1
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
2
|
Haghani NB, Lampe RH, Samuel BS, Chalasani SH, Matty MA. Identification and characterization of a skin microbiome on Caenorhabditis elegans suggests environmental microbes confer cuticle protection. Microbiol Spectr 2024; 12:e0016924. [PMID: 38980017 PMCID: PMC11302229 DOI: 10.1128/spectrum.00169-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
In the wild, C. elegans are emersed in environments teeming with a veritable menagerie of microorganisms. The C. elegans cuticular surface serves as a barrier and first point of contact with their microbial environments. In this study, we identify microbes from C. elegans natural habitats that associate with its cuticle, constituting a simple "skin microbiome." We rear our animals on a modified CeMbio, mCeMbio, a consortium of ecologically relevant microbes. We first combine standard microbiological methods with an adapted micro skin-swabbing tool to describe the skin-resident bacteria on the C. elegans surface. Furthermore, we conduct 16S rRNA gene sequencing studies to identify relative shifts in the proportion of mCeMbio bacteria upon surface-sterilization, implying distinct skin- and gut-microbiomes. We find that some strains of bacteria, including Enterobacter sp. JUb101, are primarily found on the nematode skin, while others like Stenotrophomonas indicatrix JUb19 and Ochrobactrum vermis MYb71 are predominantly found in the animal's gut. Finally, we show that this skin microbiome promotes host cuticle integrity in harsh environments. Together, we identify a skin microbiome for the well-studied nematode model and propose its value in conferring host fitness advantages in naturalized contexts. IMPORTANCE The genetic model organism C. elegans has recently emerged as a tool for understanding host-microbiome interactions. Nearly all of these studies either focus on pathogenic or gut-resident microbes. Little is known about the existence of native, nonpathogenic skin microbes or their function. We demonstrate that members of a modified C. elegans model microbiome, mCeMbio, can adhere to the animal's cuticle and confer protection from noxious environments. We combine a novel micro-swab tool, the first 16S microbial sequencing data from relatively unperturbed C. elegans, and physiological assays to demonstrate microbially mediated protection of the skin. This work serves as a foundation to explore wild C. elegans skin microbiomes and use C. elegans as a model for skin research.
Collapse
Affiliation(s)
- Nadia B. Haghani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, La Jolla, California, USA
| | - Robert H. Lampe
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sreekanth H. Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, La Jolla, California, USA
| | - Molly A. Matty
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
- Biology, University of Portland, Portland, Oregon, USA
| |
Collapse
|
3
|
Shen Y, Lin SY, Harbin J, Amin R, Vassalotti A, Romanowski J, Schmidt E, Tierney A, Ellis RE. Rewiring the Sex-Determination Pathway During the Evolution of Self-Fertility. Mol Biol Evol 2024; 41:msae101. [PMID: 38880992 PMCID: PMC11180601 DOI: 10.1093/molbev/msae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Although evolution is driven by changes in how regulatory pathways control development, we know little about the molecular details underlying these transitions. The TRA-2 domain that mediates contact with TRA-1 is conserved in Caenorhabditis. By comparing the interaction of these proteins in two species, we identified a striking change in how sexual development is controlled. Identical mutations in this domain promote oogenesis in Caenorhabditis elegans but promote spermatogenesis in Caenorhabditis briggsae. Furthermore, the effects of these mutations involve the male-promoting gene fem-3 in C. elegans but are independent of fem-3 in C. briggsae. Finally, reciprocal mutations in these genes show that C. briggsae TRA-2 binds TRA-1 to prevent expression of spermatogenesis regulators. By contrast, in C. elegans TRA-1 sequesters TRA-2 in the germ line, allowing FEM-3 to initiate spermatogenesis. Thus, we propose that the flow of information within the sex determination pathway has switched directions during evolution. This result has important implications for how evolutionary change can occur.
Collapse
Affiliation(s)
- Yongquan Shen
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Shin-Yi Lin
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Jonathan Harbin
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Richa Amin
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Allison Vassalotti
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Joseph Romanowski
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Emily Schmidt
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Alexis Tierney
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Ronald E Ellis
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
4
|
Cao M. CRISPR-Cas9 genome editing in Steinernema entomopathogenic nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568619. [PMID: 38045388 PMCID: PMC10690278 DOI: 10.1101/2023.11.24.568619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Molecular tool development in traditionally non-tractable animals opens new avenues to study gene functions in the relevant ecological context. Entomopathogenic nematodes (EPN) Steinernema and their symbiotic bacteria of Xenorhabdus spp are a valuable experimental system in the laboratory and are applicable in the field to promote agricultural productivity. The infective juvenile (IJ) stage of the nematode packages mutualistic symbiotic bacteria in the intestinal pocket and invades insects that are agricultural pests. The lack of consistent and heritable genetics tools in EPN targeted mutagenesis severely restricted the study of molecular mechanisms underlying both parasitic and mutualistic interactions. Here, I report a protocol for CRISPR-Cas9 based genome-editing that is successful in two EPN species, S. carpocapsae and S. hermaphroditum . I adapted a gonadal microinjection technique in S. carpocapsae , which created on-target modifications of a homologue Sc-dpy-10 (cuticular collagen) by homology-directed repair. A similar delivery approach was used to introduce various alleles in S. hermaphroditum including Sh-dpy-10 and Sh-unc-22 (a muscle gene), resulting in visible and heritable phenotypes of dumpy and twitching, respectively. Using conditionally dominant alleles of Sh-unc-22 as a co-CRISPR marker, I successfully modified a second locus encoding Sh-Daf-22 (a homologue of human sterol carrier protein SCPx), predicted to function as a core enzyme in the biosynthesis of nematode pheromone that is required for IJ development. As a proof of concept, Sh-daf-22 null mutant showed IJ developmental defects in vivo ( in insecta) . This research demonstrates that Steinernema spp are highly tractable for targeted mutagenesis and has great potential in the study of gene functions under controlled laboratory conditions within the relevant context of its ecological niche.
Collapse
|
5
|
Bobinski M, Pilgrim D. A dominant dpy-10 co-transformation marker using CRISPR/Cas9 and a linear repair template in Caenorhabditis tropicalis. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000900. [PMID: 38021174 PMCID: PMC10656624 DOI: 10.17912/micropub.biology.000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/10/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Caenorhabditis elegans is an excellent genetic model system with a large arsenal of forward and reverse genetic techniques. However, not all approaches are easily ported to related Caenorhabditis species (which are useful for gene conservation and gene pathway evolution studies). For CRISPR/Cas9 genetic editing, an easily screenable and dominant co-transformation marker is required - a secondary mutation that won't impact the phenotype of a desired mutation but is capable of being screened for in heterozygous mutants. We describe here the adaptation of a dominant dumpy/roller CRISPR/Cas9-induced mutation in the C. tropicalis dpy-10 orthologue.
Collapse
Affiliation(s)
- Montana Bobinski
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Zhu Y, Li W, Dong Y, Xia C, Fu R. C. elegans Hemidesmosomes Sense Collagen Damage to Trigger Innate Immune Response in the Epidermis. Cells 2023; 12:2223. [PMID: 37759445 PMCID: PMC10526450 DOI: 10.3390/cells12182223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The collagens are an enormous family of extracellular matrix proteins that play dominant roles in cell adhesion, migration and tissue remodeling under many physiological and pathological conditions. However, their function mechanisms in regulating innate immunity remain largely undiscovered. Here we use C. elegans epidermis as the model to address this question. The C. elegans epidermis is covered with a collagen-rich cuticle exoskeleton and can produce antimicrobial peptides (AMPs) against invading pathogens or physical injury. Through an RNAi screen against collagen-encoding genes, we found that except the previously reported six DPY collagens and the BLI-1 collagen, the majority of collagens tested appear unable to trigger epidermal immune defense when damaged. Further investigation suggests that the six DPY collagens form a specific substructure, which regulates the interaction between BLI-1 and the hemidesmosome receptor MUP-4. The separation of BLI-1 with MUP-4 caused by collagen damage leads to the detachment of the STAT transcription factor-like protein STA-2 from hemidesmosomes and the induction of AMPs. Our findings uncover the mechanism how collagens are organized into a damage sensor and how the epidermis senses collagen damage to mount an immune defense.
Collapse
Affiliation(s)
| | | | | | | | - Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.)
| |
Collapse
|
7
|
Aygün I, Rzepczak A, Miki TS. A germline-targeted genetic screen for xrn-2 suppressors identifies a novel gene C34C12.2 in Caenorhabditis elegans. Genet Mol Biol 2023; 46:e20220328. [PMID: 37216322 DOI: 10.1590/1678-4685-gmb-2022-0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/22/2023] [Indexed: 05/24/2023] Open
Abstract
XRN2 is an evolutionarily conserved 5'-to-3' exoribonuclease, which degrades or trims various types of RNA in the nucleus. Although XRN-2 is essential for embryogenesis, larval development and reproduction in Caenorhabditis elegans, relevant molecular pathways remain unidentified. Here we create a germline-specific xrn-2 conditional mutant and perform a mutagenesis screen for suppressors of sterility. Loss-of-function alleles of dpy-10, osr-1, ptr-6 and C34C12.2 genes are identified. Depletion of DPY-10, OSR-1 or PTR-6 increases expression of gpdh-1 that encodes a glycerol-3-phosphate dehydrogenase, thereby elevates glycerol accumulation to suppress sterility of the mutant. The C34C12.2 protein is predominantly localized in the nucleolus of germ cells and shows a similarity to Saccharomyces cerevisiae Net1, which is involved in rDNA silencing. Depletion of NRDE-2, a putative interacting partner of C34C12.2 and a component of the nuclear RNAi machinery, restores fertility to the xrn-2 conditional mutant. These results may help to identify an essential role of XRN-2 in germline development.
