1
|
Shipman KE, Long KR, Cowan IA, Rbaibi Y, Baty CJ, Weisz OA. An Adaptable Physiological Model of Endocytic Megalin Trafficking in Opossum Kidney Cells and Mouse Kidney Proximal Tubule. FUNCTION 2022; 3:zqac046. [PMID: 36325513 PMCID: PMC9614980 DOI: 10.1093/function/zqac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023] Open
Abstract
The cells that comprise the proximal tubule (PT) are specialized for high-capacity apical endocytosis necessary to maintain a protein-free urine. Filtered proteins are reclaimed via receptor-mediated endocytosis facilitated by the multiligand receptors megalin and cubilin. Despite the importance of this pathway, we lack a detailed understanding of megalin trafficking kinetics and how they are regulated. Here, we utilized biochemical and quantitative imaging methods in a highly differentiated model of opossum kidney (OK) cells and in mouse kidney in vivo to develop mathematical models of megalin traffic. A preliminary model based on biochemically quantified kinetic parameters was refined by colocalization of megalin with individual apical endocytic compartment markers. Our model predicts that megalin is rapidly internalized, resulting in primarily intracellular distribution of the receptor at steady state. Moreover, our data show that early endosomes mature rapidly in PT cells and suggest that Rab11 is the primary mediator of apical recycling of megalin from maturing endocytic compartments. Apical recycling represents the rate-limiting component of endocytic traffic, suggesting that this step has the largest impact in determining the endocytic capacity of PT cells. Adaptation of our model to the S1 segment of mouse PT using colocalization data obtained in kidney sections confirms basic aspects of our model and suggests that our OK cell model largely recapitulates in vivo membrane trafficking kinetics. We provide a downloadable application that can be used to adapt our working parameters to further study how endocytic capacity of PT cells may be altered under normal and disease conditions.
Collapse
Affiliation(s)
- Katherine E Shipman
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kimberly R Long
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Isabella A Cowan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Youssef Rbaibi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Catherine J Baty
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ora A Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Xu BW, Cheng ZQ, Zhi XT, Yang XM, Yan ZB. Effect of p18 on endothelial barrier function by mediating vascular endothelial Rab11a-VE-cadherin recycling. Biosci Biotechnol Biochem 2021; 85:2392-2403. [PMID: 34747973 DOI: 10.1093/bbb/zbab172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 11/14/2022]
Abstract
Endothelial barrier integrity requires recycling of VE-cadherin to adherens junctions. Both p18 and Rab11a play significant roles in VE-cadherin recycling. However, the underlying mechanism and the role of p18 in activating Rab11a have yet to be elucidated. Performing in vitro and in vivo experiments, we showed that p18 protein bound to VE-cadherin before Rab11a through its VE-cadherin-binding domain (aa 1-39). Transendothelial resistance showed that overexpression of p18 promoted the circulation of VE-cadherin to adherens junctions and the recovery of the endothelial barrier. Silencing of p18 caused endothelial barrier dysfunction and prevented Rab11a-positive recycling endosome accumulation in the perinuclear recycling compartments. Furthermore, p18 knockdown in pulmonary microvessels markedly increased vascular leakage in mice challenged with lipopolysaccharide and cecal ligation puncture. This study showed that p18 regulated the pulmonary endothelial barrier function in vitro and in vivo by regulating the binding of Rab11a to VE-cadherin and the activation of Rab11a.
Collapse
Affiliation(s)
- Bo-Wen Xu
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhi-Qiang Cheng
- Department of Colorectal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xu-Ting Zhi
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiao-Mei Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhi-Bo Yan
- Department of Colorectal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Redpath GMI, Betzler VM, Rossatti P, Rossy J. Membrane Heterogeneity Controls Cellular Endocytic Trafficking. Front Cell Dev Biol 2020; 8:757. [PMID: 32850860 PMCID: PMC7419583 DOI: 10.3389/fcell.2020.00757] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Endocytic trafficking relies on highly localized events in cell membranes. Endocytosis involves the gathering of protein (cargo/receptor) at distinct plasma membrane locations defined by specific lipid and protein compositions. Simultaneously, the molecular machinery that drives invagination and eventually scission of the endocytic vesicle assembles at the very same place on the inner leaflet of the membrane. It is membrane heterogeneity - the existence of specific lipid and protein domains in localized regions of membranes - that creates the distinct molecular identity required for an endocytic event to occur precisely when and where it is required rather than at some random location within the plasma membrane. Accumulating evidence leads us to believe that the trafficking fate of internalized proteins is sealed following endocytosis, as this distinct membrane identity is preserved through the endocytic pathway, upon fusion of endocytic vesicles with early and sorting endosomes. In fact, just like at the plasma membrane, multiple domains coexist at the surface of these endosomes, regulating local membrane tubulation, fission and sorting to recycling pathways or to the trans-Golgi network via late endosomes. From here, membrane heterogeneity ensures that fusion events between intracellular vesicles and larger compartments are spatially regulated to promote the transport of cargoes to their intracellular destination.
Collapse
Affiliation(s)
- Gregory M I Redpath
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,The ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Verena M Betzler
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Pascal Rossatti
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
4
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Fung KYY, Fairn GD, Lee WL. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic 2017; 19:5-18. [PMID: 28985008 DOI: 10.1111/tra.12533] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022]
Abstract
Vesicle-mediated transcellular transport or simply "transcytosis" is a cellular process used to shuttle macromolecules such as lipoproteins, antibodies, and albumin from one surface of a polarized cell to the other. This mechanism is in contrast to the transit of small molecules such as anions, cations and amino acids that occur via uptake, diffusion through the cytosol and release and is also distinct from paracellular leak between cells. Importantly, transcytosis has evolved as a process to selectively move macromolecules between 2 neighboring yet unique microenvironments within a multicellular organism. Examples include the movement of lipoproteins out of the circulatory system and into tissues and the delivery of immunoglobulins to mucosal surfaces. Regardless of whether the transport is conducted by endothelial or epithelial cells, the process often involves receptor-mediated uptake of a ligand into an endocytic vesicle, regulated transit of the carrier through the cytoplasm and release of the cargo via an exocytic event. While transcytosis has been examined in detail in epithelial cells, for both historical and technical reasons, the process is less understood in endothelial cells. Here, we spotlight aspects of epithelial transcytosis including recent findings and review the comparative dearth of knowledge regarding the process in endothelial cells highlighting the opportunity for further study.
Collapse
Affiliation(s)
- Karen Y Y Fung
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery & Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St Michael's Hospital, Toronto, Ontario, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St Michael's Hospital, Toronto, Ontario, Canada.,Departments of Medicine, Laboratory Medicine and Pathobiology,& Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Garcia-Castillo MD, Chinnapen DJF, Lencer WI. Membrane Transport across Polarized Epithelia. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027912. [PMID: 28213463 DOI: 10.1101/cshperspect.a027912] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery.
Collapse
Affiliation(s)
| | - Daniel J-F Chinnapen
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Digestive Diseases Center, Boston, Massachusetts 02155
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Digestive Diseases Center, Boston, Massachusetts 02155
| |
Collapse
|
7
|
Yamamoto H, Sato A, Kikuchi A. Apical secretion of Wnt1 in polarized epithelial cells is regulated by exocyst-mediated trafficking. J Biochem 2017; 162:317-326. [DOI: 10.1093/jb/mvx035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/01/2017] [Indexed: 01/11/2023] Open
|
8
|
The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells. Nat Commun 2016; 7:11550. [PMID: 27180806 PMCID: PMC4873671 DOI: 10.1038/ncomms11550] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/08/2016] [Indexed: 01/14/2023] Open
Abstract
The basolateral recycling and transcytotic pathways of epithelial cells were previously defined using markers such as transferrin (TfR) and polymeric IgA (pIgR) receptors. In contrast, our knowledge of the apical recycling pathway remains fragmentary. Here we utilize quantitative live-imaging and mathematical modelling to outline the recycling pathway of Megalin (LRP-2), an apical receptor with key developmental and renal functions, in MDCK cells. We show that, like TfR, Megalin is a long-lived and fast-recycling receptor. Megalin enters polarized MDCK cells through segregated apical sorting endosomes and subsequently intersects the TfR and pIgR pathways at a perinuclear Rab11-negative compartment termed common recycling endosomes (CRE). Whereas TfR recycles to the basolateral membrane from CRE, Megalin, like pIgR, traffics to subapical Rab11-positive apical recycling endosomes (ARE) and reaches the apical membrane in a microtubule- and Rab11-dependent manner. Hence, Megalin defines the apical recycling pathway of epithelia, with CRE as its apical sorting station.
