1
|
Tomioka T, Maruoka H, Kawa H, Yamazoe R, Fujiki D, Shimoke K, Ikeuchi T. The histone deacetylase inhibitor trichostatin A induces neurite outgrowth in PC12 cells via the epigenetically regulated expression of the nur77 gene. Neurosci Res 2014; 88:39-48. [PMID: 25128386 DOI: 10.1016/j.neures.2014.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/12/2014] [Accepted: 07/17/2014] [Indexed: 01/25/2023]
Abstract
Histone deacetylase (HDAC) inhibitors induce histone acetylation and gene expression by changing local chromatin structures. They can thereby influence various cells to proliferate or differentiate. It has been reported that trichostatin A (TSA) or valproic acid (VPA) can induce the neuronal differentiation of mouse embryonic neural stem cells and rat cerebellar granule cells. It is unclear however which gene is responsible for the neuronal differentiation induced by HDAC inhibitors. In this study, we investigated the contribution of immediate early gene (IEG) nur77 to the neuronal differentiation induced by TSA. We report that TSA induces neurite outgrowth in PC12 cells, and C646, an inhibitor of HAT (histone acetyl transferase) (p300), prevents TSA-induced neurite formation. The acetylation of the Lys14 residue of histone H3, and mRNA and protein expression of nur77 gene were found to be stimulated after treatment with TSA, but not in the presence of C646. A knock-down of nur77 inhibits the neurite outgrowth induced by TSA. Furthermore, the ectopic expression of nur77 significantly elicits neurite formation in PC12 cells. These results suggest that the expression of nur77, which is up-regulated via the TSA-induced acetylation of Lys14 on histone H3, is essential for the neuronal differentiation in TSA-induced PC12 cells.
Collapse
Affiliation(s)
- Takuma Tomioka
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Hiroki Maruoka
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan; Technical Research Laboratory, Kurabo Industries Ltd., Neyagawa, Osaka 572-0823, Japan
| | - Hiromichi Kawa
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Ryosuke Yamazoe
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Daichi Fujiki
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Koji Shimoke
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Toshihiko Ikeuchi
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
2
|
Maruoka H, Sasaya H, Shimamura Y, Nakatani Y, Shimoke K, Ikeuchi T. Dibutyryl-cAMP up-regulates nur77 expression via histone modification during neurite outgrowth in PC12 cells. J Biochem 2010; 148:93-101. [PMID: 20375114 DOI: 10.1093/jb/mvq036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An elevated level of cyclic AMP (cAMP) within cells activates gene expression through the cAMP-PKA-CREB pathway. Among the CREB target genes, some immediate early genes exist that are responsive to cAMP including the nur77 and c-fos genes. Treatment with dibutyryl-cAMP (dbcAMP) as well as nerve growth factor (NGF) induces neurite outgrowth in PC12 cells. Here, we report that acetylation of histone H3 was gradually stimulated after treatment with dbcAMP in PC12 cells and peaked 1 h after treatment. As the result of reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qPCR) experiments, both nur77 and c-fos gene expression were found to have peak 1 h after treatment. Knock-down with siRNA against nur77 mRNA inhibited the neurite outgrowth induced by dbcAMP, whereas knock-down with siRNA against c-fos mRNA did not inhibit the dbcAMP-induced neurite outgrowth. A chromatin immunoprecipitation (ChIP) assay revealed that the nur77 gene was associated with the acetylated Lys14 of histone H3 after treatment with dbcAMP. However, the amount of c-fos gene associated with acetylated histone H3 was not changed after treatment with dbcAMP. These results suggest that the expression of nur77, which is essential for the neuronal differentiation induced by dbcAMP, is up-regulated via dbcAMP-induced acetylation of the Lys14 of histone H3 in PC12 cells.
Collapse
Affiliation(s)
- Hiroki Maruoka
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Faculty of Chemistry, Materials, and Bioengineering and Strategic Research Base, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Pascale A, Amadio M, Scapagnini G, Lanni C, Racchi M, Provenzani A, Govoni S, Alkon DL, Quattrone A. Neuronal ELAV proteins enhance mRNA stability by a PKCalpha-dependent pathway. Proc Natl Acad Sci U S A 2005; 102:12065-70. [PMID: 16099831 PMCID: PMC1189326 DOI: 10.1073/pnas.0504702102] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
More than 1 in 20 human genes bear in the mRNA 3' UTR a specific motif called the adenine- and uridine-rich element (ARE), which posttranscriptionally determines its expression in response to cell environmental signals. ELAV (embryonic lethal abnormal vision) proteins are the only known ARE-binding factors that are able to stabilize the bound mRNAs, thereby positively controlling gene expression. Here, we show that in human neuroblastoma SH-SY5Y cells, neuron-specific ELAV (nELAV) proteins (HuB, HuC, and HuD) are up-regulated and redistributed by 15 min of treatment with the activators of PKC phorbol esters and bryostatin-1. PKC stimulation also induces nELAV proteins to colocalize with the translocated PKCalpha isozyme preferentially on the cytoskeleton, with a concomitant increase of nELAV threonine phosphorylation. The same treatment promotes stabilization of growth-associated protein 43 (GAP-43) mRNA, a well known nELAV target, and induces an early increase in GAP-43 protein concentration, again only in the cytoskeletal cell fraction. Genetic or pharmacological inactivation of PKCalpha abolishes nELAV protein cytoskeletal up-regulation, GAP-43 mRNA stabilization, and GAP-43 protein increase, demonstrating the primary role of this specific PKC isozyme in the cascade of nELAV recruitment. Finally, in vivo PKC activation is associated with an up-regulation of nELAV proteins in the hippocampal rat brain. These findings suggest a model for gene expression regulation by nELAV proteins through a PKCalpha-dependent pathway that is relevant for the cellular programs in which ARE-mediated control plays a pivotal role.
