1
|
Lu Z, Mathew S, Chen J, Hadziselimovic A, Palamuttam R, Hudson BG, Fässler R, Pozzi A, Sanders CR, Zent R. Implications of the differing roles of the β1 and β3 transmembrane and cytoplasmic domains for integrin function. eLife 2016; 5. [PMID: 27929375 PMCID: PMC5207772 DOI: 10.7554/elife.18633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Integrins are transmembrane receptors composed of α and β subunits. Although most integrins contain β1, canonical activation mechanisms are based on studies of the platelet integrin, αIIbβ3. Its inactive conformation is characterized by the association of the αIIb transmembrane and cytosolic domain (TM/CT) with a tilted β3 TM/CT that leads to activation when disrupted. We show significant structural differences between β1 and β3 TM/CT in bicelles. Moreover, the 'snorkeling' lysine at the TM/CT interface of β subunits, previously proposed to regulate αIIbβ3 activation by ion pairing with nearby lipids, plays opposite roles in β1 and β3 integrin function and in neither case is responsible for TM tilt. A range of affinities from almost no interaction to the relatively high avidity that characterizes αIIbβ3 is seen between various α subunits and β1 TM/CTs. The αIIbβ3-based canonical model for the roles of the TM/CT in integrin activation and function clearly does not extend to all mammalian integrins.
Collapse
Affiliation(s)
- Zhenwei Lu
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Sijo Mathew
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States
| | - Jiang Chen
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Arina Hadziselimovic
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Riya Palamuttam
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Billy G Hudson
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States.,Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, United States.,Veterans Affairs Hospital, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, United States
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, United States.,Veterans Affairs Hospital, Nashville, United States
| |
Collapse
|
2
|
Wang ZH, Rabouille C, Geisbrecht ER. Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle. Biol Open 2015; 4:636-48. [PMID: 25862246 PMCID: PMC4434815 DOI: 10.1242/bio.201511551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drosophila Clueless (Clu) and its conserved orthologs are known for their role in the prevention of mitochondrial clustering. Here, we uncover a new role for Clu in the delivery of integrin subunits in muscle tissue. In clu mutants, αPS2 integrin, but not βPS integrin, abnormally accumulates in a perinuclear endoplasmic reticulum (ER) subdomain, a site that mirrors the endogenous localization of Clu. Loss of components essential for mitochondrial distribution do not phenocopy the clu mutant αPS2 phenotype. Conversely, RNAi knockdown of the DrosophilaGolgi reassembly and stacking protein GRASP55/65 (dGRASP) recapitulates clu defects, including the abnormal accumulation of αPS2 and larval locomotor activity. Both Clu and dGRASP proteins physically interact and loss of Clu displaces dGRASP from ER exit sites, suggesting that Clu cooperates with dGRASP for the exit of αPS2 from a perinuclear subdomain in the ER. We also found that Clu and dGRASP loss of function leads to ER stress and that the stability of the ER exit site protein Sec16 is severely compromised in the clu mutants, thus explaining the ER accumulation of αPS2. Remarkably, exposure of clu RNAi larvae to chemical chaperones restores both αPS2 delivery and functional ER exit sites. We propose that Clu together with dGRASP prevents ER stress and therefore maintains Sec16 stability essential for the functional organization of perinuclear early secretory pathway. This, in turn, is essential for integrin subunit αPS2 ER exit in Drosophila larval myofibers.
Collapse
Affiliation(s)
- Zong-Heng Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA
| | - Catherine Rabouille
- Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands The Department of Cell Biology, UMC Utrecht, 3584 CX Utrecht, The Netherlands
| | - Erika R Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
3
|
Tanfous NGB, Essafi M, Larguech B, Barbouche R, Fathallah DM. Characterization of a novel monoclonal antibody with restricted specificity to the free beta 2 integrin alpha M CD11b subunit. Hybridoma (Larchmt) 2007; 26:373-9. [PMID: 18158781 DOI: 10.1089/hyb.2007.0518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Leukocyte cell surface expression and function of beta2 integrins require the intracellular association of alpha subunits, CD11a, b, c, d, respectively, with the common CD18 beta2 subunit. We have raised and characterized a murine MAb -- ME-MDF -- directed against the low affinity form of the human integrin alphaM subunit CD11b A-domain. MAb ME-MDF is an IgG2a that has a kDa of 2,45461 +/- 0.12 x 10(-9) M. MAb ME-MDF recognizes both the low and high affinity forms of the CD11b A-domain. Flow cytometry showed that ME-MDF does not recognize the heterodimeric CD11b/CD18 molecule at the surface of polymorphonuclear cells and the human monoblast cell line U937. Western blot analysis of U937 cell line cell surface proteins demonstrated that ME-MDF reacts specifically with the CD11b subunit but does not react with the heterodimeric CD11b/CD18 complex, a feature that differentiates it from other CD11b A-dom-specific MAbs. These observations suggest that ME-MDF recognizes an epitope that is involved in the association of the two subunits and hence is not accessible within the heterodimeric form of the CD11b/CD18 molecule. These data show that the CD11b A-dom engages not only the MIDAS but also the ME-MDF-specific epitope to associate with the CD18 subunit. We have also constructed, and expressed in the yeast Pichia pastoris, the corresponding recombinant scFv form of MAb ME-MDF and characterized the CDRs. MAb ME-MDF is characterized by short VH and VL CDR3. MAb ME-MDF and/or its recombinant scFv form would be very useful to study the structural basis of the association between the alpha and beta2 integrin subunits and to investigate the possibility of modulating CR3 cell surface expression by preventing subunit association.