Collapse
|
9
|
Yan Z, Wang ZG, Segev N, Hu S, Minshall RD, Dull RO, Zhang M, Malik AB, Hu G. Rab11a Mediates Vascular Endothelial-Cadherin Recycling and Controls Endothelial Barrier Function. Arterioscler Thromb Vasc Biol 2015; 36:339-49. [PMID: 26663395 PMCID: PMC4732894 DOI: 10.1161/atvbaha.115.306549] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Vascular endothelial (VE)-cadherin is the predominant component of endothelial adherens junctions essential for cell-cell adhesion and formation of the vascular barrier. Endocytic recycling is an important mechanism for maintaining the expression of cell surface membrane proteins. However, little is known about the molecular mechanism of VE-cadherin recycling and its role in maintenance of vascular integrity. APPROACH AND RESULTS Using calcium-switch assay, confocal imaging, cell surface biotinylation, and flow cytometry, we showed that VE-cadherin recycling required Ras-related proteins in brain (Rab)11a and Rab11 family-interacting protein 2. Yeast 2-hybrid assay and coimmunoprecipitation demonstrated that direct interaction of VE-cadherin with family-interacting protein 2 (at aa 453-484) formed a ternary complex with Rab11a in human endothelial cells. Silencing of Rab11a or Rab11 family-interacting protein 2 in endothelial cells prevented VE-cadherin recycling and VE-cadherin expression at endothelial plasma membrane. Furthermore, inactivation of Rab11a signaling blocked junctional reannealing after vascular inflammation. Selective knockdown of Rab11a in pulmonary microvessels markedly increased vascular leakage in mice challenged with lipopolysaccharide or polymicrobial sepsis. CONCLUSIONS Rab11a/Rab11 family-interacting protein 2-mediated VE-cadherin recycling is required for formation of adherens junctions and restoration of VE barrier integrity and hence a potential target for clinical intervention in inflammatory disease.
Collapse
Affiliation(s)
- Zhibo Yan
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Zhen-Guo Wang
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Nava Segev
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Sanyuan Hu
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Richard D Minshall
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Randal O Dull
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Meihong Zhang
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Asrar B Malik
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.)
| | - Guochang Hu
- From the Departments of Anesthesiology (Z.Y., Z.-G.W., R.D.M., R.O.D., M.Z., G.H.), Pharmacology (Z.Y., R.D.M., A.B.M., G.H.), and Biochemistry and Molecular Genetics (N.S.), University of Illinois College of Medicine, Chicago; and Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China (Z.Y., S.H.).
| |
Collapse
|
10
|
|
11
|
Gallo LI, Liao Y, Ruiz WG, Clayton DR, Li M, Liu YJ, Jiang Y, Fukuda M, Apodaca G, Yin XM. TBC1D9B functions as a GTPase-activating protein for Rab11a in polarized MDCK cells. Mol Biol Cell 2014; 25:3779-97. [PMID: 25232007 PMCID: PMC4230784 DOI: 10.1091/mbc.e13-10-0604] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rab11a is a key modulator of vesicular trafficking processes, but there is limited information about the GEFs and GAPs that regulate its GTP-GDP cycle. TBC1D9B is identified as a Rab11a GAP in MDCK cells, where it regulates the Rab11a-dependent basolateral-to-apical transcytotic pathway. Rab11a is a key modulator of vesicular trafficking processes, but there is limited information about the guanine nucleotide-exchange factors and GTPase-activating proteins (GAPs) that regulate its GTP-GDP cycle. We observed that in the presence of Mg2+ (2.5 mM), TBC1D9B interacted via its Tre2-Bub2-Cdc16 (TBC) domain with Rab11a, Rab11b, and Rab4a in a nucleotide-dependent manner. However, only Rab11a was a substrate for TBC1D9B-stimulated GTP hydrolysis. At limiting Mg2+ concentrations (<0.5 mM), Rab8a was an additional substrate for this GAP. In polarized Madin–Darby canine kidney cells, endogenous TBC1D9B colocalized with Rab11a-positive recycling endosomes but less so with EEA1-positive early endosomes, transferrin-positive recycling endosomes, or late endosomes. Overexpression of TBC1D9B, but not an inactive mutant, decreased the rate of basolateral-to-apical IgA transcytosis—a Rab11a-dependent pathway—and shRNA-mediated depletion of TBC1D9B increased the rate of this process. In contrast, TBC1D9B had no effect on two Rab11a-independent pathways—basolateral recycling of the transferrin receptor or degradation of the epidermal growth factor receptor. Finally, expression of TBC1D9B decreased the amount of active Rab11a in the cell and concomitantly disrupted the interaction between Rab11a and its effector, Sec15A. We conclude that TBC1D9B is a Rab11a GAP that regulates basolateral-to-apical transcytosis in polarized MDCK cells.
Collapse
Affiliation(s)
- Luciana I Gallo
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yong Liao
- Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wily G Ruiz
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Dennis R Clayton
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Min Li
- Pathology, University of Pittsburgh, Pittsburgh, PA 15261 Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202
| | - Yong-Jian Liu
- Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yu Jiang
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Gerard Apodaca
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Xiao-Ming Yin
- Pathology, University of Pittsburgh, Pittsburgh, PA 15261 Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202
| |
Collapse
|
12
|
AP-1/σ1B-Dependent SV Protein Recycling Is Regulated in Early Endosomes and Is Coupled to AP-2 Endocytosis. Mol Neurobiol 2014; 52:142-61. [PMID: 25128028 DOI: 10.1007/s12035-014-8852-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/04/2014] [Indexed: 12/22/2022]
Abstract
Adaptor protein (AP)-1/σ1B(-/-) mice have reduced synaptic-vesicle (SV) recycling and increased endosomes. Mutant mice have impaired spatial memory, and σ1B-deficient humans have a severe mental retardation. In order to define these σ1B(-/-) 'bulk' endosomes and to determine their functions in SV recycling, we developed a protocol to separate them from the majority of the neuronal endosomes. The σ1B(-/-) 'bulk' endosomes proved to be classic early endosomes with an increase in the phospholipid phosphatidylinositol 3-phosphate (PI-3-P), which recruits proteins mediating protein sorting out of early endosomes into different routes. σ1B deficiency induced alterations in the endosomal proteome reveals two major functions: SV protein storage and sorting into endolysosomes. Alternative endosomal recycling pathways are not up-regulated, but certain SV proteins are misrouted. Tetraspanins are enriched in σ1B(-/-) synaptosomes, but not in their endosomes or in their clathrin-coated-vesicles (CCVs), indicating AP-1/σ1B-dependent sorting. Synapses contain also more AP-2 CCV, although it is expected that they contain less due to reduced SV recycling. Coat composition of these AP-2 CCVs is altered, and thus, they represent a subpopulation of AP-2 CCVs. Association of calmodulin-dependent protein kinase (CaMK)-IIα, -δ and casein kinase (CK)-IIα with the endosome/SV pool is altered, as well as 14-3-3η, indicating changes in specific signalling pathways regulating synaptic plasticity. The accumulation of early endosomes and endocytotic AP-2 CCV indicates the regulation of SV recycling via early endosomes by the interdependent regulation of AP-2-mediated endocytosis and AP-1/σ1B-mediated SV reformation.
Collapse
|
13
|
Eaton S, Martin-Belmonte F. Cargo sorting in the endocytic pathway: a key regulator of cell polarity and tissue dynamics. Cold Spring Harb Perspect Biol 2014; 6:a016899. [PMID: 25125399 DOI: 10.1101/cshperspect.a016899] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The establishment and maintenance of polarized plasma membrane domains is essential for cellular function and proper development of organisms. Epithelial cells polarize along two fundamental axes, the apicobasal and the planar, both depending on finely regulated protein trafficking mechanisms. Newly synthesized proteins destined for either surface domain are processed along the biosynthetic pathway and segregated into distinct subsets of transport carriers emanating from the trans-Golgi network or endosomes. This exocytic trafficking has been identified as essential for proper epithelial polarization. Accumulating evidence now reveals that endocytosis and endocytic recycling play an equally important role in epithelial polarization and the appropriate localization of key polarity proteins. Here, we review recent work in metazoan systems illuminating the connections between endocytosis, postendocytic trafficking, and cell polarity, both apicobasal and planar, in the formation of differentiated epithelial cells, and how these processes regulate tissue dynamics.
