1
|
Caenen-Braz C, Bouzhir L, Dupuis-Williams P. New functions of B9D2 in tight junctions and epithelial polarity. Sci Rep 2024; 14:25293. [PMID: 39455645 PMCID: PMC11512030 DOI: 10.1038/s41598-024-75577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Ciliopathies are a diverse group of disorders resulting from abnormalities in the development or function of multiple organs. While significant research has clarified the role of the primary cilium in transducing numerous signalling pathways, elucidating causes of neuronal and skeletal development disorders, the origins of other ciliopathy-related conditions, such as hepatic fibrocystic diseases, remain elusive. Additionally, attempts to correlate specific ciliary proteins with distinct phenotypes have been largely unsuccessful due to the variable and overlapping symptoms of ciliopathies. This study aims to elucidate the extraciliary roles of the protein B9D2 in the development of biliary dysgenesis, a condition present in Meckel-Gruber and Joubert syndromes caused by mutations in this protein. Traditionally, B9D2 is known for its role at the transition zone of the primary cilium in the transduction of signalling pathways notably Wingless and Hedgehog. Our work demonstrates that before ciliogenesis occurs, B9D2 is crucial for the maturation and maintenance of tight junctions ensuring epithelial barrier tightness and appropriate biliary lumen formation. This study provides new insights into the mechanisms underlying biliary dysgenesis in hepatic ciliopathies, suggesting that further exploration of the non-ciliary functions of proteins involved in ciliopathies could lead to a better understanding and treatment of these complex disorders.
Collapse
Affiliation(s)
- Chloe Caenen-Braz
- Université Paris-Saclay, Inserm, physiopathogenèse et traitement des maladies du foie, 94800, Villejuif, France
| | - Latifa Bouzhir
- Université Paris-Saclay, Inserm, physiopathogenèse et traitement des maladies du foie, 94800, Villejuif, France
| | - Pascale Dupuis-Williams
- Université Paris-Saclay, Inserm, physiopathogenèse et traitement des maladies du foie, 94800, Villejuif, France.
- ESPCI Paris, Université PSL, 75005, Paris, France.
| |
Collapse
|
2
|
Wolf MTF, Bonsib SM, Larsen CP, Hildebrandt F. Nephronophthisis: a pathological and genetic perspective. Pediatr Nephrol 2024; 39:1977-2000. [PMID: 37930417 DOI: 10.1007/s00467-023-06174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 11/07/2023]
Abstract
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most frequent genetic causes for kidney failure (KF) in children and adolescents. Over 20 genes cause NPHP and over 90 genes contribute to renal ciliopathies often involving multiple organs. About 15-20% of NPHP patients have additional extrarenal symptoms affecting other organs than the kidneys. The involvement of additional organ systems in syndromic forms of NPHP is explained by shared expression of most NPHP gene products in centrosomes and primary cilia, a sensory organelle present in most mammalian cells. This finding resulted in the classification of NPHP as a ciliopathy. If extrarenal symptoms are present in addition to NPHP, these disorders are defined as NPHP-related ciliopathies (NPHP-RC) and can involve the retina (e.g., with Senior-Løken syndrome), CNS (central nervous system) (e.g., with Joubert syndrome), liver (e.g., Boichis and Arima syndromes), or bone (e.g., Mainzer-Saldino and Sensenbrenner syndromes). This review focuses on the pathological findings and the recent genetic advances in NPHP and NPHP-RC. Different mechanisms and signaling pathways are involved in NPHP ranging from planar cell polarity, sonic hedgehog signaling (Shh), DNA damage response pathway, Hippo, mTOR, and cAMP signaling. A number of therapeutic interventions appear to be promising, ranging from vasopressin receptor 2 antagonists such as tolvaptan, cyclin-dependent kinase inhibitors such as roscovitine, Hh agonists such as purmorphamine, and mTOR inhibitors such as rapamycin.
Collapse
Affiliation(s)
- Matthias T F Wolf
- Division of Pediatric Nephrology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Division of Pediatric Nephrology, C.S. Mott Children's Hospital, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | | | | | | |
Collapse
|
3
|
Moran AL, Louzao-Martinez L, Norris DP, Peters DJM, Blacque OE. Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies. Nat Rev Nephrol 2024; 20:83-100. [PMID: 37872350 DOI: 10.1038/s41581-023-00773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders - known collectively as ciliopathies - that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.
