trophoblast stem (TS) cells differentiate into trophoblast giant (TG) cells. p57 then inhibits CDK1 activity, an enzyme essential for initiating mitosis, thereby triggering genome endoreduplication (multiple S-phases without an intervening mitosis). Expression of p21Cip1, the third member of this family, is also induced in during differentiation of TS cells into TG cells where it appears to play a role in suppressing the DNA damage response pathway. Given the fact that p21 and p57 are unique to mammals, the question arises as to whether one or both of these proteins are responsible for the induction and maintenance of polyploidy during mammalian development.
Collapse
Affiliation(s)
- Zakir Ullah
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA.
| | | | | |
Collapse
|
39
|
Ullah Z, Lee CY, Lilly MA, DePamphilis ML. Developmentally programmed endoreduplication in animals. Cell Cycle 2009; 8:1501-9. [PMID: 19372757 DOI: 10.4161/cc.8.10.8325] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Development of a fertilized egg into an adult human requires trillions of cell divisions, the vast majority of which duplicate their genome once and only once. Nevertheless, trophoblast giant cells and megakaryocytes in mammals circumvent this rule by duplicating their genome multiple times without undergoing cell division, a process generally referred to as 'endoreduplication'. In contrast, arthropods such as Drosophila endoreduplicate their genome in most larval tissues, as well as in many adult tissues. Endoreduplication requires that cells prevent entrance into or completion of mitosis and cytokinesis under conditions that permit assembly of prereplication complexes. In addition, cells must prevent induction of apoptosis in response to incomplete DNA replication or DNA damage that may occur during the ensuing sequence of 'endocycles'. Thus, developmentally regulated endoreduplication results in terminal cell differentiation. Recent progress has revealed both differences and similarities in the mechanisms employed by flies and mammals to change from mitotic cell cycles to 'endocycles'. The critical step, however, appears to be switching from a CDK-dependent form of the anaphase promoting complex (APC) to one that functions only in the absence of CDK activity.
Collapse
Affiliation(s)
- Zakir Ullah
- Genomics of Differentiation Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
40
|
Mitra P, Ghule PN, van der Deen M, Medina R, Xie RL, Holmes WF, Ye X, Nakayama KI, Harper JW, Stein JL, Stein GS, van Wijnen AJ. CDK inhibitors selectively diminish cell cycle controlled activation of the histone H4 gene promoter by p220NPAT and HiNF-P. J Cell Physiol 2009; 219:438-48. [PMID: 19170105 DOI: 10.1002/jcp.21687] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell cycle progression into S phase requires the induction of histone gene expression to package newly synthesized DNA as chromatin. Cyclin E stimulation of CDK2 at the Restriction point late in G1 controls both histone gene expression by the p220(NPAT)/HiNF-P pathway and initiation of DNA replication through the pRB/E2F pathway. The three CDK inhibitors (CKIs) p21(CIP1/WAF1), p27(KIP1), and p57(KIP2) attenuate CDK2 activity. Here we find that gamma-irradiation induces p21(CIP1/WAF1) but not the other two CKIs, while reducing histone H4 mRNA levels but not histone H4 gene promoter activation by the p220(NPAT)/HiNF-P complex. We also show that p21(CIP1/WAF1) is less effective than p27(KIP1) and p57(KIP2) in inhibiting the CDK2 dependent phosphorylation of p220(NPAT) at subnuclear foci and transcriptional activation of histone H4 genes. The greater effectiveness of p57(KIP2) in blocking the p220(NPAT)/HiNF-P pathway is attributable in part to its ability to form a specific complex with p220(NPAT) that may suppress CDK2/cyclin E phosphorylation through direct substrate inhibition. We conclude that CKIs selectively control stimulation of the histone H4 gene promoter by the p220(NPAT)/HiNF-P complex.
Collapse
Affiliation(s)
- Partha Mitra
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
In mammals, trophoblast giant (TG) cell differentiation is characterized by a physiological endoreduplication, resulting in genome size augmentation. A recent study by Ullah and colleagues (pp. 3024-3036), published in this issue of Genes & Development, now elucidates the role of the cyclin-dependent kinase inhibitors (CKIs), p21 and p57, in mammalian endocycle regulation.