Collapse
Affiliation(s)
- Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Fernando Martin-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| |
Collapse
|
14
|
Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 2014; 15:225-42. [PMID: 24651541 DOI: 10.1038/nrm3775] [Citation(s) in RCA: 509] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cells require apical-basal plasma membrane polarity to carry out crucial vectorial transport functions and cytoplasmic polarity to generate different cell progenies for tissue morphogenesis. The establishment and maintenance of a polarized epithelial cell with apical, basolateral and ciliary surface domains is guided by an epithelial polarity programme (EPP) that is controlled by a network of protein and lipid regulators. The EPP is organized in response to extracellular cues and is executed through the establishment of an apical-basal axis, intercellular junctions, epithelial-specific cytoskeletal rearrangements and a polarized trafficking machinery. Recent studies have provided insight into the interactions of the EPP with the polarized trafficking machinery and how these regulate epithelial polarization and depolarization.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, 1300 York Avenue, LC-301 New York City, New York 10065, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University Medical Center, 465 21st Avenue South, U 3209 MRB III, Nashville Tennessee 37232, USA
| |
Collapse
|
15
|
Mattila PE, Raghavan V, Rbaibi Y, Baty CJ, Weisz OA. Rab11a-positive compartments in proximal tubule cells sort fluid-phase and membrane cargo. Am J Physiol Cell Physiol 2013; 306:C441-9. [PMID: 24153428 DOI: 10.1152/ajpcell.00236.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proximal tubule (PT) reabsorbs the majority of sodium, bicarbonate, and chloride ions, phosphate, glucose, water, and plasma proteins from the glomerular filtrate. Despite the critical importance of endocytosis for PT cell (PTC) function, the organization of the endocytic pathway in these cells remains poorly understood. We have used immunofluorescence and live-cell imaging to dissect the itinerary of apically internalized fluid and membrane cargo in polarized primary cultures of PTCs isolated from mouse kidney cortex. Cells from the S1 segment could be distinguished from those from more distal PT segments by their robust uptake of albumin and comparatively low expression of γ-glutamyltranspeptidase. Rab11a in these cells is localized to variously sized spherical compartments that resemble the apical vacuoles observed by electron microscopy analysis of PTCs in vivo. These Rab11a-positive structures are highly dynamic and receive membrane and fluid-phase cargo. In contrast, fluid-phase cargoes are largely excluded from Rab11a-positive compartments in immortalized kidney cell lines. The unusual morphology and sorting capacity of Rab11a compartments in primary PTCs may reflect a unique specialization of these cells to accommodate the functional demands of handling a high endocytic load.
Collapse
Affiliation(s)
- Polly E Mattila
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | | | | | | | | |
Collapse
|
16
|
Perez Bay AE, Schreiner R, Mazzoni F, Carvajal-Gonzalez JM, Gravotta D, Perret E, Lehmann Mantaras G, Zhu YS, Rodriguez-Boulan EJ. The kinesin KIF16B mediates apical transcytosis of transferrin receptor in AP-1B-deficient epithelia. EMBO J 2013; 32:2125-39. [PMID: 23749212 DOI: 10.1038/emboj.2013.130] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022] Open
Abstract
Polarized epithelial cells take up nutrients from the blood through receptors that are endocytosed and recycle back to the basolateral plasma membrane (PM) utilizing the epithelial-specific clathrin adaptor AP-1B. Some native epithelia lack AP-1B and therefore recycle cognate basolateral receptors to the apical PM, where they carry out important functions for the host organ. Here, we report a novel transcytotic pathway employed by AP-1B-deficient epithelia to relocate AP-1B cargo, such as transferrin receptor (TfR), to the apical PM. Lack of AP-1B inhibited basolateral recycling of TfR from common recycling endosomes (CRE), the site of function of AP-1B, and promoted its transfer to apical recycling endosomes (ARE) mediated by the plus-end kinesin KIF16B and non-centrosomal microtubules, and its delivery to the apical membrane mediated by the small GTPase rab11a. Hence, our experiments suggest that the apical recycling pathway of epithelial cells is functionally equivalent to the rab11a-dependent TfR recycling pathway of non-polarized cells. They define a transcytotic pathway important for the physiology of native AP-1B-deficient epithelia and report the first microtubule motor involved in transcytosis.
Collapse
Affiliation(s)
- Andres E Perez Bay
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Abstract
Epithelial cells have an apical-basolateral axis of polarity, which is required for epithelial functions including barrier formation, vectorial ion transport and sensory perception. Here we review what is known about the sorting signals, machineries and pathways that maintain this asymmetry, and how polarity proteins interface with membrane-trafficking pathways to generate membrane domains de novo. It is becoming apparent that membrane traffic does not simply reinforce polarity, but is critical for the generation of cortical epithelial cell asymmetry.
Collapse
|
19
|
Edinger RS, Bertrand CA, Rondandino C, Apodaca GA, Johnson JP, Butterworth MB. The epithelial sodium channel (ENaC) establishes a trafficking vesicle pool responsible for its regulation. PLoS One 2012; 7:e46593. [PMID: 23029554 PMCID: PMC3460899 DOI: 10.1371/journal.pone.0046593] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/05/2012] [Indexed: 12/16/2022] Open
Abstract
The epithelial sodium channel (ENaC) is the rate-limiting step for sodium reabsorption across tight epithelia. Cyclic-AMP (cAMP) stimulation promotes ENaC trafficking to the apical surface to increase channel number and transcellular Na(+) transport. Removal of corticosteroid supplementation in a cultured cortical collecting duct cell line reduced ENaC expression. Concurrently, the number of vesicles trafficked in response to cAMP stimulation, as measured by a change in membrane capacitance, also decreased. Stimulation with aldosterone restored both the basal and cAMP-stimulated ENaC activity and increased the number of exocytosed vesicles. Knocking down ENaC directly decreased both the cAMP-stimulated short-circuit current and capacitance response in the presence of aldosterone. However, constitutive apical recycling of the Immunoglobulin A receptor was unaffected by alterations in ENaC expression or trafficking. Fischer Rat Thyroid cells, transfected with α,β,γ-mENaC had a significantly greater membrane capacitance response to cAMP stimulation compared to non-ENaC controls. Finally, immunofluorescent labeling and quantitation revealed a smaller number of vesicles in cells where ENaC expression was reduced. These findings indicate that ENaC is not a passive passenger in regulated epithelial vesicle trafficking, but plays a role in establishing and maintaining the pool of vesicles that respond to cAMP stimulation.
Collapse
Affiliation(s)
- Robert S. Edinger
- Department of Medicine, Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carol A. Bertrand
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christine Rondandino
- Department of Medicine, Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gerard A. Apodaca
- Department of Medicine, Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John P. Johnson
- Department of Medicine, Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael B. Butterworth
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
20
|
Nagaraj R, Adler PN. Dusky-like functions as a Rab11 effector for the deposition of cuticle during Drosophila bristle development. Development 2012; 139:906-16. [PMID: 22278919 DOI: 10.1242/dev.074252] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The morphogenesis of Drosophila sensory bristles is dependent on the function of their actin and microtubule cytoskeleton. Actin filaments are important for bristle shape and elongation, while microtubules are thought to mediate protein and membrane trafficking to promote growth. We have identified an essential role for the bristle cuticle in the maintenance of bristle structure and shape at late stages of bristle development. We show that the small GTPase Rab11 mediates the organized deposition of chitin, a major cuticle component in bristles, and disrupting Rab11 function leads to phenotypes that result from bristle collapse rather than a failure to elongate. We further establish that Rab11 is required for the plasma membrane localization of the ZP domain-containing Dusky-like (Dyl) protein and that Dyl is also required for cuticle formation in bristles. Our data argue that Dyl functions as a Rab11 effector for mediating the attachment of the bristle cell membrane to chitin to establish a stable cuticle. Our studies also implicate the exocyst as a Rab11 effector in this process and that Rab11 trafficking along the bristle shaft is mediated by microtubules.