Collapse
Affiliation(s)
- Ailis L Moran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Laura Louzao-Martinez
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Wang H, Zaiser F, Eckert P, Ruf J, Kayser N, Veenstra AC, Müller M, Haas R, Walz G, Yakulov TA. Inversin (NPHP2) and Vangl2 are required for normal zebrafish cloaca formation. Biochem Biophys Res Commun 2023; 673:9-15. [PMID: 37352572 DOI: 10.1016/j.bbrc.2023.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Nephronophthisis (NPH), an autosomal recessive ciliopathy, results from mutations in more than 20 different genes (NPHPs). These gene products form protein complexes that regulate trafficking within the cilium, a microtubular structure that plays a crucial role in developmental processes. Several NPHPs, including NPHP2/Inversin, have been linked to extraciliary functions. In addition to defining a specific segment of primary cilia (Inversin compartment), NPHP2 participates in planar cell polarity (PCP) signaling along with Dishevelled and Vangl family members. We used the mutant zebrafish line invssa36157, containing a stop codon at amino acid 314, to characterize tissue-specific functions of zebrafish Nphp2. The invssa36157 line exhibits mild ciliopathy phenotypes and increased glomerular and cloaca cyst formation. These mutants showed enhanced susceptibility to the simultaneous depletion of the nphp1/nphp2/nphp8 module, known to be involved in the cytoskeletal organization of epithelial cells. Notably, simultaneous depletion of zebrafish nphp1 and vangl2 led to a pronounced increase in cloaca malformations in the invssa36157 mutant embryos. Time-lapse imaging showed that the pronephric cells correctly migrated towards the ectodermal cells in these embryos, but failed to form the cloaca opening. Despite these abnormal developments, cellular fate does not seem to be affected in nphp1 and vangl2 MO-depleted invssa36157 mutants, as shown by in situ hybridizations for markers of pronephros and ectodermal cell development. However, significantly reduced apoptotic activity was observed in this double knockdown model, signifying the role of apoptosis in cloacal morphogenesis. Our findings underscore the critical interplay of nphp1, nphp2/Inversin, and vangl2 in orchestrating normal cloaca formation in zebrafish, shedding light on the complex molecular mechanisms underlying ciliopathy-associated phenotypes.
Collapse
Affiliation(s)
- Hui Wang
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Friedemann Zaiser
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Priska Eckert
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Johannes Ruf
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Nicolas Kayser
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Anna C Veenstra
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Merle Müller
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Rebecca Haas
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
| | - Toma A Yakulov
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
5
|
Gupta S, Ozimek-Kulik JE, Phillips JK. Nephronophthisis-Pathobiology and Molecular Pathogenesis of a Rare Kidney Genetic Disease. Genes (Basel) 2021; 12:genes12111762. [PMID: 34828368 PMCID: PMC8623546 DOI: 10.3390/genes12111762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
The exponential rise in our understanding of the aetiology and pathophysiology of genetic cystic kidney diseases can be attributed to the identification of cystogenic genes over the last three decades. The foundation of this was laid by positional cloning strategies which gradually shifted towards next-generation sequencing (NGS) based screenings. This shift has enabled the discovery of novel cystogenic genes at an accelerated pace unlike ever before and, most notably, the past decade has seen the largest increase in identification of the genes which cause nephronophthisis (NPHP). NPHP is a monogenic autosomal recessive cystic kidney disease caused by mutations in a diverse clade of over 26 identified genes and is the most common genetic cause of renal failure in children. NPHP gene types present with some common pathophysiological features alongside a diverse range of extra-renal phenotypes associated with specific syndromic presentations. This review provides a timely update on our knowledge of this disease, including epidemiology, pathophysiology, anatomical and molecular features. We delve into the diversity of the NPHP causing genes and discuss known molecular mechanisms and biochemical pathways that may have possible points of intersection with polycystic kidney disease (the most studied renal cystic pathology). We delineate the pathologies arising from extra-renal complications and co-morbidities and their impact on quality of life. Finally, we discuss the current diagnostic and therapeutic modalities available for disease management, outlining possible avenues of research to improve the prognosis for NPHP patients.
