1
|
Kim JE, Ko W, Jin S, Woo JN, Jung Y, Bae I, Choe HK, Seo D, Hille B, Suh BC. Activation of TMEM16E scramblase induces ligand independent growth factor receptor signaling and macropinocytosis for membrane repair. Commun Biol 2025; 8:35. [PMID: 39794444 PMCID: PMC11724107 DOI: 10.1038/s42003-025-07465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
The calcium-dependent phospholipid scramblase TMEM16E mediates ion transport and lipid translocation across the plasma membrane. TMEM16E also contributes to protection of membrane structure by facilitating cellular repair signaling. Our research reveals that TMEM16E activation promotes macropinocytosis, essential for maintaining plasma membrane integrity. This scramblase externalizes phosphatidylserine, typically linked to resting growth factor receptors. We demonstrate that TMEM16E can interact with and signal through growth factor receptors, including epidermal growth factor receptor, even without ligands. This interaction stimulates downstream phosphoinositide 3-kinase and facilitates macropinocytosis and internalization of annexin V bound to the membrane, a process sensitive to amiloride inhibition. Although TMEM16E is internalized during this process, it returns to the plasma membrane. TMEM16E- driven macropinocytosis is proposed to restore membrane integrity after perturbation, potentially explaining pathologies in conditions like muscular dystrophies, where TMEM16E functionality is compromised, highlighting its critical role in muscle cell survival.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Woori Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Siwoo Jin
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jin-Nyeong Woo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yuna Jung
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Inah Bae
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Han-Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Bertil Hille
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
2
|
Yoshioka Y, Inoue M, Yoshioka H, Kitakaze T, Furuyashiki T, Abe N, Ashida H. Enzymatically synthesized glycogen inhibited degranulation and inflammatory responses through stimulation of intestine. J Clin Biochem Nutr 2020; 67:67-73. [PMID: 32801471 PMCID: PMC7417801 DOI: 10.3164/jcbn.20-33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
The patients of type I allergic diseases were increased in the developed countries. Recently, many studies have focused on food factors with anti-allergic activities. Enzymatically synthesized glycogen, a polysaccharide with a multi-branched α-1,4 and α-1,6 linkages, is a commercially available product from natural plant starch, and has immunostimulation activity. However, effect of enzymatically synthesized glycogen on the anti-allergic activity was unclear yet. In this study, we investigated that enzymatically synthesized glycogen inhibited allergic and inflammatory responses using a co-culture system consisting of Caco-2 and RBL-2H3 cells. Enzymatically synthesized glycogen inhibited antigen-induced β-hexosaminidase release and production of TNF-α and IL-6 in RBL-2H3 cells in the co-culture system. Furthermore, enzymatically synthesized glycogen inhibited antigen-induced phosphorylation of tyrosine kinases, phospholipase C γ1/2, mitogen-activated protein kinases and Akt. Anti-allergic and anti-inflammatory activities of enzymatically synthesized glycogen were indirect action through stimulating Caco-2 cells, but not by the direct interaction with RBL-2H3 cells, because enzymatically synthesized glycogen did not permeate Caco-2 cells. These findings suggest that enzymatically synthesized glycogen is an effective food ingredient for prevention of type I allergy through stimulating the intestinal cells.
Collapse
Affiliation(s)
- Yasukiyo Yoshioka
- Department of Clinical Nutrition and Dietetics, Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Higashinada-ku, Kobe 658-0001, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masako Inoue
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Hiroko Yoshioka
- Department of Food Science and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, 6-46 Ikebiraki-cho, Nishinomiya, Hyogo 663-8558, Japan
| | - Tomoya Kitakaze
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Furuyashiki
- Institute of Health Sciences, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Naoki Abe
- Department of Nutritional Science and Food Safety, Faculty of Applied Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Walpole GFW, Grinstein S. Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides. F1000Res 2020; 9. [PMID: 32494357 PMCID: PMC7233180 DOI: 10.12688/f1000research.22393.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Despite their comparatively low abundance in biological membranes, phosphoinositides are key to the regulation of a diverse array of signaling pathways and direct membrane traffic. The role of phosphoinositides in the initiation and progression of endocytic pathways has been studied in considerable depth. Recent advances have revealed that distinct phosphoinositide species feature prominently in clathrin-dependent and -independent endocytosis as well as in phagocytosis and macropinocytosis. Moreover, a variety of intracellular and cell-associated pathogens have developed strategies to commandeer host cell phosphoinositide metabolism to gain entry and/or metabolic advantage, thereby promoting their survival and proliferation. Here, we briefly survey the current knowledge on the involvement of phosphoinositides in endocytosis, phagocytosis, and macropinocytosis and highlight several examples of molecular mimicry employed by pathogens to either “hitch a ride” on endocytic pathways endogenous to the host or create an entry path of their own.
Collapse
Affiliation(s)
- Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
4
|
Wakefield DL, Holowka D, Baird B. The FcεRI Signaling Cascade and Integrin Trafficking Converge at Patterned Ligand Surfaces. Mol Biol Cell 2017; 28:mbc.E17-03-0208. [PMID: 28794269 PMCID: PMC5687038 DOI: 10.1091/mbc.e17-03-0208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
We examined the spatial targeting of early and downstream signaling mediated by the IgE receptor (FcεRI) in RBL mast cells utilizing surface-patterned 2,4 dinitrophenyl (DNP) ligands. Micron-sized features of DNP are presented as densely immobilized conjugates of bovine serum albumin (DNP-BSA) or mobile in a supported lipid bilayer (DNP-SLB). Although soluble anti-DNP IgE binds uniformly across features for both pattern types, IgE bound to FcεRI on cells shows distinctive distributions: uniform for DNP-SLB and edge-concentrated for DNP-BSA. These distributions of IgE-FcεRI propagate to the spatial recruitment of early signaling proteins, including spleen tyrosine kinase (Syk), linker for activation of T cells (LAT), and activated phospholipase C gamma 1 (PLCγ1), which all localize with engaged receptors. We found stimulated polymerization of F-actin is not required for Syk recruitment but is progressively involved in the recruitment of LAT and PLCγ1. We further found β1- and β3-integrins colocalize with IgE-FcεRI at patterned ligand surfaces as cells spread. This recruitment corresponds to directed exocytosis of recycling endosomes (REs) containing these integrins and their fibronectin ligand. Together, our results show targeting of signaling components, including integrins, to regions of clustered IgE-FcεRI in processes that depend on stimulated actin polymerization and outward trafficking of REs.
Collapse
Affiliation(s)
- Devin L Wakefield
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
- Current address: Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, California, 91010
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
5
|
Zhang Z, Meszaros G, He WT, Xu Y, de Fatima Magliarelli H, Mailly L, Mihlan M, Liu Y, Puig Gámez M, Goginashvili A, Pasquier A, Bielska O, Neven B, Quartier P, Aebersold R, Baumert TF, Georgel P, Han J, Ricci R. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J Exp Med 2017; 214:2671-2693. [PMID: 28716882 PMCID: PMC5584123 DOI: 10.1084/jem.20162040] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/18/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
Zhang et al. show that Golgi-mediated protein kinase D (PKD) signaling is required and sufficient for NLRP3 inflammasome activation. PKD at the Golgi phosphorylates NLRP3 to release it from mitochondria-associated endoplasmic reticulum membranes, allowing for assembly of the mature inflammasome in the cytosol. The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Zhirong Zhang
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Gergö Meszaros
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France
| | - Wan-Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yanfang Xu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France.,Department of Nephrology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Helena de Fatima Magliarelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Laurent Mailly
- Université de Strasbourg, Strasbourg, France.,Institut National de la Santé et de la Recherche Medicale (INSERM), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Michael Mihlan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Marta Puig Gámez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Alexander Goginashvili
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Adrien Pasquier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Olga Bielska
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Bénédicte Neven
- Institut IMAGINE, Sorbonne Paris Cité, Université Paris-Descartes, Paris, France.,Unité d'immuno-hématologie pédiatrique, Hôpital Necker-Enfant Malades, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Pierre Quartier
- Institut IMAGINE, Sorbonne Paris Cité, Université Paris-Descartes, Paris, France.,Unité d'immuno-hématologie pédiatrique, Hôpital Necker-Enfant Malades, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Rudolf Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Thomas F Baumert
- Université de Strasbourg, Strasbourg, France.,Institut National de la Santé et de la Recherche Medicale (INSERM), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Philippe Georgel
- Université de Strasbourg, Strasbourg, France.,ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Romeo Ricci
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
6
|
Mahajan A, Barua D, Cutler P, Lidke DS, Espinoza FA, Pehlke C, Grattan R, Kawakami Y, Tung CS, Bradbury ARM, Hlavacek WS, Wilson BS. Optimal aggregation of FcεRI with a structurally defined trivalent ligand overrides negative regulation driven by phosphatases. ACS Chem Biol 2014; 9:1508-19. [PMID: 24784318 PMCID: PMC4105180 DOI: 10.1021/cb500134t] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To investigate why responses of mast cells to antigen-induced IgE receptor (FcεRI) aggregation depend nonlinearly on antigen dose, we characterized a new artificial ligand, DF3, through complementary modeling and experimentation. This ligand is a stable trimer of peptides derived from bacteriophage T4 fibritin, each conjugated to a hapten (DNP). We found low and high doses of DF3 at which degranulation of mast cells sensitized with DNP-specific IgE is minimal, but ligand-induced receptor aggregation is comparable to aggregation at an intermediate dose, optimal for degranulation. This finding makes DF3 an ideal reagent for studying the balance of negative and positive signaling in the FcεRI pathway. We find that the lipid phosphatase SHIP and the protein tyrosine phosphatase SHP-1 negatively regulate mast cell degranulation over all doses considered. In contrast, SHP-2 promotes degranulation. With high DF3 doses, relatively rapid recruitment of SHIP to the plasma membrane may explain the reduced degranulation response. Our results demonstrate that optimal secretory responses of mast cells depend on the formation of receptor aggregates that promote sufficient positive signaling by Syk to override phosphatase-mediated negative regulatory signals.
Collapse
Affiliation(s)
- Avanika Mahajan
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Dipak Barua
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Patrick Cutler
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Diane S. Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Flor A. Espinoza
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Carolyn Pehlke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Rachel Grattan
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, United States
| | - Chang-Shung Tung
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew R. M. Bradbury
- Advanced Measurement Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - William S. Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
7
|
Chylek LA, Holowka DA, Baird BA, Hlavacek WS. An Interaction Library for the FcεRI Signaling Network. Front Immunol 2014; 5:172. [PMID: 24782869 PMCID: PMC3995055 DOI: 10.3389/fimmu.2014.00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/31/2014] [Indexed: 12/20/2022] Open
Abstract
Antigen receptors play a central role in adaptive immune responses. Although the molecular networks associated with these receptors have been extensively studied, we currently lack a systems-level understanding of how combinations of non-covalent interactions and post-translational modifications are regulated during signaling to impact cellular decision-making. To fill this knowledge gap, it will be necessary to formalize and piece together information about individual molecular mechanisms to form large-scale computational models of signaling networks. To this end, we have developed an interaction library for signaling by the high-affinity IgE receptor, FcεRI. The library consists of executable rules for protein–protein and protein–lipid interactions. This library extends earlier models for FcεRI signaling and introduces new interactions that have not previously been considered in a model. Thus, this interaction library is a toolkit with which existing models can be expanded and from which new models can be built. As an example, we present models of branching pathways from the adaptor protein Lat, which influence production of the phospholipid PIP3 at the plasma membrane and the soluble second messenger IP3. We find that inclusion of a positive feedback loop gives rise to a bistable switch, which may ensure robust responses to stimulation above a threshold level. In addition, the library is visualized to facilitate understanding of network circuitry and identification of network motifs.