Collapse
Affiliation(s)
- Ranganayaki Nagaraj
- Biology Department, Cell Biology Department, Institute for Morphogenesis and Regenerative Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
21
|
Ai J, Tang Q, Wu Y, Xu Y, Feng T, Zhou R, Chen Y, Gao X, Zhu Q, Yue X, Pan Q, Xu S, Li J, Huang M, Daugherty-Holtrop J, He Y, Xu HE, Fan J, Ding J, Geng M. The role of polymeric immunoglobulin receptor in inflammation-induced tumor metastasis of human hepatocellular carcinoma. J Natl Cancer Inst 2011; 103:1696-712. [PMID: 22025622 PMCID: PMC3216966 DOI: 10.1093/jnci/djr360] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Expression of the polymeric immunoglobulin receptor (pIgR), a transporter of polymeric IgA and IgM, is commonly increased in response to viral or bacterial infections, linking innate and adaptive immunity. Abnormal expression of pIgR in cancer was also observed, but its clinical relevance remains uncertain. Methods A human hepatocellular carcinoma (HCC) tissue microarray (n = 254) was used to investigate the association between pIgR expression and early recurrence. An experimental lung metastasis model using severe combined immune-deficient mice was applied to determine the metastatic potential of Madin–Darby canine kidney (n = 5 mice per group) and SMMC-7721 (n = 12 mice per group) cells overexpressing pIgR vs control cells. RNA interference, immunoprecipitation, and immunoblotting were performed to investigate the potential role for pIgR in the induction of epithelial–mesenchymal transition (EMT). In vitro studies (co-immunoprecipitation, immunoblotting, and migration, invasion, and adhesion assays) were used to determine the mechanisms behind pIgR-mediated metastasis. All statistical tests were two-sided. Results High expression of pIgR was statistically significantly associated with early recurrence in early-stage HCC and in hepatitis B surface antigen–positive HCC patients (log-rank P = .02). Mice injected with pIgR-overexpressing cells had a statistically significantly higher number of lung metastases compared with respective control cells (Madin–Darby canine kidney cells: pIgR mean = 29.4 metastatic nodules per lung vs control mean = 0.0 metastatic nodules per lung, difference = 29.4 metastatic nodules per lung, 95% confidence interval = 13.0 to 45.8, P = .001; SMMC-7721 cells: pIgR mean = 10.4 metastatic nodules per lung vs control mean = 2.2 metastatic nodules per lung, difference = 8.2 metastatic nodules per lung, 95% confidence interval = 1.0 to 15.5, P = .03). Furthermore, high expression of pIgR was sufficient to induce EMT through activation of Smad signaling. Conclusions pIgR plays a role in the induction of EMT. Our results identify pIgR as a potential link between hepatitis B virus–derived hepatitis and HCC metastasis and provide evidence in support of pIgR as a prognostic biomarker for HCC and a potential therapeutic target.
Collapse
Affiliation(s)
- Jing Ai
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Coordinated regulation of caveolin-1 and Rab11a in apical recycling compartments of polarized epithelial cells. Exp Cell Res 2011; 318:103-13. [PMID: 22036648 DOI: 10.1016/j.yexcr.2011.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 09/24/2011] [Accepted: 10/11/2011] [Indexed: 12/29/2022]
Abstract
Recent studies have identified caveolin-1, a protein best known for its functions in caveolae, in apical endocytic recycling compartments in polarized epithelial cells. However, very little is known about the regulation of caveolin-1 in the endocytic recycling pathway. To address this question, in the current study we compared the relationship between compartments enriched in sub-apical caveolin-1 and Rab11a, a well-defined marker of apical recycling endosomes, using polarized MDCK cells as a model. We show that caveolin-1-containing vesicles define a compartment that partially overlaps with Rab11a, and that the distribution of subapical caveolin-1 and Rab11a shows a similar dependence on microtubule disruption. Mutants of the Rab11a effector, Rab11-FIP2 also altered the localization of caveolin-1. These findings indicate that caveolin-1 is coordinately regulated with Rab11a within the apical recycling system of polarized epithelial cells, suggesting that the two proteins are components of the same pathway.
Collapse
|
23
|
Clark BS, Winter M, Cohen AR, Link BA. Generation of Rab-based transgenic lines for in vivo studies of endosome biology in zebrafish. Dev Dyn 2011; 240:2452-65. [PMID: 21976318 DOI: 10.1002/dvdy.22758] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 12/31/2022] Open
Abstract
The Rab family of small GTPases function as molecular switches regulating membrane and protein trafficking. Individual Rab isoforms define and are required for specific endosomal compartments. To facilitate in vivo investigation of specific Rab proteins, and endosome biology in general, we have generated transgenic zebrafish lines to mark and manipulate Rab proteins. We also developed software to track and quantify endosome dynamics within time-lapse movies. The established transgenic lines ubiquitously express EGFP fusions of Rab5c (early endosomes), Rab11a (recycling endosomes), and Rab7 (late endosomes) to study localization and dynamics during development. Additionally, we generated UAS-based transgenic lines expressing constitutive active (CA) and dominant-negative (DN) versions for each of these Rab proteins. Predicted localization and functional consequences for each line were verified through a variety of assays, including lipophilic dye uptake and Crumbs2a localization. In summary, we have established a toolset for in vivo analyses of endosome dynamics and functions.
Collapse
Affiliation(s)
- Brian S Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
24
|
Dukes JD, Fish L, Richardson JD, Blaikley E, Burns S, Caunt CJ, Chalmers AD, Whitley P. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells. Mol Biol Cell 2011; 22:3192-205. [PMID: 21757541 PMCID: PMC3164465 DOI: 10.1091/mbc.e11-04-0343] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Drosophila ESCRT mutants lose epithelial polarity and show increased proliferation, suggesting that ESCRT proteins act as tumor suppressors. In this study, we show for the first time to our knowledge that ESCRT proteins are required to maintain polarity in mammalian epithelial cells, supporting the idea that ESCRT proteins are tumor suppressors. Genetic screens in Drosophila have identified regulators of endocytic trafficking as neoplastic tumor suppressor genes. For example, Drosophila endosomal sorting complex required for transport (ESCRT) mutants lose epithelial polarity and show increased cell proliferation, suggesting that ESCRT proteins could function as tumor suppressors. In this study, we show for the for the first time to our knowledge that ESCRT proteins are required to maintain polarity in mammalian epithelial cells. Inhibition of ESCRT function caused the tight junction protein claudin-1 to accumulate in intracellular vesicles. In contrast E-cadherin and occludin localization was unaffected. We investigated the cause of this accumulation and show that claudin-1 is constitutively recycled in kidney, colon, and lung epithelial cells, identifying claudin-1 recycling as a newly described feature of diverse epithelial cell types. This recycling requires ESCRT function, explaining the accumulation of intracellular claudin-1 when ESCRT function is inhibited. We further demonstrate that small interfering RNA knockdown of the ESCRT protein Tsg101 causes epithelial monolayers to lose their polarized organization and interferes with the establishment of a normal epithelial permeability barrier. ESCRT knockdown also reduces the formation of correctly polarized three-dimensional cysts. Thus, in mammalian epithelial cells, ESCRT function is required for claudin-1 trafficking and for epithelial cell polarity, supporting the hypothesis that ESCRT proteins function as tumor suppressors.
Collapse
Affiliation(s)
- Joseph D Dukes
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lapierre LA, Caldwell CM, Higginbotham JN, Avant KM, Hall J, Beauchamp RD, Goldenring JR. Transformation of rat intestinal epithelial cells by overexpression of Rab25 is microtubule dependent. Cytoskeleton (Hoboken) 2011; 68:97-111. [PMID: 21246754 DOI: 10.1002/cm.20497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/11/2010] [Indexed: 12/18/2022]
Abstract
Little research has addressed the role of membrane trafficking and recycling in the regulation of the transformed phenotype of neoplastic cells. The small GTPase Rab25 is an epithelial-specific modulator of membrane recycling. Recent studies have demonstrated that Rab25 expression is up-regulated in a number of epithelial cancers and overexpression may increase the aggressive phenotype of certain cancers. We have utilized the nontransformed RIE cell line to examine the influence of Rab25 on transformation. Overexpression of Rab25 in RIE cells leads to morphological transformation as well as growth in soft agar, tumor formation in nude mice, disruption of integrin-based focal adhesions, and alteration in modified microtubule subsets. Although the predominance of recent cancer research has focused on the manipulation of the actin-based cytoskeleton, recycling trafficking relies on microtubules. Transformation of RIE cells through overexpression of Rab25, but not with H-Ras(V12) , was reversed by inhibitors of microtubule polymerization. These results suggest that up-regulation of Rab25 in RIE cells leads to microtubule-dependent transformation. Thus, depolymerization of microtubules may be a potent therapeutic target for cancer therapy through the reversal of the invasive phenotype of certain cancer cells.