Collapse
Affiliation(s)
- Ilkin Aygün
- Polish Academy of Sciences, Institute of Bioorganic Chemistry, Department of Developmental Biology, Poznań, Poland
| | - Alicja Rzepczak
- Polish Academy of Sciences, Institute of Bioorganic Chemistry, Department of Developmental Biology, Poznań, Poland
| | - Takashi S Miki
- Polish Academy of Sciences, Institute of Bioorganic Chemistry, Department of Developmental Biology, Poznań, Poland
| |
Collapse
|
8
|
Sparling AC, King DE, Meyer JN. rol-6 and dpy-10C. elegans mutants have normal mitochondrial function after normalizing to delayed development. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000798. [PMID: 37215639 PMCID: PMC10193146 DOI: 10.17912/micropub.biology.000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Collagen mutations are commonly used in the creation of Caenorhabditis elegans transgenic strains, but their secondary effects are not fully characterized . We compared the mitochondrial function of N2, dpy-10, rol-6, and PE255 C. elegans . N2 worms exhibited ~2-fold greater volume, mitochondrial DNA copy number, and nuclear DNA copy number than collagen mutants (p<0.05). Whole-worm respirometry and ATP levels were higher in N2 worms, but differences in respirometry largely disappeared after normalization to mitochondrial DNA copy number. This data suggests that rol-6 and dpy-10 mutants are developmentally delayed but have comparable mitochondrial function to N2 worms once the data is normalized to developmental stage.
Collapse
Affiliation(s)
| | - Dillon E. King
- Nicholas School of Environment, Duke University, Durham NC
| | - Joel N. Meyer
- Nicholas School of Environment, Duke University, Durham NC
| |
Collapse
|
9
|
Maroilley T, Flibotte S, Jean F, Rodrigues Alves Barbosa V, Galbraith A, Chida AR, Cotra F, Li X, Oncea L, Edgley M, Moerman D, Tarailo-Graovac M. Genome sequencing of C. elegans balancer strains reveals previously unappreciated complex genomic rearrangements. Genome Res 2023; 33:154-167. [PMID: 36617680 PMCID: PMC9977149 DOI: 10.1101/gr.276988.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Genetic balancers in Caenorhabditis elegans are complex variants that allow lethal or sterile mutations to be stably maintained in a heterozygous state by suppressing crossover events. Balancers constitute an invaluable tool in the C. elegans scientific community and have been widely used for decades. The first/traditional balancers were created by applying X-rays, UV, or gamma radiation on C. elegans strains, generating random genomic rearrangements. Their structures have been mostly explored with low-resolution genetic techniques (e.g., fluorescence in situ hybridization or PCR), before genomic mapping and molecular characterization through sequencing became feasible. As a result, the precise nature of most chromosomal rearrangements remains unknown, whereas, more recently, balancers have been engineered using the CRISPR-Cas9 technique for which the structure of the chromosomal rearrangement has been predesigned. Using short-read whole-genome sequencing (srWGS) and tailored bioinformatic analyses, we previously interpreted the structure of four chromosomal balancers randomly created by mutagenesis processes. Here, we have extended our analyses to five CRISPR-Cas9 balancers and 17 additional traditional balancing rearrangements. We detected and experimentally validated their breakpoints and have interpreted the balancer structures. Many of the balancers were found to be more intricate than previously described, being composed of complex genomic rearrangements (CGRs) such as chromoanagenesis-like events. Furthermore, srWGS revealed additional structural variants and CGRs not known to be part of the balancer genomes. Altogether, our study provides a comprehensive resource of complex genomic variations in C. elegans and highlights the power of srWGS to study the complexity of genomes by applying tailored analyses.
Collapse
Affiliation(s)
- Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Francesca Jean
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Victoria Rodrigues Alves Barbosa
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Andrew Galbraith
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Afiya Razia Chida
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Filip Cotra
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xiao Li
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Larisa Oncea
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Mark Edgley
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Don Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
10
|
Pei J, Feng T, Long H, Chen Y, Pei Y, Sun Y. Molecular Characterization and Virus-Induced Gene Silencing of a Collagen Gene, Me-col-1, in Root-Knot Nematode Meloidogyne enterolobii. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122103. [PMID: 36556467 PMCID: PMC9784238 DOI: 10.3390/life12122103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Meloidogyne enterolobii, a highly pathogenic root-knot nematode species, causes serious damage to agricultural production worldwide. Collagen is an important part of the nematode epidermis, which is crucial for nematode shape maintenance, motility, and reproduction. In this study, we report that a novel collagen gene, Me-col-1, from the highly pathogenic root-knot nematode species Meloidogyne enterolobi was required for the egg formation of this pathogen. Me-col-1 encodes a protein with the size of 35 kDa, which is closely related to collagen found in other nematodes. Real-time PCR assays showed that the expression of Me-col-1 was highest in eggs and lowest in pre-parasitic second-stage juveniles (preJ2). Interestingly, knockdown of Me-col-1 did not compromise the survival rate of preJ2 but significantly reduced the egg production and consequentially caused 35.79% lower multiplication rate (Pf/Pi) compared with control. Our study provides valuable information for better understanding the function of collagen genes in the nematode life cycle, which can be used in the development of effective approaches for nematode control.
Collapse
Affiliation(s)
- Ji Pei
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tuizi Feng
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haibo Long
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence:
| | - Yuan Chen
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yueling Pei
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yanfang Sun
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
11
|
Toker IA, Hobert O. The Cbr-DPY-10(Arg92Cys) modification is a reliable co-conversion marker for CRISPR/Cas9 genome editing in Caenorhabditis briggsae. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000554. [PMID: 35622509 PMCID: PMC9021883 DOI: 10.17912/micropub.biology.000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/01/2022]
Abstract
The maturation of genome editing techniques dramatically broadens the range of organisms amenable to mechanistic investigation. Caenorhabditis briggsae is a nematode species related to C. elegans and a favored target for comparative studies. Here, we expand the repertoire of co-conversion markers to facilitate the screening and isolation of CRISPR/Cas9-edited lines in C. briggsae . Similar to its homologous C. elegans mutation, Cbr-dpy-10(Arg92Cys) is phenotypically easy to detect in its heterozygous form and is distinguishable from other combinations of Cbr-dpy- 10 alleles, a valuable feature for the reliable isolation of marker-free CRISPR/Cas9-edited animals.
Collapse
Affiliation(s)
| | - Oliver Hobert
- Columbia University, Department of Biological Sciences
- Howard Hughes Medical Institute
| |
Collapse
|
12
|
Floxed exon (Flexon): A flexibly positioned stop cassette for recombinase-mediated conditional gene expression. Proc Natl Acad Sci U S A 2022; 119:2117451119. [PMID: 35027456 PMCID: PMC8784106 DOI: 10.1073/pnas.2117451119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Tools that afford spatiotemporal control of gene expression are crucial for studying genes and processes in multicellular organisms. Stop cassettes consist of exogenous sequences that interrupt gene expression and flanking site-specific recombinase sites to allow for tissue-specific excision and restoration of function by expression of the cognate recombinase. We describe a stop cassette called a flexon, composed of an artificial exon flanked by artificial introns that can be flexibly positioned in a gene. We demonstrate its efficacy in Caenorhabditis elegans for lineage-specific control of gene expression and for tissue-specific RNA interference and discuss other potential uses. The Flexon approach should be feasible in any system amenable to site-specific recombination-based methods and applicable to diverse areas including development, neuroscience, and metabolism. Conditional gene expression is a powerful tool for genetic analysis of biological phenomena. In the widely used “lox-stop-lox” approach, insertion of a stop cassette consisting of a series of stop codons and polyadenylation signals flanked by lox sites into the 5′ untranslated region (UTR) of a gene prevents expression until the cassette is excised by tissue-specific expression of Cre recombinase. Although lox-stop-lox and similar approaches using other site-specific recombinases have been successfully used in many experimental systems, this design has certain limitations. Here, we describe the Floxed exon (Flexon) approach, which uses a stop cassette composed of an artificial exon flanked by artificial introns, designed to cause premature termination of translation and nonsense-mediated decay of the mRNA and allowing for flexible placement into a gene. We demonstrate its efficacy in Caenorhabditis elegans by showing that, when promoters that cause weak and/or transient cell-specific expression are used to drive Cre in combination with a gfp(flexon) transgene, strong and sustained expression of green fluorescent protein (GFP) is obtained in specific lineages. We also demonstrate its efficacy in an endogenous gene context: we inserted a flexon into the Argonaute gene rde-1 to abrogate RNA interference (RNAi), and restored RNAi tissue specifically by expression of Cre. Finally, we describe several potential additional applications of the Flexon approach, including more precise control of gene expression using intersectional methods, tissue-specific protein degradation, and generation of genetic mosaics. The Flexon approach should be feasible in any system where a site-specific recombination-based method may be applied.
Collapse
|
13
|
Leite J, Chan FY, Osório DS, Saramago J, Sobral AF, Silva AM, Gassmann R, Carvalho AX. Equatorial Non-muscle Myosin II and Plastin Cooperate to Align and Compact F-actin Bundles in the Cytokinetic Ring. Front Cell Dev Biol 2020; 8:573393. [PMID: 33102479 PMCID: PMC7546906 DOI: 10.3389/fcell.2020.573393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Cytokinesis is the last step of cell division that physically partitions the mother cell into two daughter cells. Cytokinesis requires the assembly and constriction of a contractile ring, a circumferential array of filamentous actin (F-actin), non-muscle myosin II motors (myosin), and actin-binding proteins that forms at the cell equator. Cytokinesis is accompanied by long-range cortical flows from regions of relaxation toward regions of compression. In the C. elegans one-cell embryo, it has been suggested that anterior-directed cortical flows are the main driver of contractile ring assembly. Here, we use embryos co-expressing motor-dead and wild-type myosin to show that cortical flows can be severely reduced without major effects on contractile ring assembly and timely completion of cytokinesis. Fluorescence recovery after photobleaching in the ingressing furrow reveals that myosin recruitment kinetics are also unaffected by the absence of cortical flows. We find that myosin cooperates with the F-actin crosslinker plastin to align and compact F-actin bundles at the cell equator, and that this cross-talk is essential for cytokinesis. Our results thus argue against the idea that cortical flows are a major determinant of contractile ring assembly. Instead, we propose that contractile ring assembly requires localized concerted action of motor-competent myosin and plastin at the cell equator.