Collapse
Affiliation(s)
- Shabarni Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- Correspondence:
| | - Justyna E. Ozimek-Kulik
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia
- Department of Paediatric Nephrology, Sydney Children’s Hospital Network, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Jacqueline Kathleen Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
| |
Collapse
|
6
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
7
|
Expression Pattern of α-Tubulin, Inversin and Its Target Dishevelled-1 and Morphology of Primary Cilia in Normal Human Kidney Development and Diseases. Int J Mol Sci 2021; 22:ijms22073500. [PMID: 33800671 PMCID: PMC8037028 DOI: 10.3390/ijms22073500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
The spatiotemporal expression of α-tubulin, inversin and dishevelled-1 (DVL-1) proteins associated with the Wnt-signaling pathway, and primary cilia morphology were analyzed in developing kidneys (14th–38th developmental weeks), healthy postnatal (1.5- and 7-years old) and pathologically changed human kidneys, including multicystic dysplastic kidneys (MCDK), focal segmental glomerulosclerosis (FSGS) and nephrotic syndrome of the Finnish type (CNF). The analysis was performed by double immunofluorescence, electron microscopy, semiquantitative and statistical methods. Cytoplasmic co-expression of α-tubulin, inversin and DVL-1 was observed in the proximal convoluted tubules (pct), distal convoluted tubules (dct) and glomeruli (g) of analyzed tissues. During kidney development, the overall expression of α-tubulin, inversin and DVL-1 decreased, while in the postnatal period slightly increased. The highest expressions of α-tubulin and inversin characterized dct and g, while high DVL-1 characterized pct. α-tubulin, inversin and DVL-1 expression pattern in MCDK, FSGS and CNF kidneys significantly differed from the healthy control. Compared to healthy kidneys, pathologically changed kidneys had dysmorphic primary cilia. Different expression dynamics of α-tubulin, inversin and DVL-1 during kidney development could indicate that switch between the canonical and noncanonical Wnt-signaling is essential for normal kidney morphogenesis. In contrast, their disturbed expression in pathological kidneys might be associated with abnormal primary cilia, leading to chronic kidney diseases.
Collapse
|
8
|
Nephronophthisis gene products display RNA-binding properties and are recruited to stress granules. Sci Rep 2020; 10:15954. [PMID: 32994509 PMCID: PMC7524721 DOI: 10.1038/s41598-020-72905-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Mutations of cilia-associated molecules cause multiple developmental defects that are collectively termed ciliopathies. However, several ciliary proteins, involved in gating access to the cilium, also assume localizations at other cellular sites including the nucleus, where they participate in DNA damage responses to maintain tissue integrity. Molecular insight into how these molecules execute such diverse functions remains limited. A mass spectrometry screen for ANKS6-interacting proteins suggested an involvement of ANKS6 in RNA processing and/or binding. Comparing the RNA-binding properties of the known RNA-binding protein BICC1 with the three ankyrin-repeat proteins ANKS3, ANKS6 (NPHP16) and INVERSIN (NPHP2) confirmed that certain nephronophthisis (NPH) family members can interact with RNA molecules. We also observed that BICC1 and INVERSIN associate with stress granules in response to translational inhibition. Furthermore, BICC1 recruits ANKS3 and ANKS6 into TIA-1-positive stress granules after exposure to hippuristanol. Our findings uncover a novel function of NPH family members, and provide further evidence that NPH family members together with BICC1 are involved in stress responses to maintain tissue and organ integrity.