Collapse
Affiliation(s)
- Lynne A Lapierre
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Schneider D, Greb C, Koch A, Straube T, Elli A, Delacour D, Jacob R. Trafficking of galectin-3 through endosomal organelles of polarized and non-polarized cells. Eur J Cell Biol 2010; 89:788-98. [DOI: 10.1016/j.ejcb.2010.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/25/2010] [Accepted: 07/01/2010] [Indexed: 11/16/2022] Open
|
27
|
Jerdeva GV, Tesar DB, Huey-Tubman KE, Ladinsky MS, Fraser SE, Bjorkman PJ. Comparison of FcRn- and pIgR-mediated transport in MDCK cells by fluorescence confocal microscopy. Traffic 2010; 11:1205-20. [PMID: 20525015 PMCID: PMC2975666 DOI: 10.1111/j.1600-0854.2010.01083.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein delivery across polarized epithelia is controlled by receptor-mediated transcytosis. Many studies have examined basolateral-to-apical trafficking of polymeric IgA (pIgA) by the polymeric immunoglobulin receptor (pIgR). Less is known about apical-to-basolateral transcytosis, the direction the neonatal Fc receptor (FcRn) transports maternal IgGs across intestinal epithelia. To compare apical-to-basolateral and basolateral-to-apical transcytosis, we co-expressed FcRn and pIgR in Madin-Darby canine kidney (MDCK) cells and used pulse-chase experiments with confocal microscopy to examine transport of apically applied IgG Fcgamma and basolaterally applied pIgA. Fcgamma and pIgA trafficking routes were initially separate but intermixed at later chase times. Fcgamma was first localized near the apical surface, but became more equally distributed across the cell, consistent with concomitant transcytosis and recycling. By contrast, pIgA transport was strongly unidirectional: pIgA shifted from near the basolateral surface to an apical location with increasing time. Some Fcgamma and pIgA fluorescence colocalized in early (EEA1-positive), recycling (Rab11a-positive), and transferrin (Tf)-positive common/basolateral recycling endosomes. Fcgamma became more enriched in Tf-positive endosomes with time, whereas pIgA was sorted from these compartments. Live-cell imaging revealed that vesicles containing Fcgamma or pIgA shared similar mobility characteristics and were equivalently affected by depolymerizing microtubules, indicating that both trafficking routes depended to roughly the same extent on intact microtubules.
Collapse
Affiliation(s)
- Galina V Jerdeva
- Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
28
|
Silvis MR, Bertrand CA, Ameen N, Golin-Bisello F, Butterworth MB, Frizzell RA, Bradbury NA. Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells. Mol Biol Cell 2009; 20:2337-50. [PMID: 19244346 DOI: 10.1091/mbc.e08-01-0084] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated anion channel, undergoes efficient apical recycling in polarized epithelia. The regulatory mechanisms underlying CFTR recycling are understood poorly, yet this process is required for proper channel copy number at the apical membrane, and it is defective in the common CFTR mutant, DeltaF508. Herein, we investigated the function of Rab11 isoforms in regulating CFTR trafficking in T84 cells, a colonic epithelial line that expresses CFTR endogenously. Western blotting of immunoisolated Rab11a or Rab11b vesicles revealed localization of endogenous CFTR within both compartments. CFTR function assays performed on T84 cells expressing the Rab11a or Rab11b GDP-locked S25N mutants demonstrated that only the Rab11b mutant inhibited 80% of the cAMP-activated halide efflux and that only the constitutively active Rab11b-Q70L increased the rate constant for stimulated halide efflux. Similarly, RNAi knockdown of Rab11b, but not Rab11a, reduced by 50% the CFTR-mediated anion conductance response. In polarized T84 monolayers, adenoviral expression of Rab11b-S25N resulted in a 70% inhibition of forskolin-stimulated transepithelial anion secretion and a 50% decrease in apical membrane CFTR as assessed by cell surface biotinylation. Biotin protection assays revealed a robust inhibition of CFTR recycling in polarized T84 cells expressing Rab11b-S25N, demonstrating the selective requirement for the Rab11b isoform. This is the first report detailing apical CFTR recycling in a native expression system and to demonstrate that Rab11b regulates apical recycling in polarized epithelial cells.
Collapse
Affiliation(s)
- Mark R Silvis
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Cramm-Behrens CI, Dienst M, Jacob R. Apical cargo traverses endosomal compartments on the passage to the cell surface. Traffic 2008; 9:2206-20. [PMID: 18785995 DOI: 10.1111/j.1600-0854.2008.00829.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epithelial polarity is based on intracellular sorting machinery that maintains the asymmetric distribution of lipids and proteins to the cell surface. Dependent on their lipid raft affinity, newly synthesized apical polypeptides are segregated into distinct vesicle populations subsequent to the passage through the Golgi apparatus. Using a combined fluorescence microscopic and biochemical approach, we found that lipid raft-associated sucrase-isomaltase (SI) as well as non-raft-associated lactase-phlorizin hydrolase (LPH) traverse endosomal compartments before entering the apical membrane. Fluorescent fusion proteins of both hydrolases were co-stained with Rab4-, Rab8- and Rab11-positive endosomes in polarized Madin-Darby canine kidney and non-polarized COS-1 cells. Immunoisolation of post-Golgi vesicles subsequent to different times of TGN release revealed that LPH and SI navigate in chronological order through Rab4-, Rab8- and Rab11-positive endosomes. Thereafter, the two hydrolases are segregated into distinct vesicle populations. In addition, apical membrane traffic could be significantly inhibited by RNA interference-mediated depletion of these guanosine triphosphatases. These results suggest that in epithelial cells, lipid raft-dependent and -independent apical cargo follow a transendosomal route.
Collapse
|
30
|
Abstract
The transcytotic pathway allows for the bidirectional transport of endocytosed solutes, lipids, and proteins between the two membrane domains of polarized epithelial cells while maintaining the functional integrity of the epithelial tissue. A method is described to measure basolateral-to-apical transcytosis of immunoglobulin A (IgA) in polarized Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor (pIgR). The cells are grown on porous Transwell filter supports, and radiolabeled (125)I-immunoglobulin A (IgA) is internalized from the basolateral pole of MDCK cells. During a subsequent 2-h chase, the amount of (125)I-IgA that is recycled, degraded, or transcytosed is quantified. This assay can be adapted to follow the postendocytic fate of other (125)I-labeled ligands and proteins.
Collapse
|
31
|
Duffield A, Caplan MJ, Muth TR. Chapter 4 Protein Trafficking in Polarized Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:145-79. [DOI: 10.1016/s1937-6448(08)01404-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Oztan A, Silvis M, Weisz OA, Bradbury NA, Hsu SC, Goldenring JR, Yeaman C, Apodaca G. Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells. Mol Biol Cell 2007; 18:3978-92. [PMID: 17686995 PMCID: PMC1995710 DOI: 10.1091/mbc.e07-02-0097] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 12/24/2022] Open
Abstract
The octameric exocyst complex is associated with the junctional complex and recycling endosomes and is proposed to selectively tether cargo vesicles directed toward the basolateral surface of polarized Madin-Darby canine kidney (MDCK) cells. We observed that the exocyst subunits Sec6, Sec8, and Exo70 were localized to early endosomes, transferrin-positive common recycling endosomes, and Rab11a-positive apical recycling endosomes of polarized MDCK cells. Consistent with its localization to multiple populations of endosomes, addition of function-blocking Sec8 antibodies to streptolysin-O-permeabilized cells revealed exocyst requirements for several endocytic pathways including basolateral recycling, apical recycling, and basolateral-to-apical transcytosis. The latter was selectively dependent on interactions between the small GTPase Rab11a and Sec15A and was inhibited by expression of the C-terminus of Sec15A or down-regulation of Sec15A expression using shRNA. These results indicate that the exocyst complex may be a multipurpose regulator of endocytic traffic directed toward both poles of polarized epithelial cells and that transcytotic traffic is likely to require Rab11a-dependent recruitment and modulation of exocyst function, likely through interactions with Sec15A.