Collapse
Affiliation(s)
- Alessia Pascale
- Department of Experimental and Applied Pharmacology, University of Pavia, Via Taramelli 14, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Smith ER, Smedberg JL, Rula ME, Xu XX. Regulation of Ras-MAPK pathway mitogenic activity by restricting nuclear entry of activated MAPK in endoderm differentiation of embryonic carcinoma and stem cells. ACTA ACUST UNITED AC 2004; 164:689-99. [PMID: 14981092 PMCID: PMC2172165 DOI: 10.1083/jcb.200312028] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to retinoic acid, embryonic stem and carcinoma cells undergo differentiation to embryonic primitive endoderm cells, accompanied by a reduction in cell proliferation. Differentiation does not reduce the activation of cellular MAPK/Erk, but does uncouple mitogen-activated protein kinase (MAPK) activation from phosphorylation/activation of Elk-1 and results in inhibition of c-Fos expression, whereas phosphorylation of the cytoplasmic substrate p90RSK remains unaltered. Cell fractionation and confocal immunofluorescence microscopy demonstrated that activated MAPK is restricted to the cytoplasmic compartment after differentiation. An intact actin and microtubule cytoskeleton appears to be required for the restriction of MAPK nuclear entry induced by retinoic acid treatment because the cytoskeletal disrupting agents nocodazole, colchicine, and cytochalasin D are able to revert the suppression of c-Fos expression. Thus, suppression of cell proliferation after retinoic acid–induced endoderm differentiation of embryonic stem and carcinoma cells is achieved by restricting nuclear entry of activated MAPK, and an intact cytoskeleton is required for the restraint.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Ovarian Cancer and Tumor Cell Biology Programs, Dept. of Medical Oncology, Medical Science Division, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
5
|
Mizumaki Y, Kurimoto M, Hirashima Y, Nishijima M, Kamiyama H, Nagai S, Takaku A, Sugihara K, Shimizu M, Endo S. Lipophilic fraction of Panax ginseng induces neuronal differentiation of PC12 cells and promotes neuronal survival of rat cortical neurons by protein kinase C dependent manner. Brain Res 2002; 950:254-60. [PMID: 12231251 DOI: 10.1016/s0006-8993(02)03049-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Panax ginseng is a traditional Chinese herb with a wide range of therapeutic benefits. Recent studies focusing on its effect on the central nervous system have revealed that ginseng has neurotrophic effects including differentiation of neurons. However, most studies involve use of the water-soluble fraction called saponin, and little is known about the effect of the lipophilic fraction. In the present study, we have shown that the lipophilic fraction of ginseng at a concentration of between 0.1 and 50 microg/ml can induce neurite outgrowth of PC12 cells in a dose-dependent manner. Nearly all cells showed morphological differentiation in response to the lipophilic fraction. This morphological differentiation of PC12 cells appeared to be similar to that of NGF. The lipophilic fraction of ginseng also induced neurite extension and promoted survival of rat cortical neurons at a concentration of between 0.025 and 1 microg/ml. These neurotrophic effects on PC12 cells and cortical neurons were not inhibited by K252b, which selectively blocks neurotrophin actions by inhibiting trk-type receptor tyrosine phosphorylation. This suggests that trks do not participate in the neurotrophic action of the lipophilic fraction. However, the effects were completely attenuated by sphingosine, polymyxin B or staurosporin, known inhibitors of protein kinase C (PKC) and calmodulin-dependent kinases. Our results suggest that the lipophilic fraction of ginseng exerts its neurotrophic effects via PKC-dependent pathways.
Collapse
Affiliation(s)
- Yasushi Mizumaki
- Department of Neurosurgery, Toyama Medical and Pharmaceutical University, 2630 Sugitani, 930-0194, Toyama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chen Q, Patel R, Sales A, Oji G, Kim J, Monreal AW, Brinton RD. Vasopressin-induced neurotrophism in cultured neurons of the cerebral cortex: dependency on calcium signaling and protein kinase C activity. Neuroscience 2001; 101:19-26. [PMID: 11068133 DOI: 10.1016/s0306-4522(00)00323-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal process outgrowth has been postulated to be one of the fundamental steps involved in neuronal development. To test whether vasopressin can influence neuronal development by acting on the outgrowth of neuronal processes, we determined the neurotrophic action of the memory-enhancing peptide, vasopressin, in neurons derived from the cerebral cortex, a site of integrative cognitive function and long-term memory. Exposure to V(1) receptor agonist significantly increased multiple features of nerve cell morphology, including neurite length, number of branches, branch length, number of branch bifurcation points and number of microspikes. The dose-response profile of V(1) receptor agonist-induced neurotrophism exhibited a biphasic function, with lower concentrations inducing a significant increase while higher concentrations generally induced no significant effect. The neurotrophic effect of V(1) receptor activation did not require growth factors present in serum. Analysis of the regional selectivity of the vasopressin-induced neurotrophic effect revealed significant V(1) receptor agonist-induced neurotrophism in occipital and parietal neurons, whereas frontal and temporal neurons were unresponsive. Results of experiments to determine the mechanism of vasopressin-induced neurotrophism demonstrated that vasopressin-induced neurotrophism is dependent on V(1)a receptor activation, requires L-type calcium channel activation and activation of both pathways of the phosphatidylinositol signaling cascade, inositol trisphosphate and protein kinase C. These studies are the first to describe a functional cellular response for vasopressin in the cerebral cortex. The findings are discussed with respect to their implications for understanding the role of vasopressin-induced neurotrophism, the associated signaling pathways required for this response, and the ability of vasopressin to enhance memory function.