Collapse
Affiliation(s)
- Lily A Chylek
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, NY , USA ; Los Alamos National Laboratory, Theoretical Division, Center for Non-linear Studies , Los Alamos, NM , USA
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, NY , USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, NY , USA
| | - William S Hlavacek
- Los Alamos National Laboratory, Theoretical Division, Center for Non-linear Studies , Los Alamos, NM , USA
| |
Collapse
|
8
|
Nobiletin, a polymethoxy flavonoid, exerts anti-allergic effect by suppressing activation of phosphoinositide 3-kinase. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
9
|
Smith NL, Abi Abdallah DS, Butcher BA, Denkers EY, Baird B, Holowka D. Toxoplasma gondii inhibits mast cell degranulation by suppressing phospholipase Cγ-mediated Ca(2+) mobilization. Front Microbiol 2013; 4:179. [PMID: 23847603 PMCID: PMC3701878 DOI: 10.3389/fmicb.2013.00179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/14/2013] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii is well-known to subvert normal immune responses, however, mechanisms are incompletely understood. In particular, its capacity to alter receptor-activated Ca2+-mediated signaling processes has not been well-characterized. In initial experiments, we found evidence that T. gondii infection inhibits Ca2+ responses to fMetLeuPhe in murine macrophages. To further characterize the mechanism of inhibition of Ca2+ mobilization by T. gondii, we used the well-studied RBL mast cell model to probe the capacity of T. gondii to modulate IgE receptor-activated signaling within the first hour of infection. Ca2+ mobilization that occurs via IgE/FcεRI signaling leads to granule exocytosis in mast cells. We found that T. gondii inhibits antigen-stimulated degranulation in infected cells in a strain-independent manner. Under these conditions, we found that cytoplasmic Ca2+ mobilization, particularly antigen-mediated Ca2+ release from intracellular stores, is significantly reduced. Furthermore, stimulation-dependent activation of Syk kinase leading to tyrosine phosphorylation and activation of phospholipase Cγ is inhibited by infection. Therefore, we conclude that inhibitory effects of infection are likely due to parasite-mediated inhibition of the tyrosine kinase signaling cascade that results in reduced hydrolysis of phosphatidylinositol 4,5-bisphosphate. Interestingly, inhibition of IgE/FcεRI signaling persists when tachyzoite invasion is arrested via cytochalasin D treatment, suggesting inhibition is mediated by a parasite-derived factor secreted into the cells during the invasion process. Our study provides direct evidence that immune subversion by T. gondii is initiated concurrently with invasion.
Collapse
Affiliation(s)
- Norah L Smith
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University Ithaca, NY, USA
| | | | | | | | | | | |
Collapse
|
10
|
Santos MDS, Naal RMZG, Baird B, Holowka D. Inhibitors of PI(4,5)P2 synthesis reveal dynamic regulation of IgE receptor signaling by phosphoinositides in RBL mast cells. Mol Pharmacol 2013; 83:793-804. [PMID: 23313938 PMCID: PMC3608441 DOI: 10.1124/mol.112.082834] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/11/2013] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a versatile phospholipid that participates in many membrane-associated signaling processes. PI(4,5)P2 production at the plasma membrane (PM) depends on levels of its precursor, phosphatidylinositol 4-phosphate (PI4P), synthesized principally by two intracellular enzymes, PI4-kinases IIIα and IIIb; the former is preferentially inhibited by phenylarsine oxide (PAO). We found that PAO and quercetin, another lipid kinase inhibitor, rapidly inhibit Ca(2+) responses to antigen in IgE-sensitized rat basophilic leukemia mast cells. Quercetin also rapidly inhibits store-operated Ca(2+) influx stimulated by thapsigargin. In addition, quercetin and PAO effectively inhibit antigen-stimulated ruffling and spreading in these cells, and they inhibit endocytosis of crosslinked IgE receptor complexes, evidently by inhibiting pinching off of endocytic vesicles containing the clustered IgE receptors. A minimal model to account for these diverse effects is inhibition of PI(4,5)P2 synthesis by PAO and quercetin. To characterize the direct effects of these agents on PI(4,5)P2 synthesis, we monitored the reappearance of the PI(4,5)P2-specific PH domain PH-phospholipase C δ-EGFP at the PM after Ca(2+) ionophore (A23187)-induced PI(4,5)P2 hydrolysis, followed by Ca(2+) chelation with excess EGTA. Resynthesized PI(4,5)P2 initially appears as micron-sized patches near the PM. Addition of quercetin subsequent to A23187-induced PI(4,5)P2 hydrolysis reduces PI(4,5)P2 resynthesis in PM-associated patches, and PAO reduces PI(4,5)P2 at the PM while enhancing PI(4,5)P2 accumulation at the Golgi complex. Taken together, these results provide evidence that PI4P generated by PI4-kinase IIIα is dynamically coupled to PI(4,5)P2 pools at the PM that are important for downstream signaling processes activated by IgE receptors.
Collapse
Affiliation(s)
- Marcela de Souza Santos
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, SãoPaulo, Brazil
| | | | | | | |
Collapse
|
11
|
Long FY, Yang X, Guo YM, Wang Z, Yuan JM, Zhang BK, Liu D. Conjugated linoleic acids alleviate the immunosuppression of peripheral blood T lymphocytes in broiler chickens exposed to cyclosporin A. Poult Sci 2012; 91:2431-7. [PMID: 22991524 PMCID: PMC7107217 DOI: 10.3382/ps.2011-02022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The immunoregulatory actions of conjugated linoleic acids (CLA) of relevance immunosuppression were investigated. To test the hypothesis that CLA ameliorate immunosuppression, we developed the immunosuppressive model of peripheral blood T lymphocytes in broiler chickens induced by cyclosporin A. Peripheral blood T lymphocytes of broiler chickens were cultured with media containing various concentrations (25, 50, 100, and 200 μmol/L) of c9, t11-CLA and t10, c12-CLA to investigate the effects of CLA isomers on peripheral blood T lymphocyte proliferation, interleukin-2, the activity of phospholipase C, and protein kinase C production. Results suggested that CLA alleviated the immunosuppression of T lymphocytes in broiler chickens exposed to cyclosporin A through increasing of peripheral blood T lymphocyte proliferation and interleukin-2. The 2 CLA isomers enhanced T lymphocyte proliferation at low concentration and inhibited T lymphocyte proliferation at high concentration. In addition, the effect of c9, t11-CLA was better than that of t10, c12-CLA. At the cellular level, the effects of CLA on the alleviation of immunosuppression in T lymphocytes are mainly attributable to increasing the signaling molecules, such as phospholipase C and protein kinase C.
Collapse
Affiliation(s)
- F Y Long
- College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Ma HT, Beaven MA. Regulators of Ca(2+) signaling in mast cells: potential targets for treatment of mast cell-related diseases? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:62-90. [PMID: 21713652 DOI: 10.1007/978-1-4419-9533-9_5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A calcium signal is essential for degranulation, generation of eicosanoids and optimal production of cytokines in mast cells in response to antigen and other stimulants. The signal is initiated by phospholipase C-mediated production of inositol1,4,5-trisphosphate resulting in release of stored Ca(2+) from the endoplasmic reticulum (ER) and Golgi. Depletion of these stores activates influx of extracellular Ca(2+), usually referred to as store-operated calcium entry (SOCE), through the interaction of the Ca(2+)-sensor, stromal interacting molecule-1 (STIM1 ), in ER with Orai1(CRACM1) and transient receptor potential canonical (TRPC) channel proteins in the plasma membrane (PM). This interaction is enabled by microtubular-directed reorganization of ER to form ER/PM contact points or "punctae" in which STIM1 and channel proteins colocalize. The ensuing influx of Ca(2+) replenishes Ca(2+) stores and sustains elevated levels of cytosolic Ca(2+) ions-the obligatory signal for mast-cell activation. In addition, the signal can acquire spatial and dynamic characteristics (e.g., calcium puffs, waves, oscillations) that encode signals for specific functional outputs. This is achieved by coordinated regulation of Ca(2+) fluxes through ATP-dependent Ca(2+)-pumps and ion exchangers in mitochondria, ER and PM. As discussed in this chapter, studies in mast cells revealed much about the mechanisms described above but little about allergic and autoimmune diseases although studies in other types of cells have exposed genetic defects that lead to aberrant calcium signaling in immune diseases. Pharmacologic agents that inhibit or activate the regulatory components of calcium signaling in mast cells are also discussed along with the prospects for development of novel SOCE inhibitors that may prove beneficial in the treatment inflammatory mast-cell related diseases.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
13
|
PLCgamma2 Activates CREB-dependent Transcription in PC12 Cells Through Phosphorylation of CREB at Serine 133. Cytotechnology 2011; 47:107-16. [PMID: 19003050 DOI: 10.1007/s10616-005-3763-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 05/18/2005] [Indexed: 12/21/2022] Open
Abstract
The cAMP and Ca(2+) signaling pathways activate the transcription factor CREB through its phosphorylation at Serine 133. Activation of CREB is involved in the regulation of various biological phenomena. To understand further the mechanisms of the regulation of CREB activity in response to activation of the cAMP and Ca(2+) signaling pathways, we examined the roles of PLCgammas in CREB activation in PC12 cells. siRNA-mediated reduction of the expression of PLCgamma2, but not PLCgamma1, inhibited both the phosphorylation of CREB at S133 and the activation of CREB-dependent transcription following treatment of cells with forskolin or ionomycin, which increases the intracellular concentrations of cAMP or Ca(2+), respectively. Importantly, the siRNA targeting PLCgamma2 completely abolished CREB activation by Ca(2+) signaling but not by cAMP signaling. These results suggest that PLCgamma2 functions as an essential signal transducer leading to CREB activation in response to activation of the Ca(2+) signaling pathway and that the cAMP signaling pathway might activate CREB through phosphorylation of CREB by PKA and another signaling pathway mediated by PLCgamma2.