Collapse
Affiliation(s)
- Asli Oztan
- *Laboratory of Epithelial Cell Biology/Renal Electrolyte Division of the Department of Medicine and
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Mark Silvis
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ora A. Weisz
- *Laboratory of Epithelial Cell Biology/Renal Electrolyte Division of the Department of Medicine and
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Neil A. Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, Chicago, IL 60064
| | - Shu-Chan Hsu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - James R. Goldenring
- Department of Surgery and Cell and Developmental Biology, Vanderbilt University and the Nashville Veterans Affairs Medical Center, Nashville, TN 37212; and
| | - Charles Yeaman
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242
| | - Gerard Apodaca
- *Laboratory of Epithelial Cell Biology/Renal Electrolyte Division of the Department of Medicine and
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
33
|
Rondanino C, Rojas R, Ruiz WG, Wang E, Hughey RP, Dunn KW, Apodaca G. RhoB-dependent modulation of postendocytic traffic in polarized Madin-Darby canine kidney cells. Traffic 2007; 8:932-49. [PMID: 17547697 DOI: 10.1111/j.1600-0854.2007.00575.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Rho family of GTPases is implicated in the control of endocytic and biosynthetic traffic of many cell types; however, the cellular distribution of RhoB remains controversial and its function is not well understood. Using confocal microscopy, we found that endogenous RhoB and green fluorescent protein-tagged wild-type RhoB were localized to early endosomes, and to a much lesser extent to recycling endosomes, late endosomes or Golgi complex of fixed or live polarized Madin-Darby canine kidney cells. Consistent with RhoB localization to early endosomes, we observed that expression of dominant-negative RhoBN19 or dominant-active RhoBV14 altered postendocytic traffic of ligand-receptor complexes that undergo recycling, degradation or transcytosis. In vitro assays established that RhoB modulated the basolateral-to-apical transcytotic pathway by regulating cargo exit from basolateral early endosomes. Our results indicate that RhoB is localized, in part, to early endosomes where it regulates receptor egress through the early endocytic system.
Collapse
Affiliation(s)
- Christine Rondanino
- Laboratory of Epithelial Biology, Renal-Electrolyte Division of the Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Casartelli M, Corti P, Cermenati G, Grimaldi A, Fiandra L, Santo N, Pennacchio F, Giordana B. Absorption of horseradish peroxidase in Bombyx mori larval midgut. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:517-25. [PMID: 17391693 DOI: 10.1016/j.jinsphys.2007.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 02/07/2007] [Accepted: 02/07/2007] [Indexed: 05/14/2023]
Abstract
Increasing experimental evidence indicates that ingested proteins can in part reach the haemocoel undegraded, but information on the mechanisms involved in protein transport across the insect gut is very limited, in spite of the implications that this may have on the development of novel delivery strategies of insecticide proteins targeting haemocoelic receptors. Here we contribute to this field of study, by focusing on horseradish peroxidase (HRP) transport through Bombyx mori larval midgut, isolated and perfused in vitro. The protein crossed the intestinal barrier in a time-dependent manner and the influx was linearly related to time between 30 and 90 min of incubation. HRP absorption was strongly affected by temperature and inhibition of cell metabolism: protein influx at 4 degrees C was reduced to 27% of that measured at 25 degrees C and was similarly inhibited by the metabolic inhibitor DNP. Transmission electron microscopy analysis of midgut columnar cells exposed to HRP showed the presence of the protein both in vesicular structures inside the cytoplasm and in the space between two adjacent absorptive cells, indicating the occurrence of both a transcellular and a paracellular permeation route. The analysis of HRP influx as a function of increasing protein concentration in the lumen supported this morphological indication. The J(max) relative to the HRP transcellular transport component was 121+/-24 pmol/cm(2)/h and the K(d) of the passage through the paracellular route was 1.9+/-0.3 microl/cm(2)/h. The paracellular electrical resistance decreased in midguts exposed to HRP, indicating that its passage through this pathway was likely due to an alteration exerted on the junctional complex by the protein itself. The role of the cytoskeleton in HRP transport was investigated by assessing the impact of drugs affecting microtubules and actin filaments.
Collapse
Affiliation(s)
- Morena Casartelli
- Dipartimento di Biologia, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wojtal KA, Hoekstra D, van IJzendoorn SC. Anchoring of protein kinase A-regulatory subunit IIalpha to subapically positioned centrosomes mediates apical bile canalicular lumen development in response to oncostatin M but not cAMP. Mol Biol Cell 2007; 18:2745-54. [PMID: 17494870 PMCID: PMC1924835 DOI: 10.1091/mbc.e06-08-0732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Oncostatin M and cAMP signaling stimulate apical surface-directed membrane trafficking and apical lumen development in hepatocytes, both in a protein kinase A (PKA)-dependent manner. Here, we show that oncostatin M, but not cAMP, promotes the A-kinase anchoring protein (AKAP)-dependent anchoring of the PKA regulatory subunit (R)IIalpha to subapical centrosomes and that this requires extracellular signal-regulated kinase 2 activation. Stable expression of the RII-displacing peptide AKAP-IS, but not a scrambled peptide, inhibits the association of RIIalpha with centrosomal AKAPs and results in the repositioning of the centrosome from a subapical to a perinuclear location. Concomitantly, common endosomes, but not apical recycling endosomes, are repositioned from a subapical to a perinuclear location, without significant effects on constitutive or oncostatin M-stimulated basolateral-to-apical transcytosis. Importantly, however, the expression of the AKAP-IS peptide completely blocks oncostatin M-, but not cAMP-stimulated apical lumen development. Together, the data suggest that centrosomal anchoring of RIIalpha and the interrelated subapical positioning of these centrosomes is required for oncostatin M-, but not cAMP-mediated, bile canalicular lumen development in a manner that is uncoupled from oncostatin M-stimulated apical lumen-directed membrane trafficking. The results also imply that multiple PKA-mediated signaling pathways control apical lumen development and that subapical centrosome positioning is important in some of these pathways.
Collapse
Affiliation(s)
- Kacper A. Wojtal
- Department of Cell Biology/Membrane Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Dick Hoekstra
- Department of Cell Biology/Membrane Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sven C.D. van IJzendoorn
- Department of Cell Biology/Membrane Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
36
|
Thompson A, Nessler R, Wisco D, Anderson E, Winckler B, Sheff D. Recycling endosomes of polarized epithelial cells actively sort apical and basolateral cargos into separate subdomains. Mol Biol Cell 2007; 18:2687-97. [PMID: 17494872 PMCID: PMC1924834 DOI: 10.1091/mbc.e05-09-0873] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B-dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity.
Collapse
Affiliation(s)
| | - Randy Nessler
- Imaging Core Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Dolora Wisco
- Department of Neuroscience, University of Virginia Medical School, Charlottesville, VA 22908; and
| | - Eric Anderson
- Department of Cell Biology, Yale School of Medicine and Ludwig Institute for Cancer Research, New Haven, CT 06520
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia Medical School, Charlottesville, VA 22908; and
| | | |
Collapse
|
37
|
Wallrabe H, Bonamy G, Periasamy A, Barroso M. Receptor complexes cotransported via polarized endocytic pathways form clusters with distinct organizations. Mol Biol Cell 2007; 18:2226-43. [PMID: 17409357 PMCID: PMC1877110 DOI: 10.1091/mbc.e06-08-0700] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previously, FRET confocal microscopy has shown that polymeric IgA-receptor (pIgA-R) is distributed in a clustered manner in apical endosomes. To test whether different membrane-bound components form clusters during membrane trafficking, live-cell quantitative FRET was used to characterize the organization of pIgA-R and transferrin receptor (TFR) in endocytic membranes of polarized MDCK cells upon internalization of donor- and acceptor-labeled ligands. We show that pIgA-R and TFR complexes form increasingly organized clusters during cotransport from basolateral to perinuclear endosomes. The organization of these receptor clusters in basolateral versus perinuclear/apical endosomes is significantly different; the former showing a mixed random/clustered distribution while the latter highly organized clusters. Our results indicate that although both perinuclear and apical endosomes comprise pIgA-R and TFR clusters, their E% levels are significantly different suggesting that these receptors are packed into clusters in a distinct manner. The quantitative FRET-based assay presented here suggests that different receptor complexes form clusters, with diverse levels of organization, while being cotransported via the polarized endocytic pathways.