Collapse
Affiliation(s)
- Joana Leite
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Fung-Yi Chan
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Daniel S Osório
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Joana Saramago
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana F Sobral
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana M Silva
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana X Carvalho
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Nakayama KI, Ishita Y, Chihara T, Okumura M. Screening for CRISPR/Cas9-induced mutations using a co-injection marker in the nematode Pristionchus pacificus. Dev Genes Evol 2020; 230:257-264. [PMID: 32030512 DOI: 10.1007/s00427-020-00651-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/28/2020] [Indexed: 01/09/2023]
Abstract
CRISPR/Cas9 genome-editing methods are used to reveal functions of genes and molecular mechanisms underlying biological processes in many species, including nematodes. In evolutionary biology, the nematode Pristionchus pacificus is a satellite model and has been used to understand interesting phenomena such as phenotypic plasticity and self-recognition. In P. pacificus, CRISPR/Cas9-mediated mutations are induced by microinjecting a guide RNA (gRNA) and Cas9 protein into the gonads. However, mutant screening is laborious and time-consuming due to the absence of visual markers. In this study, we established a Co-CRISPR strategy by using a dominant roller marker in P. pacificus. We found that heterozygous mutations in Ppa-prl-1 induced the roller phenotype, which can be used as an injection marker. After the co-injection of Ppa-prl-1 gRNA, target gRNA, and the Cas9 protein, roller progeny and their siblings were examined using the heteroduplex mobility assay and DNA sequencing. We found that some of the roller and non-roller siblings had mutations at the target site. We used varying Cas9 concentrations and found that a higher concentration of Cas9 did not increase genome-editing events. The Co-CRISPR strategy promotes the screening for genome-editing events and will facilitate the development of new genome-editing methods in P. pacificus.
Collapse
Affiliation(s)
- Ken-Ichi Nakayama
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Yuuki Ishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
15
|
Insights into the Involvement of Spliceosomal Mutations in Myelodysplastic Disorders from Analysis of SACY-1/DDX41 in Caenorhabditis elegans. Genetics 2020; 214:869-893. [PMID: 32060018 PMCID: PMC7153925 DOI: 10.1534/genetics.119.302973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations affecting spliceosomal proteins are frequently found in hematological malignancies, including myelodysplastic syndromes and acute myeloid leukemia (AML). DDX41/Abstrakt is a metazoan-specific spliceosomal DEAD-box RNA helicase that is recurrently mutated in inherited myelodysplastic syndromes and in relapsing cases of AML. The genetic properties and genomic impacts of disease-causing missense mutations in DDX41 and other spliceosomal proteins have been uncertain. Here, we conduct a comprehensive analysis of the Caenorhabditis elegans DDX41 ortholog, SACY-1 Biochemical analyses defined SACY-1 as a component of the C. elegans spliceosome, and genetic analyses revealed synthetic lethal interactions with spliceosomal components. We used the auxin-inducible degradation system to analyze the consequence of SACY-1 depletion on the transcriptome using RNA sequencing. SACY-1 depletion impacts the transcriptome through splicing-dependent and splicing-independent mechanisms. Altered 3' splice site usage represents the predominant splicing defect observed upon SACY-1 depletion, consistent with a role for SACY-1 in the second step of splicing. Missplicing events appear more prevalent in the soma than the germline, suggesting that surveillance mechanisms protect the germline from aberrant splicing. The transcriptome changes observed after SACY-1 depletion suggest that disruption of the spliceosome induces a stress response, which could contribute to the cellular phenotypes conferred by sacy-1 mutant alleles. Multiple sacy-1 /ddx41 missense mutations, including the R525H human oncogenic variant, confer antimorphic activity, suggesting that their incorporation into the spliceosome is detrimental. Antagonistic variants that perturb the function of the spliceosome may be relevant to the disease-causing mutations, including DDX41, affecting highly conserved components of the spliceosome in humans.
Collapse
|
16
|
Osório DS, Chan FY, Saramago J, Leite J, Silva AM, Sobral AF, Gassmann R, Carvalho AX. Crosslinking activity of non-muscle myosin II is not sufficient for embryonic cytokinesis in C. elegans. Development 2019; 146:dev.179150. [PMID: 31582415 PMCID: PMC6857588 DOI: 10.1242/dev.179150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022]
Abstract
Cytokinesis in animal cells requires the assembly and constriction of a contractile actomyosin ring. Non-muscle myosin II is essential for cytokinesis, but the role of its motor activity remains unclear. Here, we examine cytokinesis in C. elegans embryos expressing non-muscle myosin motor mutants generated by genome editing. Two non-muscle motor-dead myosins capable of binding F-actin do not support cytokinesis in the one-cell embryo, and two partially motor-impaired myosins delay cytokinesis and render rings more sensitive to reduced myosin levels. Further analysis of myosin mutants suggests that it is myosin motor activity, and not the ability of myosin to crosslink F-actin, that drives the alignment and compaction of F-actin bundles during contractile ring assembly, and that myosin motor activity sets the pace of contractile ring constriction. We conclude that myosin motor activity is required at all stages of cytokinesis. Finally, characterization of the corresponding motor mutations in C. elegans major muscle myosin shows that motor activity is required for muscle contraction but is dispensable for F-actin organization in adult muscles. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: The motor activity of non-muscle myosin II is essential for cytokinesis and contributes to all stages of the process in C. elegans embryos.
Collapse
Affiliation(s)
- Daniel S Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fung-Yi Chan
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Saramago
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Leite
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana M Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana F Sobral
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
17
|
Zou L, Wu D, Zang X, Wang Z, Wu Z, Chen D. Construction of a germline-specific RNAi tool in C. elegans. Sci Rep 2019; 9:2354. [PMID: 30787374 PMCID: PMC6382888 DOI: 10.1038/s41598-019-38950-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
Analysis of complex biological functions usually requires tissue-specific genetic manipulations in multicellular organisms. The C. elegans germline plays regulatory roles not only in reproduction, but also in metabolism, stress response and ageing. Previous studies have used mutants of rrf-1, which encodes an RNA-directed RNA polymerase, as a germline-specific RNAi tool. However, the rrf-1 mutants showed RNAi activities in somatic tissues. Here we constructed a germline-specific RNAi strain by combining an indel mutation of rde-1, which encodes an Argonaute protein that functions cell autonomously to ensure RNAi efficiency, and a single copy rde-1 transgene driven by the sun-1 germline-specific promoter. The germline RNAi efficiency and specificity are confirmed by RNAi phenocopy of known mutations, knockdown of GFP reporter expression, as well as quantitative RT-PCR measurement of tissue-specific mRNAs upon RNAi knockdown. The germline-specific RNAi strain shows no obvious deficiencies in reproduction, lipid accumulation, thermo-tolerance and life span compared to wild-type animals. By screening an RNAi sub-library of phosphatase genes, we identified novel regulators of thermo-tolerance. Together, we have created a useful tool that can facilitate the genetic analysis of germline-specific functions in C. elegans.
Collapse
Affiliation(s)
- Lina Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu, 210061, China
| | - Di Wu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu, 210061, China
| | - Xiao Zang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu, 210061, China
| | - Zi Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu, 210061, China
| | - Zixing Wu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu, 210061, China
| | - Di Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu, 210061, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
Strategies for Efficient Genome Editing Using CRISPR-Cas9. Genetics 2019; 211:431-457. [PMID: 30504364 PMCID: PMC6366907 DOI: 10.1534/genetics.118.301775] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
The targetable DNA endonuclease CRISPR-Cas9 has transformed analysis of biological processes by enabling robust genome editing in model and nonmodel organisms. Although rules directing Cas9 to its target DNA via a guide RNA are straightforward, wide variation occurs in editing efficiency and repair outcomes for both imprecise error-prone repair and precise templated repair. We found that imprecise and precise DNA repair from double-strand breaks (DSBs) is asymmetric, favoring repair in one direction. Using this knowledge, we designed RNA guides and repair templates that increased the frequency of imprecise insertions and deletions and greatly enhanced precise insertion of point mutations in Caenorhabditis elegans We also devised strategies to insert long (10 kb) exogenous sequences and incorporate multiple nucleotide substitutions at a considerable distance from DSBs. We expanded the repertoire of co-conversion markers appropriate for diverse nematode species. These selectable markers enable rapid identification of Cas9-edited animals also likely to carry edits in desired targets. Lastly, we explored the timing, location, frequency, sex dependence, and categories of DSB repair events by developing loci with allele-specific Cas9 targets that can be contributed during mating from either male or hermaphrodite germ cells. We found a striking difference in editing efficiency between maternally and paternally contributed genomes. Furthermore, imprecise repair and precise repair from exogenous repair templates occur with high frequency before and after fertilization. Our strategies enhance Cas9-targeting efficiency, lend insight into the timing and mechanisms of DSB repair, and establish guidelines for achieving predictable precise and imprecise repair outcomes with high frequency.