Collapse
|
14
|
Jiang D, Sims CE, Allbritton NL. Single-cell analysis of phosphoinositide 3-kinase and phosphatase and tensin homolog activation. Faraday Discuss 2011; 149:187-200; discussion 227-45. [PMID: 21221426 DOI: 10.1039/c005362g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A single-cell assay was developed to measure the activation of phosphoinositide 3-kinase (PI3K) using microanalytical chemical separations and a fluorescently labeled lipid substrate. Phosphatidyl-inositol 4,5 bisphosphate labeled on its acyl chain with Bodipy fluorescein (Bodipy Fl PIP(2)) was utilized as a substrate for both in vitro and cell-based assays. Detection limits for the substrate and product of the PI3K reaction were 10 to 20 zeptomol. In vitro assays with PI3K with and without pharmacologic inhibitors demonstrated that Bodipy Fl PIP(2) was converted to phosphatidyl-inositol 3,4,5 trisphosphate (Bodipy Fl PIP(3)). Bodipy Fl PIP(3) could be back converted to Bodipy Fl PIP(2) by the phosphatase PTEN. When Bodipy Fl PIP(2) was added to a cell lysate, 1.4 fmol of the Bodipy Fl PIP(3) were produced per ng of protein in the cytoplasmic extract in 10 min. Addition of Bodipy Fl PIP(3) to a cell lysate yielded 3 fmol of Bodipy Fl PIP(2) per ng of protein in 8 min. Both Bodipy Fl PIP(2) and Bodipy Fl PIP(3) were measureable in single cells and the two species could be inter-converted. Under the appropriate conditions, a fluorescent diacylglycerol was also detected in single cells. When the FcepsilonR 1 receptor on the cells loaded with the fluorescent lipid was cross-linked, the amount of Bodipy Fl PIP(3) generated per cell increased 4-fold over that of unstimulated cells. This production of Bodipy Fl PIP(3) was blocked by wortmannin. Chemical cytometry utilizing the fluorescent lipids will be of value in understanding lipid metabolism at the single-cell level.
Collapse
Affiliation(s)
- Dechen Jiang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
15
|
Abstract
Mast cells are multifunctional cells that initiate not only IgE-dependent allergic diseases but also play a fundamental role in innate and adaptive immune responses to microbial infection. They are also thought to play a role in angiogenesis, tissue remodeling, wound healing, and tumor repression or growth. The broad scope of these physiologic and pathologic roles illustrates the flexible nature of mast cells, which is enabled in part by their phenotypic adaptability to different tissue microenvironments and their ability to generate and release a diverse array of bioactive mediators in response to multiple types of cell-surface and cytosolic receptors. There is increasing evidence from studies in cell cultures that release of these mediators can be selectively modulated depending on the types or groups of receptors activated. The intent of this review is to foster interest in the interplay among mast cell receptors to help understand the underlying mechanisms for each of the immunological and non-immunological functions attributed to mast cells. The second intent of this review is to assess the pathophysiologic roles of mast cells and their products in health and disease. Although mast cells have a sufficient repertoire of bioactive mediators to mount effective innate and adaptive defense mechanisms against invading microorganisms, these same mediators can adversely affect surrounding tissues in the host, resulting in autoimmune disease as well as allergic disorders.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA.
| | | |
Collapse
|
16
|
Hou S, Pauls SD, Liu P, Marshall AJ. The PH domain adaptor protein Bam32/DAPP1 functions in mast cells to restrain FcɛRI-induced calcium flux and granule release. Mol Immunol 2010; 48:89-97. [PMID: 20956018 DOI: 10.1016/j.molimm.2010.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 12/12/2022]
Abstract
Mast cell activation triggered by IgE binding to its high affinity receptor FcɛRI is highly dependent on signaling via phosphoinositde 3-kinases (PI3K). The phosphoinositide phosphatase SHIP controls mast cell activation by regulating accumulation of D3 phosphoinositide second messengers generated by PI3K. The PH domain adaptor protein Bam32/DAPP1 binds specifically to the D3 phosphoinositides PI(3,4,5)P3 and PI(3,4)P2 (the substrate and product of SHIP respectively). In B cells, Bam32 is phosphorylated by Src family kinases including Lyn, and is required for antigen receptor-induced activation; however the function of Bam32 in mast cells is unknown. Here we report that Bam32 is expressed in mast cells, is recruited to the plasma membrane upon stimulation and functions in FcɛRI signaling. Examination of bone marrow-derived mast cells (BMMC) isolated from Bam32-deficient mice revealed enhanced FcɛRI-induced degranulation and IL-6 production, indicating that Bam32 may function to restrain signaling via FcɛRI. These enhanced degranulation responses were PI3K-dependent, as indicated by blockade with PI3K inhibitors wortmannin or IC87114. While Bam32-deficient BMMC showed reduced FcɛRI-induced activation of mitogen-activated protein kinases ERK and JNK, FcɛRI-induced calcium flux and phosphorylation of PLCγ1 and Akt were increased. Bam32-deficient BMMC showed significantly reduced phosphorylation of Lyn and SHIP, indicating reduced activity of inhibitory signaling pathways. Together our results identify Bam32 as a novel regulator of mast cell activation, potentially functioning in membrane-proximal integration of positive and negative signaling pathways.
Collapse
Affiliation(s)
- Sen Hou
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | | | | | | |
Collapse
|
17
|
Akbulut S, Reddi AL, Aggarwal P, Ambardekar C, Canciani B, Kim MKH, Hix L, Vilimas T, Mason J, Basson MA, Lovatt M, Powell J, Collins S, Quatela S, Phillips M, Licht JD. Sprouty proteins inhibit receptor-mediated activation of phosphatidylinositol-specific phospholipase C. Mol Biol Cell 2010; 21:3487-96. [PMID: 20719962 PMCID: PMC2947483 DOI: 10.1091/mbc.e10-02-0123] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PLCγ03B3 binds Spry1 and Spry2. Overexpression of Spry decreased PLCγ03B3 activity and IP3 and DAG production, whereas Spry-deficient cells yielded more IP3. Spry overexpression inhibited T-cell receptor signaling and Spry1 null T-cells hyperproliferated with TCR ligation. Through action of PLCγ03B3, Spry may influence signaling through multiple receptors. Sprouty (Spry) proteins are negative regulators of receptor tyrosine kinase signaling; however, their exact mechanism of action remains incompletely understood. We identified phosphatidylinositol-specific phospholipase C (PLC)-γ as a partner of the Spry1 and Spry2 proteins. Spry–PLCγ interaction was dependent on the Src homology 2 domain of PLCγ and a conserved N-terminal tyrosine residue in Spry1 and Spry2. Overexpression of Spry1 and Spry2 was associated with decreased PLCγ phosphorylation and decreased PLCγ activity as measured by production of inositol (1,4,5)-triphosphate (IP3) and diacylglycerol, whereas cells deficient for Spry1 or Spry1, -2, and -4 showed increased production of IP3 at baseline and further increased in response to growth factor signals. Overexpression of Spry 1 or Spry2 or small-interfering RNA-mediated knockdown of PLCγ1 or PLCγ2 abrogated the activity of a calcium-dependent reporter gene, suggesting that Spry inhibited calcium-mediated signaling downstream of PLCγ. Furthermore, Spry overexpression in T-cells, which are highly dependent on PLCγ activity and calcium signaling, blocked T-cell receptor-mediated calcium release. Accordingly, cultured T-cells from Spry1 gene knockout mice showed increased proliferation in response to T-cell receptor stimulation. These data highlight an important action of Spry, which may allow these proteins to influence signaling through multiple receptors.
Collapse
Affiliation(s)
- Simge Akbulut
- Division of Hematology and Oncology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Orr SJ, McVicar DW. LAB/NTAL/Lat2: a force to be reckoned with in all leukocytes? J Leukoc Biol 2010; 89:11-9. [PMID: 20643813 DOI: 10.1189/jlb.0410221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
LAB/NTAL/Lat2 is a transmembrane adaptor protein closely related to LAT. It is expressed in various myeloid and lymphoid cells, many of which also express LAT. Phosphorylation of LAB occurs following engagement of various ITAM- and non-ITAM-linked receptors and can play positive and negative roles following receptor engagement. LAT binds PLCγ directly, resulting in efficient Ca²+ flux and degranulation. However, LAB does not contain a PLCγ-binding motif and only binds PLCγ indirectly, possibly via Grb2, thereby resulting in suboptimal signaling. As LAT can signal more efficiently than LAB, competition between the 2 for space/substrates in the lipid rafts can attenuate signaling. This competition model requires coexpression of LAT; however, LAB is repressive, even in cells lacking substantial LAT expression such as macrophages and mature B cells. The reported interaction between LAB and the ubiquitin E3-ligase c-Cbl suggests 1 possible mechanism for LAT-independent inhibition by LAB, but such a model requires further investigation. Given the wide-reaching expression pattern of LAB, LAB has the ability to modulate signaling in virtually every type of leukocyte. Regardless of its ultimate mode of action, the potent regulatory capability of LAB proves this protein to be a complex adaptor that warrants continued, substantial scrutiny by biochemists and immunologists alike.
Collapse
Affiliation(s)
- Selinda J Orr
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | |
Collapse
|
19
|
Ostrowski J, Polkowski M, Paziewska A, Skrzypczak M, Goryca K, Rubel T, Kokoszyñska K, Rutkowski P, Nowecki ZI, Vel Dobosz AJ, Jarosz D, Ruka W, Wyrwicz LS. Functional features of gene expression profiles differentiating gastrointestinal stromal tumours according to KIT mutations and expression. BMC Cancer 2009; 9:413. [PMID: 19943934 PMCID: PMC2794290 DOI: 10.1186/1471-2407-9-413] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 11/27/2009] [Indexed: 12/22/2022] Open
Abstract
Background Gastrointestinal stromal tumours (GISTs) represent a heterogeneous group of tumours of mesenchymal origin characterized by gain-of-function mutations in KIT or PDGFRA of the type III receptor tyrosine kinase family. Although mutations in either receptor are thought to drive an early oncogenic event through similar pathways, two previous studies reported the mutation-specific gene expression profiles. However, their further conclusions were rather discordant. To clarify the molecular characteristics of differentially expressed genes according to GIST receptor mutations, we combined microarray-based analysis with detailed functional annotations. Methods Total RNA was isolated from 29 frozen gastric GISTs and processed for hybridization on GENECHIP® HG-U133 Plus 2.0 microarrays (Affymetrix). KIT and PDGFRA were analyzed by sequencing, while related mRNA levels were analyzed by quantitative RT-PCR. Results Fifteen and eleven tumours possessed mutations in KIT and PDGFRA, respectively; no mutation was found in three tumours. Gene expression analysis identified no discriminative profiles associated with clinical or pathological parameters, even though expression of hundreds of genes differentiated tumour receptor mutation and expression status. Functional features of genes differentially expressed between the two groups of GISTs suggested alterations in angiogenesis and G-protein-related and calcium signalling. Conclusion Our study has identified novel molecular elements likely to be involved in receptor-dependent GIST development and allowed confirmation of previously published results. These elements may be potential therapeutic targets and novel markers of KIT mutation status.