Collapse
Affiliation(s)
- Q Chen
- Department of Molecular Pharmacology & Toxicology, Pharmaceutical Sciences Center, University of Southern California, CA 90033, Los Angeles, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Vanhoutte P, Nissen JL, Brugg B, Gaspera BD, Besson MJ, Hipskind RA, Caboche J. Opposing roles of Elk-1 and its brain-specific isoform, short Elk-1, in nerve growth factor-induced PC12 differentiation. J Biol Chem 2001; 276:5189-96. [PMID: 11050086 DOI: 10.1074/jbc.m006678200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ternary complex factor Elk-1, a major nuclear target of extracellular signal-regulated kinases, is a strong transactivator of serum-responsive element (SRE) driven gene expression. We report here that mature brain neurons and nerve growth factor (NGF)-differentiated PC12 cells also express a second, smaller isoform of Elk-1, short Elk-1 (sElk-1). sElk-1 arises from an internal translation start site in the Elk-1 sequence, which generates a protein lacking the first 54 amino acids of the DNA-binding domain. This deletion severely compromises the ability of sElk-1 to form complexes with serum response factor on the SRE in vitro and to activate SRE reporter genes in the presence of activated Ras. Instead, sElk, but not a mutant that cannot be phosphorylated, inhibits transactivation driven by Elk-1. More pertinent to the neuronal-specific expression of sElk-1, we show it plays an opposite role to Elk-1 in potentiating NGF-driven PC12 neuronal differentiation. Overexpression of sElk-1 but not Elk-1 increases neurite extension, an effect critically linked to its phosphorylation. Interestingly, in the presence of sElk-1, Elk-1 loses its strictly nuclear localization to resemble the nuclear/cytoplasm pattern observed in the mature brain. This is blocked by mutating a normally cryptic nuclear export signal in Elk-1. These data provide new insights into molecular events underlying neuronal differentiation of PC12 cells mediated by the NGF-ERK signaling cascade.
Collapse
Affiliation(s)
- P Vanhoutte
- Laboratoire de Neurochimie-Anatomie, Institut des Neurosciences, CNRS-UMR 7624, Université Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Wooten MW, Seibenhener ML, Neidigh KB, Vandenplas ML. Mapping of atypical protein kinase C within the nerve growth factor signaling cascade: relationship to differentiation and survival of PC12 cells. Mol Cell Biol 2000; 20:4494-504. [PMID: 10848576 PMCID: PMC85825 DOI: 10.1128/mcb.20.13.4494-4504.2000] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The pathway by which atypical protein kinase C (aPKC) contributes to nerve growth factor (NGF) signaling is poorly understood. We previously reported that in PC12 cells NGF-induced activation of mitogen-activated protein kinase (MAPK) occurs independently of classical and nonclassical PKC isoforms, whereas aPKC isoforms were shown to be required for NGF-induced differentiation. NGF-induced activation of PKC-iota was observed to be dependent on phosphatidylinositol 3-kinase (PI3K) and led to coassociation of PKC-iota with Ras and Src. Expression of dominant negative mutants of either Src (DN2) or Ras (Asn-17) impaired activation of PKC-iota by NGF. At the level of Raf-1, neither PKC-iota nor PI3 kinase was required for activation; however, PKC-iota could weakly activate MEK. Inhibitors of PKC-iota activity and PI3K had no effect on NGF-induced MAPK or p38 activation but reduced NGF-stimulated c-Jun N-terminal kinase activity. Src, PI3K, and PKC-iota were likewise required for NGF-induced NF-kappaB activation and cell survival, whereas Ras was not required for either survival or NF-kappaB activation but was required for differentiation. IKK existed as a complex with PKC-iota, Src and IkappaB. Consistent with a role for Src in regulating NF-kappaB activation, an absence of Src activity impaired recruitment of PKC-iota into an IKK complex and markedly impaired NGF-induced translocation of p65/NF-kappaB to the nucleus. These findings reveal that in PC12 cells, aPKCs comprise a molecular switch to regulate differentiation and survival responses coupled downstream to NF-kappaB. On the basis of these findings, Src emerges as a critical upstream regulator of both PKC-iota and the NF-kappaB pathway.