Collapse
|
19
|
Fechner S, Loizeau F, Nekimken AL, Pruitt BL, Goodman MB. The bodies of dpy-10(e128) are twice as stiff as wild type. MICROPUBLICATION BIOLOGY 2018; 2018. [PMID: 32550396 PMCID: PMC7282522 DOI: 10.17912/ecsm-mp67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sylvia Fechner
- Molecular and Cellular Physiology, Stanford School of Medicine, Stanford
| | - Frédéric Loizeau
- Departments of Bioengineering and Mechanical Engineering, Stanford
| | - Adam L Nekimken
- Molecular and Cellular Physiology, Stanford School of Medicine, Stanford.,Departments of Bioengineering and Mechanical Engineering, Stanford
| | - Beth L Pruitt
- Departments of Bioengineering and Mechanical Engineering, Stanford.,Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara
| | - Miriam B Goodman
- Molecular and Cellular Physiology, Stanford School of Medicine, Stanford
| |
Collapse
|
20
|
El Mouridi S, Lecroisey C, Tardy P, Mercier M, Leclercq-Blondel A, Zariohi N, Boulin T. Reliable CRISPR/Cas9 Genome Engineering in Caenorhabditis elegans Using a Single Efficient sgRNA and an Easily Recognizable Phenotype. G3 (BETHESDA, MD.) 2017; 7:1429-1437. [PMID: 28280211 PMCID: PMC5427500 DOI: 10.1534/g3.117.040824] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/02/2017] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9 genome engineering strategies allow the directed modification of the Caenorhabditis elegans genome to introduce point mutations, generate knock-out mutants, and insert coding sequences for epitope or fluorescent tags. Three practical aspects, however, complicate such experiments. First, the efficiency and specificity of single-guide RNAs (sgRNA) cannot be reliably predicted. Second, the detection of animals carrying genome edits can be challenging in the absence of clearly visible or selectable phenotypes. Third, the sgRNA target site must be inactivated after editing to avoid further double-strand break events. We describe here a strategy that addresses these complications by transplanting the protospacer of a highly efficient sgRNA into a gene of interest to render it amenable to genome engineering. This sgRNA targeting the dpy-10 gene generates genome edits at comparatively high frequency. We demonstrate that the transplanted protospacer is cleaved at the same time as the dpy-10 gene. Our strategy generates scarless genome edits because it no longer requires the introduction of mutations in endogenous sgRNA target sites. Modified progeny can be easily identified in the F1 generation, which drastically reduces the number of animals to be tested by PCR or phenotypic analysis. Using this strategy, we reliably generated precise deletion mutants, transcriptional reporters, and translational fusions with epitope tags and fluorescent reporter genes. In particular, we report here the first use of the new red fluorescent protein mScarlet in a multicellular organism. wrmScarlet, a C. elegans-optimized version, dramatically surpassed TagRFP-T by showing an eightfold increase in fluorescence in a direct comparison.
Collapse
Affiliation(s)
- Sonia El Mouridi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Claire Lecroisey
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Philippe Tardy
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Marine Mercier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Alice Leclercq-Blondel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Nora Zariohi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Thomas Boulin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| |
Collapse
|
21
|
Bito T, Misaki T, Yabuta Y, Ishikawa T, Kawano T, Watanabe F. Vitamin B 12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans. Redox Biol 2016; 11:21-29. [PMID: 27840283 PMCID: PMC5107735 DOI: 10.1016/j.redox.2016.10.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is implicated in various human diseases and conditions, such as a neurodegeneration, which is the major symptom of vitamin B12 deficiency, although the underlying disease mechanisms associated with vitamin B12 deficiency are poorly understood. Vitamin B12 deficiency was found to significantly increase cellular H2O2 and NO content in Caenorhabditis elegans and significantly decrease low molecular antioxidant [reduced glutathione (GSH) and L-ascorbic acid] levels and antioxidant enzyme (superoxide dismutase and catalase) activities, indicating that vitamin B12 deficiency induces severe oxidative stress leading to oxidative damage of various cellular components in worms. An NaCl chemotaxis associative learning assay indicated that vitamin B12 deficiency did not affect learning ability but impaired memory retention ability, which decreased to approximately 58% of the control value. When worms were treated with 1 mmol/L GSH, L-ascorbic acid, or vitamin E for three generations during vitamin B12 deficiency, cellular malondialdehyde content as an index of oxidative stress decreased to the control level, but the impairment of memory retention ability was not completely reversed (up to approximately 50%). These results suggest that memory retention impairment formed during vitamin B12 deficiency is partially attributable to oxidative stress.
Collapse
Affiliation(s)
- Tomohiro Bito
- The School of Agricultural, Biological and Environmental sciences, Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan
| | - Taihei Misaki
- The School of Agricultural, Biological and Environmental sciences, Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan
| | - Yukinori Yabuta
- The School of Agricultural, Biological and Environmental sciences, Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Shimane 690-8504, Japan
| | - Tsuyoshi Kawano
- The School of Agricultural, Biological and Environmental sciences, Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan
| | - Fumio Watanabe
- The School of Agricultural, Biological and Environmental sciences, Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan.
| |
Collapse
|
22
|
Wang M, Wang D, Zhang X, Wang X, Liu W, Hou X, Huang X, Xie B, Cheng X. Double-stranded RNA-mediated interference of dumpy genes in Bursaphelenchus xylophilus by feeding on filamentous fungal transformants. Int J Parasitol 2016; 46:351-60. [PMID: 26953254 DOI: 10.1016/j.ijpara.2016.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 01/05/2023]
Abstract
RNA interference (RNAi) is a valuable tool for studying gene function in vivo and provides a functional genomics platform in a wide variety of organisms. The pinewood nematode, Bursaphelenchus xylophilus, is a prominent invasive plant-parasitic nematode and has become a serious worldwide threat to forest ecosystems. Presently, the complete genome sequence of B. xylophilus has been published, and research involving genome-wide functional analyses is likely to increase. In this study, we describe the construction of an effective silencing vector, pDH-RH, which contains a transcriptional unit for a hairpin loop structure. Utilising this vector, double-stranded (ds)RNAs with sequences homologous to the target genes can be expressed in a transformed filamentous fungus via Agrobacterium tumefaciens-mediated transformation technology, and can subsequently induce the knockdown of target gene mRNA expression in B. xylophilus by allowing the nematode to feed on the fungal transformants. Four dumpy genes (Bx-dpy-2, 4, 10 and 11) were used as targets to detect RNAi efficiency. By allowing the nematode to feed on target gene-transformed Fusarium oxysporum strains, target transcripts were knocked down 34-87% compared with those feeding on the wild-type strain as determined by real-time quantitative PCR (RT-qPCR). Morphological RNAi phenotypes were observed, displaying obviously reduced body length; weak dumpy or small (short and thin) body size; or general abnormalities. Moreover, compensatory regulation and non-specific silencing of dpy genes were found in B. xylophilus. Our results indicate that RNAi delivery by feeding in B. xylophilus is a successful technique. This platform may provide a new opportunity for undertaking RNAi-based, genome-wide gene functional studies in vitro in B. xylophilus. Moreover, as B. xylophilus feeds on endophytic fungi when a host has died, RNAi feeding technology will offer the prospect for developing a novel control strategy for the nematode. Furthermore, this platform may also be applicable to other parasitic nematodes that have a facultative, fungivorous habit.
Collapse
Affiliation(s)
- Meng Wang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Diandong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Yangtze Normal University, Chongqing 408100, China
| | - Xi Zhang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xu Wang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Wencui Liu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaomeng Hou
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaoyin Huang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing 100875, China.
| |
Collapse
|
23
|
Bell RT, Fu BXH, Fire AZ. Cas9 Variants Expand the Target Repertoire in Caenorhabditis elegans. Genetics 2016; 202:381-8. [PMID: 26680661 PMCID: PMC4788222 DOI: 10.1534/genetics.115.185041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 12/26/2022] Open
Abstract
The proliferation of CRISPR/Cas9-based methods in Caenorhabditis elegans has enabled efficient genome editing and precise genomic tethering of Cas9 fusion proteins. Experimental designs using CRISPR/Cas9 are currently limited by the need for a protospacer adjacent motif (PAM) in the target with the sequence NGG. Here we report the characterization of two modified Cas9 proteins in C. elegans that recognize NGA and NGCG PAMs. We found that each variant could stimulate homologous recombination with a donor template at multiple loci and that PAM specificity was comparable to that of wild-type Cas9. To directly compare effectiveness, we used CRISPR/Cas9 genome editing to generate a set of assay strains with a common single-guide RNA (sgRNA) target sequence, but that differ in the juxtaposed PAM (NGG, NGA, or NGCG). In this controlled setting, we determined that the NGA PAM Cas9 variant can be as effective as wild-type Cas9. We similarly edited a genomic target to study the influence of the base following the NGA PAM. Using four strains with four NGAN PAMs differing only at the fourth position and adjacent to the same sgRNA target, we observed that efficient homologous replacement was attainable with any base in the fourth position, with an NGAG PAM being the most effective. In addition to demonstrating the utility of two Cas9 mutants in C. elegans and providing reagents that permit CRISPR/Cas9 experiments with fewer restrictions on potential targets, we established a means to benchmark the efficiency of different Cas9::PAM combinations that avoids variations owing to differences in the sgRNA sequence.
Collapse
Affiliation(s)
- Ryan T Bell
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Becky X H Fu
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Andrew Z Fire
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305 Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
24
|
Taffoni C, Pujol N. Mechanisms of innate immunity in C. elegans epidermis. Tissue Barriers 2015; 3:e1078432. [PMID: 26716073 PMCID: PMC4681281 DOI: 10.1080/21688370.2015.1078432] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/17/2015] [Accepted: 07/24/2015] [Indexed: 01/26/2023] Open
Abstract
The roundworm C. elegans has been successfully used for more than 50 y as a genetically tractable invertebrate model in diverse biological fields such as neurobiology, development and interactions. C. elegans feeds on bacteria and can be naturally infected by a wide range of microorganisms, including viruses, bacteria and fungi. Most of these pathogens infect C. elegans through its gut, but some have developed ways to infect the epidermis. In this review, we will mainly focus on epidermal innate immunity, in particular the signaling pathways and effectors activated upon wounding and fungal infection that serve to protect the host. We will discuss the parallels that exist between epidermal innate immune responses in nematodes and mammals.