Collapse
Affiliation(s)
- Jerzy Ostrowski
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Grodzki ACG, Moon KD, Berenstein EH, Siraganian RP. FcepsilonRI-induced activation by low antigen concentrations results in nuclear signals in the absence of degranulation. Mol Immunol 2009; 46:2539-47. [PMID: 19540596 DOI: 10.1016/j.molimm.2009.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 02/05/2023]
Abstract
High affinity IgE receptor (FcvarepsilonRI)-induced activation of mast cells results in degranulation and generation of leukotrienes and cytokines. FcvarepsilonRI-induced mast cell activation was analyzed at a single cell basis using a rat basophilic leukemia (RBL-2H3) cell line transfected with a reporter plasmid containing three tandem NFAT (nuclear factor of activated T cells) binding sites fused to enhanced green fluorescent protein (GFP). Surprisingly, with this sensitive detection system, there is activation of IgE sensitized cells at concentrations of antigen as low as 10pg/ml, which was 10-fold lower than was detected by degranulation. There were differences in signaling pathways leading to degranulation compared to NFAT-mediated gene activation. Both signaling to NFAT activation and degranulation required Syk and calcineurin. However inhibitors of the phosphatidylinositol 3-kinase pathway blocked degranulation but did not NFAT activation. The results also indicate that NFAT was activated at lower intracellular signals compared to degranulation. Therefore, FcvarepsilonRI activation can result in nuclear signals in the absence of the release of mediators.
Collapse
Affiliation(s)
- Ana Cristina G Grodzki
- Oral Infection and Immunity Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | | | | | | |
Collapse
|
21
|
Ishmael S, MacGlashan D. Early signal protein expression profiles in basophils: a population study. J Leukoc Biol 2009; 86:313-25. [PMID: 19436043 DOI: 10.1189/jlb.1208724] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
IgE-mediated histamine release from peripheral blood basophils is highly variable within the general population. Recent studies have shown that the ability of anti-IgE antibody to induce release can be predicted reasonably well by knowing the level of syk expression in the cells. The current study expands a previous survey to include 14 additional early elements known to be involved in activation and deactivation of basophils and showed that with the exception of syk, the variance of expression of 19 other elements (lyn, fyn, csk, cbp/PAG, CIN85, Bob1, c-cbl, SHIP1, SHIP2, p85alpha, p110delta, btk, PLCgamma1, PLCgamma2, SHP-1, PTEN, SOS2, CRACM1, and IL-3Ralpha) was narrow despite a broad range of functional capability in the basophils under study. With syk as the only element with high variance and well-correlated to maximum histamine release and cellular sensitivity, this survey examined the expression levels of two proteins thought to regulate syk expression: Bob1/OCA-B and CIN85. Expression of CIN85 was not correlated to syk expression, but Bob1 expression was negatively correlated to expression of syk and maximum histamine release. However, the expected behavior for this protein should have been as a protector of post-translational syk loss and therefore, positively correlated. Previous studies suggested that post-translational control mechanisms regulated syk expression. However, in this study, steady-state mRNA levels for syk in resting basophils showed a correlation with syk protein expression levels (r=0.593). It is concluded that with the exception of syk expression, the expression of 19 early signaling elements is tightly regulated and that a component of the regulation of syk may be related to control of transcription or processing of syk mRNA.
Collapse
Affiliation(s)
- Susan Ishmael
- Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21224, USA
| | | |
Collapse
|
22
|
PI3 kinase function is vital for the function but not formation of LAT-mediated signaling complexes. Mol Immunol 2009; 46:2274-83. [PMID: 19427038 DOI: 10.1016/j.molimm.2009.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/30/2009] [Accepted: 04/07/2009] [Indexed: 11/20/2022]
Abstract
The induction of the T cell receptor (TCR) is necessary for the activation and function of human T cells. TCR activation results in the tyrosine phosphorylation of LAT, leading to the direct interaction with several proteins, including PLC-gamma 1, Grb2 and Gads. These direct ligands then mediate the indirect interaction of LAT with proteins, such as SLP-76, Vav1 and Itk. PLC-gamma 1, Vav1 and Itk contain pleckstrin homology (PH) domains that interact with the enzymatic product of phosphoinositide-3-kinase (PI3K), suggesting the function of PI3K may modulate LAT-mediated complexes. Therefore, we characterized the poorly understood role of PI3K activity in the formation and function of multiprotein signaling complexes that form at LAT. Inhibition of PI3K catalytic function had little effect on the phosphorylation of LAT, SLP-76, Vav1 or PLC-gamma 1 or on the ability of PLC-gamma 1 to interact with LAT or SLP-76. However, PI3K activity appeared to be required for the induction of downstream signaling events. These data indicate that the formation of LAT-mediated complexes do not appear to depend on PI3K activity, whereas the optimal downstream function of these complexes requires the catalytic function of PI3K.
Collapse
|
23
|
Inhibitory effects of sesquiterpene lactones isolated from Eupatorium chinense L. on IgE-mediated degranulation in rat basophilic leukemia RBL-2H3 cells and passive cutaneous anaphylaxis reaction in mice. Bioorg Med Chem 2009; 17:3189-97. [PMID: 19318257 DOI: 10.1016/j.bmc.2009.02.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 02/16/2009] [Accepted: 02/19/2009] [Indexed: 12/14/2022]
Abstract
Sesquiterpene lactones (SQTLs) have been shown to suppress the degranulation as inferred by histamine release in rat basophilic leukemia RBL-2H3 cells. In this study, we isolated the 9 kinds of SQTLs from Eupatorium chinense L. and examined the effects of these SQTLs on the degranulation in RBL-2H3 cells. The chemical structures of two novel compounds (SQTL-3 and 8) were determined. All the SQTLs suppressed the degranulation from Ag-stimulated RBL-2H3 cells. To disclose the inhibitory mechanism of degranulation by SQTLs, we examined the activation of intracellular signaling molecules such as Lyn, Syk, and PLCgammas and intracellular free Ca(2+) concentration ([Ca(2+)]i). None of these SQTLs showed the activation of Syk and PLCgammas. The intracellular free Ca(2+) concentration ([Ca(2+)]i) was elevated by Fc epsilonRI activation, but SQTLs treatment reduced the elevation of [Ca(2+)]i by suppressing Ca(2+) influx. Thus, it was suggested that the suppression of Ag-stimulated degranulation by these SQTLs is mainly due to the decreased Ca(2+) influx. Furthermore, in order to clarify the in vivo effect of SQTL-rich extract, we administered SQTL-rich extract to the type I allergic model mice and measured the passive cutaneous anaphylaxis (PCA) reaction induced by IgE-antigen complex. The SQTLs remarkably suppressed PCA reaction in a dose-dependent manner. Thus, it was suggested that SQTLs would be a candidate as an anti-allergic agent.
Collapse
|
24
|
Mazuc E, Villoutreix BO, Malbec O, Roumier T, Fleury S, Leonetti JP, Dombrowicz D, Daëron M, Martineau P, Dariavach P. A novel druglike spleen tyrosine kinase binder prevents anaphylactic shock when administered orally. J Allergy Clin Immunol 2008; 122:188-94, 194.e1-3. [PMID: 18539317 DOI: 10.1016/j.jaci.2008.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 12/18/2022]
Abstract
BACKGROUND The spleen tyrosine kinase (Syk) is recognized as a potential pharmaceutical target for the treatment of type I hypersensitivity reactions including allergic rhinitis, urticaria, asthma, and anaphylaxis because of its critical position upstream of immunoreceptor signaling complexes that regulate inflammatory responses in leukocytes. OBJECTIVE Our aim was to improve the selectivity of anti-Syk therapies by impeding the interaction of Syk with its cellular partners, instead of targeting its catalytic site. METHODS We have previously studied the inhibitory effects of the anti-Syk intracellular antibody G4G11 on Fc epsilonRI-induced release of allergic mediators. A compound collection was screened by using an antibody displacement assay to identify functional mimics of G4G11 that act as potential inhibitors of the allergic response. The effects of the selected druglike compounds on mast cell activation were evaluated in vitro and in vivo. RESULTS We discovered compound 13, a small molecule that inhibits Fc epsilonRI-induced mast cell degranulation in vitro and anaphylactic shock in vivo. Importantly, compound 13 was efficient when administered orally to mice. Structural analysis, docking, and site-directed mutagenesis allowed us to identify the binding cavity of this compound, located at the interface between the 2 Src homology 2 domains and the interdomain A of Syk. CONCLUSION We have isolated a new class of druglike compounds that modulate the interaction of Syk with some of its macromolecular substrates implicated in the degranulation pathway in mast cells.
Collapse
Affiliation(s)
- Elsa Mazuc
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Inhibitory effect of xanthones isolated from the pericarp of Garcinia mangostana L. on rat basophilic leukemia RBL-2H3 cell degranulation. Bioorg Med Chem 2008; 16:4500-8. [DOI: 10.1016/j.bmc.2008.02.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 01/25/2023]
|
26
|
El-Sibai M, Backer JM. Phospholipase C gamma negatively regulates Rac/Cdc42 activation in antigen-stimulated mast cells. Eur J Immunol 2007; 37:261-70. [PMID: 17163445 DOI: 10.1002/eji.200635875] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Rho GTPases Rac and Cdc42 play a central role in the regulation of secretory and cytoskeletal responses in antigen-stimulated mast cells. In this study, we examine the kinetics and mechanism of Rac and Cdc42 activation in the rat basophilic leukemia RBL-2H3 cells. The activation kinetics of both Rac and Cdc42 show a biphasic profile, consisting of an early transient peak at 1 min and a late sustained activation phase at 20-40 min. The inhibition of phospholipase C (PLC)gamma causes a twofold increase in Rac and Cdc42 activation that coincides with a dramatic production of atypical filopodia-like structures. Inhibition of protein kinase C using bisindolylmaleimide mimics the effect of PLCgamma inhibition on Rac activation, but not on Cdc42 activation. In contrast, depletion of intracellular calcium leads to a complete inhibition of the early activation peak of both Rac and Cdc42, without significant effects on the late sustained activation. These data suggest that PLCgamma is involved in a negative feedback loop that leads to the inhibition of Rac and Cdc42. They also suggest that the presence of intracellular calcium is a prerequisite for both Rac and Cdc42 activation.
