1
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
2
|
Richards A, Berth SH, Brady S, Morfini G. Engagement of Neurotropic Viruses in Fast Axonal Transport: Mechanisms, Potential Role of Host Kinases and Implications for Neuronal Dysfunction. Front Cell Neurosci 2021; 15:684762. [PMID: 34234649 PMCID: PMC8255969 DOI: 10.3389/fncel.2021.684762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
Much remains unknown about mechanisms sustaining the various stages in the life cycle of neurotropic viruses. An understanding of those mechanisms operating before their replication and propagation could advance the development of effective anti-viral strategies. Here, we review our current knowledge of strategies used by neurotropic viruses to undergo bidirectional movement along axons. We discuss how the invasion strategies used by specific viruses might influence their mode of interaction with selected components of the host’s fast axonal transport (FAT) machinery, including specialized membrane-bounded organelles and microtubule-based motor proteins. As part of this discussion, we provide a critical evaluation of various reported interactions among viral and motor proteins and highlight limitations of some in vitro approaches that led to their identification. Based on a large body of evidence documenting activation of host kinases by neurotropic viruses, and on recent work revealing regulation of FAT through phosphorylation-based mechanisms, we posit a potential role of host kinases on the engagement of viruses in retrograde FAT. Finally, we briefly describe recent evidence linking aberrant activation of kinase pathways to deficits in FAT and neuronal degeneration in the context of human neurodegenerative diseases. Based on these findings, we speculate that neurotoxicity elicited by viral infection may involve deregulation of host kinases involved in the regulation of FAT and other cellular processes sustaining neuronal function and survival.
Collapse
Affiliation(s)
- Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - Sarah H Berth
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Scott Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Banerjee S, Chakraborty S, Sreepada A, Banerji D, Goyal S, Khurana Y, Haldar S. Cutting-Edge Single-Molecule Technologies Unveil New Mechanics in Cellular Biochemistry. Annu Rev Biophys 2021; 50:419-445. [PMID: 33646813 DOI: 10.1146/annurev-biophys-090420-083836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule technologies have expanded our ability to detect biological events individually, in contrast to ensemble biophysical technologies, where the result provides averaged information. Recent developments in atomic force microscopy have not only enabled us to distinguish the heterogeneous phenomena of individual molecules, but also allowed us to view up to the resolution of a single covalent bond. Similarly, optical tweezers, due to their versatility and precision, have emerged as a potent technique to dissect a diverse range of complex biological processes, from the nanomechanics of ClpXP protease-dependent degradation to force-dependent processivity of motor proteins. Despite the advantages of optical tweezers, the time scales used in this technology were inconsistent with physiological scenarios, which led to the development of magnetic tweezers, where proteins are covalently linked with the glass surface, which in turn increases the observation window of a single biomolecule from minutes to weeks. Unlike optical tweezers, magnetic tweezers use magnetic fields to impose torque, which makes them convenient for studying DNA topology and topoisomerase functioning. Using modified magnetic tweezers, researchers were able to discover the mechanical role of chaperones, which support their substrate proteinsby pulling them during translocation and assist their native folding as a mechanical foldase. In this article, we provide a focused review of many of these new roles of single-molecule technologies, ranging from single bond breaking to complex chaperone machinery, along with the potential to design mechanomedicine, which would be a breakthrough in pharmacological interventions against many diseases.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Abhijit Sreepada
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Devshuvam Banerji
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Shashwat Goyal
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Yajushi Khurana
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| |
Collapse
|
4
|
In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1. Proc Natl Acad Sci U S A 2021; 118:2010054118. [PMID: 33443153 PMCID: PMC7817218 DOI: 10.1073/pnas.2010054118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The differentiation of cells depends on a precise control of their internal organization, which is the result of a complex dynamic interplay between the cytoskeleton, molecular motors, signaling molecules, and membranes. For example, in the developing neuron, the protein ADAP1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) has been suggested to control dendrite branching by regulating the small GTPase ARF6. Together with the motor protein KIF13B, ADAP1 is also thought to mediate delivery of the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to the axon tip, thus contributing to PIP3 polarity. However, what defines the function of ADAP1 and how its different roles are coordinated are still not clear. Here, we studied ADAP1's functions using in vitro reconstitutions. We found that KIF13B transports ADAP1 along microtubules, but that PIP3 as well as PI(3,4)P2 act as stop signals for this transport instead of being transported. We also demonstrate that these phosphoinositides activate ADAP1's enzymatic activity to catalyze GTP hydrolysis by ARF6. Together, our results support a model for the cellular function of ADAP1, where KIF13B transports ADAP1 until it encounters high PIP3/PI(3,4)P2 concentrations in the plasma membrane. Here, ADAP1 disassociates from the motor to inactivate ARF6, promoting dendrite branching.
Collapse
|
5
|
Combs B, Mueller RL, Morfini G, Brady ST, Kanaan NM. Tau and Axonal Transport Misregulation in Tauopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:81-95. [PMID: 32096030 DOI: 10.1007/978-981-32-9358-8_7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tau is a microtubule-associated protein that is involved in both normal and pathological processes in neurons. Since the discovery and characterization of tau over 40 years ago, our understanding of tau's normal functions and toxic roles in neurodegenerative tauopathies has continued to expand. Fast axonal transport is a critical process for maintaining axons and functioning synapses, critical subcellular compartments underlying neuronal connectivity. Signs of fast axonal transport disruption are pervasive in Alzheimer's disease and other tauopathies and various mechanisms have been proposed for regulation of fast axonal transport by tau. Post-translational modifications of tau including phosphorylation at specific sites, FTDP-17 point mutations, and oligomerization, confer upon tau a toxic effect on fast axonal transport. Consistent with the well-established dependence of axons on fast axonal transport, these disease-related modifications are closely associated temporally and spatially with axonal degeneration in the early disease stages. These factors position tau as a potentially critical factor mediating the disruption of fast axonal transport that precedes synaptic dysfunction and axonal degeneration at later disease stages. In this chapter, we review the evidence that tau affects fast axonal transport and examine several potential mechanisms proposed to underlie this toxicity.
Collapse
Affiliation(s)
- Benjamin Combs
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Rebecca L Mueller
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA. .,Neuroscience Program, Michigan State University, East Lansing, MI, USA. .,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
6
|
Garcia CH, Depoix D, Queiroz RM, Souza JM, Fontes W, de Sousa MV, Santos MD, Carvalho PC, Grellier P, Charneau S. Dynamic molecular events associated to Plasmodium berghei gametogenesis through proteomic approach. J Proteomics 2018; 180:88-98. [DOI: 10.1016/j.jprot.2017.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
7
|
Ganguly A, Han X, Das U, Wang L, Loi J, Sun J, Gitler D, Caillol G, Leterrier C, Yates JR, Roy S. Hsc70 chaperone activity is required for the cytosolic slow axonal transport of synapsin. J Cell Biol 2017; 216:2059-2074. [PMID: 28559423 PMCID: PMC5496608 DOI: 10.1083/jcb.201604028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/22/2016] [Accepted: 04/17/2017] [Indexed: 12/19/2022] Open
Abstract
Soluble cytosolic proteins vital to axonal and presynaptic function are synthesized in the neuronal soma and conveyed via slow axonal transport. Our previous studies suggest that the overall slow transport of synapsin is mediated by dynamic assembly/disassembly of cargo complexes followed by short-range vectorial transit (the "dynamic recruitment" model). However, neither the composition of these complexes nor the mechanistic basis for the dynamic behavior is understood. In this study, we first examined putative cargo complexes associated with synapsin using coimmunoprecipitation and multidimensional protein identification technology mass spectrometry (MS). MS data indicate that synapsin is part of a multiprotein complex enriched in chaperones/cochaperones including Hsc70. Axonal synapsin-Hsc70 coclusters are also visualized by two-color superresolution microscopy. Inhibition of Hsc70 ATPase activity blocked the slow transport of synapsin, disrupted axonal synapsin organization, and attenuated Hsc70-synapsin associations, advocating a model where Hsc70 activity dynamically clusters cytosolic proteins into cargo complexes, allowing transport. Collectively, our study offers insight into the molecular organization of cytosolic transport complexes and identifies a novel regulator of slow transport.
Collapse
Affiliation(s)
- Archan Ganguly
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Xuemei Han
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA
| | - Utpal Das
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Lina Wang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Jonathan Loi
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Jichao Sun
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Zlotowski Center for Neuroscience, Beer-Sheva, Israel
| | - Ghislaine Caillol
- Aix Marseille Université, Centre National de la Recherche Scientifique, NICN UMR7259, Marseille, France
| | - Christophe Leterrier
- Aix Marseille Université, Centre National de la Recherche Scientifique, NICN UMR7259, Marseille, France
| | - John R Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA
| | - Subhojit Roy
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
8
|
Brady ST, Morfini GA. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 2017; 105:273-282. [PMID: 28411118 DOI: 10.1016/j.nbd.2017.04.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
9
|
Shen HQ, Xiao YX, She ZY, Tan FQ, Yang WX. A novel role of KIF3b in the seminoma cell cycle. Exp Cell Res 2017; 352:95-103. [PMID: 28161539 DOI: 10.1016/j.yexcr.2017.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 11/16/2022]
Abstract
KIF3b is a protein of the kinesin-2 family which plays an important role in intraflagellar transport. Testis cancer is a common cancer among young men. Its diagnostic rate is increasing and over half of the cases are seminomas. Many aspects of the mechanism and gene expression background of this cancer remain unclear. Using western-blotting and semi-quantitative PCR we found high protein levels of KIF3b enrichment in seminoma tissue despite the mRNA levels remaining equivalent to that of normal testicular tissues. The distribution of KIF3b was mainly in cells with division potential. Wound-healing assays and cell counting kit assays showed that the knockdown of KIF3b significantly suppressed cell migration ability, viability and number in HeLa cells. Immunofluorescence images during the cell cycle revealed that KIF3b tended to gather at the spindles and was enriched at the central spindle. This indicated that KIF3b may also have direct impacts upon spindle formation and cytokinesis. By counting the numbers of nuclei, spindles and cells, we found that the rates of multipolar division and multi-nucleation were raised in KIF3b-knockdown cells. In this way we demonstrate that KIF3b functions importantly in mitosis and may be essential to seminoma cell division and proliferation as well as being necessary for normal cell division.