Collapse
|
9
|
N-terminal acetylation and methylation differentially affect the function of MYL9. Biochem J 2018; 475:3201-3219. [PMID: 30242065 DOI: 10.1042/bcj20180638] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022]
Abstract
Deciphering the histone code has illustrated that acetylation or methylation on the same residue can have analogous or opposing roles. However, little is known about the interplay between these post-translational modifications (PTMs) on the same nonhistone residues. We have recently discovered that N-terminal acetyltransferases (NATs) and N-terminal methyltransferases (NRMTs) can have overlapping substrates and identified myosin regulatory light chain 9 (MYL9) as the first confirmed protein to occur in either α-amino-methylated (Nα-methyl) or α-amino-acetylated (Nα-acetyl) states in vivo Here we aim to determine if these PTMs function similarly or create different MYL9 proteoforms with distinct roles. We use enzymatic assays to directly verify MYL9 is a substrate of both NRMT1 and NatA and generate mutants of MYL9 that are exclusive for Nα-acetylation or Nα-methylation. We then employ eukaryotic cell models to probe the regulatory functions of these Nα-PTMs on MYL9. Our results show that, contrary to prevailing dogma, neither of these modifications regulate the stability of MYL9. Rather, exclusive Nα-acetylation promotes cytoplasmic roles of MYL9, while exclusive Nα-methylation promotes the nuclear role of MYL9 as a transcription factor. The increased cytoplasmic activity of Nα-acetylated MYL9 corresponds with increased phosphorylation at serine 19, a key MYL9 activating PTM. Increased nuclear activity of Nα-methylated MYL9 corresponds with increased DNA binding. Nα-methylation also results in a decrease of interactions between the N-terminus of MYL9 and a host of cytoskeletal proteins. These results confirm that Nα-acetylation and Nα-methylation differentially affect MYL9 function by creating distinct proteoforms with different internal PTM patterns and binding properties.
Collapse
|
10
|
Jiang GY, Zhang Y, Zhang XP, Lin XY, Yu JH, Wang EH. Inversin correlates with the malignant phenotype of non-small cell lung cancer and promotes the invasiveness of lung cancer cells. Tumour Biol 2017; 39:1010428317691177. [PMID: 28618971 DOI: 10.1177/1010428317691177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inversin, encoded by NPHP2, is one of the 10 NPHP proteins known to be involved in nephronophthisis (an autosomal recessive cystic kidney). Although the previous reports showed that inversin played an important role in embryonic development and renal diseases, its function in cancer was not revealed clearly so far. As measured by immunohistochemical staining, inversin was highly expressed in the cytoplasm of lung cancer samples (63.4%, 161/254) compared with adjacent normal lung tissues (22.0%, 11/50, p < 0.01). Moreover, its expression was positively correlated with differentiation ( p = 0.014), tumor node metastasis staging ( p = 0.007), and lymph node metastasis ( p = 0.020). The overall survival of non-small cell lung cancer patients with inversin positive expression (45.41 ± 1.800 months) was significantly reduced compared with those with inversin negative expression (51.046 ± 2.238 months, p = 0.042). Consistently, we found that the invasion capacity of A549 cells transfected with inversin was significantly stronger than that of control cells ( p < 0.05), while inversin siRNA-treatment significantly reduced cell invasion in H1299 cells ( p < 0.05). Additionally, we demonstrated that inversin could upregulate the expression of N-cadherin, Vimentin, matrix metalloproteinase-2, and matrix metalloproteinase-9. Collectively, these results indicated that inversin might promote the tumorigenicity of lung cancer cells and serve as a novel therapeutic target of non-small cell lung cancer.
Collapse
Affiliation(s)
- Gui-Yang Jiang
- 1 Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yong Zhang
- 2 Department of Pathology, Affiliated Tumor Hospital of China Medical University, Shenyang, China
| | - Xiu-Peng Zhang
- 1 Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xu-Yong Lin
- 1 Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Juan-Han Yu
- 1 Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - En-Hua Wang
- 1 Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
11
|
McClure-Begley TD, Klymkowsky MW. Nuclear roles for cilia-associated proteins. Cilia 2017; 6:8. [PMID: 28560031 PMCID: PMC5445336 DOI: 10.1186/s13630-017-0052-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023] Open
Abstract
Cilia appear to be derived, evolutionarily, from structures present in the ancestral (pre-ciliary) eukaryote, such as microtubule-based vesicle trafficking and chromosome segregation systems. Experimental observations suggest that the ciliary gate, the molecular complex that mediates the selective molecular movement between cytoplasmic and ciliary compartments, shares features with nuclear pores. Our hypothesis is that this shared transport machinery is at least partially responsible for the observation that a number of ciliary and ciliogenesis-associated proteins are found within nuclei where they play roles in the regulation of gene expression, DNA repair, and nuclear import and export. Recognizing the potential for such nuclear roles is critical when considering the phenotypic effects that arise from the mutational modification of ciliary proteins.