Collapse
|
42
|
Ullah Z, Kohn MJ, Yagi R, Vassilev LT, DePamphilis ML. Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Genes Dev 2009; 22:3024-36. [PMID: 18981479 DOI: 10.1101/gad.1718108] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome endoreduplication during mammalian development is a rare event for which the mechanism is unknown. It first appears when fibroblast growth factor 4 (FGF4) deprivation induces differentiation of trophoblast stem (TS) cells into the nonproliferating trophoblast giant (TG) cells required for embryo implantation. Here we show that RO3306 inhibition of cyclin-dependent protein kinase 1 (CDK1), the enzyme required to enter mitosis, induced differentiation of TS cells into TG cells. In contrast, RO3306 induced abortive endoreduplication and apoptosis in embryonic stem cells, revealing that inactivation of CDK1 triggers endoreduplication only in cells programmed to differentiate into polyploid cells. Similarly, FGF4 deprivation resulted in CDK1 inhibition by overexpressing two CDK-specific inhibitors, p57/KIP2 and p21/CIP1. TS cell mutants revealed that p57 was required to trigger endoreduplication by inhibiting CDK1, while p21 suppressed expression of the checkpoint protein kinase CHK1, thereby preventing induction of apoptosis. Furthermore, Cdk2(-/-) TS cells revealed that CDK2 is required for endoreduplication when CDK1 is inhibited. Expression of p57 in TG cells was restricted to G-phase nuclei to allow CDK activation of S phase. Thus, endoreduplication in TS cells is triggered by p57 inhibition of CDK1 with concomitant suppression of the DNA damage response by p21.
Collapse
Affiliation(s)
- Zakir Ullah
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
43
|
Hemberger M. IFPA Award in Placentology Lecture – Characteristics and Significance of Trophoblast Giant Cells. Placenta 2008; 29 Suppl A:S4-9. [DOI: 10.1016/j.placenta.2007.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/05/2007] [Accepted: 11/13/2007] [Indexed: 11/29/2022]
|
44
|
Haley SA, Zhao T, Zou L, Klysik JE, Padbury JF, Kochilas LK. Forced expression of the cell cycle inhibitor p57Kip2 in cardiomyocytes attenuates ischemia-reperfusion injury in the mouse heart. BMC PHYSIOLOGY 2008; 8:4. [PMID: 18312674 PMCID: PMC2268709 DOI: 10.1186/1472-6793-8-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 02/29/2008] [Indexed: 01/04/2023]
Abstract
Background Myocardial hypoxic-ischemic injury is the cause of significant morbidity and mortality worldwide. The cardiomyocyte response to hypoxic-ischemic injury is known to include changes in cell cycle regulators. The cyclin-dependent kinase inhibitor p57Kip2 is involved in cell cycle control, differentiation, stress signaling and apoptosis. In contrast to other cyclin-dependent kinase inhibitors, p57Kip2 expression diminishes during postnatal life and is reactivated in the adult heart under conditions of cardiac stress. Overexpression of p57Kip2 has been previously shown to prevent apoptotic cell death in vitro by inhibiting stress-activated kinases. Therefore, we hypothesized that p57Kip2 has a protective role in cardiomyocytes under hypoxic conditions. To investigate this hypothesis, we created a transgenic mouse (R26loxpTA-p57k/+) that expresses p57Kip2 specifically in cardiac tissue under the ventricular cardiomyocyte promoter Mlc2v. Results Transgenic mice with cardiac specific overexpression of p57Kip2 are viable, fertile and normally active and their hearts are morphologically indistinguishable from the control hearts and have similar heart weight/body weight ratio. The baseline functional parameters, including left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), LVdp/dtmax, heart rate (HR) and rate pressure product (RPR) were not significantly different between the different groups as assessed by the Langendorff perfused heart preparation. However, after subjecting the heart ex vivo to 30 minutes of ischemia-reperfusion injury, the p57Kip2 overexpressing hearts demonstrated preserved cardiac function compared to control mice with higher left ventricular developed pressure (63 ± 15 vs 30 ± 6 mmHg, p = 0.05), rate pressure product (22.8 ± 4.86 vs 10.4 ± 2.1 × 103bpm × mmHg, p < 0.05) and coronary flow (3.5 ± 0.5 vs 2.38 ± 0.24 ml/min, p <0.05). Conclusion These data suggest that forced cardiac expression of p57Kip2 does not affect myocardial growth, differentiation and baseline function but attenuates injury from ischemia-reperfusion in the adult mouse heart.