Collapse
Affiliation(s)
- Hao-Qing Shen
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Yu-Xi Xiao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.
| |
Collapse
|
10
|
Morfini G, Schmidt N, Weissmann C, Pigino G, Kins S. Conventional kinesin: Biochemical heterogeneity and functional implications in health and disease. Brain Res Bull 2016; 126:347-353. [PMID: 27339812 DOI: 10.1016/j.brainresbull.2016.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/13/2016] [Accepted: 06/18/2016] [Indexed: 11/30/2022]
Abstract
Intracellular trafficking events powered by microtubule-based molecular motors facilitate the targeted delivery of selected molecular components to specific neuronal subdomains. Within this context, we provide a brief review of mechanisms underlying the execution of axonal transport (AT) by conventional kinesin, the most abundant kinesin-related motor protein in the mature nervous system. We emphasize the biochemical heterogeneity of this multi-subunit motor protein, further discussing its significance in light of recent discoveries revealing its regulation by various protein kinases. In addition, we raise issues relevant to the mode of conventional kinesin attachment to cargoes and examine recent evidence linking alterations in conventional kinesin phosphorylation to the pathogenesis of adult-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Nadine Schmidt
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany
| | - Carina Weissmann
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Gustavo Pigino
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016 Córdoba, Argentina
| | - Stefan Kins
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany.
| |
Collapse
|
11
|
Deeba F, Pandey AK, Pandey V. Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration. FRONTIERS IN PLANT SCIENCE 2016; 7:425. [PMID: 27092152 PMCID: PMC4824794 DOI: 10.3389/fpls.2016.00425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/18/2016] [Indexed: 05/06/2023]
Abstract
To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant.
Collapse
Affiliation(s)
| | | | - Vivek Pandey
- Plant Ecology and Environmental Science, CSIR-National Botanical Research InstituteLucknow, India
| |
Collapse
|
12
|
Urquhart KR, Zhao Y, Baker JA, Lu Y, Yan L, Cook MN, Jones BC, Hamre KM, Lu L. A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors. Neurogenetics 2016; 17:91-105. [PMID: 26780340 DOI: 10.1007/s10048-015-0470-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/10/2015] [Indexed: 12/15/2022]
Abstract
Genetic differences mediate individual differences in susceptibility and responses to stress and ethanol, although, the specific molecular pathways that control these responses are not fully understood. Heat shock protein alpha 8 (Hspa8) is a molecular chaperone and member of the heat shock protein family that plays an integral role in the stress response and that has been implicated as an ethanol-responsive gene. Therefore, we assessed its role in mediating responses to stress and ethanol across varying genetic backgrounds. The hippocampus is an important mediator of these responses, and thus, was examined in the BXD family of mice in this study. We conducted bioinformatic analyses to dissect genetic factors modulating Hspa8 expression, identify downstream targets of Hspa8, and examined its role. Hspa8 is trans-regulated by a gene or genes on chromosome 14 and is part of a molecular network that regulates stress- and ethanol-related behaviors. To determine additional components of this network, we identified direct or indirect targets of Hspa8 and show that these genes, as predicted, participate in processes such as protein folding and organic substance metabolic processes. Two phenotypes that map to the Hspa8 locus are anxiety-related and numerous other anxiety- and/or ethanol-related behaviors significantly correlate with Hspa8 expression. To more directly assay this relationship, we examined differences in gene expression following exposure to stress or alcohol and showed treatment-related differential expression of Hspa8 and a subset of the members of its network. Our findings suggest that Hspa8 plays a vital role in genetic differences in responses to stress and ethanol and their interactions.
Collapse
Affiliation(s)
- Kyle R Urquhart
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yinghong Zhao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jessica A Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ye Lu
- The International Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Yan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Melloni N Cook
- Department of Psychology, University of Memphis, Memphis, TN, 38152, USA
| | - Byron C Jones
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Kristin M Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Lu Lu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, China.
| |
Collapse
|
13
|
Kang M, Baker L, Song Y, Brady ST, Morfini G. Biochemical analysis of axon-specific phosphorylation events using isolated squid axoplasms. Methods Cell Biol 2016; 131:199-216. [PMID: 26794515 PMCID: PMC7781298 DOI: 10.1016/bs.mcb.2015.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Appropriate functionality of nodes of Ranvier, presynaptic terminals, and other axonal subdomains depends on efficient and timely delivery of proteins synthesized and packaged into membrane-bound organelles (MBOs) within the neuronal cell body. MBOs are transported and delivered to their final sites of utilization within axons by a cellular process known as fast axonal transport (FAT). Conventional kinesin, the most abundant multisubunit motor protein expressed in mature neurons, is responsible for FAT of a large variety of MBOs and plays a major role in the maintenance of appropriate axonal connectivity. Consistent with the variety and large number of discrete subdomains within axons, experimental evidence revealed the identity of several protein kinases that modulate specific functional activities of conventional kinesin. Thus, methods for the analysis of kinase activity and conventional kinesin phosphorylation facilitate the study of FAT regulation in health and disease conditions. Axonal degeneration, abnormal patterns of protein phosphorylation, and deficits in FAT represent early pathological features characteristic of neurological diseases caused by unrelated neuropathogenic proteins. Interestingly, some of these proteins were shown to produce deficits in FAT by modulating the activity of specific protein kinases involved in conventional kinesin phosphorylation. However, experimental systems that facilitate an evaluation of molecular events within axons remain scarce. Using the isolated squid axoplasm preparation, we describe methods for evaluating axon-autonomous effects of neuropathogenic proteins on the activity of protein kinases. Protocols are also provided to evaluate the effect of such proteins on the phosphorylation of endogenous axonal substrates, including conventional kinesin and neurofilaments.
Collapse
Affiliation(s)
- Minsu Kang
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Lisa Baker
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
- Corresponding author:
| |
Collapse
|
14
|
Fontaine SN, Rauch JN, Nordhues BA, Assimon VA, Stothert AR, Jinwal UK, Sabbagh JJ, Chang L, Stevens SM, Zuiderweg ERP, Gestwicki JE, Dickey CA. Isoform-selective Genetic Inhibition of Constitutive Cytosolic Hsp70 Activity Promotes Client Tau Degradation Using an Altered Co-chaperone Complement. J Biol Chem 2015; 290:13115-27. [PMID: 25864199 DOI: 10.1074/jbc.m115.637595] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 12/22/2022] Open
Abstract
The constitutively expressed heat shock protein 70 kDa (Hsc70) is a major chaperone protein responsible for maintaining proteostasis, yet how its structure translates into functional decisions regarding client fate is still unclear. We previously showed that Hsc70 preserved aberrant Tau, but it remained unknown if selective inhibition of the activity of this Hsp70 isoform could facilitate Tau clearance. Using single point mutations in the nucleotide binding domain, we assessed the effect of several mutations on the functions of human Hsc70. Biochemical characterization revealed that one mutation abolished both Hsc70 ATPase and refolding activities. This variant resembled the ADP-bound conformer at all times yet remained able to interact with cofactors, nucleotides, and substrates appropriately, resembling a dominant negative Hsc70 (DN-Hsc70). We then assessed the effects of this DN-Hsc70 on its client Tau. DN-Hsc70 potently facilitated Tau clearance via the proteasome in cells and brain tissue, in contrast to wild type Hsc70 that stabilized Tau. Thus, DN-Hsc70 mimics the action of small molecule pan Hsp70 inhibitors with regard to Tau metabolism. This shift in Hsc70 function by a single point mutation was the result of a change in the chaperome associated with Hsc70 such that DN-Hsc70 associated more with Hsp90 and DnaJ proteins, whereas wild type Hsc70 was more associated with other Hsp70 isoforms. Thus, isoform-selective targeting of Hsc70 could be a viable therapeutic strategy for tauopathies and possibly lead to new insights in chaperone complex biology.