Collapse
|
4
|
Partridge MA, David FS, Marcantonio EE. Displacement of the {beta} cytoplasmic domain recovers focal adhesion formation, cytoskeletal organization and motility in swapped integrin chimeras. J Cell Sci 2006; 119:1175-83. [PMID: 16507589 DOI: 10.1242/jcs.02827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated ;outside-in' signaling requires the transmission of a conformational change from the extracellular domains to the cytoplasmic domains. Although one component of this conformational change is the separation of the alpha and beta cytoplasmic domains, it is not clear how this separation could result in the initiation of downstream signals necessary for focal adhesion (FA) formation. To address this question, we used a swapped integrin heterodimer, in which the extracellular domains of the alpha and beta chains were attached to their opposing transmembrane and cytoplasmic domains. This receptor was able to bind ligand normally, but could not promote FA formation. We then displaced the beta cytoplasmic domain with either a duplication of its membrane-proximal region or an unrelated alpha-helical spacer. This displacement partially restored FA formation in these swapped receptors and rescued other aspects of integrin-mediated signaling, including cytoskeletal organization, motility and several tyrosine-phosphorylation-dependent signals. We suggest that separation of the cytoplasmic domains leads to alteration of the secondary structure of the distal beta tail, which initiates downstream signals leading to cytoskeletal reorganization.
Collapse
Affiliation(s)
- Michael A Partridge
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
5
|
Yamodo IH, Blystone SD. Integrin alphaIIb-subunit cytoplasmic domain mutations demonstrate a requirement for tyrosine phosphorylation of beta3-subunits in actin cytoskeletal organization. ACTA ACUST UNITED AC 2005; 11:121-35. [PMID: 16194880 DOI: 10.1080/15419060500212508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.
Collapse
Affiliation(s)
- Innocent H Yamodo
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
6
|
Ben-Horin S, Bank I. The role of very late antigen-1 in immune-mediated inflammation. Clin Immunol 2004; 113:119-29. [PMID: 15451466 DOI: 10.1016/j.clim.2004.06.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 06/21/2004] [Indexed: 12/26/2022]
Abstract
The alpha1beta1 integrin, also known as "very late antigen" (VLA)-1, is normally expressed on mesenchymal cells, some epithelial cells, activated T cells, and macrophages, and interacts, via the I-domain of the extracellular domain of the alpha1 subunit, with collagen molecules in the extracellular matrix (ECM). By "outside-in" transmembranal signaling to the interior of the cell, it mediates adhesion, migration, proliferation, remodeling of the ECM, and cytokine secretion by endothelial cells, mesangial cells, fibroblasts, and immunocytes. Importantly, its expressions and functions are enhanced by inflammatory cytokines including interferon (IFN)gamma and tumor necrosis factor (TNF)alpha, thus augmenting angiogenesis and fibrosis linked, in particular, to inflammation. Moreover, within the immune system, VLA-1 marks effector memory CD4+ and CD8+ T cells that are retained in extralymphatic tissues by interactions of the integrin with collagen and produce high levels of IFNgamma. Thus, immune-mediated inflammation in vivo is inhibited by blockade of the VLA-1-collagen interaction in experimental animal models of arthritis, colitis, nephritis, and graft versus host disease (GVHD), suggesting that inhibiting the interaction of the alpha1 I-domain with its ligands or modulating "outside-in" signaling by VLA-1 would be a useful approach in the human diseases simulated by these experimental models.
Collapse
Affiliation(s)
- Shomron Ben-Horin
- Laboratory for Immunoregulation, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | | |
Collapse
|
7
|
Leabu M, Uniyal S, Xie J, Xu YQ, Vladau C, Morris VL, Chan BMC. Integrin ?2?1 modulates EGF stimulation of Rho GTPase-dependent morphological changes in adherent human rhabdomyosarcoma RD cells. J Cell Physiol 2004; 202:754-66. [PMID: 15481063 DOI: 10.1002/jcp.20163] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of cells to undergo shape changes is essential for diverse cellular functions including cell growth, differentiation, and movement. The present study examines how an integration of the function of alpha2beta1 integrin with that of the receptor for epidermal growth factor (EGFR) modulates EGF-stimulated morphological changes in human rhabdomyosarcoma RD transfectant cells. Upon EGF stimulation, RD transfectant cells that lacked alpha2beta1 integrin expression (RDpF) underwent contraction; in contrast, expression of alpha2beta1 on RD cells (RDX2C2) resulted in transient cell spreading. Integrin alpha2 cytoplasmic domain played a critical role in the observed alpha2beta1-mediated conversion from a cell rounding to a cell spreading phenotype. Thus, the expression of an alpha2 cytoplasmic domain deletion variant (X2C0) or a chimeric alpha2beta1 containing the cytoplasmic domain of alpha4 (X2C4) or alpha5 (X2C5), instead of alpha2, failed to mediate spreading upon EGF stimulation. Using dominant negative (DN) mutants of RhoGTPases, results revealed that RhoA activation was required for both EGF-stimulated responses of cell rounding and spreading, Cdc42 functioned in the re-spreading of cells after undergoing EGF-stimulated contraction, and Rac1 was required in alpha2beta1-mediated RD cell spreading. Therefore, alpha2beta1 integrin function can switch the Rho GTPase-dependent cell shape changes in RD cells from an EGF-stimulated cell contraction to a spreading morphology. Together, results show that integrin alpha2 cytoplasmic domain plays an indispensable role in the ability of integrin alpha2beta1 to modulate EGF stimulation of Rho-GTPase-dependent morphological changes in RD cells.