Collapse
Affiliation(s)
- M W Wooten
- Department of Biological Sciences, Program in Cell and Molecular Biosciences, Auburn University, AL 36849, USA.
| | | | | | | |
Collapse
|
9
|
Gil C, Pelliccioni P, Itarte E, Aguilera J. Differential action of nerve growth factor and phorbol ester TPA on rat synaptosomal PKC isoenzymes. Neurochem Int 1999; 35:281-91. [PMID: 10482348 DOI: 10.1016/s0197-0186(99)00076-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The subcellular redistribution of protein kinase C family members (alpha, beta, gamma, delta, epsilon and zeta isoforms) was examined in response to treatment with 12-O-tetradecanoyl-phorbol-13 acetate (TPA) or nerve growth factor (NGF) in a synaptosomal-enriched P2 fraction from rat brain. Treatment with TPA affected members of the classical-PKC family (alpha, beta and gamma), resulting in a final loss of total protein of each isoenzyme. The kinetics of changes of members of the novel-PKC family are different, the delta isoform being translocated, but not down-regulated, while the epsilon isoform showing only a slight diminishing of immunoreactivity in the soluble and particulate fractions. The atypical-PKC zeta isoform was not translocated in response to TPA. Incubation with NGF induced a loss of immunoreactivity of the cytosolic alpha, beta and epsilon isoforms, but the membrane fractions of these isoforms were not appreciably affected. In contrast, a marked translocation from cytosol to membrane was observed in the case of the gamma and delta isoforms. The zeta isoform presented a slight translocation from the particulate fraction to the soluble fraction. Thus, the results show that the effects of TPA and NGF on PKC isoforms are not coincident in synaptosomes, the 6 isoform being activated and not down-regulated by both treatments, whereas the gamma isoform is only down-regulated in the case of TPA, but presents sustained translocation with NGF, indicating that PKC isoform-specific degradation pathways exist in synaptic terminals. The effects of NGF on PKC isoforms coexist with an increase in NGF-induced polyphosphoinositide hydrolysis, suggesting the participation of phospholipases.
Collapse
Affiliation(s)
- C Gil
- Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain
| | | | | | | |
Collapse
|
10
|
Corbit KC, Foster DA, Rosner MR. Protein kinase Cdelta mediates neurogenic but not mitogenic activation of mitogen-activated protein kinase in neuronal cells. Mol Cell Biol 1999; 19:4209-18. [PMID: 10330161 PMCID: PMC104380 DOI: 10.1128/mcb.19.6.4209] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In several neuronal cell systems, fibroblast-derived growth factor (FGF) and nerve growth factor (NGF) act as neurogenic agents, whereas epidermal growth factor (EGF) acts as a mitogen. The mechanisms responsible for these different cellular fates are unclear. We report here that although FGF, NGF, and EGF all activate mitogen-activated protein (MAP) kinase (extracellular signal-related kinase [ERK]) in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells, the activation of ERK by the neurogenic agents FGF and NGF is dependent upon protein kinase Cdelta (PKCdelta), whereas ERK activation in response to the mitogenic EGF is independent of PKCdelta. Antisense PKCdelta oligonucleotides or the PKCdelta-specific inhibitor rottlerin inhibited FGF- and NGF-induced, but not EGF-induced, ERK activation. In contrast, EGF-induced ERK activation was inhibited by the phosphatidylinositol-3-kinase inhibitor wortmannin, which had no effect upon FGF-induced ERK activation. Rottlerin also inhibited the activation of MAP kinase kinase (MEK) in response to activated Raf, but had no effect upon c-Raf activity or ERK activation by activated MEK. These results indicate that PKCdelta functions either downstream from or in parallel with c-Raf, but upstream of MEK. Inhibition of PKCdelta also blocked neurite outgrowth induced by FGF and NGF in PC12 cells and by activated Raf in H19-7 cells, indicating a role for PKCdelta in the neurogenic effects of FGF, NGF, and Raf. Interestingly, the PKCdelta requirement is apparently cell type specific, since FGF-induced ERK activation was independent of PKCdelta in NIH 3T3 murine fibroblasts, in which FGF is a mitogen. These data demonstrate that PKCdelta contributes to growth factor specificity and response in neuronal cells and may also promote cell-type-specific differences in growth factor signaling.
Collapse
Affiliation(s)
- K C Corbit
- Department of Pharmacological and Physiological Sciences and The Ben May Institute for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
11
|
Traina G, Petrucci C, Gargini C, Bagnoli P. Somatostatin enhances neurite outgrowth in PC12 cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 111:223-30. [PMID: 9838128 DOI: 10.1016/s0165-3806(98)00141-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The rat pheochromocytoma cell line PC12 forms neurites in response to nerve growth factor (NGF), and it was also reported to extend processes in the presence of somatostatin (somatotropin release-inhibiting factor, SRIF), a neuroactive peptide that seems to act as a morphogenetic factor in the developing nervous system. In the present study, we re-evaluated the effects of SRIF on PC12 cell differentiation. Our results indicate that SRIF alone is ineffective in promoting neurite outgrowth. Instead, SRIF or its analogue, octreotide (a SRIF agonist on the receptor subtypes 2, 3 and 5), potentiates neurite extension induced by NGF. These results suggest that SRIF enhances neurite formation in PC12 cells without directly promoting neurite outgrowth. SRIF potentiation of NGF-induced neurite outgrowth persists at least in part in the presence of pertussis toxin (PTX), suggesting the involvement of PTX-insensitive G-proteins. In addition, protein kinase-dependent pathways are likely to mediate SRIF effects on NGF-induced differentiation.