Collapse
Affiliation(s)
- Sarah N Fontaine
- From the Department of Molecular Medicine, College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613, James A. Haley Veteran's Hospital, Tampa, Florida 33612
| | - Jennifer N Rauch
- Deparment of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, Institute for Neurodegenerative Disease, University of California, San Francisco, California 94158, and
| | - Bryce A Nordhues
- From the Department of Molecular Medicine, College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613, James A. Haley Veteran's Hospital, Tampa, Florida 33612
| | - Victoria A Assimon
- Institute for Neurodegenerative Disease, University of California, San Francisco, California 94158, and
| | - Andrew R Stothert
- From the Department of Molecular Medicine, College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613
| | - Umesh K Jinwal
- Department of Pharmaceutical Science, College of Pharmacy, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613
| | - Jonathan J Sabbagh
- From the Department of Molecular Medicine, College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613, James A. Haley Veteran's Hospital, Tampa, Florida 33612
| | - Lyra Chang
- Institute for Neurodegenerative Disease, University of California, San Francisco, California 94158, and
| | - Stanley M Stevens
- Deparment of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620
| | - Erik R P Zuiderweg
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, University of California, San Francisco, California 94158, and
| | - Chad A Dickey
- From the Department of Molecular Medicine, College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613, James A. Haley Veteran's Hospital, Tampa, Florida 33612,
| |
Collapse
|
15
|
Functional Analysis of KIF3A and KIF3B during Spermiogenesis of Chinese Mitten Crab Eriocheir sinensis. PLoS One 2014; 9:e97645. [PMID: 24870586 PMCID: PMC4037190 DOI: 10.1371/journal.pone.0097645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/22/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Spermatogenesis represents the transformation process at the level of cellular development. KIF3A and KIF3B are believed to play some roles in the assembly and maintenance of flagella, intracellular transport of materials including organelles and proteins, and other unknown functions during this process. During spermatogenesis in Eriocheir sinensis, if the sperm shaping machinery is dependent on KIF3A and KIF3B remains unknown. METHODOLOGY/PRINCIPAL FINDINGS The cDNA of KIF3A and KIF3B were obtained by designing degenerate primers, 3'RACE, and 5'RACE. We detected the genetic presence of kif3a and kif3b in the heart, muscle, liver, gill, and testis of E. sinensis through RT-PCR. By western blot analysis, the protein presence of KIF3A and KIF3B in heart, muscle, gill, and testis reflected the content in protein level. Using in situ hybridization and immunofluorescence, we could track the dynamic location of KIF3A and KIF3B during different developmental phases of sperm. KIF3A and KIF3B were found surrounding the nucleus in early spermatids. In intermediate spermatids, these proteins expressed at high levels around the nucleus and extended to the final phase. During the nuclear shaping period, KIF3A and KIF3B reached their maximum in the late spermatids and were located around the nucleus and concentrated in the acrosome to some extent. CONCLUSIONS/SIGNIFICANCE Our results revealed that KIF3A and KIF3B were involved in the nuclear and cellular morphogenesis at the levels of mRNA and protein. These proteins can potentially facilitate the intracellular transport of organelles, proteins, and other cargoes. The results represent the functions of KIF3A and KIF3B in the spermatogenesis of Crustacea and clarify phylogenetic relationships among the Decapoda.
Collapse
|
16
|
Considerations About Risk Factors for Peripheral Neuropathies in Romanian HIV-Infected Patients. CURRENT HEALTH SCIENCES JOURNAL 2014; 40:42-6. [PMID: 24791204 PMCID: PMC4006335 DOI: 10.12865/chsj.40.01.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/01/2013] [Indexed: 11/23/2022]
Abstract
Purpose: The study aims at detecting risk factors for developing peripheral neuropathy in Romanian HIV infected subjects. Material/Methods: retrospective study (january 1990-january 2009) who analyzed data from patients hospitalized in the Regional Center Craiova. We have compared 26 patients (group N) diagnosed with peripheral neuropathy with 40 patients (group C) without neuropsychological sufferings, randomly selected. We have analysed: age, height, HIV mode of transmission, AIDS status, the average and nadir of CD4 lymphocytes, the mean viral load, the average duration of antiretroviral treatment (ART), use and duration of use of d-drugs, the presence of certain coinfection, diabetes or ethanol abuse. Results: the following differences were statistically significant: age (31,54±14,64 vs 23,9±12,03 years, p=0.024), HIV mode of transmission (parenteral/sexual: 13/13 vs 28/8, p = 0.044), the monitoring time duration (5,31±3,77 vs 7,75±5,4 years, p=0.043), median ART duration (37,2±9,66 vs 45,12±8,75 months, p=0.001). Close to the threshold of statistical significance are the CD4 nadir (97,33±65,6 vs 123,15±43,35 cells/mm3, p=0.058) and duration of use of d–drugs (22,5±31,94 vs 12,24±8,6 months, p=0.057). Odds ratio (OR) and relative risk (RR) increase with age. ROC analysis for the study group establishes a threshold difference of 29 years (sensitivity 50%, specificity 80%). Conclusions: higher age and advanced immunosupression are the most important risk factors for developing symptomatic peripheral neuropathy in Romanian HIV infected patients; taking into account the small number of cases studied, although not statistically significant, it should be noted the CD4 nadir and the length of d-drug use.
Collapse
|
17
|
Stricher F, Macri C, Ruff M, Muller S. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy 2013; 9:1937-54. [PMID: 24121476 DOI: 10.4161/auto.26448] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HSPA8/HSC70 protein is a fascinating chaperone protein. It represents a constitutively expressed, cognate protein of the HSP70 family, which is central in many cellular processes. In particular, its regulatory role in autophagy is decisive. We focused this review on HSC70 structure-function considerations and based on this, we put a particular emphasis on HSC70 targeting by small molecules and peptides in order to develop intervention strategies that deviate some of HSC70 properties for therapeutic purposes. Generating active biomolecules regulating autophagy via its effect on HSC70 can effectively be designed only if we understand the fine relationships between HSC70 structure and functions.
Collapse
Affiliation(s)
- François Stricher
- CNRS; Institut de Biologie Moléculaire et Cellulaire; Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis; Strasbourg, France
| | | | | | | |
Collapse
|
18
|
Blasius TL, Reed N, Slepchenko BM, Verhey KJ. Recycling of kinesin-1 motors by diffusion after transport. PLoS One 2013; 8:e76081. [PMID: 24098765 PMCID: PMC3786890 DOI: 10.1371/journal.pone.0076081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022] Open
Abstract
Kinesin motors drive the long-distance anterograde transport of cellular components along microtubule tracks. Kinesin-dependent transport plays a critical role in neurogenesis and neuronal function due to the large distance separating the soma and nerve terminal. The fate of kinesin motors after delivery of their cargoes is unknown but has been postulated to involve degradation at the nerve terminal, recycling via retrograde motors, and/or recycling via diffusion. We set out to test these models concerning the fate of kinesin-1 motors after completion of transport in neuronal cells. We find that kinesin-1 motors are neither degraded nor returned by retrograde motors. By combining mathematical modeling and experimental analysis, we propose a model in which the distribution and recycling of kinesin-1 motors fits a “loose bucket brigade” where individual motors alter between periods of active transport and free diffusion within neuronal processes. These results suggest that individual kinesin-1 motors are utilized for multiple rounds of transport.
Collapse
Affiliation(s)
- T. Lynne Blasius
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Nathan Reed
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Boris M. Slepchenko
- R. D. Berlin Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
19
|
Parrotta L, Cresti M, Cai G. Heat-shock protein 70 binds microtubules and interacts with kinesin in tobacco pollen tubes. Cytoskeleton (Hoboken) 2013; 70:522-37. [PMID: 24039249 DOI: 10.1002/cm.21134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 08/15/2013] [Accepted: 08/21/2013] [Indexed: 11/11/2022]
Abstract
The heat-shock proteins of 70 kDa are a family of ubiquitously expressed proteins important for protein folding. Heat-shock protein 70 assists other nascent proteins to achieve the spatial structure and ultimately helps the cell to protect against stress factors, such as heat. These proteins are localized in different cellular compartments and are associated with the cytoskeleton. We identified a heat-shock protein 70 isoform in the pollen tube of tobacco that binds to microtubules in an ATP-dependent manner. The heat-shock protein 70 was identified as part of the so-called ATP-MAP (ATP-dependent microtubule-associated protein) fraction, which also includes the 90-kDa kinesin, a mitochondria-associated motor protein. The identity of heat-shock protein 70 was validated by immunological assays and mass spectrometry. Sequence analysis showed that this heat-shock protein 70 is more similar to specific heat-shock proteins of Arabidopsis than to corresponding proteins of tobacco. Two-dimensional electrophoresis indicated that this heat-shock protein 70 isoform only is part of the ATP-MAP fraction and that is associated with the mitochondria of pollen tubes. Sedimentation assays showed that the binding of heat-shock protein 70 to microtubules is not affected by AMPPNP but it increases in the presence of the 90-kDa kinesin. Binding of heat-shock protein 70 to microtubules occurs only partially in the presence of ATP but it does not occur if, in addition to ATP, the 90-kDa kinesin is also present. Data suggest that the binding (but not the release) of heat-shock protein 70 to microtubules is facilitated by the 90-kDa kinesin.
Collapse
Affiliation(s)
- Luigi Parrotta
- Dipartimento di Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | | | | |
Collapse
|
20
|
Morfini GA, Bosco DA, Brown H, Gatto R, Kaminska A, Song Y, Molla L, Baker L, Marangoni MN, Berth S, Tavassoli E, Bagnato C, Tiwari A, Hayward LJ, Pigino GF, Watterson DM, Huang CF, Banker G, Brown RH, Brady ST. Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase. PLoS One 2013; 8:e65235. [PMID: 23776455 PMCID: PMC3680447 DOI: 10.1371/journal.pone.0065235] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/23/2013] [Indexed: 12/22/2022] Open
Abstract
Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.