Collapse
Affiliation(s)
- Tristan D McClure-Begley
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Michael W Klymkowsky
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 USA
| |
Collapse
|
12
|
Suizu F, Hirata N, Kimura K, Edamura T, Tanaka T, Ishigaki S, Donia T, Noguchi H, Iwanaga T, Noguchi M. Phosphorylation-dependent Akt-Inversin interaction at the basal body of primary cilia. EMBO J 2016; 35:1346-63. [PMID: 27220846 PMCID: PMC4883026 DOI: 10.15252/embj.201593003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/06/2016] [Indexed: 01/01/2023] Open
Abstract
A primary cilium is a microtubule‐based sensory organelle that plays an important role in human development and disease. However, regulation of Akt in cilia and its role in ciliary development has not been demonstrated. Using yeast two‐hybrid screening, we demonstrate that Inversin (INVS) interacts with Akt. Mutation in the INVS gene causes nephronophthisis type II (NPHP2), an autosomal recessive chronic tubulointerstitial nephropathy. Co‐immunoprecipitation assays show that Akt interacts with INVS via the C‐terminus. In vitro kinase assays demonstrate that Akt phosphorylates INVS at amino acids 864–866 that are required not only for Akt interaction, but also for INVS dimerization. Co‐localization of INVS and phosphorylated form of Akt at the basal body is augmented by PDGF‐AA. Akt‐null MEF cells as well as siRNA‐mediated inhibition of Akt attenuated ciliary growth, which was reversed by Akt reintroduction. Mutant phosphodead‐ or NPHP2‐related truncated INVS, which lack Akt phosphorylation sites, suppress cell growth and exhibit distorted lumen formation and misalignment of spindle axis during cell division. Further studies will be required for elucidating functional interactions of Akt–INVS at the primary cilia for identifying the molecular mechanisms underlying NPHP2.
Collapse
Affiliation(s)
- Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Noriyuki Hirata
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Kohki Kimura
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Tatsuma Edamura
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Tsutomu Tanaka
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Satoko Ishigaki
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Thoria Donia
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hiroko Noguchi
- Department of Pathology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Vertii A, Bright A, Delaval B, Hehnly H, Doxsey S. New frontiers: discovering cilia-independent functions of cilia proteins. EMBO Rep 2015; 16:1275-87. [PMID: 26358956 DOI: 10.15252/embr.201540632] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022] Open
Abstract
In most vertebrates, mitotic spindles and primary cilia arise from a common origin, the centrosome. In non-cycling cells, the centrosome is the template for primary cilia assembly and, thus, is crucial for their associated sensory and signaling functions. During mitosis, the duplicated centrosomes mature into spindle poles, which orchestrate mitotic spindle assembly, chromosome segregation, and orientation of the cell division axis. Intriguingly, both cilia and spindle poles are centrosome-based, functionally distinct structures that require the action of microtubule-mediated, motor-driven transport for their assembly. Cilia proteins have been found at non-cilia sites, where they have distinct functions, illustrating a diverse and growing list of cellular processes and structures that utilize cilia proteins for crucial functions. In this review, we discuss cilia-independent functions of cilia proteins and re-evaluate their potential contributions to "cilia" disorders.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alison Bright
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Heidi Hehnly
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
14
|
Géminard C, González-Morales N, Coutelis JB, Noselli S. The myosin ID pathway and left-right asymmetry in Drosophila. Genesis 2014; 52:471-80. [PMID: 24585718 DOI: 10.1002/dvg.22763] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/12/2022]
Abstract
Drosophila is a classical model to study body patterning, however left-right (L/R) asymmetry had remained unexplored, until recently. The discovery of the conserved myosin ID gene as a major determinant of L/R asymmetry has revealed a novel L/R pathway involving the actin cytoskeleton and the adherens junction. In this process, the HOX gene Abdominal-B plays a major role through the control of myosin ID expression and therefore symmetry breaking. In this review, we present organs and markers showing L/R asymmetry in Drosophila and discuss our current understanding of the underlying molecular genetic mechanisms. Drosophila represents a valuable model system revealing novel strategies to establish L/R asymmetry in invertebrates and providing an evolutionary perspective to the problem of laterality in bilateria.