Collapse
Affiliation(s)
- M Leabu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
8
|
Pankov R, Cukierman E, Clark K, Matsumoto K, Hahn C, Poulin B, Yamada KM. Specific beta1 integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. J Biol Chem 2003; 278:18671-81. [PMID: 12637511 DOI: 10.1074/jbc.m300879200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin transmembrane receptors generate multiple signals, but how they mediate specific signaling is not clear. Here we test the hypothesis that particular sequences along the beta(1) integrin cytoplasmic domain may exist that are intimately related to specific integrin-mediated signaling pathways. Using systematic alanine mutagenesis of amino acids conserved between different beta integrin cytoplasmic domains, we identified the tryptophan residue at position 775 of human beta(1) integrin as specific and necessary for integrin-mediated protein kinase B/Akt survival signaling. Stable expression of a beta(1) integrin mutated at this amino acid in GD25 beta(1)-null cells resulted in reduction of Akt phosphorylation at both Ser(473) and Thr(308) activation sites. As a consequence, the cells were substantially more sensitive to serum starvation-induced apoptosis when compared with cells expressing wild type beta(1) integrin. This inactivation of Akt resulted from increased dephosphorylation by a localized active population of protein phosphatase 2A. Both Akt and protein phosphatase 2A were present in beta(1) integrin-organized cytoplasmic complexes, but the activity of this phosphatase was 2.5 times higher in the complexes organized by the mutant integrin. The mutation of Trp(775) specifically affected Akt signaling, without effects on other integrin-activated pathways including phosphoinositide 3-kinase, MAPK, JNK, and p38 nor did it influence activation of the integrin-responsive kinases focal adhesion kinase and Src. The identification of Trp(775) as a specific site for integrin-mediated Akt signaling supports the concept of specificity of signaling along the integrin cytoplasmic domain.
Collapse
Affiliation(s)
- Roumen Pankov
- Craniofacial Developmental Biology and Regeneration Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Weljie AM, Hwang PM, Vogel HJ. Solution structures of the cytoplasmic tail complex from platelet integrin alpha IIb- and beta 3-subunits. Proc Natl Acad Sci U S A 2002; 99:5878-83. [PMID: 11983888 PMCID: PMC122870 DOI: 10.1073/pnas.092515799] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Indexed: 11/18/2022] Open
Abstract
Integrin adhesion receptors constitute a cell-signaling system whereby interactions in the small cytoplasmic domains of the heterodimeric alpha- and beta-subunits provoke major functional alterations in the large extracellular domains. With two-dimensional NMR spectroscopy, we examined two synthetic peptides [alphaIIb((987)MWKVGFFKRNR) and beta3((716)KLLITIHDRKEFAKFEEERARAKWD)] encompassing the membrane-proximal regions of the cytoplasmic domain motifs from the platelet integrin complex alphaIotaIotabbeta3. These membrane-proximal regions contain two conserved motifs, represented by (989)KVGFFKR in the alphaIIb-subunit, and (716)KLLITIHDR in the beta3-subunit. The dimer interaction consists of two adjacent helices with residues V990 and F993 of the alphaIotaIotab-subunit heavily implicated in the dimer interfacial region, as is I719 of beta3. These residues are situated within the conserved motifs of their respective proteins. Further structural analysis of this unique peptide heterodimer suggests that two distinct conformers are present. The major structural difference between the two conformers is a bend in the beta3-peptide between D723 and A728, whereas the helical character in the other regions remains intact. Earlier mutational analysis has shown that a salt bridge between the side chains of alphaIotaIotab(R955) and beta3(D723) is formed. When this ion pair was modeled into both conformers, increased nuclear Overhauser effect violations suggested that the more bent structure was less able to accommodate this interaction. These results provide a molecular level rationalization for previously reported biochemical studies, as well as a basis for an atomic level understanding of the intermolecular interactions that regulate integrin activity.
Collapse
Affiliation(s)
- Aalim M Weljie
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | | | | |
Collapse
|
10
|
Stringa E, Knäuper V, Murphy G, Gavrilovic J. Collagen degradation and platelet-derived growth factor stimulate the migration of vascular smooth muscle cells. J Cell Sci 2000; 113 ( Pt 11):2055-64. [PMID: 10806116 DOI: 10.1242/jcs.113.11.2055] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell migration is a key event in many biological processes and depends on signals from both extracellular matrix and soluble motogenic factors. During atherosclerotic plaque development, vascular smooth muscle cells migrate from the tunica media to the intima through a basement membrane and interstitial collagenous matrix and proliferate to form a neointima. Matrix metalloproteinases have previously been implicated in neointimal formation and in this study smooth muscle cell adhesion and migration on degraded collagen have been evaluated. Vascular smooth muscle cells adhered to native intact collagen type I and to its first degradation by-product, 3/4 fragment (generated by collagenase-3 cleavage), unwound at 35 degrees C to mimic physiological conditions. PDGF-BB pre-treatment induced a fourfold stimulation of smooth muscle cell motility on the collagen 3/4 fragment whereas no increase in smooth muscle cell motility on collagen type I was observed. Cell migration on collagen type I was mediated by alpha2 integrin, whereas PDGF-BB-stimulated migration on the 3/4 collagen fragment was dependent on alphavbeta3 integrin. alphavbeta3 integrin was organised in clusters concentrated at the leading and trailing edges of the cells and was only expressed when cells were exposed to the 3/4 collagen fragment. Tyrphostin A9, an inhibitor of PDGF receptor-beta tyrosine kinase activity, resulted in complete abolition of migration of PDGF-BB treated cells on collagen type I and 3/4 fragment. These results strongly support the hypothesis that the cellular migratory response to soluble motogens can be regulated by proteolytic modification of the extracellular matrix.