Collapse
Affiliation(s)
- Mirvat El-Sibai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
27
|
Wang J, Wang N, Xie J, Walton SC, McKown RL, Raab RW, Ma P, Beck SL, Coffman GL, Hussaini IM, Laurie GW. Restricted epithelial proliferation by lacritin via PKCalpha-dependent NFAT and mTOR pathways. ACTA ACUST UNITED AC 2006; 174:689-700. [PMID: 16923831 PMCID: PMC1761701 DOI: 10.1083/jcb.200605140] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Renewal of nongermative epithelia is poorly understood. The novel mitogen "lacritin" is apically secreted by several nongermative epithelia. We tested 17 different cell types and discovered that lacritin is preferentially mitogenic or prosecretory for those types that normally contact lacritin during its glandular outward flow. Mitogenesis is dependent on lacritin's C-terminal domain, which can form an alpha-helix with a hydrophobic face, as per VEGF's and PTHLP's respective dimerization or receptor-binding domain. Lacritin targets downstream NFATC1 and mTOR. The use of inhibitors or siRNA suggests that lacritin mitogenic signaling involves Galpha(i) or Galpha(o)-PKCalpha-PLC-Ca2+-calcineurin-NFATC1 and Galpha(i) or Galpha(o)-PKCalpha-PLC-phospholipase D (PLD)-mTOR in a bell-shaped, dose-dependent manner requiring the Ca2+ sensor STIM1, but not TRPC1. This pathway suggests the placement of transiently dephosphorylated and perinuclear Golgi-translocated PKCalpha upstream of both Ca2+ mobilization and PLD activation in a complex with PLCgamma2. Outward flow of lacritin from secretory cells through ducts may generate a proliferative/secretory field as a different unit of cellular renewal in nongermative epithelia where luminal structures predominate.
Collapse
Affiliation(s)
- Jiahu Wang
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Means S, Smith AJ, Shepherd J, Shadid J, Fowler J, Wojcikiewicz RJH, Mazel T, Smith GD, Wilson BS. Reaction diffusion modeling of calcium dynamics with realistic ER geometry. Biophys J 2006; 91:537-57. [PMID: 16617072 PMCID: PMC1483115 DOI: 10.1529/biophysj.105.075036] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a finite-element model of mast cell calcium dynamics that incorporates the endoplasmic reticulum's complex geometry. The model is built upon a three-dimensional reconstruction of the endoplasmic reticulum (ER) from an electron tomographic tilt series. Tetrahedral meshes provide volumetric representations of the ER lumen, ER membrane, cytoplasm, and plasma membrane. The reaction-diffusion model simultaneously tracks changes in cytoplasmic and ER intraluminal calcium concentrations and includes luminal and cytoplasmic protein buffers. Transport fluxes via PMCA, SERCA, ER leakage, and Type II IP3 receptors are also represented. Unique features of the model include stochastic behavior of IP3 receptor calcium channels and comparisons of channel open times when diffusely distributed or aggregated in clusters on the ER surface. Simulations show that IP3R channels in close proximity modulate activity of their neighbors through local Ca2+ feedback effects. Cytoplasmic calcium levels rise higher, and ER luminal calcium concentrations drop lower, after IP3-mediated release from receptors in the diffuse configuration. Simulation results also suggest that the buffering capacity of the ER, and not restricted diffusion, is the predominant factor influencing average luminal calcium concentrations.
Collapse
Affiliation(s)
- Shawn Means
- Sandia National Laboratory, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 2006; 6:218-30. [PMID: 16470226 DOI: 10.1038/nri1782] [Citation(s) in RCA: 714] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mast-cell activation mediated by the high-affinity receptor for IgE (FcepsilonRI) is considered to be a key event in the allergic inflammatory response. However, in a physiological setting, other receptors, such as KIT, might also markedly influence the release of mediators by mast cells. Recent studies have provided evidence that FcepsilonRI-dependent degranulation is regulated by two complementary signalling pathways, one of which activates phospholipase Cgamma and the other of which activates phosphatidylinositol 3-kinase, using specific transmembrane and cytosolic adaptor molecules. In this Review, we discuss the evidence for these interacting pathways and describe how the capacity of KIT, and other receptors, to influence FcepsilonRI-dependent mast-cell-mediator release might be a function of the relative abilities of these receptors to activate these alternative pathways.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11C206, 10 Center Drive, MSC 1881, Bethesda, Maryland 20892-1881, USA.
| | | |
Collapse
|
30
|
Dearden-Badet MT, Mouchiroud G. Re-distribution of phospholipase C gamma 2 in macrophage precursors is mediated by the actin cytoskeleton under the control of the Src kinases. Cell Signal 2005; 17:1560-71. [PMID: 15899577 DOI: 10.1016/j.cellsig.2005.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF) is a growth factor that is known to trigger several signalling pathways through receptor tyrosine kinase activation. We investigated the specific requirements for the activation of phospholipase C gamma 2 (PLC-gamma2) during the differentiation of mouse bone marrow-derived macrophage precursors. M-CSF stimulation induced rapid PLC-gamma2 translocation and phosphorylation from the cytosolic compartment to the cell periphery. Both events were dependent on cytoskeleton integrity and Src kinase activity, but only PLC-gamma2 phosphorylation did not require PI3-kinase activity. Biochemical experiments as well as confocal microscopy analyses indicate that the translocation of PLC-gamma2 is mediated by the direct association of this protein with the actin cytoskeleton. Using GST-fusion proteins containing various deletions of the PLC-gamma2 Src homology region, it was found that PLC-gamma2 binds to F-actin via its SH2 domains, a feature that has equally been found in a co-sedimentation assay. This association, which is increased during actin reorganisation and disrupted by cytoskeleton inhibitors, seems to be a primary means to recruit this enzyme to the cell periphery. These results indicate that, upon M-CSF stimulation, PLC-gamma2 cellular localisation and phosphorylation are strongly dependent on cytoskeleton architecture of the macrophage precursor as well as the PI3-kinase and the Src kinases.
Collapse
Affiliation(s)
- Marie-Thérèse Dearden-Badet
- Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Bâtiment Gregor Mendel, 16 Rue Raphaël Dubois, 69622 Villeurbanne Cedex, France.
| | | |
Collapse
|
31
|
Piechulek T, Rehlen T, Walliser C, Vatter P, Moepps B, Gierschik P. Isozyme-specific stimulation of phospholipase C-gamma2 by Rac GTPases. J Biol Chem 2005; 280:38923-31. [PMID: 16172125 DOI: 10.1074/jbc.m509396200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The regulation of the two isoforms of phospholipase C-gamma, PLCgamma(1) and PLCgamma(2), by cell surface receptors involves protein tyrosine phosphorylation as well as interaction with adapter proteins and phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)) generated by inositol phospholipid 3-kinases (PI3Ks). All three processes may lead to recruitment of the PLCgamma isozymes to the plasma membrane and/or stimulation of their catalytic activity. Recent evidence suggests that PLCgamma may also be regulated by Rho GTPases. In this study, PLCgamma(1) and PLCgamma(2) were reconstituted in intact cells and in a cell-free system with Rho GTPases to examine their influence on PLCgamma activity. PLCgamma(2), but not PLCgamma(1), was markedly activated in intact cells by constitutively active Rac1(G12V), Rac2(G12V), and Rac3(G12V) but not by Cdc42(G12V) and RhoA(G14V). The mechanism of PLCgamma(2) activation was apparently independent of phosphorylation of tyrosine residues known to be modified by PLCgamma(2)-activating protein-tyrosine kinases. Activation of PLCgamma(2) by Rac2(G12V) in intact cells coincided with a translocation of PLCgamma(2) from the soluble to the particulate fraction. PLCgamma isozyme-specific activation of PLCgamma(2) by Rac GTPases (Rac1 approximately Rac2 > Rac3), but not by Cdc42 or RhoA, was also observed in a cell-free system. Herein, activation of wild-type Rac GTPases with guanosine 5'-(3-O-thio)triphosphate caused a marked stimulation of PLCgamma(2) but had no effect on the activity of PLCgamma(1). PLCgamma(1) and PLCgamma(2) have previously been shown to be indiscriminately activated by PtdInsP(3) in vitro. Thus, the results suggest a novel mechanism of PLCgamma(2) activation by Rac GTPases involving neither protein tyrosine phosphorylation nor PI3K-mediated generation of PtdInsP(3).
Collapse
Affiliation(s)
- Thomas Piechulek
- Department of Pharmacology and Toxicology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Ma R, Li WP, Rundle D, Kong J, Akbarali HI, Tsiokas L. PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol Cell Biol 2005; 25:8285-98. [PMID: 16135816 PMCID: PMC1234340 DOI: 10.1128/mcb.25.18.8285-8298.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PKD2, or polycystin 2, the product of the gene mutated in type 2 autosomal dominant polycystic kidney disease, belongs to the transient receptor potential channel superfamily and has been shown to function as a nonselective cation channel in the plasma membrane. However, the mechanism of PKD2 activation remains elusive. We show that PKD2 overexpression increases epidermal growth factor (EGF)-induced inward currents in LLC-PK(1) kidney epithelial cells, while the knockdown of endogenous PKD2 by RNA interference or the expression of a pathogenic missense variant, PKD2-D511V, blunts the EGF-induced response. Pharmacological experiments indicate that the EGF-induced activation of PKD2 occurs independently of store depletion but requires the activity of phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K). Pipette infusion of purified phosphatidylinositol-4,5-bisphosphate (PIP(2)) suppresses the PKD2-mediated effect on EGF-induced conductance, while pipette infusion of phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) does not have any effect on this conductance. Overexpression of type Ialpha phosphatidylinositol-4-phosphate 5-kinase [PIP(5)Kalpha], which catalyzes the formation of PIP(2), suppresses EGF-induced currents. Biochemical experiments show that PKD2 physically interacts with PLC-gamma2 and EGF receptor (EGFR) in transfected HEK293T cells and colocalizes with EGFR and PIP(2) in the primary cilium of LLC-PK(1) cells. We propose that plasma membrane PKD2 is under negative regulation by PIP(2). EGF may reduce the threshold of PKD2 activation by mechanical and other stimuli by releasing it from PIP(2)-mediated inhibition.
Collapse
Affiliation(s)
- Rong Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
33
|
Linwong W, Hirasawa N, Aoyama S, Hamada H, Saito T, Ohuchi K. Inhibition of the antigen-induced activation of rodent mast cells by putative Janus kinase 3 inhibitors WHI-P131 and WHI-P154 in a Janus kinase 3-independent manner. Br J Pharmacol 2005; 145:818-28. [PMID: 15852029 PMCID: PMC1576194 DOI: 10.1038/sj.bjp.0706240] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 03/21/2005] [Accepted: 03/21/2005] [Indexed: 02/06/2023] Open
Abstract
We analyzed the effects of the Janus kinase 3 (Jak3)-specific inhibitor WHI-P131 (4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline) and the Jak3/Syk inhibitor WHI-P154 (4-(3'-bromo-4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline) on the antigen-induced activation of mast cells. In the rat mast cell line RBL-2H3, both WHI-P131 and WHI-P154 inhibited the antigen-induced degranulation and phosphorylation of p44/42 mitogen-activated protein kinase (MAPK), p38 MAPK and c-Jun N-terminal kinase (JNK). The phosphorylation of Gab2, Akt and Vav was also inhibited by WHI-P131 and WHI-P154, indicating that these inhibitors suppress the activation of phosphatidylinositol 3-kinase (PI3K). In bone marrow-derived mast cells (BMMCs) from Jak3-deficient (Jak3-/-) mice, degranulation and activation of MAPKs were induced by the antigen in almost the same extent as in BMMCs from wild-type mice. In addition, the antigen-induced degranulation and activation of MAPKs were inhibited by WHI-P131 and WHI-P154 in both groups of BMMCs, indicating that these compounds inhibit a certain step except for Jak3. The antigen-induced increase in the activity of Fyn, a probable tyrosine kinase of Gab2, was also inhibited by WHI-P131 and WHI-P154 in RBL-2H3 cells. In BMMCs from Jak3-/- mice, the antigen stimulation induced tyrosine phosphorylation of Fyn, which was inhibited by WHI-P131, as well as in BMMCs from wild-type mice and in RBL-2H3 cells. These findings suggest that Jak3 does not play a significant role in the antigen-induced degranulation and phosphorylation of MAPKs, and that WHI-P131 and WHI-P154 inhibit the PI3K pathway by preventing the antigen-induced activation of Fyn, thus inhibiting the antigen-induced degranulation and phosphorylation of MAPKs in mast cells.