Collapse
Affiliation(s)
- Clara Taffoni
- Center d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2 ; Inserm; Marseille, France
| | - Nathalie Pujol
- Center d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2 ; Inserm; Marseille, France
| |
Collapse
|
25
|
Dineen A, Gaudet J. TGF-β signaling can act from multiple tissues to regulate C. elegans body size. BMC DEVELOPMENTAL BIOLOGY 2014; 14:43. [PMID: 25480452 PMCID: PMC4278669 DOI: 10.1186/s12861-014-0043-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/25/2014] [Indexed: 11/23/2022]
Abstract
Background Regulation of organ and body size is a fundamental biological phenomenon, requiring tight coordination between multiple tissues to ensure accurate proportional growth. In C. elegans, a TGF-β pathway is the major regulator of body size and also plays a role in the development of the male tail, and is thus referred to as the TGF-β/Sma/Mab (for small and male abnormal) pathway. Mutations in components of this pathway result in decreased growth of animals during larval stages, with Sma mutant adults of the core pathway as small as ~60-70% the length of normal animals. The currently accepted model suggests that TGF-β/Sma/Mab pathway signaling in the C. elegans hypodermis is both necessary and sufficient to control body length. However, components of this signaling pathway are expressed in other organs, such as the intestine and pharynx, raising the question of what the function of the pathway is in these organs. Results Here we show that TGF-β/Sma/Mab signaling is required for the normal growth of the pharynx. We further extend the current model and show that the TGF-β/Sma/Mab pathway can function in multiple tissues to regulate body and organ length. Specifically, we find that pharyngeal expression of the SMAD protein SMA-3 partially rescues both pharynx length and body length of sma-3 mutants. Conclusions Overall, our results support a model in which the TGF-β/Sma/Mab signaling pathway can act in multiple tissues, activating one or more downstream secreted signals that act non cell-autonomously to regulate overall body length in C. elegans. Electronic supplementary material The online version of this article (doi:10.1186/s12861-014-0043-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aidan Dineen
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4 N1, Alberta, Canada.
| | - Jeb Gaudet
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4 N1, Alberta, Canada.
| |
Collapse
|
26
|
Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics 2014; 198:837-46. [PMID: 25161212 DOI: 10.1534/genetics.114.169730] [Citation(s) in RCA: 538] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Facilitated by recent advances using CRISPR/Cas9, genome editing technologies now permit custom genetic modifications in a wide variety of organisms. Ideally, modified animals could be both efficiently made and easily identified with minimal initial screening and without introducing exogenous sequence at the locus of interest or marker mutations elsewhere. To this end, we describe a coconversion strategy, using CRISPR/Cas9 in which screening for a dominant phenotypic oligonucleotide-templated conversion event at one locus can be used to enrich for custom modifications at another unlinked locus. After the desired mutation is identified among the F1 progeny heterozygous for the dominant marker mutation, F2 animals that have lost the marker mutation are picked to obtain the desired mutation in an unmarked genetic background. We have developed such a coconversion strategy for Caenorhabditis elegans, using a number of dominant phenotypic markers. Examining the coconversion at a second (unselected) locus of interest in the marked F1 animals, we observed that 14-84% of screened animals showed homologous recombination. By reconstituting the unmarked background through segregation of the dominant marker mutation at each step, we show that custom modification events can be carried out recursively, enabling multiple mutant animals to be made. While our initial choice of a coconversion marker [rol-6(su1006)] was readily applicable in a single round of coconversion, the genetic properties of this locus were not optimal in that CRISPR-mediated deletion mutations at the unselected rol-6 locus can render a fraction of coconverted strains recalcitrant to further rounds of similar mutagenesis. An optimal marker in this sense would provide phenotypic distinctions between the desired mutant/+ class and alternative +/+, mutant/null, null/null, and null/+ genotypes. Reviewing dominant alleles from classical C. elegans genetics, we identified one mutation in dpy-10 and one mutation in sqt-1 that meet these criteria and demonstrate that these too can be used as effective conversion markers. Coconversion was observed using a variety of donor molecules at the second (unselected) locus, including oligonucleotides, PCR products, and plasmids. We note that the coconversion approach described here could be applied in any of the variety of systems where suitable coconversion markers can be identified from previous intensive genetic analyses of gain-of-function alleles.
Collapse
|
27
|
A pre- and co-knockdown of RNAseT enzyme, Eri-1, enhances the efficiency of RNAi induced gene silencing in Caenorhabditis elegans. PLoS One 2014; 9:e87635. [PMID: 24475317 PMCID: PMC3901743 DOI: 10.1371/journal.pone.0087635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/28/2013] [Indexed: 01/08/2023] Open
Abstract
Background The approach of RNAi mediated gene knockdown, employing exogenous dsRNA, is being beneficially exploited in various fields of functional genomics. The immense utility of the approach came to fore from studies with model system C. elegans, but quickly became applicable with varied research models ranging from in vitro to various in vivo systems. Previously, there have been reports on the refractoriness of the neuronal cells to RNAi mediated gene silencing following which several modulators like eri-1 and lin-15 were described in C. elegans which, when present, would negatively impact the gene knockdown. Methodology/Principal Findings Taking a clue from these findings, we went on to screen hypothesis-driven- methodologies towards exploring the efficiency in the process of RNAi under various experimental conditions, wherein these genes would be knocked down preceding to, or concurrently with, the knocking down of a gene of interest. For determining the efficiency of gene knockdown, we chose to study visually stark phenotypes of uncoordinated movement, dumpy body morphology and blistered cuticle obtained by knocking down of genes unc-73, dpy-9 and bli-3 respectively, employing the RNAi-by-feeding protocol in model system C. elegans. Conclusions/Significance Our studies led to a very interesting outcome as the results reveal that amongst various methods tested, pre-incubation with eri-1 dsRNA synthesizing bacteria followed by co-incubation with eri-1 and gene-of-interest dsRNA synthesizing bacteria leads to the most efficient gene silencing as observed by the analysis of marker phenotypes. This provides an approach for effectively employing RNAi induced gene silencing while working with different genetic backgrounds including transgenic and mutant strains.
Collapse
|
28
|
Jones MR, Rose AM, Baillie DL. The ortholog of the human proto-oncogene ROS1 is required for epithelial development in C. elegans. Genesis 2013; 51:545-61. [PMID: 23733356 PMCID: PMC4232869 DOI: 10.1002/dvg.22405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Abstract
The orphan receptor ROS1 is a human proto-oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C. elegans ortholog of ROS1, the receptor tyrosine kinase ROL-3, has an essential role in orchestrating the morphogenesis and development of specialized epidermal tissues, highlighting a potentially conserved function in coordinating crosstalk between developing epithelial cells. We also provide evidence of a direct relationship between ROL-3, the mucin SRAP-1, and BCC-1, the homolog of mRNA regulating protein Bicaudal-C. This study answers a longstanding question as to the developmental function of ROL-3, identifies three new genes that are expressed and function in the developing epithelium of C. elegans, and introduces the nematode as a potentially powerful model system for investigating the increasingly important, yet poorly understood, human oncogene ROS1. genesis 51:545–561.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| | | | | |
Collapse
|
29
|
Fernando T, Flibotte S, Xiong S, Yin J, Yzeiraj E, Moerman DG, Meléndez A, Savage-Dunn C. C. elegans ADAMTS ADT-2 regulates body size by modulating TGFβ signaling and cuticle collagen organization. Dev Biol 2011; 352:92-103. [PMID: 21256840 DOI: 10.1016/j.ydbio.2011.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 01/05/2011] [Accepted: 01/13/2011] [Indexed: 01/26/2023]
Abstract
Organismal growth and body size are influenced by both genetic and environmental factors. We have utilized the strong molecular genetic techniques available in the nematode Caenorhabditis elegans to identify genetic determinants of body size. In C. elegans, DBL-1, a member of the conserved family of secreted growth factors known as the Transforming Growth Factor β superfamily, is known to play a major role in growth control. The mechanisms by which other determinants of body size function, however, is less well understood. To identify additional genes involved in body size regulation, a genetic screen for small mutants was previously performed. One of the genes identified in that screen was sma-21. We now demonstrate that sma-21 encodes ADT-2, a member of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family of secreted metalloproteases. ADAMTS proteins are believed to remodel the extracellular matrix and may modulate the activity of extracellular signals. Genetic interactions suggest that ADT-2 acts in parallel with or in multiple size regulatory pathways. We demonstrate that ADT-2 is required for normal levels of expression of a DBL-1-responsive transcriptional reporter. We further demonstrate that adt-2 regulatory sequences drive expression in glial-like and vulval cells, and that ADT-2 activity is required for normal cuticle collagen fibril organization. We therefore propose that ADT-2 regulates body size both by modulating TGFβ signaling activity and by maintaining normal cuticle structure.
Collapse
Affiliation(s)
- Thilini Fernando
- Department of Biology, Queens College, and The Graduate School and University Center, City University of New York, Flushing, NY 11367, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Elling AA, Mitreva M, Recknor J, Gai X, Martin J, Maier TR, McDermott JP, Hewezi T, McK Bird D, Davis EL, Hussey RS, Nettleton D, McCarter JP, Baum TJ. Divergent evolution of arrested development in the dauer stage of Caenorhabditis elegans and the infective stage of Heterodera glycines. Genome Biol 2007; 8:R211. [PMID: 17919324 PMCID: PMC2246285 DOI: 10.1186/gb-2007-8-10-r211] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 10/05/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The soybean cyst nematode Heterodera glycines is the most important parasite in soybean production worldwide. A comprehensive analysis of large-scale gene expression changes throughout the development of plant-parasitic nematodes has been lacking to date. RESULTS We report an extensive genomic analysis of H. glycines, beginning with the generation of 20,100 expressed sequence tags (ESTs). In-depth analysis of these ESTs plus approximately 1,900 previously published sequences predicted 6,860 unique H. glycines genes and allowed a classification by function using InterProScan. Expression profiling of all 6,860 genes throughout the H. glycines life cycle was undertaken using the Affymetrix Soybean Genome Array GeneChip. Our data sets and results represent a comprehensive resource for molecular studies of H. glycines. Demonstrating the power of this resource, we were able to address whether arrested development in the Caenorhabditis elegans dauer larva and the H. glycines infective second-stage juvenile (J2) exhibits shared gene expression profiles. We determined that the gene expression profiles associated with the C. elegans dauer pathway are not uniformly conserved in H. glycines and that the expression profiles of genes for metabolic enzymes of C. elegans dauer larvae and H. glycines infective J2 are dissimilar. CONCLUSION Our results indicate that hallmark gene expression patterns and metabolism features are not shared in the developmentally arrested life stages of C. elegans and H. glycines, suggesting that developmental arrest in these two nematode species has undergone more divergent evolution than previously thought and pointing to the need for detailed genomic analyses of individual parasite species.