Collapse
Affiliation(s)
- E Stringa
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|
11
|
Martel V, Vignoud L, Dupé S, Frachet P, Block MR, Albigès-Rizo C. Talin controls the exit of the integrin alpha 5 beta 1 from an early compartment of the secretory pathway. J Cell Sci 2000; 113 ( Pt 11):1951-61. [PMID: 10806106 DOI: 10.1242/jcs.113.11.1951] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Talin is a major cytosolic protein that links the intracellular domains of beta1 and beta3 integrins to the cytoskeleton. It is required for focal adhesion assembly. However, its downregulation not only slows down cell spreading and organization of focal adhesions but also impairs the maturation of some beta1 integrins, including the fibronectin receptor alpha5beta1. To investigate this, we characterized the beta1 integrin synthesized in cells expressing talin anti-sense RNA (AT22 cells). We identified a large intracellular pool of beta1 integrins that is abnormally accumulated in an earlier compartment of the secretory pathway. In this report, we show that in talin-deficient AT22 cells, the aberrant glycosylation of integrin receptors is accompanied by a delay in the export of the integrin alpha5beta1. In normal cells, talin was found associated with beta1 integrins in an enriched membrane fraction containing Golgi and endoplasmic reticulum. Finally, microinjection of anti-talin antibodies resulted in accumulation of the integrins within the cells. These data strongly suggest that talin plays a specific role in the export of newly synthesized integrins. We propose that talin binding to the integrin may disclose a diphenylalanine export signal, which is present in the membrane-proximal GFFKR motif conserved in all integrin alpha chains.
Collapse
Affiliation(s)
- V Martel
- Laboratoire d'Etude de la Différenciation et de l'Adhérence Cellulaires, UMR CNRS/UJF 5538, Institut Albert Bonniot, Faculté de médecine, Domaine de la Merci, France
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Integrin signaling involves oligomerization and a transmembrane conformational change induced by receptor occupancy. Previous work has shown that subsets of focal adhesion-associated proteins are recruited to integrins as a result of clustering, ligand binding, or both. However, it is unclear whether these discrete subsets reflect the differential binding of cytoplasmic proteins to the integrin or whether a single protein or set of proteins binds the integrin and is differentially activated by receptor occupancy or clustering. To address this question, we made mutations of the beta1 integrin cytoplasmic domain in the context of a single subunit chimera and studied their activation of various known integrin-mediated signaling pathways. We show here that the indirect association of the integrin with actin is distinct from its interactions with both preformed focal adhesions and FAK. Therefore, multiple independent signaling pathways exist from the integrin to the focal adhesion, which may reflect the association of independent factors with the integrin beta1 cytoplasmic domain.
Collapse
Affiliation(s)
- F S David
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | |
Collapse
|
13
|
R to Q Amino Acid Substitution in the GFFKR Sequence of the Cytoplasmic Domain of the Integrin IIb Subunit in a Patient With a Glanzmann’s Thrombasthenia-Like Syndrome. Blood 1998. [DOI: 10.1182/blood.v92.11.4178] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe integrin IIbβ3 mediates platelet aggregation through its fibrinogen and adhesive protein-binding properties. Particular interest concerns the role of the cytoplasmic domains of IIb and β3. We now report the molecular analysis of IIbβ3 from a patient with a Glanzmann’s thrombasthenia-like syndrome for whom the principal characteristics are an approximate 50% total platelet content of IIbβ3 but with a much lower proportion in the surface pool (Hardisty et al, Blood 80:696, 1992). Polymerase chain reaction (PCR) single-strand conformational polymorphism and DNA sequencing showed a heterozygous mutation giving rise to amino acid substitution R995 to Q in the GFFKR sequence of the cytoplasmic domain of IIb. Reverse transcriptase-PCR and polymorphism analysis only detected mRNA for the mutated allele of the IIb gene and a single allele of the β3 gene in his platelets, suggesting other unidentified defects. Site-directed mutagenesis followed by transient expression of the mutated IIb together with wild-type β3 in Cos-7 cells resulted in a markedly decreased expression of the complex at the cell surface when compared with cells transfected with wild-type IIb and β3. Flow cytometry with PAC-1 and a stable Chinese hamster ovary–transfected cell line showed that the mutated receptor was not locked into a high activation state, although it became so in the presence of the activating antibody, anti-LIBS6. This is the first reported natural mutation in the highly conserved GFFKR sequence of the IIb cytoplasmic domain.
Collapse
|
14
|
R to Q Amino Acid Substitution in the GFFKR Sequence of the Cytoplasmic Domain of the Integrin IIb Subunit in a Patient With a Glanzmann’s Thrombasthenia-Like Syndrome. Blood 1998. [DOI: 10.1182/blood.v92.11.4178.423k08_4178_4187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrin IIbβ3 mediates platelet aggregation through its fibrinogen and adhesive protein-binding properties. Particular interest concerns the role of the cytoplasmic domains of IIb and β3. We now report the molecular analysis of IIbβ3 from a patient with a Glanzmann’s thrombasthenia-like syndrome for whom the principal characteristics are an approximate 50% total platelet content of IIbβ3 but with a much lower proportion in the surface pool (Hardisty et al, Blood 80:696, 1992). Polymerase chain reaction (PCR) single-strand conformational polymorphism and DNA sequencing showed a heterozygous mutation giving rise to amino acid substitution R995 to Q in the GFFKR sequence of the cytoplasmic domain of IIb. Reverse transcriptase-PCR and polymorphism analysis only detected mRNA for the mutated allele of the IIb gene and a single allele of the β3 gene in his platelets, suggesting other unidentified defects. Site-directed mutagenesis followed by transient expression of the mutated IIb together with wild-type β3 in Cos-7 cells resulted in a markedly decreased expression of the complex at the cell surface when compared with cells transfected with wild-type IIb and β3. Flow cytometry with PAC-1 and a stable Chinese hamster ovary–transfected cell line showed that the mutated receptor was not locked into a high activation state, although it became so in the presence of the activating antibody, anti-LIBS6. This is the first reported natural mutation in the highly conserved GFFKR sequence of the IIb cytoplasmic domain.