Collapse
Affiliation(s)
- Gerardo A. Morfini
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Daryl A. Bosco
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Hannah Brown
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rodolfo Gatto
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Agnieszka Kaminska
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Yuyu Song
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Linda Molla
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Lisa Baker
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - M. Natalia Marangoni
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Sarah Berth
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Ehsan Tavassoli
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Carolina Bagnato
- Department of Natural Sciences and Engineering. National University of Rio Negro, Rio Negro, Argentina
| | - Ashutosh Tiwari
- Department of Chemistry, Michigan Technological University, Houghton, Michigan, United States of America
| | - Lawrence J. Hayward
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Gustavo F. Pigino
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - D. Martin Watterson
- Center for Molecular Innovation and Drug Discovery and Department of Molecular Pharmacology & Biological Chemistry, Northwestern University, Chicago, IIllinois, United States of America
| | - Chun-Fang Huang
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gary Banker
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Scott T. Brady
- Depart of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
21
|
PtdIns(4)P regulates retromer–motor interaction to facilitate dynein–cargo dissociation at the trans-Golgi network. Nat Cell Biol 2013; 15:417-29. [DOI: 10.1038/ncb2710] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/14/2013] [Indexed: 02/08/2023]
|
22
|
Götz M, Popovski S, Kollenberg M, Gorovits R, Brown JK, Cicero JM, Czosnek H, Winter S, Ghanim M. Implication of Bemisia tabaci heat shock protein 70 in Begomovirus-whitefly interactions. J Virol 2012; 86:13241-52. [PMID: 23015709 PMCID: PMC3503126 DOI: 10.1128/jvi.00880-12] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 09/11/2012] [Indexed: 12/19/2022] Open
Abstract
The whitefly Bemisia tabaci (Gennadius) is a major cosmopolitan pest capable of feeding on hundreds of plant species and transmits several major plant viruses. The most important and widespread viruses vectored by B. tabaci are in the genus Begomovirus, an unusual group of plant viruses owing to their small, single-stranded DNA genome and geminate particle morphology. B. tabaci transmits begomoviruses in a persistent circulative nonpropagative manner. Evidence suggests that the whitefly vector encounters deleterious effects following Tomato yellow leaf curl virus (TYLCV) ingestion and retention. However, little is known about the molecular and cellular basis underlying these coevolved begomovirus-whitefly interactions. To elucidate these interactions, we undertook a study using B. tabaci microarrays to specifically describe the responses of the transcriptomes of whole insects and dissected midguts following TYLCV acquisition and retention. Microarray, real-time PCR, and Western blot analyses indicated that B. tabaci heat shock protein 70 (HSP70) specifically responded to the presence of the monopartite TYLCV and the bipartite Squash leaf curl virus. Immunocapture PCR, protein coimmunoprecipitation, and virus overlay protein binding assays showed in vitro interaction between TYLCV and HSP70. Fluorescence in situ hybridization and immunolocalization showed colocalization of TYLCV and the bipartite Watermelon chlorotic stunt virus virions and HSP70 within midgut epithelial cells. Finally, membrane feeding of whiteflies with anti-HSP70 antibodies and TYLCV virions showed an increase in TYLCV transmission, suggesting an inhibitory role for HSP70 in virus transmission, a role that might be related to protection against begomoviruses while translocating in the whitefly.
Collapse
Affiliation(s)
- Monika Götz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Plant Virus Department, Braunschweig, Germany
| | | | - Mario Kollenberg
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Plant Virus Department, Braunschweig, Germany
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Joseph M. Cicero
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Plant Virus Department, Braunschweig, Germany
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Bet Dagan, Israel
| |
Collapse
|
23
|
Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:354-74. [PMID: 22960394 DOI: 10.1016/j.pharmthera.2012.08.014] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
Abstract
Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone which belongs to the heat shock protein 70 (HSP70) family. HSC70 shares some of the structural and functional similarity with HSP70. HSC70 also has different properties compared with HSP70 and other heat shock family members. HSC70 performs its full functions by the cooperation of co-chaperones. It interacts with many other molecules as well and regulates various cellular functions. It is also involved in various diseases and may become a biomarker for diagnosis and potential therapeutic targets for design, discovery, and development of novel drugs to treat various diseases. In this article, we provide a comprehensive review on HSC70 from the literatures including the basic general information such as classification, structure and cellular location, genetics and function, as well as its protein association and interaction with other proteins. In addition, we also discussed the relationship of HSC70 and related clinical diseases such as cancer, cardiovascular, neurological, hepatic and many other diseases and possible therapeutic potential and highlight the progress and prospects of research in this field. Understanding the functions of HSC70 and its interaction with other molecules will help us to reveal other novel properties of this protein. Scientists may be able to utilize this protein as a biomarker and therapeutic target to make significant advancement in scientific research and clinical setting in the future.
Collapse
|
24
|
Cytoplasmic trafficking, endosomal escape, and perinuclear accumulation of adeno-associated virus type 2 particles are facilitated by microtubule network. J Virol 2012; 86:10462-73. [PMID: 22811523 DOI: 10.1128/jvi.00935-12] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding adeno-associated virus (AAV) trafficking is critical to advance our knowledge of AAV biology and exploit novel aspects of vector development. Similar to the case for most DNA viruses, after receptor binding and entry, AAV traverses the cytoplasm and deposits the viral genome in the cell nucleus. In this study, we examined the role of the microtubule (MT) network in productive AAV infection. Using pharmacological reagents (e.g., nocodazole), live-cell imaging, and flow cytometry analysis, we demonstrated that AAV type 2 (AAV2) transduction was reduced by at least 2-fold in the absence of the MT network. Cell surface attachment and viral internalization were not dependent on an intact MT network. In treated cells at 2 h postinfection, quantitative three-dimensional (3D) microscopy determined a reproducible difference in number of intracellular particles associated with the nuclear membrane or the nucleus compared to that for controls (6 to 7% versus 26 to 30%, respectively). Confocal microscopy analysis demonstrated a direct association of virions with MTs, further supporting a critical role in AAV infection. To investigate the underling mechanisms, we employed single-particle tracking (SPT) to monitor the viral movement in real time. Surprisingly, unlike other DNA viruses (e.g., adenovirus [Ad] and herpes simplex virus [HSV]) that display bidirectional motion on MTs, AAV2 displays only unidirectional movement on MTs toward the nuclei, with peak instantaneous velocities at 1.5 to 3.5 μm/s. This rapid and unidirectional motion on MTs lasts for about 5 to 10 s and results in AAV particles migrating more than 10 μm in the cytoplasm reaching the nucleus very efficiently. Furthermore, electron microscopy analysis determined that, unlike Ad and HSV, AAV2 particles were transported on MTs within membranous compartments, and surprisingly, the acidification of AAV2-containing endosomes was delayed by the disruption of MTs. These findings together suggest an as-yet-undescribed model in which after internalization, AAV2 exploits MTs for rapid cytoplasmic trafficking in endosomal compartments unidirectionally toward the perinuclear region, where most acidification events for viral escape take place.
Collapse
|
25
|
Brunholz S, Sisodia S, Lorenzo A, Deyts C, Kins S, Morfini G. Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp Brain Res 2012; 217:353-64. [PMID: 21960299 PMCID: PMC3670699 DOI: 10.1007/s00221-011-2870-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/07/2011] [Indexed: 12/12/2022]
Abstract
Over two decades have passed since the original discovery of amyloid precursor protein (APP). While physiological function(s) of APP still remain a matter of debate, consensus exists that the proteolytic processing of this protein represents a critical event in the life of neurons and that abnormalities in this process are instrumental in Alzheimer's disease (AD) pathogenesis. Specific molecular components involved in APP proteolysis have been identified, and their enzymatic activities characterized in great detail. As specific proteolytic fragments of APP are identified and novel physiological effects for these fragments are revealed, more obvious becomes our need to understand the spatial organization of APP proteolysis. Valuable insights on this process have been obtained through the study of non-neuronal cells. However, much less is known about the topology of APP processing in neuronal cells, which are characterized by their remarkably complex cellular architecture and extreme degree of polarization. In this review, we discuss published literature addressing various molecular mechanisms and components involved in the trafficking and subcellular distribution of APP and APP secretases in neurons. These include the relevant machinery involved in their sorting, the identity of membranous organelles in which APP is transported, and the molecular motor-based mechanisms involved in their translocation. We also review experimental evidence specifically addressing the processing of APP at the axonal compartment. Understanding neuron-specific mechanisms of APP processing would help illuminating the physiological roles of APP-derived proteolytic fragments and provide novel insights on AD pathogenesis.