Collapse
Affiliation(s)
- Watchara Linwong
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Suzue Aoyama
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hirofumi Hamada
- Department of Molecular Medicine, Sapporo Medical University, S1 W17 Chuo-ku, Sapporo 060-8556, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology (RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kazuo Ohuchi
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
34
|
Kang HJ, Nam SW, Kim H, Rhee H, Kim NG, Kim H, Hyung WJ, Noh SH, Kim JH, Yun CO, Liu ET, Kim H. Correlation of KIT and platelet-derived growth factor receptor alpha mutations with gene activation and expression profiles in gastrointestinal stromal tumors. Oncogene 2005; 24:1066-74. [PMID: 15690055 DOI: 10.1038/sj.onc.1208358] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activating mutations of KIT and platelet-derived growth factor receptor alpha (PDGFRA) are known to be alternative and mutually exclusive genetic events in the development of gastrointestinal stromal tumors (GISTs). We examined the effect of the mutations of these two genes on the gene expression profile of 22 GISTs using the oligonucleotide microarray. Mutations of KIT and PDGFRA were found in 17 cases and three cases, respectively. The remaining two cases had no detectable mutations in either gene. The mutation status of KIT and PDGFRA was directly related to the expression levels of activated KIT and PDGFRA, and was also related to the different expression levels of activated proteins that play key roles in the downstream of the receptor tyrosine kinase III family. To evaluate the impact of mutation status and the importance of the type of mutation in gene expression and clinical features, microarray-derived data from 22 GISTs were interpreted using a principal component analysis (PCA). Three relevant principal component representing mutation of KIT, PDGFRA and chromosome 14q deletion were identified from the interpretation of the oligonucleotide microarray data with PCA. After supervised analysis, there was at least a two fold difference in expression between GISTs with KIT and PDGFRA mutation in 70 genes. Our findings demonstrate that mutations of KIT and PDGFRA affect differential activation and expression of some genes, and can be used for the molecular classification of GISTs.
Collapse
Affiliation(s)
- Hyun Ju Kang
- Department of Pathology, 134 Sichon-dong, Seodaemun-gu, CPO Box 8044, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yoon E, Beom S, Cheong H, Kim S, Oak M, Cho D, Kim KM. Differential regulation of phospholipase Cgamma subtypes through FcepsilonRI, high affinity IgE receptor. Biochem Biophys Res Commun 2005; 325:117-23. [PMID: 15522209 DOI: 10.1016/j.bbrc.2004.09.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Indexed: 11/27/2022]
Abstract
The high affinity IgE receptor (FcepsilonRI) usually exists as a tetramer composed of alphabetagamma2 subunits. The COOH-tail of beta and gamma subunits contains consensus sequence termed 'immunoreceptor tyrosine-based activation motif' (ITAM). Tyrosine phosphorylated ITAM interacts with signaling proteins that contain the Src homology domain, forming a main amplifying and signaling route for FcepsilonRI. Unlike the COOH-tail, the functional role of NH(2)-tail of beta subunit in the signaling of FcepsilonRI is not clear because it lacks the ITAM sequences. To study the roles of NH(2)-tail of beta subunit, the cDNA library of RBL-2H3 cells was screened by yeast two-hybrid assay, and the NH(2)-tail of the beta subunit was found to interact with phospholipase Cgamma2 (PLCgamma2) but not with PLCgamma1. Since both PLCgamma1 and PLCgamma2 are expressed in RBL-2H3 cells and they possess identical cellular functions, the functional meaning of the protein-protein interaction between PLCgamma2 and NH(2)-tail of beta subunit was studied by comparing the regulatory pathways that control the FcepsilonRI-mediated tyrosine phosphorylation of the two enzymes. Our study shows that PI3-kinase and PMA-sensitive PKCs were required exclusively for the FcepsilonRI-mediated tyrosine phosphorylation of PLCgamma1. Also the FcepsilonRI-mediated tyrosine phosphorylation of PLCgamma1 was more sensitive to the inhibitors of Src and Syk kinases. These results therefore suggest that PLCgamma1 is involved in dynamic regulation of protein kinase C activity and inositol triphosphate levels in response to cellular needs. In contrast, PLCgamma2, through continuous interaction with the NH(2)-tail of beta subunit, co-localizes with FcepsilonRI in the same signaling domain, and maintains the basal cellular PLC activity.
Collapse
Affiliation(s)
- Eunju Yoon
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Kwang-Ju 500-757, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Liu YQ, You S, Tashiro SI, Onodera S, Ikejima T. Activation of Phosphoinositide 3-Kinase, Protein Kinase C, and Extracellular Signal-Regulated Kinase Is Required for Oridonin-Enhanced Phagocytosis of Apoptotic Bodies in Human Macrophage-Like U937 Cells. J Pharmacol Sci 2005; 98:361-71. [PMID: 16079470 DOI: 10.1254/jphs.fpj05005x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Our previous study showed that oridonin isolated from Rabdosia rubescens enhanced phagocytosis of apoptotic cells by macrophage-like U937 cells through tumor necrosis factor (TNF) alpha and interleukin (IL)-1beta release. In this study, we further investigated signaling events involved in oridonin-augmented phagocytosis. Phagocytic stimulation was significantly suppressed by inhibitors, including a phosphoinositide 3-kinases (PI3K) inhibitor (wortmannin), a protein kinase C (PKC) inhibitor (stauroporine), and a phospholipase C (PLC) inhibitor (U73122). Exposure of U937 cells to oridonin caused an increase in PKC activity time- dependently, which was prevented by pretreatment with inhibitors of PI3K and PLC. Simultaneously, the activation of protein kinase B (PKB/Akt) and the increased expression of PLCgamma2 were also blocked by wortmannin. In addition, an extracellular signal-regulated kinase (ERK) MAPK inhibitor, PD98059, suppressed oridonin-augmented phagocytosis, whereas the p38 MAPK inhibitor (SB203580) and c-Jun N-terminal kinase (JNK) MAPK inhibitor (SP98059) had no inhibitory effect. Furthermore, pretreatment of U937 cells with anti-TNFalpha and anti-IL-1beta antibodies blocked oridonin-induced phagocytic stimulation as well as phosphorylation of ERK, but did not block the activation of PKC, indicating that these signaling events are triggered by oridonin, whereas secreted TNFalpha or IL-1beta only activate the ERK-dependent pathway. Taken together, oridonin is suggested to enhance phagocytosis of apoptotic bodies by activating PI3K, PKC, and ERK-dependent pathways.
Collapse
Affiliation(s)
- Yan-Qiu Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | |
Collapse
|
37
|
De Matteis MA, Godi A. Protein–lipid interactions in membrane trafficking at the Golgi complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1666:264-74. [PMID: 15519320 DOI: 10.1016/j.bbamem.2004.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 07/09/2004] [Indexed: 11/16/2022]
Abstract
The integrated interplay between proteins and lipids drives many key cellular processes, such as signal transduction, cytoskeleton remodelling and membrane trafficking. The last of these, membrane trafficking, has the Golgi complex as its central station. Not only does this organelle orchestrates the biosynthesis, transport and intracellular distribution of many proteins and lipids, but also its own function and structure is dictated by intimate functional and physical relationships between protein-based and lipid-based machineries. These machineries are involved in the control of the fundamental events that govern membrane traffic, such as in the budding, fission and fusion of transport intermediates, in the regulation of the shape and geometry of the Golgi membranes themselves, and, finally, in the generation of "signals" that can have local actions in the secretory system, or that may affect other cellular systems. Lipid-protein interactions rely on the abilities of certain protein domains to recognize specific lipids. These interactions are mediated, in particular, through the headgroups of the phospholipids, although a few of these protein domains are able to specifically interact with the phospholipid acyl chains. Recent evidence also indicates that some proteins and/or protein domains are more sensitive to the physical environment of the membrane bilayer (such as its curvature) than to its chemical composition.
Collapse
Affiliation(s)
- M A De Matteis
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale, 66030 Santa Maria Imbaro (Chieti), Italy.
| | | |
Collapse
|
38
|
Hitomi T, Zhang J, Nicoletti LM, Grodzki ACG, Jamur MC, Oliver C, Siraganian RP. Phospholipase D1 regulates high-affinity IgE receptor-induced mast cell degranulation. Blood 2004; 104:4122-8. [PMID: 15339843 DOI: 10.1182/blood-2004-06-2091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the role of phospholipase D (PLD) in FcepsilonRI signaling, the wild-type or the catalytically inactive forms of PLD1 or PLD2 were stably overexpressed in RBL-2H3 mast cells. FcepsilonRI stimulation resulted in the activation of both PLD1 and PLD2. However, PLD1 was the source of most of the receptor-induced PLD activity. There was enhanced FcepsilonRI-induced degranulation only in cells that overexpressed the catalytically inactive PLD1. This dominant-negative PLD1 enhanced FcepsilonRI-induced tyrosine phosphorylations of early signaling molecules such as the receptor subunits, Syk and phospholipase C-gamma which resulted in faster release of Ca(2+) from intracellular sources. Therefore, PLD1 negatively regulates signals upstream of the Ca(2+) response. However, FcepsilonRI-induced PLD activation required Syk and was downstream of the Ca(2+)response, suggesting that basal PLD1 activity rather than that activated by cell stimulation controlled these early signaling events. Dominant-negative PLD1 reduced the basal phosphatidic acid formation in unstimulated cells, which was accompanied by an increase in FcepsilonRI within the lipid rafts. These results indicate that constitutive basal PLD1 activity by regulating phosphatidic acid formation controls the early signals initiated by FcepsilonRI aggregation that lead to mast cell degranulation.