Collapse
|
15
|
Zage PE, Marcantonio EE. The membrane proximal region of the integrin beta cytoplasmic domain can mediate oligomerization. CELL ADHESION AND COMMUNICATION 1998; 5:335-47. [PMID: 9789682 DOI: 10.3109/15419069809010780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Integrin-ligand binding generates many intracellular signals, including signals to initiate focal contact formation and to regulate cellular decisions concerning growth and differentiation. Oligomerization of the beta subunit cytoplasmic domain appears to be required for many of these events. In order to study these processes, we have generated a novel chimeric protein, consisting of the chicken integrin beta 1 cytoplasmic domain connected to the central rod domain of a neuronal intermediate filament, alpha-internexin. This chimeric protein, when expressed transiently in 293T cells, oligomerizes in a beta cytoplasmic domain-dependent manner. This oligomerization requires the membrane proximal amino acids LLMII of the beta 1 cytoplasmic domain, as demonstrated by deletion analysis. Therefore, the integrin beta cytoplasmic domain in this system contains an oligomerization function, which may provide some insight as to the function of intact integrins in vivo.
Collapse
Affiliation(s)
- P E Zage
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
16
|
Tsuchida J, Ueki S, Takada Y, Saito Y, Takagi J. The ‘ligand-induced conformational change’ of alpha 5 beta 1 integrin. Relocation of alpha 5 subunit to uncover the beta 1 stalk region. J Cell Sci 1998; 111 ( Pt 12):1759-66. [PMID: 9601105 DOI: 10.1242/jcs.111.12.1759] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin heterodimers undergo a conformational change upon the binding of ligand to their extracellular domains. An anti-beta1 integrin monoclonal antibody AG89 can detect such a conformational change since it recognizes a ligand-inducible epitope in the stalk-like region of beta1 subunits. The binding of a 125I-labeled AG89 Fab fragment to alpha5 beta1 integrins on K562 cells was assessed and analyzed by the Scatchard method. High affinity binding sites for AG89 are present on cells treated with ligand peptide. In addition, results revealed that cells treated with EDTA also express AG89 binding sites with the same affinity although the number of binding sites is 4-fold lower. AG89 immunoprecipitated alpha5 beta1 complexes from surface-labeled K562 cells treated with ligand peptide. By contrast, it immunoprecipitated only beta1 chains when the ligand peptide was absent, suggesting that high affinity binding sites on EDTA-treated cells are associated with non-functional beta1 monomer. Additional studies show that the epitope for AG89 is constitutively exposed on mutant beta1 that cannot complex with alpha5. These data suggest that the AG89 epitope is masked by the alpha5 subunit. Ligand binding and integrin activation may uncover the beta1 stalk region by triggering a conformational shift of alpha5 relative to beta1.
Collapse
Affiliation(s)
- J Tsuchida
- Department of Biological Sciences, Tokyo Institute of Technology, Midori-ku, Yokohama 226, Japan
| | | | | | | | | |
Collapse
|
17
|
Martin-Bermudo MD, Dunin-Borkowski OM, Brown NH. Modulation of integrin activity is vital for morphogenesis. J Cell Biol 1998; 141:1073-81. [PMID: 9585424 PMCID: PMC2132760 DOI: 10.1083/jcb.141.4.1073] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1997] [Revised: 02/06/1998] [Indexed: 02/07/2023] Open
Abstract
Cells can vary their adhesive properties by modulating the affinity of integrin receptors. The activation and inactivation of integrins by inside-out mechanisms acting on the cytoplasmic domains of the integrin subunits has been demonstrated in platelets, lymphocytes, and keratinocytes. We show that in the embryo, normal morphogenesis requires the alpha subunit cytoplasmic domain to control integrin adhesion at the right times and places. PS2 integrin (alphaPS2betaPS) adhesion is normally restricted to the muscle termini, where it is required for attaching the muscles to the ends of other muscles and to specialized epidermal cells. Replacing the wild-type alphaPS2 with mutant forms containing cytoplasmic domain deletions results in the rescue of the majority of defects associated with the absence of the alphaPS2 subunit, however, the mutant PS2 integrins are excessively active. Muscles containing these mutant integrins make extra muscle attachments at aberrant positions on the muscle surface, disrupting the muscle pattern and causing embryonic lethality. A gain- of-function phenotype is not observed in the visceral mesoderm, showing that regulation of integrin activity is tissue-specific. These results suggest that the alphaPS2 subunit cytoplasmic domain is required for inside-out regulation of integrin affinity, as has been seen with the integrin alphaIIbbeta3.