Collapse
Affiliation(s)
- G Traina
- Dipartimento di Fisiologia e Biochimica 'G. Moruzzi', Università degli Studi di Pisa, Via S. Zeno, 31-56127, Pisa, Italy
| | | | | | | |
Collapse
|
12
|
Zhou G, Seibenhener ML, Wooten MW. Nucleolin is a protein kinase C-zeta substrate. Connection between cell surface signaling and nucleus in PC12 cells. J Biol Chem 1997; 272:31130-7. [PMID: 9388266 DOI: 10.1074/jbc.272.49.31130] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously shown that protein kinase C (PKC)-zeta is activated and required for nerve growth factor (NGF)-induced differentiation of rat pheochromocytoma PC12 cells (Wooten, M. W., Zhou, G., Seibenhener, M. L., and Coleman, E. S. (1994) Cell Growth & Diff. 5, 395-403; Coleman, E. S., and Wooten, M. W. (1994) J. Mol. Neurosci. 5, 39-57). Here we report the characterization and identification of a 106-kDa nuclear protein as a specific substrate of PKC-zeta. NGF treatment of PC12 cells resulted in translocation of PKC-zeta and coincident phosphorylation of a protein that was localized within the nucleoplasm of nuclei isolated from PC12 cells. Addition of PKC-zeta pseudosubstrate peptide in vitro or myristoylated peptide in vivo diminished phosphorylation of pp106 in a dose-dependent fashion. Likewise, addition of purified PKC-zeta, but neither PKC-alpha nor delta, to nuclear extracts resulted in an incremental increase in the phosphorylation of pp106. Expression of dominant-negative PKC-zeta inhibited NGF-induced phosphorylation of pp106, by comparison overexpression of PKC-zeta enhanced basal phosphorylation without a noticeable effect upon NGF-induced effects. Amino acid sequence analysis of four peptides derived from purified pp106 revealed that this protein was homologous to nucleolin. Using an in vitro reconstitution system, purified nucleolin was likewise shown to be phosphorylated by purified PKC-zeta. The staining intensity of both enzyme and substrate in the nucleus increased upon treatment with NGF. In vivo labeling with 32Pi and stimulation of PC12 cells with NGF followed by immunoprecipitation with anti-nucleolin antibody corroborated the in vitro approach documenting enhanced phosphorylation of nucleolin by NGF treatment. Taken together, the findings presented herein document that nucleolin is a target of PKC-zeta that serves to relay NGF signals from cell surface to nucleus in PC12 cells.
Collapse
Affiliation(s)
- G Zhou
- Department of Zoology, Auburn University, Auburn, Alabama 36849-5414, USA
| | | | | |
Collapse
|
13
|
Yao M, Zhou XD, Zha XL, Shi DR, Fu J, He JY, Lu HF, Tang ZY. Expression of the integrin alpha5 subunit and its mediated cell adhesion in hepatocellular carcinoma. J Cancer Res Clin Oncol 1997; 123:435-40. [PMID: 9292706 DOI: 10.1007/bf01372547] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tumor invasion and metastasis are complex processes, requiring the ability of tumor cells to interact with proteins of the extracellular matrix through cell-adhesion molecules on the cell surface. Integrins are heterodimeric membrane glycoproteins, consisting of alpha and beta subunits, which enable cells to recognize adhesive substrates in the extracellular matrix. The roles of the integrin alpha5beta1 in tumor invasion are highlighted by finding that some tumor cells have lost or reduced alpha5beta1 expression. It therefore functions as a negative signaling regulator. Expression of alpha5beta1 and its mediation of cell adhesion in hepatocellular carcinoma (HCC) have not been elucidated. In surgical specimens of HCC we found, by immunohistochemistry and Northern blot analysis, that the alpha5-positive rates in cancerous tissues were lower than the corresponding rates in non-cancerous tissues. Reduced expression of the integrin alpha5 occurred more frequently in HCC with more malignant phenotypes, such as poor differentiation, large size (more than 10-cm in diameter), absence of capsule and high invasion. Reverse transcription/polymerase chain reaction, a more sensitive assay, was used to detect the alpha5 mRNA level in LCID20, a highly metastatic model of human HCC, and LCID35, a low-metastasis model. The results showed that integrin alpha5 was negative in the former and positive in the latter. Cell adhesion assays showed the maximal percentage inhibition of anti-alpha5 mAb on SMMC 7721 cell adhesion to fibronectin to be 68.9 +/- 4.9% at the saturation concentrations of each antibody (200 microg/ml). If anti-alpha5 mAb was combined with anti-beta1 mAb, the inhibition was 74.1 +/- 11.1%. It is concluded that reduced expression of the integrin alpha5 subunit is correlated with more malignant phenotypes of human HCC. Any change in the adhesion of hepatocellular carcinoma cells to fibronectin is mainly dependent upon the function of the integrin alpha5beta1.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Adhesion/physiology
- Fibronectins/metabolism
- Humans
- Integrin alpha5
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Neoplasm Metastasis
- Phenotype
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Receptors, Fibronectin/biosynthesis
- Receptors, Fibronectin/metabolism
- Receptors, Fibronectin/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Yao
- Liver Cancer Institute, Zhong Shan Hospital, Shanghai Medical University, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dickens G, Lavarreda M, Zheng WH, Guroff G. Involvement of protein kinase C in nerve growth factor- and K-252a-stimulated calcium uptake into PC12 cells. J Neurosci Res 1997; 47:271-6. [PMID: 9039649 DOI: 10.1002/(sici)1097-4547(19970201)47:3<271::aid-jnr5>3.0.co;2-f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Both nerve growth factor (NGF) and K-252a stimulate the uptake of calcium into PC12 cells. Stimulation by either is prevented by pretreatment of the cells with the tumor promoter phorbol 12-myristate 13-acetate (PMA), suggesting an involvement of protein kinase C in the stimulation. The effect of PMA is specific in that the calcium uptake stimulated by either the L-type channel agonist BAY K 8644 or by ATP is not altered in PMA-pretreated cells. An involvement of kinase C is also suggested by the inhibition of NGF- or K-252a-stimulated calcium uptake by the kinase C inhibitors staurosporine and calphostin C. Inhibition by the isoform-specific agents GO 6976 and thymeleatoxin implicates one of the classic calcium-sensitive isoforms of kinase C. The close similarity in the profiles of inhibition of NGF-stimulated and K-252a-stimulated calcium uptake by the various effectors suggests that NGF and K-252a act on calcium uptake through some of the same signaling elements.