Collapse
Affiliation(s)
- Silke Brunholz
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Vehniäinen ER, Vähäkangas K, Oikari A. UV-B exposure causes DNA damage and changes in protein expression in northern pike (Esox lucius) posthatched embryos. Photochem Photobiol 2012; 88:363-70. [PMID: 22145705 DOI: 10.1111/j.1751-1097.2011.01058.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ongoing anthropogenically caused ozone depletion and climate change has increased the amount of biologically harmful UV-B radiation, which is detrimental to fish in embryonal stages. The effects of UV-B radiation on the levels and locations of DNA damage manifested as cyclobutane pyrimidine dimers (CPDs), heat shock protein 70 (HSP70) and p53 protein in newly hatched embryos of pike were examined. Pike larvae were exposed in the laboratory to current and enhanced doses of UV-B radiation. UV-B exposure caused the formation of CPDs in a fluence rate-dependent manner, and the CPDs were found deeper in the tissues with increasing fluence rates. UV-B radiation induced HSP70 in epidermis, and caused plausible p53 activation in the brain and epidermis of some individuals. Also at a fluence rate occurring in nature, the DNA damage in the brain and eyes of pike and changes in protein expression were followed by severe behavioral disorders, suggesting that neural molecular changes were associated with functional consequences.
Collapse
Affiliation(s)
- Eeva-Riikka Vehniäinen
- University of Jyväskylä, Department of Biological and Environmental Science, University of Jyväskylä, Finland.
| | | | | |
Collapse
|
27
|
Maher-Laporte M, Berthiaume F, Moreau M, Julien LA, Lapointe G, Mourez M, DesGroseillers L. Molecular composition of staufen2-containing ribonucleoproteins in embryonic rat brain. PLoS One 2010; 5:e11350. [PMID: 20596529 PMCID: PMC2893162 DOI: 10.1371/journal.pone.0011350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 06/08/2010] [Indexed: 01/21/2023] Open
Abstract
Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Numerous mRNA-binding and regulatory proteins within mRNPs finely regulate the fate of bound-mRNAs. Their specific combination defines different types of mRNPs that in turn are related to specific synaptic functions. One of these mRNA-binding proteins, Staufen2 (Stau2), was shown to transport dendritic mRNAs along microtubules. Its knockdown expression in neurons was shown to change spine morphology and synaptic functions. To further understand the molecular mechanisms by which Stau2 modulates synaptic function in neurons, it is important to identify and characterize protein co-factors that regulate the fate of Stau2-containing mRNPs. To this end, a proteomic approach was used to identify co-immunoprecipitated proteins in Staufen2-containing mRNPs isolated from embryonic rat brains. The proteomic approach identified mRNA-binding proteins (PABPC1, hnRNP H1, YB1 and hsc70), proteins of the cytoskeleton (α- and β-tubulin) and RUFY3 a poorly characterized protein. While PABPC1 and YB1 associate with Stau2-containing mRNPs through RNAs, hsc70 is directly bound to Stau2 and this interaction is regulated by ATP. PABPC1 and YB1 proteins formed puncta in dendrites of embryonic rat hippocampal neurons. However, they poorly co-localized with Stau2 in the large dendritic complexes suggesting that they are rather components of Stau2-containing mRNA particles. All together, these results represent a further step in the characterization of Stau2-containing mRNPs in neurons and provide new tools to study and understand how Stau2-containing mRNPs are transported, translationally silenced during transport and/or locally expressed according to cell needs.
Collapse
Affiliation(s)
| | - Frédéric Berthiaume
- Pathologie et Microbiologie, Université de Montréal, Montréal, Québec, Canada
| | - Mireille Moreau
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Louis-André Julien
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Gabriel Lapointe
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Michael Mourez
- Pathologie et Microbiologie, Université de Montréal, Montréal, Québec, Canada
| | - Luc DesGroseillers
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
28
|
Pekary AE, Stevens SA, Blood JD, Sattin A. Rapid modulation of TRH and TRH-like peptide release in rat brain, pancreas, and testis by a GSK-3beta inhibitor. Peptides 2010; 31:1083-93. [PMID: 20338209 DOI: 10.1016/j.peptides.2010.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 03/15/2010] [Indexed: 02/06/2023]
Abstract
Antidepressants have been shown to be neuroprotective and able to reverse damage to glia and neurons. Thyrotropin-releasing hormone (TRH) is an endogenous antidepressant-like neuropeptide that reduces the expression of glycogen synthase kinase-3beta (GSK-3beta), an enzyme that hyperphosphorylates tau and is implicated in bipolar disorder, diabetes and Alzheimer's disease. In order to understand the potential role of GSK-3beta in the modulation of depression by TRH and TRH-like peptides and the therapeutic potential of GSK-3beta inhibitors for neuropsychiatric and metabolic diseases, young adult male Sprague-Dawley (SD) rats were (a) injected ip with 1.8mg/kg of GSK-3beta inhibitor VIII (GSKI) and sacrificed 0, 2, 4, 6, and 8h later or (b) injected with 0, 0.018, 0.18 or 1.8mg/kg GSKI and bled 4h later. Levels of TRH and TRH-like peptides were measured in various brain regions involved in mood regulation, pancreas and reproductive tissues. Large, 3-15-fold, increases of TRH and TRH-like peptide levels in cerebellum, for example, as well as other brain regions were noted at 2 and 4h. In contrast, a nearly complete loss of TRH and TRH-like peptides from testis within 2h and pancreas by 4h following GSKI injection was observed. We have previously reported similar acute effects of corticosterone in brain and peripheral tissues. Incubation of a decapsulated rat testis with either GSKI or corticosterone accelerated release of TRH, and TRH-like peptides. Glucocorticoids, via inhibition of GSK3-beta activity, may thus be involved in the inhibition of TRH and TRH-like peptide release in brain, thereby contributing to the depressogenic effect of this class of steroids. Corticosterone-induced acceleration of release of these peptides from testis may contribute to the decline in reproductive function and redirection of energy needed during life-threatening emergencies. These contrasting effects of glucocorticoid on peptide release appear to be mediated by GSK-3beta.
Collapse
Affiliation(s)
- Albert Eugene Pekary
- Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States.
| | | | | | | |
Collapse
|
29
|
Terada S, Kinjo M, Aihara M, Takei Y, Hirokawa N. Kinesin-1/Hsc70-dependent mechanism of slow axonal transport and its relation to fast axonal transport. EMBO J 2010; 29:843-54. [PMID: 20111006 DOI: 10.1038/emboj.2009.389] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/26/2009] [Indexed: 11/10/2022] Open
Abstract
Cytoplasmic protein transport in axons ('slow axonal transport') is essential for neuronal homeostasis, and involves Kinesin-1, the same motor for membranous organelle transport ('fast axonal transport'). However, both molecular mechanisms of slow axonal transport and difference in usage of Kinesin-1 between slow and fast axonal transport have been elusive. Here, we show that slow axonal transport depends on the interaction between the DnaJ-like domain of the kinesin light chain in the Kinesin-1 motor complex and Hsc70, scaffolding between cytoplasmic proteins and Kinesin-1. The domain is within the tetratricopeptide repeat, which can bind to membranous organelles, and competitive perturbation of the domain in squid giant axons disrupted cytoplasmic protein transport and reinforced membranous organelle transport, indicating that this domain might have a function as a switchover system between slow and fast transport by Hsc70. Transgenic mice overexpressing a dominant-negative form of the domain showed delayed slow transport, accelerated fast transport and optic axonopathy. These findings provide a basis for the regulatory mechanism of intracellular transport and its intriguing implication in neuronal dysfunction.
Collapse
Affiliation(s)
- Sumio Terada
- Department of Cell Biology and Anatomy, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
30
|
Trejo HE, Lecuona E, Grillo D, Szleifer I, Nekrasova OE, Gelfand VI, Sznajder JI. Role of kinesin light chain-2 of kinesin-1 in the traffic of Na,K-ATPase-containing vesicles in alveolar epithelial cells. FASEB J 2009; 24:374-82. [PMID: 19773350 DOI: 10.1096/fj.09-137802] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recruitment of the Na,K-ATPase to the plasma membrane of alveolar epithelial cells results in increased active Na(+) transport and fluid clearance in a process that requires an intact microtubule network. However, the microtubule motors involved in this process have not been identified. In the present report, we studied the role of kinesin-1, a plus-end microtubule molecular motor that has been implicated in the movement of organelles in the Na,K-ATPase traffic. We determined by confocal microscopy and biochemical assays that kinesin-1 and the Na,K-ATPase are present in the same membranous cellular compartment. Knockdown of kinesin-1 heavy chain (KHC) or the light chain-2 (KLC2), but not of the light chain-1 (KLC1), decreased the movement of Na,K-ATPase-containing vesicles when compared to sham siRNA-transfected cells (control group). Thus, a specific isoform of kinesin-1 is required for microtubule-dependent recruitment of Na,K-ATPase to the plasma membrane, which is of physiological significance.
Collapse
Affiliation(s)
- Humberto E Trejo
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Obstacles on the microtubule reduce the processivity of Kinesin-1 in a minimal in vitro system and in cell extract. Biophys J 2009; 96:3341-53. [PMID: 19383477 DOI: 10.1016/j.bpj.2009.01.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/19/2008] [Accepted: 01/08/2009] [Indexed: 11/23/2022] Open
Abstract
Inside cells, a multitude of molecular motors and other microtubule-associated proteins are expected to compete for binding to a limited number of binding sites available on microtubules. Little is known about how competition for binding sites affects the processivity of molecular motors and, therefore, cargo transport, organelle positioning, and microtubule organization, processes that all depend on the activity of more or less processive motors. Very few studies have been performed in the past to address this question directly. Most studies reported only minor effects of crowding on the velocity of motors. However, a controversy appears to exist regarding the effect of crowding on motor processivity. Here, we use single-molecule imaging of mGFP-labeled minimal dimeric kinesin-1 constructs in vitro to study the effects of competition on kinesin's processivity. For competitors, we use kinesin rigor mutants as static roadblocks, minimal wild-type kinesins as motile obstacles, and a cell extract as a complex mixture of microtubule-associated proteins. We find that mGFP-labeled kinesin-1 detaches prematurely from microtubules when it encounters obstacles, leading to a strong reduction of its processivity, a behavior that is largely independent of the type of obstacle used here. Kinesin has a low probability to wait briefly when encountering roadblocks. Our data suggest, furthermore, that kinesin can occasionally pass obstacles on the protofilament track.