Collapse
Affiliation(s)
- M D Martin-Bermudo
- Wellcome/CRC Institute, Cambridge CB2 1QR, England; and Department of Biochemistry, Cambridge University, Cambridge CB2 1QW, England
| | | | | |
Collapse
|
18
|
Wang R, Stromer MH, Huiatt TW. Integrin expression in developing smooth muscle cells. J Histochem Cytochem 1998; 46:119-26. [PMID: 9405501 DOI: 10.1177/002215549804600115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We studied the specific expression patterns and distributions of alpha1 and beta1 integrin subunits, the major cell adhesion receptors in smooth muscle, in developing smooth muscle cells from 16-, 18-, and 20-day embryonic gizzards and from 1- and 7-day post hatch chick gizzards by SDS-PAGE, immunoblotting, and immunoelectron microscopy. Antibodies raised against alpha1 and beta1 integrins isolated from avian gizzards were used as probes. Gels and blots showed that the amount of alpha1 and beta1 integrins increased as age increased, with major increases at 1 and 7 days post hatch. Image analysis of immunoelectron micrographs demonstrated that statistically significant labeling increases occurred between embryonic Days 16 and 18, between embryonic Day 20 and 1 day post hatch, and between 1 day and 7 days post hatch. Immunolabeling with both anti-alpha1 and anti-beta1 integrin was prominent at membrane-associated dense plaques (MADPs) and at filament anchoring regions at cell ends. This indicates that alpha1 and beta1 integrin expression coincides temporally with the intracellular proliferation and reorientation of myofilaments. The similarity in distribution patterns of alpha1 and beta1 integrins during development suggests that the two integrin subunits are synchronously expressed during development and do not appear sequentially. (J Histochem Cytochem 46:119-125, 1998)
Collapse
Affiliation(s)
- R Wang
- Muscle Biology Group, Department of Animal Science and Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011-3260, USA
| | | | | |
Collapse
|
19
|
De Melker AA, Kramer D, Kuikman I, Sonnenberg A. The two phenylalanines in the GFFKR motif of the integrin alpha6A subunit are essential for heterodimerization. Biochem J 1997; 328 ( Pt 2):529-37. [PMID: 9371712 PMCID: PMC1218952 DOI: 10.1042/bj3280529] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The membrane-proximal domain of the integrin alpha subunit contains a conserved motif of five amino acid residues, GFFKR. We deleted this motif from the human alpha6A subunit and found that in COS-7 cells this mutant cannot associate with the beta1 subunit and is retained in the endoplasmic reticulum. Point mutations in the GFFKR motif of the glycine residue or the two highly charged amino acids, or deletion of the lysine and arginine residues, had no effect on the ability of alpha6 to interact with beta1 and to be expressed at the cell surface. In contrast, by replacing either of the two phenylalanines with alanine, or by deletion of both of these residues, alpha6 was incapable of associating with beta1. The alpha6 point mutants that associated with beta1 were expressed in K562 cells and their responsiveness to integrin-activating factors was determined. None of these transfectants bound spontaneously to laminin-1, but binding could be induced by either PMA or the stimulating anti-beta1 antibody TS2/16 to the same extent as that of the wild-type transfectant. The ability of these mutants to initiate focal-contact formation in CHO cells plated on laminin-1 substrates also appeared to be unaltered. Thus the behaviour of alpha6 mutants involving the glycine, lysine or arginine residues was indistinguishable from that of wild-type alpha6 both in inside-out and outside-in signalling. In contrast, deletion of the cytoplasmic domain of alpha6 C-terminal of the GFFKR motif resulted in a loss of responsiveness of alpha6beta1 to PMA stimulation and formation of focal contacts on laminin-1. However, this mutant was targeted to focal contacts formed by other integrins, even when they had not bound ligand. Together, these results suggest that the two phenylalanine residues of the GFFKR motif provide a site for interaction of the alpha6A subunit with beta1, whereas the cytoplasmic domain C-terminal of this motif is involved in the regulation of bidirectional signalling via alpha6Abeta1.
Collapse
Affiliation(s)
- A A De Melker
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
20
|
Abstract
Upon ligand binding to integrin receptors, a transmembrane conformation change occurs, which is required for the engagement of the actin cytoskeleton. Integrin receptor latency clearly involves the proximal portions of the alpha and beta cytoplasmic domains. Several experiments suggest that these two regions, which are highly conserved among integrins, may be associated, and this association is the structural basis for latency. We propose that ligand binding leads to a disruption of this association, which allows for the folding of the proximal beta cytoplasmic domain. Thus, in this model, the alpha chain association keeps the beta unfolded, and ligand binding leads to the propagation of an alpha helix from the transmembrane domain through the proximal beta cytoplasmic domain, leading to signal transduction.
Collapse
Affiliation(s)
- E E Marcantonio
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | |
Collapse
|
21
|
Ho WC, Heinemann C, Hangan D, Uniyal S, Morris VL, Chan BM. Modulation of in vivo migratory function of alpha 2 beta 1 integrin in mouse liver. Mol Biol Cell 1997; 8:1863-75. [PMID: 9348529 PMCID: PMC25630 DOI: 10.1091/mbc.8.10.1863] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report herein that expression of alpha 2 beta 1 integrin increased human erythroleukemia K562 transfectant (KX2C2) cell movement after extravasation into liver parenchyma. In contrast, a previous study demonstrated that alpha 2 beta 1 expression conferred a stationary phenotype to human rhabdomyosarcoma RD transfectant (RDX2C2) cells after extravasation into the liver. We therefore assessed the adhesive and migratory function of alpha 2 beta 1 on KX2C2 and RDX2C2 cells using a alpha 2 beta 1-specific stimulatory monoclonal antibody (mAb), JBS2, and a blocking mAb, BHA2.1. In comparison with RDX2C2 cells, KX2C2 were only weakly adherent to collagen and laminin. JBS2 stimulated alpha 2 beta 1-mediated interaction of KX2C2 cells with both collagen and laminin resulting in increases in cell movement on both matrix proteins. In the presence of Mn2+, JBS2-stimulated adhesion on collagen beyond an optimal level for cell movement. In comparison, an increase in RDX2C2 cell movement on collagen required a reduction in its adhesive strength provided by the blocking mAb BHA2.1. Consistent with these in vitro findings, in vivo videomicroscopy revealed that alpha 2 beta 1-mediated postextravasation cell movement of KX2C2 cells in the liver tissue could also be stimulated by JBS2. Thus, results demonstrate that alpha 2 beta 1 expression can modulate postextravasation cell movement by conferring either a stationary or motile phenotype to different cell types. These findings may be related to the differing metastatic activities of different tumor cell types.