Collapse
Affiliation(s)
- G Dickens
- Section on Growth Factors, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
15
|
Wiklund P, Ekström PA, Edbladh M, Tonge D, Edström A. Protein kinase C and mouse sciatic nerve regeneration. Brain Res 1996; 715:145-54. [PMID: 8739633 DOI: 10.1016/0006-8993(95)01570-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have studied the role of protein kinase C (PKC) in peripheral nerve regeneration by using the cultured adult mouse sciatic nerve, which displays regrowth of sensory axons under serum-free conditions. By the use of immunohistochemistry we show that one of the isoforms of PKC, PKC beta, is present in the nerve cell bodies of normal nerves and is upregulated after injury. In spite of this, the specific PKC inhibitor chelerythrine at 5 microM, a concentration well above its IC50 value for PKC, failed to reduce the outgrowth distance of new axons. This was not due to impermeability of the drug, since the same concentration caused a clear reduction of the injury-induced proliferation of Schwann cells in the crush region. Likewise, HA-1004, an inhibitor of cyclic nucleotide-dependent protein kinases, also lacked effect on outgrowth when used on its own, even at very high concentrations (100 microM). In contrast, outgrowth was significantly reduced when 5 microM chelerythrine and 5 microM HA-1004 were used in combination. In conclusion, the present results suggest that PKC-activity is important but not indispensable for the regeneration process. Successful completion of the latter could be achieved by several, perhaps redundant, phosphorylation systems.
Collapse
Affiliation(s)
- P Wiklund
- Department of Animal Physiology, University of Lund, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Abstract
A morphogenic role of neurotransmitters during cellular differentiation in vitro has been demonstrated in recent years. Using in situ hybridization, we confirm the presence of the D1 receptor at E16 and show additionally that the transcript is relatively widespread and present in both proliferative and differentiating areas of the cerebral wall. Because DA receptor expression precedes the arrival of presynaptic terminals during forebrain development, we examined the role of DA in cerebral cortical neuron differentiation in vitro, using immunohistochemical markers of dendrites, microtubule-associated-membrane protein 2 (MAP2) and axons, neurofilament protein (NF-H). Neurite length, cell size, and cell viability in response to D1 and D2 receptor agonists SKF38393 and quinpirole, respectively, and to DA were analyzed in neurons obtained from embryonic (E) day 16 rats. We have shown that 1) paradoxically, DA at different concentrations can either stimulate or inhibit neurite outgrowth; 2) there is a bimodal pattern of DA-induced axonal outgrowth, i.e., at low and high doses; 3) D2 receptor activation induces neurite outgrowth while D1 receptor activation is inhibitory; 4) D2-mediated neurite elongation is preferentially axonal while D1 receptor activation reduces both axonal and dendritic outgrowth; 5) low doses of DA promote the expression of cytoskeletal components of axonal maturation; and 6) D1 receptor activation decreases neuronal size. We suggest that DA may influence cellular differentiation and circuitry formation early in development of the cerebral cortex through receptor-mediated effects on process outgrowth, which could lead to effects on circuit formation.
Collapse
Affiliation(s)
- B S Reinoso
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, UMDNJ, Piscataway 08854, USA
| | | | | |
Collapse
|
17
|
Campbell XZ, Neet KE. Hierarchical analysis of the nerve growth factor-dependent and nerve growth factor-independent differentiation signaling pathways in PC12 cells with protein kinase inhibitors. J Neurosci Res 1995; 42:207-19. [PMID: 8568921 DOI: 10.1002/jnr.490420208] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of a series of protein kinase inhibitors on nerve growth factor (NGF)-dependent and NGF-independent neurite outgrowth in PC12 cells have established an ordered relationship among those protein kinases sensitive to down regulation by bryostatin, stimulation by staurosporine, inhibition by sphingosine, or inhibition by 6-thioguanine (6-TG). Quantitation of the biphasic staurosporine effects on NGF-induced neurite outgrowth (Hashimoto and Hagino: J Neurochem 53:1675-1685, 1989) gave an IC50 of 2-4 nM for inhibition and an EC50 of 15-20 nM for induction of neurite extension. Both sphingosine and 6-TG inhibited neurite outgrowth induced by staurosporine and basic fibroblast derived growth factor (bFGF), as well as by NGF; therefore, sphingosine- and 6-TG-sensitive protein kinase steps occur after the convergence of the NGF, bFGF, and staurosporine signal pathways. Down regulation of protein kinase C by bryostatin chronic treatment, which inhibits NGF- and bFGF-induced neuritogenesis (Singh et al.: Biochemistry 33:542-551, 1994), did not inhibit the staurosporine-induced neurite outgrowth. Thus, the bryostatin-sensitive protein kinase C must occur subsequent to the convergence of the bFGF and NGF pathways, but before (or parallel to) staurosporine initiation of neurite outgrowth. In contrast, low concentrations of phorbol myristoyl acetate (PMA) or bryostatin, which activate protein kinase C activity, enhanced the staurosporine- or NGF-induced neurite extension. These data indicate that stimulation of one or more protein kinase C isozymes can synergistically interact with the signaling pathway to increase the rate of neuritogenesis. Inhibition by 5-7.5 nM staurosporine acted rapidly to arrest and decrease development of neurites up to 24 hr after NGF treatment, as did K252a and NGF polyclonal antibody addition. Our cellular data support the concept that staurosporine acts to inhibit the NGF receptor Trk (Nye et al.: Mol Biol Cell 3:677-686, 1992), but that downstream steps can be activated by the higher concentration of staurosporine to bypass Trk and lead to neurite generation. Effects of staurosporine, 6-TG, and sphingosine on c-fos gene induction with or without NGF were not correlated with the generation of neurites. The sequence of protein kinases sensitive to these effectors appears to be in the order (but not consecutive) bryostatin, staurosporine, sphingosine, and 6-TG.