Collapse
Affiliation(s)
- Sheila A Haley
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Klisch K, Thomsen PD, Dantzer V, Leiser R. Genome multiplication is a generalised phenomenon in placentomal and interplacentomal trophoblast giant cells in cattle. Reprod Fertil Dev 2007. [PMID: 15304202 DOI: 10.1071/rd03101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The frequency of polyploidisation in bovine binucleate trophoblast giant cells (TGC) from placentomes (PL) and the interplacentomal allantochorion (AL) of six male fetuses with a crown-rump length between 3.5 and 103 cm was determined by in situ hybridisation with a chromosome-7-specific probe, using a probe specific for the Y chromosome to distinguish between maternal and fetal nuclei. The results showed that polyploid nuclei were essentially always of fetal origin. The frequency of tetraploid nuclei varied between 3% and 15% in both the placentomal and interplacentomal samples, with mean frequencies of 8.8% and 10.0% respectively. Octoploid nuclei were observed with a mean frequency of 1.1% in the interplacentomal samples, but were absent in samples from placentomes. Subsequent determination of nuclear DNA content by cytophotometric measurement of Feulgen-stained nuclei revealed that the frequency of nuclei with an 8C DNA content was several fold higher (AL 5.4%; PL 7.8%) than the frequency of octoploidy, suggesting that tetraploid TGC cells are arrested in the G2 phase of the cell cycle.
Collapse
Affiliation(s)
- Karl Klisch
- Microscopical Anatomy, Medical School of Hannover, Hannover, Germany.
| | | | | | | |
Collapse
|
46
|
Wen F, Tynan JA, Cecena G, Williams R, Múnera J, Mavrothalassitis G, Oshima RG. Ets2 is required for trophoblast stem cell self-renewal. Dev Biol 2007; 312:284-99. [PMID: 17977525 DOI: 10.1016/j.ydbio.2007.09.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 09/11/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
Abstract
The Ets2 transcription factor is essential for the development of the mouse placenta and for generating signals for embryonic mesoderm and axis formation. Using a conditional targeted Ets2 allele, we show that Ets2 is essential for trophoblast stem (TS) cells self-renewal. Inactivation of Ets2 results in TS cell slower growth, increased expression of a subset of differentiation-associated genes and decreased expression of several genes implicated in TS self-renewal. Among the direct TS targets of Ets2 is Cdx2, a key master regulator of TS cell state. Thus Ets2 contributes to the regulation of multiple genes important for maintaining the undifferentiated state of TS cells and as candidate signals for embryonic development.
Collapse
Affiliation(s)
- Fang Wen
- Molecular Pathology Graduate Program, University of California, San Diego, 9500 Gilman Drive 0612, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Arias EE, Walter JC. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 2007; 21:497-518. [PMID: 17344412 DOI: 10.1101/gad.1508907] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, prereplication complexes (pre-RCs) are assembled on chromatin in the G1 phase, rendering origins of DNA replication competent to initiate DNA synthesis. When DNA replication commences in S phase, pre-RCs are disassembled, and multiple initiations from the same origin do not occur because new rounds of pre-RC assembly are inhibited. In most experimental organisms, multiple mechanisms that prevent pre-RC assembly have now been identified, and rereplication within the same cell cycle can be induced through defined perturbations of these mechanisms. This review summarizes the diverse array of inhibitory pathways used by different organisms to prevent pre-RC assembly, and focuses on the challenge of understanding how in any one cell type, various mechanisms cooperate to strictly enforce once per cell cycle regulation of DNA replication.