Collapse
Affiliation(s)
- W C Ho
- Department of Microbiology and Immunology, John P. Robarts Research Institute, University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Lyman S, Gilmore A, Burridge K, Gidwitz S, White GC. Integrin-mediated activation of focal adhesion kinase is independent of focal adhesion formation or integrin activation. Studies with activated and inhibitory beta3 cytoplasmic domain mutants. J Biol Chem 1997; 272:22538-47. [PMID: 9278407 DOI: 10.1074/jbc.272.36.22538] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Integrin alphaIIbbeta3 functions as the fibrinogen receptor on platelets and mediates platelet aggregation and clot retraction. Among the events that occur during either "inside-out" or "outside-in" signaling through alphaIIbbeta3 is the phosphorylation of focal adhesion kinase (pp125(FAK)) and the association of pp125(FAK) with cytoskeletal components. To examine the role of pp125(FAK) in these integrin-mediated events, pp125(FAK) phosphorylation and association with the cytoskeleton was determined in cells expressing two mutant forms of alphaIIbbeta3: alphaIIbbeta3(D723A/E726A), a constitutively active integrin in which the putative binding site for pp125(FAK) is altered, and alphaIIbbeta3(F727A/K729E/F730A), in which the putative binding site for alpha-actinin is altered. Both mutants were expressed on the cell surface and were able to bind ligand, either spontaneously or upon activation. Whereas cells expressing alphaIIbbeta3(D723A/E726A) were able to form focal adhesions and stress fibers upon adherence to fibrinogen, cells expressing alphaIIbbeta3(F727A/K729E/F730A) adhere to fibrinogen, but had reduced focal adhesions and stress fibers. pp125(FAK) is recruited to focal adhesions in adherent cells expressing alphaIIbbeta3(D723A/E726A) and is phosphorylated in adherent cells or in cells in suspension in the presence of fibrinogen. In adherent cells expressing alphaIIbbeta3(F727A/K729E/F730A), pp125(FAK) was phosphorylated despite reduced formation of focal adhesions and stress fibers. We conclude that activation of pp125(FAK) can be dissociated from two important events in integrin signaling, the assembly of focal adhesions in adherent cells and integrin activation following ligand occupation.
Collapse
Affiliation(s)
- S Lyman
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
23
|
Kim LT, Yamada KM. Evidence that beta1 integrins in keratinocyte cell-cell junctions are not in the ligand-occupied conformation. J Invest Dermatol 1997; 108:876-80. [PMID: 9182814 DOI: 10.1111/1523-1747.ep12292589] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Integrins are a family of heterodimeric cell surface molecules that function as adhesion receptors in cell-cell and cell-extracellular matrix contact. Integrins of the beta1 family are found on keratinocytes clustered at sites of cell-cell junctions both in culture and in normal skin. The possibility that these integrins function in cell-cell adhesion has been both supported and refuted in recent conflicting publications. Rather than testing further for the presence or absence of an interaction, we present evidence to show that beta1 integrins in keratinocyte cell-cell junctions are in the non-ligand-occupied conformation. We transfected keratinocytes with a construct that expresses a chimeric cell surface molecule containing the integrin beta1 cytoplasmic tail. This chimera is thought to mimic the ligand-occupied receptor and has previously been shown to be actively localized to focal adhesions in fibroblasts. We find that keratinocytes are also able to localize this chimera in focal adhesions but do not localize it to areas of cell-cell junctions. A monoclonal anti-beta1 antibody that has been previously shown to preferentially recognize ligand-occupied beta1 receptors was used to stain keratinocytes. This antibody showed staining of focal adhesions, with little or no staining of cell-cell junctions. In contrast, four other anti-beta1 antibodies showed strong, preferential staining at cell-celljunctions. Double staining confirmed that both the conformation-specific monoclonal antibody and a pan-beta1 antibody were capable of recognizing the same focal adhesions. Taken together, these data indicate that integrins in cell- cell junctions of keratinocytes are in the non-ligand-occupied conformation. Although we do not directly prove the absence of an integrin-integrin interaction at this site, we show that any such interaction does not induce the ligand-occupied conformation and, therefore, is less likely to play a major role in cytoskeletal re-organization or signal transduction.
Collapse
Affiliation(s)
- L T Kim
- Laboratory of Developmental Biology, National Institute of Dental Research, Bethesda, Maryland 20892-4370, USA
| | | |
Collapse
|
24
|
Díaz-González F, Forsyth J, Steiner B, Ginsberg MH. Trans-dominant inhibition of integrin function. Mol Biol Cell 1996; 7:1939-51. [PMID: 8970156 PMCID: PMC276041 DOI: 10.1091/mbc.7.12.1939] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Occupancy of integrin adhesion receptors can alter the functions of other integrins and cause partition of the ligand-occupied integrin into focal adhesions. Ligand binding also changes the conformation of integrin extracellular domains. To explore the relationship between ligand-induced conformational change and integrin signaling, we examined the effect of ligands specific for integrin alpha IIb beta 3 on the functions of target integrins alpha 5 beta 1 and alpha 2 beta 1. We report that binding of integrin-specific ligands to a suppressive integrin can inhibit the function of other target integrins (trans-dominant inhibition). Trans-dominant inhibition is due to a blockade of integrin signaling. Furthermore, this inhibition involves both a conformational change in the extracellular domain and the presence of the beta cytoplasmic tail in the suppressive integrin. Similarly, ligand-induced recruitment of alpha IIb beta 3 to focal adhesions also involves a conformational rearrangement of its extracellular domain. These findings imply that the ligand-induced conformational changes can propagate from an integrin's extracellular to its intracellular face. Trans-dominant inhibition by integrin ligands may coordinate integrin signaling and can lead to unexpected biological effects of integrin-specific inhibitors.
Collapse
Affiliation(s)
- F Díaz-González
- Department of Vascular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Focal adhesions are sites of tight adhesion to the underlying extracellular matrix developed by cells in culture. They provided a structural link between the actin cytoskeleton and the extracellular matrix and are regions of signal transduction that relate to growth control. The assembly of focal adhesions is regulated by the GTP-binding protein Rho. Rho stimulates contractility which, in cells that are tightly adherent to the substrate, generates isometric tension. In turn, this leads to the bundling of actin filaments and the aggregation of integrins (extracellular matrix receptors) in the plane of the membrane. The aggregation of integrins activates the focal adhesion kinase and leads to the assembly of a multicomponent signaling complex.