Collapse
Affiliation(s)
- X Z Campbell
- Department of Biological Chemistry, Finch University of Health Sciences/Chicago Medical School, North Chicago, Illinois 60064, USA
| | | |
Collapse
|
18
|
O'Driscoll KR, Teng KK, Fabbro D, Greene LA, Weinstein IB. Selective translocation of protein kinase C-delta in PC12 cells during nerve growth factor-induced neuritogenesis. Mol Biol Cell 1995; 6:449-58. [PMID: 7626808 PMCID: PMC301203 DOI: 10.1091/mbc.6.4.449] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The specific intracellular signals initiated by nerve growth factor (NGF) that lead to neurite formation in PC12 rat pheochromocytoma cells are as of yet unclear. Protein kinase C-delta (PKC delta) is translocated from the soluble to the particulate subcellular fraction during NGF-induced-neuritogenesis; however, this does not occur after treatment with the epidermal growth factor, which is mitogenic but does not induce neurite formation. PC12 cells also contain both Ca(2+)-sensitive and Ca(2+)-independent PKC enzymatic activities, and express mRNA and immunoreactive proteins corresponding to the PKC isoforms alpha, beta, delta, epsilon, and zeta. There are transient decreases in the levels of immunoreactive PKCs alpha, beta, and epsilon after 1-3 days of NGF treatment, and after 7 days there is a 2.5-fold increase in the level of PKC alpha, and a 1.8-fold increase in total cellular PKC activity. NGF-induced PC12 cell neuritogenesis is enhanced by 12-O-tetradecanoyl phorbol-13-acetate (TPA) in a TPA dose- and time-dependent manner, and this differentiation coincides with abrogation of the down-regulation of PKC delta and other PKC isoforms, when the cells are treated with TPA. Thus a selective activation of PKC delta may play a role in neuritogenic signals in PC12 cells.
Collapse
Affiliation(s)
- K R O'Driscoll
- Columbia-Presbyterian Cancer Center, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
19
|
Szeberényi J, Erhardt P. Cellular components of nerve growth factor signaling. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1222:187-202. [PMID: 8031855 DOI: 10.1016/0167-4889(94)90168-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J Szeberényi
- Department of Biology, University Medical School of Pécs, Hungary
| | | |
Collapse
|
20
|
Coleman ES, Wooten MW. Nerve growth factor-induced differentiation of PC12 cells employs the PMA-insensitive protein kinase C-zeta isoform. J Mol Neurosci 1994; 5:39-57. [PMID: 7857779 DOI: 10.1007/bf02736693] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To elucidate the role of protein kinase C (PKC) in nerve growth factor (NGF)-induced differentiation, PMA downregulation of pheochromocytoma (PC12) cells was undertaken. Prolonged treatment (2 d) of PC12 cells with PMA (1 microM) resulted in depleting the cells of alpha, beta, delta, and epsilon-PKC isoforms, but had no effect on the expression of the atypical PKC isoform zeta. PC12 cells, which expressed only PKC zeta, were evaluated for their responses to NGF. Removal of the PMA-sensitive PKC isoforms enhanced the ability of NGF to promote neurite extension. Both the percentage cells with neurites and length of neurites were increased in the PMA-treated cells, whereas no effect was observed on the number of neurites per cell or branching of individual neurites. In addition, PMA downregulation resulted in an increase in the incorporation of 3H-thymidine without any significant effect on the expression of c-fos. Addition of NGF to PC12 cells depleted of the PMA-sensitive PKC isoforms resulted in the activation of PKC zeta (Wooten et al., 1994). To test whether the transient activation of PKC zeta is a necessary component of the neuritogenetic pathway, antisense oligonucleotide strategy was utilized to remove this particular PKC isoform. The addition of a 20-bp antisense oligonucleotide directed against the 5' coding sequence of PKC zeta attenuated NGF-induced neurite outgrowth in PC12 cells lacking PMA-sensitive PKC isoforms. Sense oligonucleotide directed at the same site was without effect on NGF responses. These data indicate that PKC zeta comprises a portion of the NGF pathway and underscores the importance of this isoform in neuronal differentiation. Moreover, these findings demonstrate that the PMA-insensitive pathway, which was previously characterized as PKC-independent, and the neurite induction pathway are synonymous and mediated by PKC zeta.