Collapse
Affiliation(s)
- Axel A Elling
- Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
- Current address: Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Makedonka Mitreva
- Department of Genetics, Washington University School of Medicine, Genome Sequencing Center, St Louis, MO 63108, USA
| | - Justin Recknor
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Xiaowu Gai
- LH Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, IA 50011, USA
- Current address: Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John Martin
- Department of Genetics, Washington University School of Medicine, Genome Sequencing Center, St Louis, MO 63108, USA
| | - Thomas R Maier
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey P McDermott
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
- Current address: The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tarek Hewezi
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | - David McK Bird
- Department of Plant Pathology, NC State University, Raleigh, NC 27695, USA
| | - Eric L Davis
- Department of Plant Pathology, NC State University, Raleigh, NC 27695, USA
| | - Richard S Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - James P McCarter
- Department of Genetics, Washington University School of Medicine, Genome Sequencing Center, St Louis, MO 63108, USA
- Divergence Inc., North Warson Road, St Louis, MO 63141, USA
| | - Thomas J Baum
- Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
31
|
Harris J, Lowden M, Clejan I, Tzoneva M, Thomas JH, Hodgkin J, Ahmed S. Mutator phenotype of Caenorhabditis elegans DNA damage checkpoint mutants. Genetics 2006; 174:601-16. [PMID: 16951081 PMCID: PMC1602097 DOI: 10.1534/genetics.106.058701] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA damage response proteins identify sites of DNA damage and signal to downstream effectors that orchestrate either apoptosis or arrest of the cell cycle and DNA repair. The C. elegans DNA damage response mutants mrt-2, hus-1, and clk-2(mn159) displayed 8- to 15-fold increases in the frequency of spontaneous mutation in their germlines. Many of these mutations were small- to medium-sized deletions, some of which had unusual sequences at their breakpoints such as purine-rich tracts or direct or inverted repeats. Although DNA-damage-induced apoptosis is abrogated in the mrt-2, hus-1, and clk-2 mutant backgrounds, lack of the apoptotic branch of the DNA damage response pathway in cep-1/p53, ced-3, and ced-4 mutants did not result in a Mutator phenotype. Thus, DNA damage checkpoint proteins suppress the frequency of mutation by ensuring that spontaneous DNA damage is accurately repaired in C. elegans germ cells. Although DNA damage response defects that predispose humans to cancer are known to result in large-scale chromosome aberrations, our results suggest that small- to medium-sized deletions may also play roles in the development of cancer.
Collapse
Affiliation(s)
- Jasper Harris
- Department of Biology, University of North Carolina, NC 27599-3280, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Lamitina T, Huang CG, Strange K. Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Proc Natl Acad Sci U S A 2006; 103:12173-8. [PMID: 16880390 PMCID: PMC1567714 DOI: 10.1073/pnas.0602987103] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Indexed: 01/13/2023] Open
Abstract
The detection, stabilization, and repair of stress-induced damage are essential requirements for cellular life. All cells respond to osmotic stress-induced water loss with increased expression of genes that mediate accumulation of organic osmolytes, solutes that function as chemical chaperones and restore osmotic homeostasis. The signals and signaling mechanisms that regulate osmoprotective gene expression in animal cells are poorly understood. Here, we show that gpdh-1 and gpdh-2, genes that mediate the accumulation of the organic osmolyte glycerol, are essential for survival of the nematode Caenorhabditis elegans during osmotic stress. Expression of GFP driven by the gpdh-1 promoter (P(gpdh-1)::GFP) is detected only during hypertonic stress but is not induced by other stressors. Using P(gpdh-1)::GFP expression as a phenotype, we screened approximately 16,000 genes by RNAi feeding and identified 122 that cause constitutive activation of gpdh-1 expression and glycerol accumulation. Many of these genes function to regulate protein translation and cotranslational protein folding and to target and degrade denatured proteins, suggesting that the accumulation of misfolded proteins functions as a signal to activate osmoprotective gene expression and organic osmolyte accumulation in animal cells. Consistent with this hypothesis, 73% of these protein-homeostasis genes have been shown to slow age-dependent protein aggregation in C. elegans. Because diverse environmental stressors and numerous disease states result in protein misfolding, mechanisms must exist that discriminate between osmotically induced and other forms of stress-induced protein damage. Our findings provide a foundation for understanding how these damage-selectivity mechanisms function.
Collapse
Affiliation(s)
- Todd Lamitina
- *Departments of Anesthesiology and Pharmacology, Vanderbilt University, T4208 Medical Center North, 1161 21st Avenue South, Nashville, TN 37232; and
| | - Chunyi George Huang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21224
| | - Kevin Strange
- *Departments of Anesthesiology and Pharmacology, Vanderbilt University, T4208 Medical Center North, 1161 21st Avenue South, Nashville, TN 37232; and
| |
Collapse
|
33
|
Novelli J, Page AP, Hodgkin J. The C terminus of collagen SQT-3 has complex and essential functions in nematode collagen assembly. Genetics 2006; 172:2253-67. [PMID: 16452136 PMCID: PMC1456373 DOI: 10.1534/genetics.105.053637] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nematode exoskeleton is a multilayered structure secreted by the underlying hypodermal cells and mainly composed of small collagens, which are encoded by a large gene family. In previous work, we reported analysis of the C. elegans dpy-31 locus, encoding a hypodermally expressed zinc-metalloprotease of the BMP-1/TOLLOID family essential for viability and cuticle deposition. We have generated a large set of extragenic suppressors of dpy-31 lethality, most of which we show here to be allelic to the cuticle collagen genes sqt-3 and dpy-17. We analyzed the interaction among dpy-31, sqt-3, and dpy-17 using a SQT-3-specific antiserum, which was employed in immunofluorescence experiments. Our results support a role for DPY-31 in SQT-3 extracellular processing and suggest that the SQT-3 C-terminal nontrimeric region serves multiple roles during SQT-3 assembly. Different missense mutations of this region have diverse phenotypic consequences, including cold-sensitive lethality. Furthermore, the biochemical and genetic data indicate that the extracellular assemblies of DPY-17 and SQT-3 are interdependent, most likely because the collagens are incorporated into the same cuticular substructure. We find that absence of DPY-17 causes extensive intracellular retention of SQT-3, indicating that formation of the SQT-3-DPY-17 polymer could begin in the intracellular environment before secretion.
Collapse
Affiliation(s)
- Jacopo Novelli
- Genetics Unit, Department of Biochemistry, University of Oxford, United Kingdom
| | | | | |
Collapse
|
34
|
Mitsunari T, Nakatsu F, Shioda N, Love PE, Grinberg A, Bonifacino JS, Ohno H. Clathrin adaptor AP-2 is essential for early embryonal development. Mol Cell Biol 2005; 25:9318-23. [PMID: 16227583 PMCID: PMC1265839 DOI: 10.1128/mcb.25.21.9318-9323.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The heterotetrameric adaptor protein (AP) complexes AP-1, AP-2, AP-3, and AP-4 play key roles in transport vesicle formation and cargo sorting in post-Golgi trafficking pathways. Studies on cultured mammalian cells have shown that AP-2 mediates rapid endocytosis of a subset of plasma membrane receptors. To determine whether this function is essential in the context of a whole mammalian organism, we carried out targeted disruption of the gene encoding the mu2 subunit of AP-2 in the mouse. We found that mu2 heterozygous mutant mice were viable and had an apparently normal phenotype. In contrast, no mu2 homozygous mutant embryos were identified among blastocysts from intercrossed heterozygotes, indicating that mu2-deficient embryos die before day 3.5 postcoitus (E3.5). These results indicate that AP-2 is indispensable for early embryonic development, which might be due to its requirement for cell viability.
Collapse
Affiliation(s)
- Takashi Mitsunari
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Schott DH, Cureton DK, Whelan SP, Hunter CP. An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2005; 102:18420-4. [PMID: 16339901 PMCID: PMC1317933 DOI: 10.1073/pnas.0507123102] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism triggered by exogenous dsRNA. In plants an RNAi-like mechanism defends against viruses, but the hypothesis that animals possess a similar natural antiviral mechanism related to RNAi remains relatively untested. To test whether genes needed for RNAi defend animal cells against virus infection, we infected wild-type and RNAi-defective cells of the nematode C. elegans with vesicular stomatitis virus engineered to encode a GFP fusion protein. We show that upon infection, cells lacking components of the RNAi apparatus produce more GFP and infective particles than wild-type cells. Furthermore, we show that mutant cells with enhanced RNAi produce less GFP. Our observation that multiple genes required for RNAi are also required for resistance to vesicular stomatitis virus suggests that the RNAi machinery functions in resistance to viruses in nature.
Collapse
Affiliation(s)
- Daniel H Schott
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
36
|
Watanabe M, Mitani N, Ishii N, Miki K. A mutation in a cuticle collagen causes hypersensitivity to the endocrine disrupting chemical, bisphenol A, in Caenorhabditis elegans. Mutat Res 2005; 570:71-80. [PMID: 15680404 DOI: 10.1016/j.mrfmmm.2004.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 09/13/2004] [Accepted: 10/07/2004] [Indexed: 11/29/2022]
Abstract
A novel mutant gene, bis-1 (bisphenol A sensitive) has been isolated in the nematode, Caenorhabditis elegans, that affects the response to endocrine disrupting chemicals (EDC). The bis-1(nx3) allele is hypersensitive to bisphenol A (BPA), is allelic to a collagen gene (col-121), and is expressed in hypodermal cells. Among the collagen mutants so far studied, bis-1(nx3), dpy-2(e8), dpy-7(e88) and dpy-10(e128) showed BPA sensitivity. The isolated mutant may work as a useful tool for the assay of EDC toxicity since the physiological effect of the collagen mutation (glycine substitution) indicates an increased sensitivity to BPA.