Collapse
Affiliation(s)
- K Burridge
- Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill 27599-7090, USA
| | | |
Collapse
|
26
|
De Melker AA, Sonnenberg A. The role of the cytoplasmic domain of alpha 6 integrin in the assembly and function of alpha 6 beta 1 and alpha 6 beta 4. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:254-64. [PMID: 8898914 DOI: 10.1111/j.1432-1033.1996.0254t.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have studied the role of the cytoplasmic domain of alpha 6 in the assembly and function of the alpha 6 beta 4 integrin, and compared it with the role of alpha 6 in the assembly and function of alpha 6 beta 1, by transfection of cDNAs encoding cytoplasmic mutants of alpha 6 into K562 cells with or without full-length beta 4 cDNA. Des-(1022-1050)-alpha 6, which contains a deletion C-terminal to the GFFKR motif, was expressed in association with beta 1, but associated preferentially with beta 4, whereas the wild-type alpha 6 subunit associated efficiently with beta 1 and beta 4. Des-(1016-1050)-alpha 6, which lacked also the GFFKR sequence, was only expressed at the cell surface when beta 4 was available. Transient expression in COS-7 cells showed that des-(1016-1050)-alpha 6 was retained in the endoplasmic reticulum as a monomer, which suggests that truncation of the cytoplasmic domain reduces the affinity of alpha 6 for beta 1, particularly when the GFFKR sequence is absent. Although the GFFKR motif is not essential for association of alpha 6 with beta 4, it increases the stability of the alpha 6 beta 4 integrin. The cytoplasmic domain of alpha 6 is essential for inside-out and outside-in signaling via the alpha 6 beta 1 receptor, but not for adhesion via alpha 6 beta 4. We show that alpha 6 beta 4 is a constitutively active receptor. Thus, unlike adhesion by most other integrins, adhesion by alpha 6 beta 4 does not seem to depend on any active cellular process. Binding of alpha 6 beta 4 to ligand was only slightly affected by truncation of the alpha 6 cytoplasmic domain N-terminal to the GFFKR sequence and became partially dependent on metabolic energy. These data indicate that truncations of the cytoplasmic domain of the alpha 6 subunit affect the assembly and function of alpha 6 beta 1 more strongly than those of alpha 6 beta 4. This difference may be due to the greater affinity of alpha 6 for beta 4 than for beta 1, which makes alpha 6 beta 4 less susceptible to the effect of truncations.
Collapse
Affiliation(s)
- A A De Melker
- The Netherlands Cancer Institute, Division of Cell Biology, Amsterdam, The Netherlands
| | | |
Collapse
|
27
|
Briesewitz R, Kern A, Smilenov LB, David FS, Marcantonio EE. The membrane-cytoplasm interface of integrin alpha subunits is critical for receptor latency. Mol Biol Cell 1996; 7:1499-509. [PMID: 8898357 PMCID: PMC276001 DOI: 10.1091/mbc.7.10.1499] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Localization of integrin receptors to focal contact sites occurs upon ligand binding. This activity is latent, since unoccupied integrin receptors do not localize to focal contacts. Deletion analysis has revealed that the alpha cytoplasmic domains is required for the maintenance of integrin receptor latency. Our current hypothesis for the mechanism of integrin post-ligand binding events is that there is a change in relationship of alpha and beta cytoplasmic domains, which overcomes receptor latency. One possible mechanism for such a change would involve the amino acid residues at the membrane-cytoplasm interface. To test this hypothesis, we have produced point mutations in the human integrin alpha 1 subunit. These mutations had no effect on the adhesion via alpha 1 beta 1 to its ligand, collagen IV. However, receptor latency is lost in one of these mutants, leading to constitutive focal contact localization. This effect did not occur in receptors with an exchange of intracellular domains, suggesting that the mechanism of loss of latency involves a relative motion of the integrin chains. These results suggest a model in which post-ligand binding events in integrin receptors are associated with changes in the position of the alpha and beta cytoplasmic domains.
Collapse
Affiliation(s)
- R Briesewitz
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
28
|
Hughes PE, Diaz-Gonzalez F, Leong L, Wu C, McDonald JA, Shattil SJ, Ginsberg MH. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem 1996; 271:6571-4. [PMID: 8636068 DOI: 10.1074/jbc.271.12.6571] [Citation(s) in RCA: 444] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Integrins are heterodimeric (alpha, beta) cell adhesion receptors. We demonstrate that point mutations in the cytoplasmic domains of both the alpha and beta subunits promote constitutive signaling by the integrin alphaIIbbeta3. By generating charge reversal mutations, we show these "activating" mutations may act by disrupting a potential salt bridge between the membrane-proximal portions of the alpha and beta subunit cytoplasmic domains. Thus, the modulation of specific interactions between the alpha and beta subunit cytoplasmic domains may regulate transmembrane signaling through integrins. In addition, these activating mutations induce dominant alterations in cellular behavior, such as the assembly of the extracellular matrix. Consequently, somatic mutations in integrin cytoplasmic domains could have profound effects in vivo on integrin-dependent functions such as matrix assembly, cell migration, and anchorage-dependent cell growth and survival.
Collapse
Affiliation(s)
- P E Hughes
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Chapter 20. Cell Adhesion Integrins as Pharmaceutical Targets. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1996. [DOI: 10.1016/s0065-7743(08)60459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
30
|
Marcantonio EE. The Structure and Function of Integrins. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1569-2558(08)60061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|