Collapse
Affiliation(s)
- Emily E Arias
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
48
|
Hong A, Narbonne-Reveau K, Riesgo-Escovar J, Fu H, Aladjem MI, Lilly MA. The cyclin-dependent kinase inhibitor Dacapo promotes replication licensing during Drosophila endocycles. EMBO J 2007; 26:2071-82. [PMID: 17380129 PMCID: PMC1852775 DOI: 10.1038/sj.emboj.7601648] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 02/15/2007] [Indexed: 01/08/2023] Open
Abstract
The endocycle is a developmentally programmed variant cell cycle in which cells undergo repeated rounds of DNA replication with no intervening mitosis. In Drosophila, the endocycle is driven by the oscillations of Cyclin E/Cdk2 activity. How the periodicity of Cyclin E/Cdk2 activity is achieved during endocycles is poorly understood. Here, we demonstrate that the p21(cip1)/p27(kip1)/p57(kip2)-like cyclin-dependent kinase inhibitor (CKI), Dacapo (Dap), promotes replication licensing during Drosophila endocycles by reinforcing low Cdk activity during the endocycle Gap-phase. In dap mutants, cells in the endocycle have reduced levels of the licensing factor Double Parked/Cdt1 (Dup/Cdt1), as well as decreased levels of chromatin-bound minichromosome maintenance (MCM2-7) complex. Moreover, mutations in dup/cdt1 dominantly enhance the dap phenotype in several polyploid cell types. Consistent with a reduced ability to complete genomic replication, dap mutants accumulate increased levels of DNA damage during the endocycle S-phase. Finally, genetic interaction studies suggest that dap functions to promote replication licensing in a subset of Drosophila mitotic cycles.
Collapse
Affiliation(s)
- Amy Hong
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Karine Narbonne-Reveau
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Juan Riesgo-Escovar
- Departmento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Antonoma de Mexico, Queretaro, Mexico
| | - Haiqing Fu
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mirit I Aladjem
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mary A Lilly
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. Tel.: +1 301 435 8428; Fax: +1 301 402 0078; E-mail:
| |
Collapse
|
49
|
Coan PM, Conroy N, Burton GJ, Ferguson-Smith AC. Origin and characteristics of glycogen cells in the developing murine placenta. Dev Dyn 2006; 235:3280-94. [PMID: 17039549 DOI: 10.1002/dvdy.20981] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The junctional zone (Jz) of the mouse placenta consists of two main trophoblast populations, spongiotrophoblasts and glycogen cells (GCs), but the development and function of both cell types are unknown. We conducted a quantitative analysis of GC size, number, and invasion of cells into the decidua across gestation. Furthermore, we identified markers of GC function to investigate their possible roles in the placenta. While the spongiotrophoblast cell volume doubles, and cell number increases steadily from E12.5 to E16.5, there is a remarkable 80-fold increase in GC numbers. This finding is followed by a notable decrease by E18.5. Surprisingly, the accumulation of GCs in the decidua did not fully account for the decrease in GC number in the Jz, suggesting loss of GCs from the placenta. Glucagons were detected on GCs, suggesting a steady glucose release throughout gestation. Connexin31 staining was shown to be specific for GCs. GC migration and invasion may be facilitated by temporally regulated expression of matrix metalloproteinase 9 and the imprinted gene product, Decorin. Expression of the clearance receptor for type II insulin-like growth factor (IGF-II), IGF2R, in a short developmental window before E16.5 may be associated with regulating the growth effects of IGF-II from glycogen cells and/or labyrinthine trophoblast on the expansion of the Jz. Thus stereology and immunohistochemistry have provided useful insights into Jz development and function of the glycogen cells.
Collapse
Affiliation(s)
- P M Coan
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
50
|
De Clercq A, Inzé D. Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol 2006; 41:293-313. [PMID: 16911957 DOI: 10.1080/10409230600856685] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell cycle is remarkably conserved in yeast, animals, and plants and is controlled by cyclin-dependent kinases (CDKs). CDK activity can be inhibited by binding of CDK inhibitory proteins, designated CKIs. Numerous studies show that CKIs are essential in orchestrating eukaryotic cell proliferation and differentiation. In yeast, animals, and plants, CKIs act as regulators of the G1 checkpoint in response to environmental and developmental cues and assist during mitotic cell cycles by inhibiting CDK activity required to arrest mitosis. Furthermore, CKIs play an important role in regulating cell cycle exit that precedes differentiation and in promoting differentiation in cooperation with transcription factors. Moreover, CKIs are essential to control CDK activity in endocycling cells. So, in yeast, animals, and plants, CKIs share many functional similarities, but their functions are adapted toward the specific needs of the eukaryote.
Collapse
Affiliation(s)
- Annelies De Clercq
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Ghent, Belgium
| | | |
Collapse
|