Collapse
|
32
|
Bhowmick R, Li M, Sun J, Baker SA, Insinna C, Besharse JC. Photoreceptor IFT complexes containing chaperones, guanylyl cyclase 1 and rhodopsin. Traffic 2009; 10:648-63. [PMID: 19302411 DOI: 10.1111/j.1600-0854.2009.00896.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Intraflagellar transport (IFT) provides a mechanism for the transport of cilium-specific proteins, but the mechanisms for linkage of cargo and IFT proteins have not been identified. Using the sensory outer segments (OS) of photoreceptors, which are derived from sensory cilia, we have identified IFT-cargo complexes containing IFT proteins, kinesin 2 family proteins, two photoreceptor-specific membrane proteins, guanylyl cyclase 1 (GC1, Gucy2e) and rhodopsin (RHO), and the chaperones, mammalian relative of DNAJ, DnajB6 (MRJ), and HSC70 (Hspa8). Analysis of these complexes leads to a model in which MRJ through its binding to IFT88 and GC1 plays a critical role in formation or stabilization of the IFT-cargo complexes. Consistent with the function of MRJ in the activation of HSC70 ATPase activity, Mg-ATP enhances the co-IP of GC1, RHO, and MRJ with IFT proteins. Furthermore, RNAi knockdown of MRJ in IMCD3 cells expressing GC1-green fluorescent protein (GFP) reduces cilium membrane targeting of GC1-GFP without apparent effect on cilium elongation.
Collapse
Affiliation(s)
- Reshma Bhowmick
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
33
|
DeGiorgis JA, Petukhova TA, Evans TA, Reese TS. Kinesin-3 is an organelle motor in the squid giant axon. Traffic 2008; 9:1867-77. [PMID: 18928504 DOI: 10.1111/j.1600-0854.2008.00809.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conventional kinesin (Kinesin-1), the founding member of the kinesin family, was discovered in the squid giant axon, where it is thought to move organelles on microtubules. In this study, we identify a second squid kinesin by searching an expressed sequence tag database derived from the ganglia that give rise to the axon. The full-length open reading frame encodes a 1753 amino acid sequence that classifies this protein as a Kinesin-3. Immunoblots demonstrate that this kinesin, unlike Kinesin-1, is highly enriched in chaotropically stripped axoplasmic organelles, and immunogold electron microscopy (EM) demonstrates that Kinesin-3 is tightly bound to the surfaces of these organelles. Video microscopy shows that movements of purified organelles on microtubules are blocked, but organelles remain attached, in the presence Kinesin-3 antibody. Immunogold EM of axoplasmic spreads with antibody to Kinesin-3 decorates discrete sites on many, but not all, free organelles and localizes Kinesin-3 to organelle/microtubule interfaces. In contrast, label for Kinesin-1 decorates microtubules but not organelles. The presence of Kinesin-3 on purified organelles, the ability of an antibody to block their movements along microtubules, the tight association of Kinesin-3 with motile organelles and its distribution at the interface between native organelles and microtubules suggest that Kinesin-3 is a dominant motor in the axon for unidirectional movement of organelles along microtubules.
Collapse
Affiliation(s)
- Joseph A DeGiorgis
- Laboratory of Neurobiology, NINDS, National Institutes of Health, Building 49, Room 3A60, 49 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
34
|
Tenorio-Laranga J, Venäläinen JI, Männistö PT, García-Horsman JA. Characterization of membrane-bound prolyl endopeptidase from brain. FEBS J 2008; 275:4415-27. [PMID: 18657187 DOI: 10.1111/j.1742-4658.2008.06587.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Prolyl oligopeptidase (POP) is a serine protease that cleaves small peptides at the carboxyl side of an internal proline residue. Substance P, arginine-vasopressin, thyroliberin and gonadoliberin are proposed physiological substrates of this protease. POP has been implicated in a variety of brain processes, including learning, memory, and mood regulation, as well as in pathologies such as neurodegeneration, hypertension, and psychiatric disorders. Although POP has been considered to be a soluble cytoplasmic peptidase, significant levels of activity have been detected in membranes and in extracellular fluids such as serum, cerebrospinal fluid, seminal fluid, and urine, suggesting the existence of noncytoplasmic forms. Furthermore, a closely associated membrane prolyl endopeptidase (PE) activity has been previously detected in synaptosomes and shown to be different from the cytoplasmic POP activity. Here we isolated, purified and characterized this membrane-bound PE, herein referred to as mPOP. Although, when attached to membranes, mPOP presents certain features that distinguish it from the classical POP, our results indicate that this protein has the same amino acid sequence as POP except for the possible addition of a hydrophobic membrane anchor. The kinetic properties of detergent-soluble mPOP are fully comparable to those of POP; however, when attached to the membranes in its natural conformation, mPOP is significantly less active and, moreover, it migrates anomalously in SDS/PAGE. Our results are the first to show that membrane-bound and cytoplasmic POP are encoded by variants of the same gene.
Collapse
|
35
|
Hirokawa N, Noda Y. Intracellular Transport and Kinesin Superfamily Proteins, KIFs: Structure, Function, and Dynamics. Physiol Rev 2008; 88:1089-118. [DOI: 10.1152/physrev.00023.2007] [Citation(s) in RCA: 345] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Various molecular cell biology and molecular genetic approaches have indicated significant roles for kinesin superfamily proteins (KIFs) in intracellular transport and have shown that they are critical for cellular morphogenesis, functioning, and survival. KIFs not only transport various membrane organelles, protein complexes, and mRNAs for the maintenance of basic cellular activity, but also play significant roles for various mechanisms fundamental for life, such as brain wiring, higher brain functions such as memory and learning and activity-dependent neuronal survival during brain development, and for the determination of important developmental processes such as left-right asymmetry formation and suppression of tumorigenesis. Accumulating data have revealed a molecular mechanism of cargo recognition involving scaffolding or adaptor protein complexes. Intramolecular folding and phosphorylation also regulate the binding activity of motor proteins. New techniques using molecular biophysics, cryoelectron microscopy, and X-ray crystallography have detected structural changes in motor proteins, synchronized with ATP hydrolysis cycles, leading to the development of independent models of monomer and dimer motors for processive movement along microtubules.
Collapse
|
36
|
DeBoer SR, You Y, Szodorai A, Kaminska A, Pigino G, Nwabuisi E, Wang B, Estrada-Hernandez T, Kins S, Brady ST, Morfini G. Conventional kinesin holoenzymes are composed of heavy and light chain homodimers. Biochemistry 2008; 47:4535-43. [PMID: 18361505 PMCID: PMC2644488 DOI: 10.1021/bi702445j] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conventional kinesin is a major microtubule-based motor protein responsible for anterograde transport of various membrane-bounded organelles (MBO) along axons. Structurally, this molecular motor protein is a tetrameric complex composed of two heavy (kinesin-1) chains and two light chain (KLC) subunits. The products of three kinesin-1 (kinesin-1A, -1B, and -1C, formerly KIF5A, -B, and -C) and two KLC (KLC1, KLC2) genes are expressed in mammalian nervous tissue, but the functional significance of this subunit heterogeneity remains unknown. In this work, we examine all possible combinations among conventional kinesin subunits in brain tissue. In sharp contrast with previous reports, immunoprecipitation experiments here demonstrate that conventional kinesin holoenzymes are formed of kinesin-1 homodimers. Similar experiments confirmed previous findings of KLC homodimerization. Additionally, no specificity was found in the interaction between kinesin-1s and KLCs, suggesting the existence of six variant forms of conventional kinesin, as defined by their gene product composition. Subcellular fractionation studies indicate that such variants associate with biochemically different MBOs and further suggest a role of kinesin-1s in the targeting of conventional kinesin holoenzymes to specific MBO cargoes. Taken together, our data address the combination of subunits that characterize endogenous conventional kinesin. Findings on the composition and subunit organization of conventional kinesin as described here provide a molecular basis for the regulation of axonal transport and delivery of selected MBOs to discrete subcellular locations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Gerardo Morfini
- To whom correspondence should be addressed. Phone: (312) 996−6791. Fax: (312) 413−0354. E-mail:
| |
Collapse
|
37
|
Butowt R, von Bartheld CS. Conventional kinesin-I motors participate in the anterograde axonal transport of neurotrophins in the visual system. J Neurosci Res 2008; 85:2546-56. [PMID: 17243173 DOI: 10.1002/jnr.21165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Retinal ganglion cells (RGCs) anterogradely transport neurotrophins to the midbrain tectum/superior colliculus with significant downstream effects. The molecular mechanism of this type of axonal transport of neurotrophins is not well characterized. We identified kinesin-I proteins as a motor participating in the anterograde axonal movement of vesicular structures containing radiolabeled neurotrophins along the optic nerve. RT-PCR analysis of purified murine RGCs showed that adult RGCs express all known members of the kinesin-I family. After intraocular injection of (125)I-brain-derived neurotrophic factor (BDNF) into the adult mouse or (125)I-neurotrophin-3 (NT-3) into the embryonic chicken eye, radioactivity was efficiently immunoprecipitated from the optic nerve lysates by anti-kinesin heavy chain and anti-kinesin light chain monoclonal antibodies (H2 and L1). Immunoreactivity for the BDNF receptor trkB is also present in the immunoprecipitates obtained by the anti-kinesin-I antibodies. The delivery of the H2 antibody in vivo into the mouse RGCs substantially reduced anterograde axonal transport of (125)I-BDNF. Anterograde transport of BDNF was not diminished in kinesin light chain 1 (KLC1) knockout mice. However, this may be due to redundancy in functions between two different isoforms of KLC present in the RGCs, as it was described previously for kinesin heavy chains (Kanai et al. [ 2000] J Neurosci 20:6374-6384). These data indicate that kinesin-I is a protein motor that participates in the anterograde axonal transport of neurotrophins in the chicken and mouse visual pathways.