Collapse
Affiliation(s)
- H Wallrabe
- Department of Biology, W. M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | |
Collapse
|
38
|
Wakabayashi Y, Kipp H, Arias IM. Transporters on Demand: Intracellular Reservoirs and Cycling of Bile Canalicular ABC Transporters. J Biol Chem 2006; 281:27669-73. [PMID: 16737964 DOI: 10.1074/jbc.r600013200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yoshiyuki Wakabayashi
- Unit on Cellular Polarity, Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
39
|
Babbey CM, Ahktar N, Wang E, Chen CCH, Grant BD, Dunn KW. Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney cells. Mol Biol Cell 2006; 17:3156-75. [PMID: 16641372 PMCID: PMC1483048 DOI: 10.1091/mbc.e05-08-0799] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rab10, a protein originally isolated from Madin-Darby Canine Kidney (MDCK) epithelial cells, belongs to a family of Rab proteins that includes Rab8 and Rab13. Although both Rab8 and Rab13 have been found to mediate polarized membrane transport, the function of Rab10 in mammalian cells has not yet been established. We have used quantitative confocal microscopy of polarized MDCK cells expressing GFP chimeras of wild-type and mutant forms of Rab10 to analyze the function of Rab10 in polarized cells. These studies demonstrate that Rab10 is specifically associated with the common endosomes of MDCK cells, accessible to endocytic probes internalized from either the apical or basolateral plasma membrane domains. Expression of mutant Rab10 defective for either GTP hydrolysis or GTP binding increased recycling from early compartments on the basolateral endocytic pathway without affecting recycling from later compartments or the apical recycling pathway. These results suggest that Rab10 mediates transport from basolateral sorting endosomes to common endosomes.
Collapse
Affiliation(s)
- Clifford M. Babbey
- *Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202; and
| | - Nahid Ahktar
- *Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202; and
| | - Exing Wang
- *Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202; and
| | | | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Kenneth W. Dunn
- *Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202; and
| |
Collapse
|
40
|
van de Graaf SFJ, Chang Q, Mensenkamp AR, Hoenderop JGJ, Bindels RJM. Direct interaction with Rab11a targets the epithelial Ca2+ channels TRPV5 and TRPV6 to the plasma membrane. Mol Cell Biol 2006; 26:303-12. [PMID: 16354700 PMCID: PMC1317621 DOI: 10.1128/mcb.26.1.303-312.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TRPV5 and TRPV6 are the most Ca2+-selective members of the transient receptor potential (TRP) family of cation channels and play a pivotal role in the maintenance of Ca2+ balance in the body. However, little is known about the mechanisms controlling the plasma membrane abundance of these channels to regulate epithelial Ca2+ transport. In this study, we demonstrated the direct and specific interaction of GDP-bound Rab11a with TRPV5 and TRPV6. Rab11a colocalized with TRPV5 and TRPV6 in vesicular structures underlying the apical plasma membrane of Ca2+-transporting epithelial cells. This GTPase recognized a conserved stretch in the carboxyl terminus of TRPV5 that is essential for channel trafficking. Furthermore, coexpression of GDP-locked Rab11a with TRPV5 or TRPV6 resulted in significantly decreased Ca2+ uptake, caused by diminished channel cell surface expression. Together, our data demonstrated the important role of Rab11a in the trafficking of TRPV5 and TRPV6. Rab11a exerts this function in a novel fashion, since it operates via direct cargo interaction while in the GDP-bound configuration.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Bush WS, Ihrke G, Robinson JM, Kenworthy AK. Antibody-specific detection of caveolin-1 in subapical compartments of MDCK cells. Histochem Cell Biol 2006; 126:27-34. [PMID: 16770576 DOI: 10.1007/s00418-006-0144-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
Caveolin-1 is the major structural component of caveolae and is also found in the Golgi complex of many cell types. Occasionally, caveolin-1 has been observed in additional intracellular compartments, including recycling endosomes. Why caveolin-1 expression is detected at these sites only infrequently is not clear. In this study, we test the hypothesis that non-caveolar, non-Golgi pools of caveolin-1 display unique and/or fixation-dependent epitopes. We compared the ability of a panel of antibodies raised against various domains of caveolin-1 to detect distinct subcellular pools of the protein by immunofluorescence microscopy in Madin-Darby canine kidney (MDCK) cells, a cell line where the subcellular localization of caveolin-1 has been extensively characterized. We show that three antibodies directed to the N-terminus of caveolin-1 recognize a previously undetected pool of caveolin-1 in the subapical region of MDCK cells, a localization characteristic of endosomal recycling compartments. The antibodies vary in their ability to label caveolin-1 at the cell surface, and the epitopes detected by each are highly fixation dependent. Our findings suggest that no single caveolin antibody or staining condition is capable of detecting all the caveolin-1 in a cell simultaneously. Consequently, the subcellular distribution of caveolin-1 may be much broader than currently believed.
Collapse
Affiliation(s)
- William S Bush
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 718 Light Hall, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
42
|
de Marco MC, Puertollano R, Martínez-Menárguez JA, Alonso MA. Dynamics of MAL2 During Glycosylphosphatidylinositol-Anchored Protein Transcytotic Transport to the Apical Surface of Hepatoma HepG2 Cells. Traffic 2005; 7:61-73. [PMID: 16445687 DOI: 10.1111/j.1600-0854.2005.00361.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Delivery of glycosylphosphatidylinositol (GPI)-anchored proteins to the apical surface takes place by transcytosis in hepatocytes and also probably in epithelial Madin-Darby canine cells. The integral protein MAL2 was demonstrated to be essential for basolateral-to-apical transcytosis in hepatoma HepG2 cells. Reduction of endogenous MAL2 levels impedes cargo delivery to the apical membrane, but, paradoxically, cargo does not accumulate in the subapical compartment where MAL2 predominantly resides but in distant endosome elements. To understand how transcytosis can be apparently mediated at a distance, we have analyzed the dynamics of machinery and cargo by live-cell imaging of MAL2 and transcytosing CD59, a GPI-anchored protein, in HepG2 cells. MAL2 was revealed as being a highly dynamic protein. Soon after basolateral endocytosis of CD59, a fraction of MAL2 redistributed into peripheral vesicular clusters that concentrated CD59 and that were accessible to transferrin (Tf) receptor, a basolateral recycling protein. Following Tf receptor segregation, the clusters fused in a MAL2(+)globular structure and moved toward the apical surface for CD59 delivery. All these processes were impaired in cells with reduced MAL2 content. Other GPI-anchored proteins examined behave similarly. As MAL2 is expressed by many types of epithelia, the sorting events described herein are probably of quite general utility.
Collapse
Affiliation(s)
- María C de Marco
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid and Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Dhonukshe P, Kleine-Vehn J, Friml J. Cell polarity, auxin transport, and cytoskeleton-mediated division planes: who comes first? PROTOPLASMA 2005; 226:67-73. [PMID: 16231102 DOI: 10.1007/s00709-005-0104-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/30/2005] [Indexed: 05/04/2023]
Abstract
In plants, cell polarity is an issue more recurring than in other systems, because plants, due to their adaptive and flexible development, often change cell polarity postembryonically according to intrinsic cues and demands of the environment. Recent findings on the directional movement of the plant signalling molecule auxin provide a unique connection between individual cell polarity and the establishment of polarity at the tissue, organ, and whole-plant levels. Decisions about the subcellular polar targeting of PIN auxin transport components determine the direction of auxin flow between cells and consequently mediate multiple developmental events. In addition, mutations or chemical interference with PIN-based auxin transport result in abnormal cell divisions. Thus, the complicated links between cell polarity establishment, auxin transport, cytoskeleton, and oriented cell divisions now begin to emerge. Here we review the available literature on the issues of cell polarity in both plants and animals to extend our understanding on the generation, maintenance, and transmission of cell polarity in plants.
Collapse
Affiliation(s)
- Pankaj Dhonukshe
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Tübingen, Federal Republic of Germany.
| | | | | |
Collapse
|
44
|
Yoon SO, Shin S, Mercurio AM. Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res 2005; 65:2761-9. [PMID: 15805276 DOI: 10.1158/0008-5472.can-04-4122] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypoxia plays a key role in tumor cell survival, invasion, and metastasis. Here we show that hypoxia increases tumor cell invasion by the modulation of Rab11, an important molecule for vesicular trafficking, especially membrane protein recycling and translocation of proteins from trans-Golgi network to plasma membrane. Dominant-negative Rab11 dramatically decreased hypoxia-induced invasion of MDA-MB-231 breast carcinoma cells without affecting cell apoptosis. Hypoxia-induced Rab11 trafficking is regulated by microtubule stability, as evidenced by the findings that hypoxia increases Glu tubulin and that colchicine blocks Rab11 trafficking and invasion. Inhibition of GSK-3beta activity by hypoxia seems to be central to microtubule stabilization and invasion. In fact, expression of a dominant-negative GSK-3beta was sufficient to stimulate invasion in normoxia. One target of Rab11-mediated trafficking that contributes to invasion is the integrin alpha6beta4. Hypoxia induced a significant increase in alpha6beta4 surface expression but it had no effect on the surface expression of alpha3beta1. This increase is dependent on Rab11 and stable microtubules. In summary, we identify vesicle trafficking as a novel target of hypoxic stimulation that is important for tumor invasion.