Collapse
Affiliation(s)
- Tomohiro Hitomi
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Hernandez-Hansen V, Smith AJ, Surviladze Z, Chigaev A, Mazel T, Kalesnikoff J, Lowell CA, Krystal G, Sklar LA, Wilson BS, Oliver JM. Dysregulated FcepsilonRI signaling and altered Fyn and SHIP activities in Lyn-deficient mast cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:100-12. [PMID: 15210764 DOI: 10.4049/jimmunol.173.1.100] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies in B cells from Lyn-deficient mice have identified Lyn as both a kinetic accelerator and negative regulator of signaling through the BCR. The signaling properties of bone marrow-derived mast cells from Lyn(-/-) mice (Lyn(-/-) BMMCs) have also been explored, but their signaling phenotype remains controversial. We confirm that Lyn(-/-) BMMCs release more beta-hexosaminidase than wild-type BMMCs following FcepsilonRI cross-linking and show that multiple mast cell responses to FcepsilonRI cross-linking (the phosphorylation of receptor subunits and other proteins, the activation of phospholipase Cgamma isoforms, the mobilization of Ca(2+), the synthesis of phosphatidylinositol 3,4,5-trisphosphate, the activation of the alpha(4)beta(1) integrin, VLA-4) are slow to initiate in Lyn(-/-) BMMCs, but persist far longer than in wild-type cells. Mechanistic studies revealed increased basal as well as stimulated phosphorylation of the Src kinase, Fyn, in Lyn(-/-) BMMCs. Conversely, there was very little basal or stimulated tyrosine phosphorylation or activity of the inositol phosphatase, SHIP, in Lyn(-/-) BMMCs. We speculate that Fyn may substitute (inefficiently) for Lyn in signal initiation in Lyn(-/-) BMMCs. The loss of SHIP phosphorylation and activity very likely contributes to the increased levels of phosphatidylinositol 3,4,5-trisphosphate and the excess FcepsilonRI signaling in Lyn(-/-) BMMCs. The unexpected absence of the transient receptor potential channel, Trpc4, from Lyn(-/-) BMMCs may additionally contribute to their altered signaling properties.
Collapse
Affiliation(s)
- Valerie Hernandez-Hansen
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico School of Medicine, CRF 205, 2325 Camino De Salud, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wu JN, Jordan MS, Silverman MA, Peterson EJ, Koretzky GA. Differential requirement for adapter proteins Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa and adhesion- and degranulation-promoting adapter protein in FcepsilonRI signaling and mast cell function. THE JOURNAL OF IMMUNOLOGY 2004; 172:6768-74. [PMID: 15153494 DOI: 10.4049/jimmunol.172.11.6768] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adapter molecule Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is essential for FcepsilonRI-mediated signaling, degranulation and IL-6 production in mast cells. To test the structural requirements of SLP-76 in mast cell signaling and function, we have studied the functional responses of murine bone marrow-derived mast cells (BMMCs) expressing mutant forms of SLP-76. We found that the N-terminal tyrosines as well as the central proline-rich region of SLP-76 are required for participation of SLP-76 in FcepsilonRI-mediated signaling and function. The C-terminal SH2 domain of SLP-76 also contributes to optimal function of SLP-76 in mast cells. Another adapter molecule, adhesion- and degranulation-promoting adapter protein (ADAP), is known to bind the SH2 domain of SLP-76, and cell line studies have implicated ADAP in mast cell adhesion and FcepsilonRI-induced degranulation. Surprisingly, we found that mast cells lacking ADAP expression demonstrate no defects in FcepsilonRI-induced adhesion, granule release, or IL-6 production, and that ADAP-deficient mice produce a normal passive systemic anaphylactic response. Thus, failure to bind ADAP does not underlie the functional defects exhibited by SLP-76 SH2 domain mutant-expressing mast cells.
Collapse
Affiliation(s)
- Jennifer N Wu
- Abramson Family Cancer Research Institute and Department of Laboratory Medicine and Pathology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
41
|
Pandey V, Mihara S, Fensome-Green A, Bolsover S, Cockcroft S. Monomeric IgE stimulates NFAT translocation into the nucleus, a rise in cytosol Ca2+, degranulation, and membrane ruffling in the cultured rat basophilic leukemia-2H3 mast cell line. THE JOURNAL OF IMMUNOLOGY 2004; 172:4048-58. [PMID: 15034016 DOI: 10.4049/jimmunol.172.7.4048] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells are key regulators in allergy and inflammation, and release histamine, cytokines, and other proinflammatory mediators. In the classical view, IgE acts merely to prime mast cells, attaching to FcepsilonRs but not evoking any cell signaling response until cross-linked by the presence of a multivalent allergen. However, several recent studies have reported that IgE alone can promote cell survival and cytokine production in the absence of cross-linking by allergen. In this study we demonstrate that acute addition of monomeric IgE elicits a wide spectrum of responses in the rat basophilic leukemia-2H3 mast cell line, including activation of phospholipases Cgamma and D, a rise in cytosol Ca(2+), NFAT translocation, degranulation, and membrane ruffling within minutes. Calcium transients persist for hours as long as IgE is present resulting in the maintained translocation of the transcription factor NFAT to the nucleus. Removal of IgE reverses the signaling processes. Our results indicate that, far from simply preparing the cells for a response to allergen, monomeric IgE can stimulate signaling pathways that lead to degranulation, membrane ruffling, and NFAT translocation. The mechanism of activation is likely to be via aggregation of the FcepsilonR1 because activation by IgE can be inhibited with monovalent hapten.
Collapse
Affiliation(s)
- Vinita Pandey
- Department of Physiology, University College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Andrade MVM, Hiragun T, Beaven MA. Dexamethasone Suppresses Antigen-Induced Activation of Phosphatidylinositol 3-Kinase and Downstream Responses in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:7254-62. [PMID: 15187100 DOI: 10.4049/jimmunol.172.12.7254] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dexamethasone and other glucocorticoids suppress FcepsilonRI-mediated release of inflammatory mediators from mast cells. Suppression of cytokine production is attributed to repression of cytokine gene transcription but no mechanism has been described for the suppression of degranulation. We show that therapeutic concentrations of dexamethasone inhibit intermediate signaling events, in particular the activation of phosphatidylinositol (PI)3-kinase and downstream signaling events that lead to degranulation in rat basophilic leukemia 2H3 cells. This inhibitory action is mediated via the glucocorticoid receptor and is not apparent when cells are stimulated via Kit in a mouse bone marrow-derived mast cell line. The primary perturbation appears to be the failure of the regulatory p85 subunit of PI3-kinase to engage with the adaptor protein Grb2-associated binder 2 leading to suppression of phosphorylation of phospholipase Cgamma2, the calcium signal, and degranulation. Suppression of PI3-kinase activation by dexamethasone may also contribute to reduced cytokine production because the PI3-kinase inhibitor LY294002, like dexamethasone, inhibits Ag-induced transcription of cytokine genes as well as degranulation.
Collapse
Affiliation(s)
- Marcus V M Andrade
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
43
|
Qu X, Sada K, Kyo S, Maeno K, Miah SMS, Yamamura H. Negative regulation of FcϵRI-mediated mast cell activation by a ubiquitin-protein ligase Cbl-b. Blood 2004; 103:1779-86. [PMID: 14604964 DOI: 10.1182/blood-2003-07-2260] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AbstractAggregation of the high-affinity immunoglobulin E (IgE) receptor (FcϵRI) on mast cells induces a number of biochemical events, including protein-tyrosine phosphorylation leading to degranulation and multiple cytokine gene transcription. Here, we have demonstrated that a second member of the Cbl family of ubiquitin-protein ligase Cbl-b translocates into the lipid raft after FcϵRI engagement. Overexpression of Cbl-b in the lipid raft inhibits FcϵRI-mediated degranulation and cytokine gene transcription through the distinct mechanism. A point mutation of Cys373 in the RING finger domain of Cbl-b abrogates the suppression of FcϵRI-mediated degranulation but not cytokine gene transcription. The antigen-induced tyrosine phosphorylation of FcϵRI, Syk, phospholipase C-γ (PLC-γ), activation of c-Jun N-terminal kinase (JNK), extracellular signal regulated kinase (ERK), inhibitor of nuclear factor κB kinase (IKK), and Ca++ influx were all suppressed in the cells overexpressing Cbl-b in the lipid raft. In particular, the expression amount of Gab2 protein and thereby its FcϵRI-mediated tyrosine phosphorylation were dramatically down-regulated by ubiquitin-protein ligase activity of Cbl-b. These results suggest that Cbl-b is a negative regulator of both Lyn-Syk-LAT and Gab2mediated complementary signaling pathways in FcϵRI-mediated mast cell activation.
Collapse
Affiliation(s)
- Xiujuan Qu
- Division of Proteomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Jose Lopez-Andreo M, Gomez-Fernandez JC, Corbalan-Garcia S. The simultaneous production of phosphatidic acid and diacylglycerol is essential for the translocation of protein kinase Cepsilon to the plasma membrane in RBL-2H3 cells. Mol Biol Cell 2003; 14:4885-95. [PMID: 12960426 PMCID: PMC284792 DOI: 10.1091/mbc.e03-05-0295] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 07/03/2003] [Accepted: 08/06/2003] [Indexed: 01/03/2023] Open
Abstract
To evaluate the role of the C2 domain in protein kinase Cepsilon (PKCepsilon) localization and activation after stimulation of the IgE receptor in RBL-2H3 cells, we used a series of mutants located in the phospholipid binding region of the enzyme. The results obtained suggest that the interaction of the C2 domain with the phospholipids in the plasma membrane is essential for anchoring the enzyme in this cellular compartment. Furthermore, the use of specific inhibitors of the different pathways that generate both diacylglycerol and phosphatidic acid has shown that the phosphatidic acid generated via phospholipase D (PLD)-dependent pathway, in addition to the diacylglycerol generated via phosphoinosite-phospholipase C (PLC), are involved in the localization of PKCepsilon in the plasma membrane. Direct stimulation of RBL-2H3 cells with very low concentrations of permeable phosphatidic acid and diacylglycerol exerted a synergistic effect on the plasma membrane localization of PKCepsilon. Moreover, the in vitro kinase assays showed that both phosphatidic acid and diacylglycerol are essential for enzyme activation. Together, these results demonstrate that phosphatidic acid is an important and essential activator of PKCepsilon through the C2 domain and locate this isoenzyme in a new scenario where it acts as a downstream target of PLD.