Collapse
Affiliation(s)
- Masahito Watanabe
- Department of Cell Biology, Japanese Institute of Pearl Science, 4-28 Amanuma, Hiratsuka, Kanagawa 254-0031, Japan
| | | | | | | |
Collapse
|
37
|
Solomon A, Bandhakavi S, Jabbar S, Shah R, Beitel GJ, Morimoto RI. Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments. Genetics 2005; 167:161-70. [PMID: 15166144 PMCID: PMC1470864 DOI: 10.1534/genetics.167.1.161] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms that enable multicellular organisms to sense and modulate their responses to hyperosmotic environments are poorly understood. Here, we employ Caenorhabditis elegans to characterize the response of a multicellular organism to osmotic stress and establish a genetic screen to isolate mutants that are osmotic stress resistant (OSR). In this study, we describe the cloning of a novel gene, osr-1, and demonstrate that it regulates osmosensation, adaptation, and survival in hyperosmotic environments. Whereas wild-type animals exposed to hyperosmotic conditions rapidly lose body volume, motility, and viability, osr-1(rm1) mutant animals maintain normal body volume, motility, and viability even upon chronic exposures to high osmolarity environments. In addition, osr-1(rm1) animals are specifically resistant to osmotic stress and are distinct from previously characterized osmotic avoidance defective (OSM) and general stress resistance age-1(hx546) mutants. OSR-1 is expressed in the hypodermis and intestine, and expression of OSR-1 in hypodermal cells rescues the osr-1(rm1) phenotypes. Genetic epistasis analysis indicates that OSR-1 regulates survival under osmotic stress via CaMKII and a conserved p38 MAP kinase signaling cascade and regulates osmotic avoidance and resistance to acute dehydration likely by distinct mechanisms. We suggest that OSR-1 plays a central role in integrating stress detection and adaptation responses by invoking multiple signaling pathways to promote survival under hyperosmotic environments.
Collapse
Affiliation(s)
- Aharon Solomon
- Department of Biochemistry, Molecular Biology and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
38
|
Mitreva M, McCarter JP, Martin J, Dante M, Wylie T, Chiapelli B, Pape D, Clifton SW, Nutman TB, Waterston RH. Comparative genomics of gene expression in the parasitic and free-living nematodes Strongyloides stercoralis and Caenorhabditis elegans. Genome Res 2004; 14:209-20. [PMID: 14762059 PMCID: PMC327096 DOI: 10.1101/gr.1524804] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although developmental timing of gene expression is used to infer potential gene function, studies have yet to correlate this information between species. We analyzed 10,921 ESTs in 3311 clusters from first- and infective third-stage larva (L1, L3i) of the parasitic nematode Strongyloides stercoralis and compared the results to Caenorhabditis elegans, a species that has an L3i-like dauer stage. In the comparison of S. stercoralis clusters with stage-specific expression to C. elegans homologs expressed in either dauer or nondauer stages, matches between S. stercoralis L1 and C. elegans nondauer-expressed genes dominated, suggesting conservation in the repertoire of genes expressed during growth in nutrient-rich conditions. For example, S. stercoralis collagen transcripts were abundant in L1 but not L3i, a pattern consistent with C. elegans collagens. Although a greater proportion of S. stercoralis L3i than L1 genes have homologs among the C. elegans dauer-specific transcripts, we did not uncover evidence of a robust conserved L3i/dauer 'expression signature.' Strikingly, in comparisons of S. stercoralis clusters to C. elegans homologs with RNAi knockouts, those with significant L1-specific expression were more than twice as likely as L3i-specific clusters to match genes with phenotypes. We also provide functional classifications of S. stercoralis clusters.
Collapse
Affiliation(s)
- Makedonka Mitreva
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Page AP, Winter AD. Enzymes involved in the biogenesis of the nematode cuticle. ADVANCES IN PARASITOLOGY 2003; 53:85-148. [PMID: 14587697 DOI: 10.1016/s0065-308x(03)53003-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nematodes include species that are significant parasites of man, his domestic animals and crops, and cause chronic debilitating diseases in the developing world; such as lymphatic filariasis and river blindness caused by filarial species. Around one third of the World's population harbour parasitic nematodes; no vaccines exist for prevention of infection, limited effective drugs are available and drug resistance is an ever-increasing problem. A critical structure of the nematode is the protective cuticle, a collagen-rich extracellular matrix (ECM) that forms the exoskeleton, and is critical for viability. This resilient structure is synthesized sequentially five times during nematode development and offers protection from the environment, including the hosts' immune response. The detailed characterization of this complex structure; it's components, and the means by which they are synthesized, modified, processed and assembled will identify targets that may be exploited in the future control of parasitic nematodes. This review will focus on the nematode cuticle. This structure is predominantly composed of collagens, a class of proteins that are modified by a range of co- and post-translational modifications prior to assembly into higher order complexes or ECMs. The collagens and their associated enzymes have been comprehensively characterized in vertebrate systems and some of these studies will be addressed in this review. Conversely, the biosynthesis of this class of essential structural proteins has not been studied in such detail in the nematodes. As with all morphogenetic, functional and developmental studies in the Nematoda phylum, the free-living species Caenorhabditis elegans has proven to be invaluable in the characterization of the cuticle and the cuticle collagen gene family, and is now proving to be an excellent model in the study of cuticle collagen biosynthetic enzymes. This model system will be the main focus of this review.
Collapse
Affiliation(s)
- Antony P Page
- Wellcome Centre for Molecular Parasitology, The Anderson College, The University of Glasgow, Glasgow G11 6NU, UK
| | | |
Collapse
|
40
|
McMahon L, Muriel JM, Roberts B, Quinn M, Johnstone IL. Two sets of interacting collagens form functionally distinct substructures within a Caenorhabditis elegans extracellular matrix. Mol Biol Cell 2003; 14:1366-78. [PMID: 12686594 PMCID: PMC153107 DOI: 10.1091/mbc.e02-08-0479] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 12/09/2002] [Accepted: 12/23/2002] [Indexed: 11/11/2022] Open
Abstract
A ubiquitous feature of collagens is protein interaction, the trimerization of monomers to form a triple helix followed by higher order interactions during the formation of the mature extracellular matrix. The Caenorhabditis elegans cuticle is a complex extracellular matrix consisting predominantly of cuticle collagens, which are encoded by a family of approximately 154 genes. We identify two discrete interacting sets of collagens and show that they form functionally distinct matrix substructures. We show that mutation in or RNA-mediated interference of a gene encoding a collagen belonging to one interacting set affects the assembly of other members of that set, but not those belonging to the other set. During cuticle synthesis, the collagen genes are expressed in a distinct temporal series, which we hypothesize exists to facilitate partner finding and the formation of appropriate interactions between encoded collagens. Consistent with this hypothesis, we find for the two identified interacting sets that the individual members of each set are temporally coexpressed, whereas the two sets are expressed approximately 2 h apart during matrix synthesis.
Collapse
Affiliation(s)
- Laura McMahon
- The Wellcome Centre for Molecular Parasitology, The University of Glasgow, Anderson College, Glasgow G11 6NU, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Eschenlauer SCP, Page AP. The Caenorhabditis elegans ERp60 homolog protein disulfide isomerase-3 has disulfide isomerase and transglutaminase-like cross-linking activity and is involved in the maintenance of body morphology. J Biol Chem 2003; 278:4227-37. [PMID: 12424233 DOI: 10.1074/jbc.m210510200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel protein disulfide isomerase gene, pdi-3, was isolated from the nematode Caenorhabditis elegans. This gene encodes an enzyme related to the ERp60 class of thioredoxin proteins and was found to exhibit unusual enzymatic properties. Recombinant protein displayed both disulfide bond isomerase activity and calcium-dependent transglutaminase-like cross-linking activity. The pdi-3 transcript was developmentally constitutively expressed, and the encoded protein is present in many tissues including the gut and the hypodermis. The nematode hypodermis synthesizes the essential collagenous extracellular matrix (ECM) called the cuticle. Transcript disruption via double-stranded RNA interference resulted in dramatic and specific synthetic phenotypes in several C. elegans mutant alleles with weakened cuticles: sqt-3(e2117), dpy-18(e364, ok162, and bx26). These nematodes displayed severe dumpy phenotypes and disrupted lateral alae, a destabilized cuticle and abnormal male and hermaphrodite tail morphologies. These defects were confirmed to be consistent with hypodermal seam cell abnormalities and corresponded with the severe disruption of a cuticle collagen. Wild type nematodes did not exhibit observable morphological defects; however, cuticle collagen localization was mildly disrupted following pdi-3 RNA interference. The unusual thioredoxin enzyme, protein disulfide isomerase-3, may therefore play a role in ECM assembly. This enzyme is required for the proper maintenance of post-embryonic body shape in strains with a weakened cuticle, perhaps through ECM stabilization via cross-linking activity, disulfide isomerase protein folding activity, protein disulfide isomerase chaperone activity, or via multifunctional events.
Collapse
Affiliation(s)
- Sylvain C P Eschenlauer
- Wellcome Centre for Molecular Parasitology, Anderson College, the University of Glasgow, United Kingdom
| | | |
Collapse
|
42
|
Suzuki Y, Morris GA, Han M, Wood WB. A cuticle collagen encoded by the lon-3 gene may be a target of TGF-beta signaling in determining Caenorhabditis elegans body shape. Genetics 2002; 162:1631-9. [PMID: 12524338 PMCID: PMC1462364 DOI: 10.1093/genetics/162.4.1631] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The signaling pathway initiated by the TGF-beta family member DBL-1 in Caenorhabditis elegans controls body shape in a dose-dependent manner. Loss-of-function (lf) mutations in the dbl-1 gene cause a short, small body (Sma phenotype), whereas overexpression of dbl-1 causes a long body (Lon phenotype). To understand the cellular mechanisms underlying these phenotypes, we have isolated suppressors of the Sma phenotype resulting from a dbl-1(lf) mutation. Two of these suppressors are mutations in the lon-3 gene, of which four additional alleles are known. We show that lon-3 encodes a collagen that is a component of the C. elegans cuticle. Genetic and reporter-gene expression analyses suggest that lon-3 is involved in determination of body shape and is post-transcriptionally regulated by the dbl-1 pathway. These results support the possibility that TGF-beta signaling controls C. elegans body shape by regulating cuticle composition.