Collapse
Affiliation(s)
- Rafal Butowt
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA.
| | | |
Collapse
|
38
|
Abstract
Most mammalian proteins undergo reversible protein modification after or during synthesis. These modifications are associated, for the most part, with changes in protein functionality. Protein phosphorylation is the most common posttranslational modification in mammalian cells, regulating critical cellular processes that include cell division, differentiation, growth, and cell-cell signaling as well as fast axonal transport (FAT). Evidence has accumulated that kinesin-1 phosphorylation plays a key regulatory role in kinesin-based FAT. Multiple kinase and phosphatase activities with the ability to regulate kinesin-1 function and FAT have been identified. Moreover, additional pathways are likely to exist for regulating FAT through reversible phosphorylation/dephosphorylation of specific motor protein subunits. The present chapter describes specific biochemical assays to determine, or to perturb experimentally, the phosphorylation status of kinesin-1. These protocols provide assays for characterization of novel effectors (i.e., trophic factors, neurotransmitters, pharmacological inhibitors, pathogenic protein expression, etc.) that affect the phosphorylation status of kinesin-1. Finally, in vitro phosphorylation assays suitable for analyzing the direct effects of specific kinases on kinesin-1 are provided.
Collapse
Affiliation(s)
- Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
39
|
Disruption of KIF17–Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin–cargo release. Nat Cell Biol 2007; 10:19-29. [DOI: 10.1038/ncb1665] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 11/21/2007] [Indexed: 02/07/2023]
|
40
|
Abstract
To overcome barriers to diffusion, many viruses utilize the microtubule-associated molecular motor cytoplasmic dynein 1 to drive transport towards the nucleus of a target cell. Cytoplasmic dynein 1 generates movement towards the minus end of microtubules located at the microtubule organizing centre (MTOC), a structure that is typically in close proximity to the nucleus. Physiological cargoes for cytoplasmic dynein include membranous organelles, protein complexes and aggregates of misfolded protein. In this review, we discuss the study of microtubule-based translocation of viruses and raise questions about the mechanisms for association with and then dissociation from cytoplasmic dynein with a goal of understanding whether viruses are seen by the intracellular trafficking machinery as functional protein complexes or misfolded protein aggregates.
Collapse
Affiliation(s)
- Philip L Leopold
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA.
| | | |
Collapse
|
41
|
Tan Z, Sun X, Hou FS, Oh HW, Hilgenberg LGW, Hol EM, van Leeuwen FW, Smith MA, O'Dowd DK, Schreiber SS. Mutant ubiquitin found in Alzheimer's disease causes neuritic beading of mitochondria in association with neuronal degeneration. Cell Death Differ 2007; 14:1721-32. [PMID: 17571083 PMCID: PMC3258508 DOI: 10.1038/sj.cdd.4402180] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A dinucleotide deletion in human ubiquitin (Ub) B messenger RNA leads to formation of polyubiquitin (UbB)+1, which has been implicated in neuronal cell death in Alzheimer's and other neurodegenerative diseases. Previous studies demonstrate that UbB+1 protein causes proteasome dysfunction. However, the molecular mechanism of UbB+1-mediated neuronal degeneration remains unknown. We now report that UbB+1 causes neuritic beading, impairment of mitochondrial movements, mitochondrial stress and neuronal degeneration in primary neurons. Transfection of UbB+1 induced a buildup of mitochondria in neurites and dysregulation of mitochondrial motor proteins, in particular, through detachment of P74, the dynein intermediate chain, from mitochondria and decreased mitochondria-microtubule interactions. Altered distribution of mitochondria was associated with activation of both the mitochondrial stress and p53 cell death pathways. These results support the hypothesis that neuritic clogging of mitochondria by UbB+1 triggers a cascade of events characterized by local activation of mitochondrial stress followed by global cell death. Furthermore, UbB+1 small interfering RNA efficiently blocked expression of UbB+1 protein, attenuated neuritic beading and preserved cellular morphology, suggesting a potential neuroprotective strategy for certain neurodegenerative disorders.
Collapse
Affiliation(s)
- Z Tan
- Department of Neurology, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Szebenyi G, Hall B, Yu R, Hashim AI, Krämer H. Hook2 localizes to the centrosome, binds directly to centriolin/CEP110 and contributes to centrosomal function. Traffic 2006; 8:32-46. [PMID: 17140400 DOI: 10.1111/j.1600-0854.2006.00511.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Centrosomes serve as microtubule-organizing centers. However, centrosome function depends on microtubule organization and protein transport because the formation, positioning and maintenance of centrosomes require microtubule-dependent retrograde transport. Linker proteins that associate with the motor protein dynein, organelles and microtubules facilitate loading of cargos for retrograde transport and thus contribute to the composition and placement of the centrosome and other juxtanuclear protein complexes. Members of the hook family of proteins may function as adaptors to link various organelle cargos to dynein for transport and have also been implicated directly in centrosome positioning. Here, we show that mammalian hook2, a previously uncharacterized member of the hook family, localizes to the centrosome through all phases of the cell cycle, the C-terminal domain of hook2 directly binds to centriolin/CEP110, the expression of the C-terminal domain of centriolin/CEP110 alters the distribution of endogenous hook2 and mislocalized wild-type or mutant hook2 proteins perturb endogenous centrosomal and pericentrosomal proteins in cultured mammalian cells. In addition, interference with hook2 function results in the loss of the radial organization of microtubules and a defect in regrowth of microtubules following their nocodazole-induced depolymerization. Thus, we propose that hook2 contributes to the establishment and maintenance of centrosomal structure and function.
Collapse
Affiliation(s)
- Györgyi Szebenyi
- Center for Basic Neuroscience, University of Texas, Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | | | | | | | |
Collapse
|
43
|
Woźniak MJ, Allan VJ. Cargo selection by specific kinesin light chain 1 isoforms. EMBO J 2006; 25:5457-68. [PMID: 17093494 PMCID: PMC1679764 DOI: 10.1038/sj.emboj.7601427] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 10/16/2006] [Indexed: 12/25/2022] Open
Abstract
Kinesin-1 drives the movement of diverse cargoes, and it has been proposed that specific kinesin light chain (KLC) isoforms target kinesin-1 to these different structures. Here, we test this hypothesis using two in vitro motility assays, which reconstitute the movement of rough endoplasmic reticulum (RER) and vesicles present in a Golgi membrane fraction. We generated GST-tagged fusion proteins of KLC1B and KLC1D that included the tetratricopeptide repeat domain and the variable C-terminus. We find that preincubation of RER with KLC1B inhibits RER motility, whereas KLC1D does not. In contrast, Golgi fraction vesicle movement is inhibited by KLC1D but not KLC1B reagents. Both RER and vesicle movement is inhibited by preincubation with the GST-tagged C-terminal domain of ubiquitous kinesin heavy chain (uKHC), which binds to the N-terminal domain of uKHC and alters its interaction with microtubules. We propose that although the TRR domains are required for cargo binding, it is the variable C-terminal region of KLCs that are vital for targeting kinesin-1 to different cellular structures.
Collapse
Affiliation(s)
- Marcin J Woźniak
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Victoria J Allan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK. Tel.: +44 161 275 5646; Fax: +44 161 275 5082; E-mail:
| |
Collapse
|
44
|
Konecna A, Frischknecht R, Kinter J, Ludwig A, Steuble M, Meskenaite V, Indermühle M, Engel M, Cen C, Mateos JM, Streit P, Sonderegger P. Calsyntenin-1 docks vesicular cargo to kinesin-1. Mol Biol Cell 2006; 17:3651-63. [PMID: 16760430 PMCID: PMC1525238 DOI: 10.1091/mbc.e06-02-0112] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We identified a direct interaction between the neuronal transmembrane protein calsyntenin-1 and the light chain of Kinesin-1 (KLC1). GST pulldowns demonstrated that two highly conserved segments in the cytoplasmic domain of calsyntenin-1 mediate binding to the tetratricopeptide repeats of KLC1. A complex containing calsyntenin-1 and the Kinesin-1 motor was isolated from developing mouse brain and immunoelectron microscopy located calsyntenin-1 in association with tubulovesicular organelles in axonal fiber tracts. In primary neuronal cultures, calsyntenin-1-containing organelles were aligned along microtubules and partially colocalized with Kinesin-1. Using live imaging, we showed that these organelles are transported along axons with a velocity and processivity typical for fast axonal transport. Point mutations in the two kinesin-binding segments of calsyntenin-1 significantly reduced binding to KLC1 in vitro, and vesicles bearing mutated calsyntenin-1 exhibited a markedly altered anterograde axonal transport. In summary, our results indicate that calsyntenin-1 links a certain type of vesicular and tubulovesicular organelles to the Kinesin-1 motor.