Collapse
Affiliation(s)
- E S Coleman
- Division of Zoology, Auburn University, AL 36849
| | | |
Collapse
|
21
|
Singh KR, Taylor LK, Campbell XZ, Fields AP, Neet KE. A bryostatin-sensitive protein kinase C required for nerve growth factor activity. Biochemistry 1994; 33:542-51. [PMID: 8286384 DOI: 10.1021/bi00168a020] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nerve growth factor (NGF) stimulates rat pheochromocytoma cells (PC12) to differentiate into a neuronal-like cell that exhibits neurite extensions. The role of protein kinase C in signal transduction has been examined in PC12 cells treated with phorbol 12-myristate 13-acetate (PMA) and bryostatin, a macrocyclic lactone that activates protein kinase C at both the nuclear and the plasma membranes [Hocevar, B. A., & Fields, A. P. (1991) J. Biol. Chem. 266, 28-33]. In contrast to PMA down-regulation [Reinhold, D. S., & Neet, K. E. (1989) J. Biol. Chem. 264, 3538-3544], chronic (24 h) treatment with bryostatin blocked the formation of neurites in response to NGF or basic fibroblast-derived growth factor stimulation, but, like PMA, bryostatin did not block the induction of c-fos or c-jun protooncogenes by NGF. Chronic bryostatin treatment down-regulated protein kinase C activity in the cytosolic, membrane, and nuclear fractions. Acute (60 min) bryostatin or NGF treatment activated cytosolic and nuclear protein kinase C activity, suggesting possible translocation to the nucleus. Bryostatin did not induce neurite outgrowth, either alone or in combination with PMA. Thus, the bryostatin-sensitive protein kinase C is distinct from PMA- or K252a-sensitive kinases previously described. The bryostatin-sensitive protein kinase C is necessary, but not sufficient, for neurite outgrowth and acts in the nucleus in a manner independent of c-fos and c-jun transcription.
Collapse
Affiliation(s)
- K R Singh
- Department of Biological Chemistry, UHS/Chicago Medical School, Illinois 60064
| | | | | | | | | |
Collapse
|
22
|
Kvanta A, Fredholm BB. Synergistic effects between protein kinase C and cAMP on activator protein-1 activity and differentiation of PC-12 pheochromocytoma cells. J Mol Neurosci 1993; 4:205-14. [PMID: 7917831 DOI: 10.1007/bf02821552] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In rat pheochromocytoma cells (PC-12) cells, we have studied the effect of protein kinase C (PKC) and cAMP on the activity of the nuclear transcription factor activator protein-1 (AP-1) and on differentiation of the cells into sympathetic nerve-like phenotype. By using mobility gel-shift assays, we found that both PKC and cAMP activation led to an increase in the binding of AP-1 to its consensus nucleotide sequence (TRE). When the PKC and cAMP pathways were activated simultaneously, a clear-cut synergistic effect was seen on the binding of AP-1 to TRE. Both PKC and cAMP activation were furthermore able to increase the AP-1 transcriptional activity in PC-12 cells transiently transfected with TRE-expressing plasmids. In agreement with the mobility gel-shift results, simultaneous activation of PKC and cAMP synergistically increased the AP-1 transcriptional activity. We next analyzed the effect of PKC and cAMP stimulation on differentiation and proliferation of PC-12 cells. Whereas PKC activation had no effect on the morphology of PC-12 cells, elevation of the intracellular cAMP level resulted in a marked increase in the number of neurite-bearing cells. This effect was paralleled by a strong inhibition of PC-12 cell proliferation. Interestingly, when PKC and cAMP activation were combined, the differentiation was further pronounced and growth further inhibited. These results show that both PKC and cAMP increase the AP-1 activity in PC-12 cells, and that these effects are synergistic. Moreover, we show that cAMP induces differentiation and inhibits growth of PC-12 cells, and that PKC activation acts synergistically with cAMP on these effects. The possible role of AP-1 in PC-12 cell differentiation is discussed.
Collapse
|
23
|
Roivainen R, McMahon T, Messing RO. Protein kinase C isozymes that mediate enhancement of neurite outgrowth by ethanol and phorbol esters in PC12 cells. Brain Res 1993; 624:85-93. [PMID: 8252418 DOI: 10.1016/0006-8993(93)90063-s] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using PC12 cells to study ethanol's effects on growth of neural processes, we found that ethanol enhances NGF- and basic FGF-induced neurite outgrowth. Chronic ethanol exposure selectively up-regulates delta and epsilon protein kinase C (PKC) and increases PKC-mediated phosphorylation in PC12 cells. Since PKC regulates differentiation, we investigated the role of PKC in enhancement of neurite outgrowth by ethanol. Like ethanol, 0.3-10 nM phorbol 12-myristate, 13-acetate (PMA) increased NGF-induced neurite outgrowth. However, higher concentrations did not, and immunoblot analysis demonstrated that 100 nM PMA markedly depleted cells of beta, delta and epsilon PKC. PMA (100 nM) also down-regulated beta, delta and epsilon PKC in ethanol-treated cells and completely prevented enhancement of neurite outgrowth by ethanol. In contrast, the cAMP analogue 8-bromoadenosine cAMP did not completely mimic the effects of ethanol on neurite outgrowth, and ethanol was able to enhance neurite formation in mutant PC12 cells deficient in protein kinase A (PKA). These findings implicate beta, delta or epsilon PKC, but not PKA, in the neurite-promoting effects of ethanol and PMA. Since chronic ethanol exposure up-regulates delta and epsilon, but not beta PKC, these findings suggest that delta or epsilon PKC regulate neurite outgrowth.
Collapse
Affiliation(s)
- R Roivainen
- Department of Neurology, E. Gallo Clinic and Research Center, University of California, San Francisco
| | | | | |
Collapse
|