Collapse
Affiliation(s)
- Yo Suzuki
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | |
Collapse
|
43
|
Nyström J, Shen ZZ, Aili M, Flemming AJ, Leroi A, Tuck S. Increased or decreased levels of Caenorhabditis elegans lon-3, a gene encoding a collagen, cause reciprocal changes in body length. Genetics 2002; 161:83-97. [PMID: 12019225 PMCID: PMC1462080 DOI: 10.1093/genetics/161.1.83] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Body length in C. elegans is regulated by a member of the TGFbeta family, DBL-1. Loss-of-function mutations in dbl-1, or in genes encoding components of the signaling pathway it activates, cause worms to be shorter than wild type and slightly thinner (Sma). Overexpression of dbl-1 confers the Lon phenotype characterized by an increase in body length. We show here that loss-of-function mutations in dbl-1 and lon-1, respectively, cause a decrease or increase in the ploidy of nuclei in the hypodermal syncytial cell, hyp7. To learn more about the regulation of body length in C. elegans we carried out a genetic screen for new mutations causing a Lon phenotype. We report here the cloning and characterization of lon-3. lon-3 is shown to encode a putative cuticle collagen that is expressed in hypodermal cells. We show that, whereas putative null mutations in lon-3 (or reduction of lon-3 activity by RNAi) causes a Lon phenotype, increasing lon-3 gene copy number causes a marked reduction in body length. Morphometric analyses indicate that the lon-3 loss-of-function phenotype resembles that caused by overexpression of dbl-1. Furthermore, phenotypes caused by defects in dbl-1 or lon-3 expression are in both cases suppressed by a null mutation in sqt-1, a second cuticle collagen gene. However, whereas loss of dbl-1 activity causes a reduction in hypodermal endoreduplication, the reduction in body length associated with overexpression of lon-3 occurs in the absence of defects in hypodermal ploidy.
Collapse
|
44
|
Abstract
Adaptor protein (AP) complexes are heterotetrameric assemblies of subunits named adaptins. Four AP complexes, termed AP-1, AP-2, AP-3, and AP-4, have been described in various eukaryotic organisms. Biochemical and morphological evidence indicates that AP complexes play roles in the formation of vesicular transport intermediates and the selection of cargo molecules for inclusion into these intermediates. This understanding is being expanded by the application of genetic interference procedures. Here, we review recent progress in the genetic analysis of the function of AP complexes, focusing on studies that make use of targeted interference or naturally-occurring mutations in various model organisms.
Collapse
Affiliation(s)
- Markus Boehm
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Building 18T/Room 101, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
45
|
Ko FCF, Chow KL. A novel thioredoxin-like protein encoded by the C. elegans dpy-11 gene is required for body and sensory organ morphogenesis. Development 2002; 129:1185-94. [PMID: 11874914 DOI: 10.1242/dev.129.5.1185] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sensory ray morphogenesis in C. elegans requires active cellular interaction regulated by multiple genetic activities. We report here the cloning of one of these genes, dpy-11, which encodes a membrane-associated thioredoxin-like protein. The DPY-11 protein is made exclusively in the hypodermis and resides in the cytoplasmic compartment. Whereas the TRX domain of DPY-11 displays a catalytic activity in vitro, mapping of lesions in different mutant alleles and functional analysis of deletion transgenes reveal that both this enzymatic activity and transmembrane topology are essential for determining body shape and ray morphology. Based on the abnormal features in both the expressing and non-expressing ray cells, we propose that the DPY-11 is required in the hypodermis for modification of its substrates. In turn, ray cell interaction and the whole morphogenetic process can be modulated by these substrate molecules.
Collapse
Affiliation(s)
- Frankie C F Ko
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
46
|
Abstract
Whereas growth in many ecdysozoa is associated with only molting, larval growth in nematodes, specifically Caenorhabditis elegans, is thought to be continuous and exponential. However, this has never been closely investigated. Here we report several detailed studies of growth in wild-type and dwarf C. elegans strains. We find that apparent exponential growth between hatching and adulthood comprises a series of linear phases, one per larval stage, with the linear growth rate increasing at successive molts. Although most structures grow continuously, the buccal cavity does not; instead, it grows saltationally at molts, like arthropod structures. We speculate that these saltational changes in mouth size permit changes in growth rate and that molting exists in nematodes to facilitate rapid growth. We study the cellular basis of this growth in the hypodermis. At each larval stage, lateral seam cells produce daughters that fuse with hyp7, a syncytium covering most of the worm. We find that seam cells and fusing daughter cells obtain larger sizes in successive molts. The total seam cell volume remains constant relative to the size of the worm. However, fusing daughter cells contributes only a very small amount directly to hypodermal growth, suggesting that most hyp7 growth must be intrinsic. Thus, dwarfism mutations studied principally act via adult syncytial growth, with cell size being near normal in both dbl-1 and dpy-2 mutant worms. We speculate that the main function of seam cell proliferation may be to supply the hypodermis with additional genomes for the purpose of growth.
Collapse
Affiliation(s)
- Christopher G Knight
- Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire, United Kingdom
| | | | | | | |
Collapse
|
47
|
Abstract
Adaptins are subunits of adaptor protein (AP) complexes involved in the formation of intracellular transport vesicles and in the selection of cargo for incorporation into the vesicles. In this article, we report the results of a survey for adaptins from sequenced genomes including those of man, mouse, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, the plant Arabidopsis thaliana, and the yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe. We find that humans, mice, and Arabidopsis thaliana have four AP complexes (AP-1, AP-2, AP-3, and AP-4), whereas D. melanogaster, C. elegans, S. cerevisiae, and S. pombe have only three (AP-1, AP-2, and AP-3). Additional diversification of AP complexes arises from the existence of adaptin isoforms encoded by distinct genes or resulting from alternative splicing of mRNAs. We complete the assignment of adaptins to AP complexes and provide information on the chromosomal localization, exon-intron structure, and pseudogenes for the different adaptins. In addition, we discuss the structural and evolutionary relationships of the adaptins and the genetic analyses of their function. Finally, we extend our survey to adaptin-related proteins such as the GGAs and stonins, which contain domains homologous to the adaptins.
Collapse
Affiliation(s)
- M Boehm
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
48
|
Edens WA, Sharling L, Cheng G, Shapira R, Kinkade JM, Lee T, Edens HA, Tang X, Sullards C, Flaherty DB, Benian GM, Lambeth JD. Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 2001; 154:879-91. [PMID: 11514595 PMCID: PMC2196470 DOI: 10.1083/jcb.200103132] [Citation(s) in RCA: 304] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Revised: 07/02/2001] [Accepted: 07/03/2001] [Indexed: 11/29/2022] Open
Abstract
High molecular weight homologues of gp91phox, the superoxide-generating subunit of phagocyte nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, have been identified in human (h) and Caenorhabditis elegans (Ce), and are termed Duox for "dual oxidase" because they have both a peroxidase homology domain and a gp91phox domain. A topology model predicts that the enzyme will utilize cytosolic NADPH to generate reactive oxygen, but the function of the ecto peroxidase domain was unknown. Ce-Duox1 is expressed in hypodermal cells underlying the cuticle of larval animals. To investigate function, RNA interference (RNAi) was carried out in C. elegans. RNAi animals showed complex phenotypes similar to those described previously in mutations in collagen biosynthesis that are known to affect the cuticle, an extracellular matrix. Electron micrographs showed gross abnormalities in the cuticle of RNAi animals. In cuticle, collagen and other proteins are cross-linked via di- and trityrosine linkages, and these linkages were absent in RNAi animals. The expressed peroxidase domains of both Ce-Duox1 and h-Duox showed peroxidase activity and catalyzed cross-linking of free tyrosine ethyl ester. Thus, Ce-Duox catalyzes the cross-linking of tyrosine residues involved in the stabilization of cuticular extracellular matrix.
Collapse
Affiliation(s)
- W A Edens
- Department of Biochemistry, Emory University Medical School, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Caenorhabditis elegans adult animals exhibit an inherent chirality of fiber orientation in the basal layer of the cuticle, as well as a naturally invariant but experimentally reversible handedness in the left-right (L-R) asymmetry of the body plan. We have examined the relationship between cuticle chirality and body handedness in normal and L-R reversed animals, using Roller (Rol) mutants and transmission electron microscopy to monitor cuticle properties. Rol phenotypes, several of which have been shown to result from mutations in cuticle collagen genes, are characterized by an invariant, allele-specific handedness in their direction of rolling. We show for several alleles that this direction is not affected by L-R reversal of the body plan. We further show, by electron microscopy, that the chiral orientation of cuticle fibers in animals with normal cuticle is not reversed by L-R body-plan reversal. We conclude that cuticle chirality must be established independently of body-plan handedness. The cues that establish cuticle chirality are still unknown, as are the causes for different rolling directions in different Roller mutants. We discuss the question of how cuticle chirality maintains its independence, and how the orientations of the fiber layers may be determined.
Collapse
Affiliation(s)
- D C Bergmann
- Department of MCD Biology, University of Colorado, Boulder 80309-0347, USA
| | | | | | | |
Collapse
|
50
|
Flemming AJ, Shen ZZ, Cunha A, Emmons SW, Leroi AM. Somatic polyploidization and cellular proliferation drive body size evolution in nematodes. Proc Natl Acad Sci U S A 2000; 97:5285-90. [PMID: 10805788 PMCID: PMC25820 DOI: 10.1073/pnas.97.10.5285] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2000] [Indexed: 11/18/2022] Open
Abstract
Most of the hypodermis of a rhabditid nematode such as Caenorhabditis elegans is a single syncytium. The size of this syncytium (as measured by body size) has evolved repeatedly in the rhabditid nematodes. Two cellular mechanisms are important in the evolution of body size: changes in the numbers of cells that fuse with the syncytium, and the extent of its acellular growth. Thus nematodes differ from mammals and other invertebrates in which body size evolution is caused by changes in cell number alone. The evolution of acellular syncytial growth in nematodes is also associated with changes in the ploidy of hypodermal nuclei. These nuclei are polyploid as a consequence of iterative rounds of endoreduplication, and this endocycle has evolved repeatedly. The association between acellular growth and endoreduplication is also seen in C. elegans mutations that interrupt transforming growth factor-beta signaling and that result in dwarfism and deficiencies in hypodermal ploidy. The transforming growth factor-beta pathway is a candidate for being involved in nematode body size evolution.
Collapse
Affiliation(s)
- A J Flemming
- Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, United Kingdom
| | | | | | | | | |
Collapse
|