Collapse
Affiliation(s)
- Sang-Oh Yoon
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
45
|
Baravalle G, Schober D, Huber M, Bayer N, Murphy RF, Fuchs R. Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature. Cell Tissue Res 2005; 320:99-113. [PMID: 15714281 DOI: 10.1007/s00441-004-1060-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 11/26/2004] [Indexed: 01/15/2023]
Abstract
The effects of bafilomycin, nocodazole, and reduced temperature on recycling and the lysosomal pathway have been investigated in various cultured cell lines and have been shown to vary dependent on the cell type examined. However, the way in which these treatments affect recycling and transport to lysosomes within the same cell line has not been analyzed. In the current study, we used fluorophore-labeled transferrin and dextran as typical markers for the recycling and the lysosomal pathways, respectively, to explore the morphology and the intravesicular pH of endocytic compartments in HeLa cells. The V-ATPase inhibitor bafilomycin selectively inhibited the transport of marker destined for lysosomal degradation in early endosomes, whereas the transport of transferrin to the perinuclear recycling compartment (PNRC) still occurred. The kinetics of transferrin acidification was found to be biphasic, indicative of fast and slow recycling pathways via early endosomes (pH 6.0) and PNRC (pH 5.6), respectively. Furthermore, the disruption of microtubules by nocodazole blocked the transport of transferrin to the PNRC in early endosomes and of lysosome-directed marker into endosomal carrier vesicles. In contrast, incubation at 20 degrees C affected the lysosomal pathway by causing retention of internalized dextran in late endosomes and a delay in transferrin recycling. Taken together, these data clearly demonstrate, for the first time, that the transferrin recycling pathway and transport of endocytosed material to lysosomes are differentially affected by bafilomycin, nocodazole, and low temperature in HeLa cells. Consequently, these treatments can be applied to investigate whether internalized macromolecules such as viruses follow a recycling or degradative pathway.
Collapse
Affiliation(s)
- Günther Baravalle
- Department of Pathophysiology, Center for Physiology and Pathophysiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
46
|
Lock JG, Stow JL. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol Biol Cell 2005; 16:1744-55. [PMID: 15689490 PMCID: PMC1073657 DOI: 10.1091/mbc.e04-10-0867] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
E-cadherin plays an essential role in cell polarity and cell-cell adhesion; however, the pathway for delivery of E-cadherin to the basolateral membrane of epithelial cells has not been fully characterized. We first traced the post-Golgi, exocytic transport of GFP-tagged E-cadherin (Ecad-GFP) in unpolarized cells. In live cells, Ecad-GFP was found to exit the Golgi complex in pleiomorphic tubulovesicular carriers, which, instead of moving directly to the cell surface, most frequently fused with an intermediate compartment, subsequently identified as a Rab11-positive recycling endosome. In MDCK cells, basolateral targeting of E-cadherin relies on a dileucine motif. Both E-cadherin and a targeting mutant, DeltaS1-E-cadherin, colocalized with Rab11 and fused with the recycling endosome before diverging to basolateral or apical membranes, respectively. In polarized and unpolarized cells, coexpression of Rab11 mutants disrupted the cell surface delivery of E-cadherin and caused its mistargeting to the apical membrane, whereas apical DeltaS1-E-cadherin was unaffected. We thus demonstrate a novel pathway for Rab11 dependent, dileucine-mediated, mu1B-independent sorting and basolateral trafficking, exemplified by E-cadherin. The recycling endosome is identified as an intermediate compartment for the post-Golgi trafficking and exocytosis of E-cadherin, with a potentially important role in establishing and maintaining cadherin-based adhesion.
Collapse
Affiliation(s)
- John G Lock
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
47
|
|
48
|
Wüstner D. Mathematical analysis of hepatic high density lipoprotein transport based on quantitative imaging data. J Biol Chem 2004; 280:6766-79. [PMID: 15613466 DOI: 10.1074/jbc.m413238200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hepatocytes internalize high density lipoprotein (HDL) at the basolateral membrane. Most HDL is recycled while some is shuttled to the canalicular membrane by transcytosis. Here, transport of HDL was analyzed by mathematical modeling based on measurements in polarized hepatic HepG2 cells. Recycling of HDL from basolateral sorting endosomes was modeled by applying the rapid equilibrium approach. Analytical expressions were derived, which describe in one model the transport of HDL to the subapical compartment/apical recycling compartment, the biliary canaliculus (BC), and to late endosomes and lysosomes (LE/LYS). Apical endocytosis of HDL predicted by the model was confirmed for rhodamine-dextran and fluorescent asialoorosomucoid, markers for LE/LYS in living HepG2 cells. Budding of endocytic vesicles from the BC was directly observed by time lapse imaging of a fluorescent lipid probe. Based on fitted kinetic parameters and their covariance matrix a Monte Carlo simulation of HDL transport in hepatocytes was performed. The model was used to quantitatively assess release of HDL-associated free cholesterol by scavenger receptor BI. It is shown that only 6% of HDL-associated sterol reaches the BC as a constituent of the HDL particles, whereas the remaining sterol is rapidly released from HDL and shuttled to the BC by non-vesicular transport.
Collapse
Affiliation(s)
- Daniel Wüstner
- Theoretical Biophysics Group, Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany.
| |
Collapse
|
49
|
Campo C, Mason A, Maouyo D, Olsen O, Yoo D, Welling PA. Molecular mechanisms of membrane polarity in renal epithelial cells. Rev Physiol Biochem Pharmacol 2004; 153:47-99. [PMID: 15674648 DOI: 10.1007/s10254-004-0037-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Exciting discoveries in the last decade have cast light onto the fundamental mechanisms that underlie polarized trafficking in epithelial cells. It is now clear that epithelial cell membrane asymmetry is achieved by a combination of intracellular sorting operations, vectorial delivery mechanisms and plasmalemma-specific fusion and retention processes. Several well-defined signals that specify polarized segregation, sorting, or retention processes have, now, been described in a number of proteins. The intracellular machineries that decode and act on these signals are beginning to be described. In addition, the nature of the molecules that associate with intracellular trafficking vesicles to coordinate polarized delivery, tethering, docking, and fusion are also becoming understood. Combined with direct visualization of polarized sorting processes with new technologies in live-cell fluorescent microscopy, new and surprising insights into these once-elusive trafficking processes are emerging. Here we provide a review of these recent advances within an historically relevant context.
Collapse
Affiliation(s)
- C Campo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Microtubules are essential for many aspects of polarity in multicellular organisms, ranging from the asymmetric distribution of cell-fate determinants in the one-cell embryo to the transient polarity generated in migrating fibroblasts. Epithelial cells exhibit permanent cell polarity characterized by apical and basolateral surface domains of distinct protein and lipid composition that are segregated by tight junctions. They are also endowed with a microtubule network that reflects the asymmetry of their cell surface: microtubule minus-ends face the apical- and microtubule plus-ends the basal domain. Strikingly, the formation of distinct surface domains during epithelial differentiation is accompanied by the re-organization of microtubules from a uniform array focused at the centrosome to the noncentrosomal network that aligns along the apico-basolateral polarity axis. The significance of this coincidence for epithelial morphogenesis and the signaling mechanisms that drive microtubule repolymerization in developing epithelia remain major unresolved questions that we are only beginning to address. Studies in cultured polarized epithelial cells have established that microtubules serve as tracks that facilitate targeted vesicular transport. Novel findings suggest, moreover, that microtubule-based transport promotes protein sorting, and even the generation of transport carriers in the endo- and exocytic pathways.
Collapse
Affiliation(s)
- Anne Müsch
- Dyson Institute of Vision Research; Weill Medical College of Cornell University, New York, 10021, USA.
| |
Collapse
|