Collapse
Affiliation(s)
- Maria Jose Lopez-Andreo
- Department de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30100 Murcia, Spain
| | | | | |
Collapse
|
45
|
Dráberová L, Dudková L, Boubelík M, Tolarová H, Smíd F, Dráber P. Exogenous Administration of Gangliosides Inhibits FcεRI-Mediated Mast Cell Degranulation by Decreasing the Activity of Phospholipase Cγ. THE JOURNAL OF IMMUNOLOGY 2003; 171:3585-93. [PMID: 14500655 DOI: 10.4049/jimmunol.171.7.3585] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gangliosides released from tumor cells, as well as administered exogenously, suppress the immune responses by largely unknown mechanisms. We show here that a pretreatment of rat basophilic leukemia cells with isolated brain gangliosides inhibited the release of preformed secretory mediators from cells activated via FcepsilonRI but not Thy-1 glycoprotein. Exogenously administered gangliosides also affected the cell-substrate adhesion and the levels of polymeric filamentous actin in Ag-activated cells. Although the production of phosphoinositides was also decreased, enzymatic activity of phosphatidylinositol 3-kinase was not inhibited. Gangliosides had no or only marginal effect on the association of aggregated FcepsilonRI with glycosphingolipid-enriched membranes and on tyrosine phosphorylation of FcepsilonRI and the linker for activation of T cells. Though pretreatment with gangliosides did not inhibit the association of linker for activation of T cells with phospholipase C (PLC)gamma1 and PLCgamma2, tyrosine phosphorylation of these enzymes, as well as their enzymatic activities and association with detergent-insoluble signaling assemblies were reduced. This resulted in a decreased production of inositol 1,4,5-trisphosphate and an inhibition of Ca(2+) mobilization. The combined data support the concept that exogenously administered gangliosides interfere with those properties of glycosphingolipid-enriched membranes that are important for the formation of plasma membrane-associated signaling assemblies containing PLCgamma but not for initial tyrosine phosphorylation of FcepsilonRI subunits.
Collapse
Affiliation(s)
- Lubica Dráberová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
46
|
Naal RMZG, Holowka EP, Baird B, Holowka D. Antigen-stimulated trafficking from the recycling compartment to the plasma membrane in RBL mast cells. Traffic 2003; 4:190-200. [PMID: 12656991 DOI: 10.1034/j.1600-0854.2003.00073.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Binding of fluorescein isothiocyanate (FITC)-conjugated cholera toxin B subunit to ganglioside GM1 on RBL-2H3 cells at 37 degrees C results in labeling of the plasma membrane as well as a pool of perinuclear intracellular membranes identified as the endosomal recycling compartment. Antigen-mediated activation of IgE receptor signaling causes rapid, sustained outward trafficking of these labeled endosomes, that is monitored as an increase in FITC fluorescence due to relief of quenching in the acidic endosomes upon delivery to the plasma membrane. Stimulation of this process depends on the integrity of cholesterol-dependent lipid rafts and occurs in response to Ca2+-mobilizing thapsigargin as well as antigen. Inhibitors of some early signaling enzymes stimulated by FcepsilonRI, including Syk tyrosine kinase and phosphoinositide 3-kinase, have little or no effect on this trafficking response. Other signaling pathways, including activation of phospholipase C and Ca2+ influx, do not appear to be necessary for the initiation of the outward trafficking response, but they contribute to maintaining the sustained phase of this process. Consistent with this, antigen-stimulated ruffles are labeled with FITC-cholera toxin B in a Ca2+-dependent manner. Thus, this trafficking response provides a mechanism by which an internal membrane pool can contribute to plasma membrane remodeling during stimulated membrane ruffling, cell motility, and phagocytosis.
Collapse
Affiliation(s)
- Rose Mary Z G Naal
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853-1301, USA
| | | | | | | |
Collapse
|
47
|
Wen R, Jou ST, Chen Y, Hoffmeyer A, Wang D. Phospholipase C gamma 2 is essential for specific functions of Fc epsilon R and Fc gamma R. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6743-52. [PMID: 12471105 DOI: 10.4049/jimmunol.169.12.6743] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phospholipase Cgamma2 (PLCgamma2) plays a critical role in the functions of the B cell receptor in B cells and of the FcRgamma chain-containing collagen receptor in platelets. Here we report that PLCgamma2 is also expressed in mast cells and monocytes/macrophages and is activated by cross-linking of Fc(epsilon)R and Fc(gamma)R. Although PLCgamma2-deficient mice have normal development and numbers of mast cells and monocytes/macrophages, we demonstrate that PLCgamma2 is essential for specific functions of Fc(epsilon)R and Fc(gamma)R. While PLCgamma2-deficient mast cells have normal mitogen-activated protein kinase activation and cytokine production at mRNA levels, the mutant cells have impaired Fc(epsilon)R-mediated Ca(2+) flux and inositol 1,4,5-trisphosphate production, degranulation, and cytokine secretion. As a physiological consequence of the effect of PLCgamma2 deficiency, the mutant mice are resistant to IgE-mediated cutaneous inflammatory skin reaction. Macrophages from PLCgamma2-deficient mice have no detectable Fc(gamma)R-mediated Ca(2+) flux; however, the mutant cells have normal Fc(gamma)R-mediated phagocytosis. Moreover, PLCgamma2 plays a nonredundant role in Fc(gamma)R-mediated inflammatory skin reaction.
Collapse
MESH Headings
- Animals
- Biological Transport/genetics
- Biological Transport/immunology
- Calcium/metabolism
- Cations, Divalent/metabolism
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cytokines/genetics
- Cytokines/metabolism
- Enzyme Activation/genetics
- Enzyme Activation/immunology
- Immunity, Innate/genetics
- Immunoglobulin E/physiology
- Isoenzymes/deficiency
- Isoenzymes/genetics
- Isoenzymes/physiology
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mast Cells/enzymology
- Mast Cells/immunology
- Mast Cells/metabolism
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Passive Cutaneous Anaphylaxis
- Phagocytosis/genetics
- Phagocytosis/immunology
- Phospholipase C gamma
- Receptors, IgE/immunology
- Receptors, IgE/metabolism
- Receptors, IgE/physiology
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Receptors, IgG/physiology
- Transcription, Genetic/immunology
- Type C Phospholipases/deficiency
- Type C Phospholipases/genetics
- Type C Phospholipases/physiology
Collapse
Affiliation(s)
- Renren Wen
- The Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
48
|
Wilson BS, Pfeiffer JR, Oliver JM. FcepsilonRI signaling observed from the inside of the mast cell membrane. Mol Immunol 2002; 38:1259-68. [PMID: 12217393 DOI: 10.1016/s0161-5890(02)00073-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Crosslinking the high affinity IgE receptor, FcrepsilonRI, on basophils and mast cells initiates cascades of biochemical events leading to degranulation, membrane ruffling and other physiological responses. Downstream of FcepsilonRI and its coupled tyrosine kinases, Lyn and Syk, scores of different proteins and lipids are implicated in these signaling cascades and new players are being identified continuously. Here, we use immunogold probes to label receptors and signaling proteins on the cytoplasmic face of membrane sheets prepared from RBL-2H3 mast cells and transmission electron microscopy to examine their distributions in relationship to each other and to features of the membrane. New topographical data are integrated with existing knowledge of the biochemistry of FcepsilonRI signaling and of cell shape during signaling to implicate at least two distinct membrane domains in FcepsilonRI signaling. "Primary signaling domains", also called osmiophilic patches, are recognized by their dark staining with osmium, adjacency to coated pits (previously mapped to planar membrane between lamellae) and by the characteristic presence of receptor, Syk and PLCgamma2, but not Lyn. "Secondary signaling domains" are characterized by the presence of large elliptical linker for activation of T cells (LAT) rafts and of PLCgamma1 (previously mapped to lamellae) but not receptor. The signaling proteins, Vav, Grb2, Cbl and Gab2, and the endocytic proteins, AP2 and clathrin, all map to the primary domains, while the p85 regulatory subunit of phosphatidylinositol 3 (PI 3)-kinase maps to both domains. Recognition that FcepsilonRI signaling is controlled not only by which chemical species are available for interaction, but also by where the interactions occur, may provide new opportunities for the modeling of signaling cascades and new targets for the development of drugs to treat allergies and asthma.
Collapse
Affiliation(s)
- Bridget S Wilson
- Department of Pathology and Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | | | | |
Collapse
|
49
|
Miettinen M, Majidi M, Lasota J. Pathology and diagnostic criteria of gastrointestinal stromal tumors (GISTs): a review. Eur J Cancer 2002; 38 Suppl 5:S39-51. [PMID: 12528772 DOI: 10.1016/s0959-8049(02)80602-5] [Citation(s) in RCA: 308] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the designation for the specific c-kit expressing and Kit-signaling driven mesenchymal tumors, many of which have Kit-activating mutations. The specific identification of GIST has become increasingly important because a Kit-selective tyrosine kinase inhibitor, imatinib (Glivec, formerly known as STI571, Novartis Pharma AG, Basel, Switzerland), has shown promise as an effective adjuvant therapy treatment. GISTs are the most common mesenchymal tumors of the gastrointestinal (GI) tract. We estimate the frequency of malignant GISTs as 20% to 30% of the frequency of all soft-tissue sarcomas, but small benign tumors, often found incidentally during unrelated surgery or autopsy, are probably much more common. Older adults are most at risk for GIST; very rarely, GIST occurs in children and young adults (sometimes connected with Carney's triad), or on a familial basis. GISTs have been documented in all parts of the GI tract. A great majority of them occur in the stomach (60% to 70%) and small intestine (25% to 35%), with rare occurrence in the colon and rectum (5%), esophagus (<2%) and appendix. Some GISTs are primary in the omentum, mesentery or retroperitoneum, and are unrelated to the tubular GI tract. GISTs can be histologically identified as highly cellular spindle cell or epithelioid mesenchymal tumors, and morphology is somewhat site-dependent. However, common to all these tumors is expression of Kit (CD117 antigen), which is a major diagnostic criterion. Few other Kit-positive mesenchymal tumors of the GI tract are likely to be confused with GISTs; exceptions are metastatic melanoma and related tumors and malignant vascular tumors. Additional diagnostic criteria include common positivity for CD34 (70%), variable expression of smooth muscle actins (20% to 30%) and S100 protein (10%) and almost uniform negativity for desmin (only 2% to 4% of GISTs are positive). Although the prediction of malignancy in this tumor group is notoriously difficult, tumors that have mitotic activity counts exceeding 5 per 50 high power fields (HPF) or those larger than 5 cm have a high frequency of intra-abdominal recurrence and liver metastasis. In contrast, tumors smaller than 2 cm and those with mitotic activity counts <5 per 50 HPF are likely to be benign. These diagnostic criteria leave an inevitable gray area in the separation of benign and malignant tumors. Kit-activating mutations can be detected in at least 60% to 70% of GIST cases. Most of the mutations, in-frame deletions of several codons, are located in the juxtamembrane domain (exon 11) of the gene. Less commonly, mutations have been detected in the extracellular domain (exon 9), and tyrosine kinase domains (exons 13 and 17). Functional analysis of the different c-kit mutations and their impact on the response to tyrosine kinase inhibitors are under intense investigation.
Collapse
Affiliation(s)
- Markku Miettinen
- Department of Soft Tissue Pathology, Armed Forces Institute of Pathology, Washington, DC, USA.
| | | | | |
Collapse
|
50
|
Gibbs BF, Plath KES, Wolff HH, Grabbe J. Regulation of mediator secretion in human basophils by p38 mitogen‐activated protein kinase: phosphorylation is sensitive to the effects of phosphatidylinositol 3‐kinase inhibitors and calcium mobilization. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.2.391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Helmut H. Wolff
- Department of Dermatology, Medical University of Lübeck, Germany
| | - Jürgen Grabbe
- Department of Dermatology, Medical University of Lübeck, Germany
| |
Collapse
|