Collapse
Affiliation(s)
| | - Renato Frischknecht
- *Department of Biochemistry and
- Leibniz Institute for Neurobiology, 39 118 Magdeburg, Germany
| | | | | | | | | | | | | | | | - José-Maria Mateos
- Brain Research Institute, University of Zurich, CH-8057 Zürich, Switzerland; and
| | - Peter Streit
- Brain Research Institute, University of Zurich, CH-8057 Zürich, Switzerland; and
| | | |
Collapse
|
45
|
Abstract
Organelle transport is vital for the development and maintenance of axons, in which the distances between sites of organelle biogenesis, function, and recycling or degradation can be vast. Movement of mitochondria in axons can serve as a general model for how all organelles move: mitochondria are easy to identify, they move along both microtubule and actin tracks, they pause and change direction, and their transport is modulated in response to physiological signals. However, they can be distinguished from other axonal organelles by the complexity of their movement and their unique functions in aerobic metabolism, calcium homeostasis and cell death. Mitochondria are thus of special interest in relating defects in axonal transport to neuropathies and degenerative diseases of the nervous system. Studies of mitochondrial transport in axons are beginning to illuminate fundamental aspects of the distribution mechanism. They use motors of one or more kinesin families, along with cytoplasmic dynein, to translocate along microtubules, and bidirectional movement may be coordinated through interaction between dynein and kinesin-1. Translocation along actin filaments is probably driven by myosin V, but the protein(s) that mediate docking with actin filaments remain unknown. Signaling through the PI 3-kinase pathway has been implicated in regulation of mitochondrial movement and docking in the axon, and additional mitochondrial linker and regulatory proteins, such as Milton and Miro, have recently been described.
Collapse
Affiliation(s)
- Peter J Hollenbeck
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
46
|
Lazarov O, Morfini GA, Lee EB, Farah MH, Szodorai A, DeBoer SR, Koliatsos VE, Kins S, Lee VMY, Wong PC, Price DL, Brady ST, Sisodia SS. Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J Neurosci 2006; 25:2386-95. [PMID: 15745965 PMCID: PMC6726084 DOI: 10.1523/jneurosci.3089-04.2005] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sequential enzymatic actions of beta-APP cleaving enzyme 1 (BACE1), presenilins (PS), and other proteins of the gamma-secretase complex liberate beta-amyloid (Abeta) peptides from larger integral membrane proteins, termed beta-amyloid precursor proteins (APPs). Relatively little is known about the normal function(s) of APP or the neuronal compartment(s) in which APP undergoes proteolytic processing. Recent studies have been interpreted as consistent with the idea that APP serves as a kinesin-1 cargo receptor and that PS and BACE1 are associated with the APP-resident membranous cargos that undergo rapid axonal transport. In this report, derived from a collaboration among several independent laboratories, we examined the potential associations of APP and kinesin-1 using glutathione S-transferase pull-down and coimmunoprecipitation assays. In addition, we assessed the trafficking of membrane proteins in the sciatic nerves of transgenic mice with heterozygous or homozygous deletions of APP. In contrast to previous reports, we were unable to find evidence for direct interactions between APP and kinesin-1. Furthermore, the transport of kinesin-1 and tyrosine kinase receptors, previously reported to require APP, was unchanged in axons of APP-deficient mice. Finally, we show that two components of the APP proteolytic machinery, i.e., PS1 and BACE1, are not cotransported with APP in the sciatic nerves of mice. These findings suggest that the hypothesis that APP serves as a kinesin-1 receptor and that the proteolytic processing machinery responsible for generating Abeta is transported in the same vesicular compartment in axons of peripheral nerves requires revision.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Neurobiology, Pharmacology, and Physiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shapiro J, Ingram J, Johnson KA. Characterization of a molecular chaperone present in the eukaryotic flagellum. EUKARYOTIC CELL 2005; 4:1591-4. [PMID: 16151252 PMCID: PMC1214201 DOI: 10.1128/ec.4.9.1591-1594.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlamydomonas flagella contain a molecular chaperone now identified as HSP70A, a major cytoplasmic isoform. HSP70A synthesis is upregulated by deflagellation, and its distribution in the flagellum overlaps with the IFT kinesin-II motor FLA10. HSP70A may chaperone flagellar proteins during transport, participating in the assembly and maintenance of the flagellum.
Collapse
Affiliation(s)
- Jessica Shapiro
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, USA
| | | | | |
Collapse
|
48
|
Cottrell BA, Galvan V, Banwait S, Gorostiza O, Lombardo CR, Williams T, Schilling B, Peel A, Gibson B, Koo EH, Link CD, Bredesen DE. A pilot proteomic study of amyloid precursor interactors in Alzheimer's disease. Ann Neurol 2005; 58:277-89. [PMID: 16049941 PMCID: PMC1847583 DOI: 10.1002/ana.20554] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Several approaches have been used in an effort to identify proteins that interact with beta-amyloid precursor protein (APP). However, few studies have addressed the identification of proteins associated with APP in brain tissue from patients with Alzheimer's disease. We report the results of a pilot proteomic study performed on complexes immunoprecipitated with APP in brain samples of patients with Alzheimer's disease and normal control subjects. The 21 proteins identified could be grouped into five functional classes: molecular chaperones, cytoskeletal and structural proteins, proteins involved in trafficking, adaptors, and enzymes. Among the proteins identified, six had been reported previously as direct, indirect, or genetically inferred APP interactors. The other 15 proteins immunoprecipitated with APP were novel potential partners. We confirmed the APP interaction by Western blotting and coimmunolocalization in brain tissues, for 5 of the 21 interactors. In agreement with previous studies, our results are compatible with an involvement of APP in axonal transport and vesicular trafficking, and with a potential association of APP with cellular protein folding/protein degradation systems.
Collapse
|
49
|
Francis F, Roy S, Brady ST, Black MM. Transport of neurofilaments in growing axons requires microtubules but not actin filaments. J Neurosci Res 2005; 79:442-50. [PMID: 15635594 DOI: 10.1002/jnr.20399] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurofilament (NF) polymers are conveyed from cell body to axon tip by slow axonal transport, and disruption of this process is implicated in several neuronal pathologies. This movement occurs in both anterograde and retrograde directions and is characterized by relatively rapid but brief movements of neurofilaments, interrupted by prolonged pauses. The present studies combine pharmacologic treatments that target actin filaments or microtubules with imaging of NF polymer transport in living axons to examine the dependence of neurofilament transport on these cytoskeletal systems. The heavy NF subunit tagged with green fluorescent protein was expressed in cultured sympathetic neurons to visualize NF transport. Depletion of axonal actin filaments by treatment with 5 microM latrunculin for 6 hr had no detectable effect on directionality or transport rate of NFs, but frequency of movement events was reduced from 1/3.1 min of imaging time to 1/4.9 min. Depolymerization of axonal microtubules using either 5 microM vinblastine for 3 hr or 5 microg/ml nocodazole for 4-6 hr profoundly suppressed neurofilament transport. In 92% of treated neurons, NF transport was undetected. These observations indicate that actin filaments are not required for neurofilament transport, although they may have subtle effects on neurofilament movements. In contrast, axonal transport of NFs requires microtubules, suggesting that anterograde and retrograde NF transport is powered by microtubule-based motors.
Collapse
Affiliation(s)
- Franto Francis
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Recent research on kinesin motors has outlined the diversity of the superfamily and defined specific cargoes moved by kinesin family (KIF) members. Owing to the difficulty of purifying large amounts of native motors, much of this work has relied on recombinant proteins expressed in vitro. This approach does not allow ready determination of the complement of kinesin motors present in a given tissue, the relative amounts of different motors, or comparison of their native activities. To address these questions, we isolated nucleotide-dependent, microtubule-binding proteins from 13-day chick embryo brain. Proteins were enriched by microtubule affinity purification, then subjected to velocity sedimentation to separate the 20S dynein/dynactin pool from a slower sedimenting KIF containing pool. Analysis of the latter pool by anion exchange chromatography revealed three KIF species: kinesin I (KIF5), kinesin II (KIF3), and KIF1C (Unc104/KIF1). The most abundant species, kinesin I, exhibited the expected long range microtubule gliding activity. By contrast, KIF1C did not move microtubules. Kinesin II, the second most abundant KIF, could be fractionated into two pools, one containing predominantly A/B isoforms and the other containing A/C isoforms. The two motor species had similar activities, powering microtubule gliding at slower speeds and over shorter distances than kinesin I.
Collapse
Affiliation(s)
- Matthew A Berezuk
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|