Collapse
Affiliation(s)
- Charles Géminard
- Université de Nice Sophia Antipolis, institut de Biologie Valrose, iBV, Parc Valrose, Nice cedex 2, France; CNRS, institut de Biologie Valrose, iBV, UMR 7277, Parc Valrose, Nice cedex 2, France; INSERM, institut de Biologie Valrose, iBV, U1091, Parc Valrose, Nice cedex 2, France
| | | | | | | |
Collapse
|
15
|
Borovina A, Ciruna B. IFT88 plays a cilia- and PCP-independent role in controlling oriented cell divisions during vertebrate embryonic development. Cell Rep 2013; 5:37-43. [PMID: 24095732 DOI: 10.1016/j.celrep.2013.08.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022] Open
Abstract
The role for cilia in establishing planar cell polarity (PCP) is contentious. Although knockdown of genes known to function in ciliogenesis has been reported to cause PCP-related morphogenesis defects in zebrafish, genetic mutations affecting intraflagellar transport (IFT) do not show PCP phenotypes despite the requirement for IFT in cilia formation. This discrepancy has been attributed to off-target effects of antisense morpholino oligonucleotide (MO) injection, confounding maternal effects in zygotic mutant embryos, or an inability to distinguish between cilia-dependent versus cilia-independent protein functions. To determine the role of cilia in PCP, we generated maternal + zygotic IFT88 (MZift88) mutant zebrafish embryos, which never form cilia. We clearly demonstrate that cilia are not required to establish PCP. Rather, IFT88 plays a cilia-independent role in controlling oriented cell divisions at gastrulation and neurulation. Our results have important implications for the interpretation of cilia gene function in normal development and in disease.
Collapse
Affiliation(s)
- Antonia Borovina
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | |
Collapse
|
16
|
Kim YH, Epting D, Slanchev K, Engel C, Walz G, Kramer-Zucker A. A complex of BBS1 and NPHP7 is required for cilia motility in zebrafish. PLoS One 2013; 8:e72549. [PMID: 24069149 PMCID: PMC3771994 DOI: 10.1371/journal.pone.0072549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) and nephronophthisis (NPH) are hereditary autosomal recessive disorders, encoded by two families of diverse genes. BBS and NPH display several overlapping phenotypes including cystic kidney disease, retinitis pigmentosa, liver fibrosis, situs inversus and cerebellar defects. Since most of the BBS and NPH proteins localize to cilia and/or their appendages, BBS and NPH are considered ciliopathies. In this study, we characterized the function of the transcription factor Nphp7 in zebrafish, and addressed the molecular connection between BBS and NPH. The knockdown of zebrafish bbs1 and nphp7.2 caused similar phenotypic changes including convergent extension defects, curvature of the body axis, hydrocephalus, abnormal heart looping and cystic pronephros, all consistent with an altered ciliary function. Immunoprecipitation assays revealed a physical interaction between BBS1 and NPHP7, and the simultaneous knockdown of zbbs1 and znphp7.2 enhanced the cystic pronephros phenotype synergistically, suggesting a genetic interaction between zbbs1 and znphp7.2 in vivo. Deletion of zBbs1 or zNphp7.2 did not compromise cilia formation, but disrupted cilia motility. Although NPHP7 has been shown to act as transcriptional repressor, our studies suggest a crosstalk between BBS1 and NPHP7 in regulating normal function of the cilium.
Collapse
Affiliation(s)
- Yun Hee Kim
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology (or Faculty of Chemistry, Pharmacy, and Earth Sciences), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Daniel Epting
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Krasimir Slanchev
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Neurobiology, Max-Planck-Institute, Martinsried, Germany
| | - Christina Engel
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | | |
Collapse
|
17
|
Affiliation(s)
- Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield, UK
| |
Collapse
|
18
|
Caplan MJ. An inversin convergence. Focus on "Inversin modulates the cortical actin network during mitosis". Am J Physiol Cell Physiol 2013; 305:C22-3. [PMID: 23677797 DOI: 10.1152/ajpcell.00126.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Veland IR, Montjean R, Eley L, Pedersen LB, Schwab A, Goodship J, Kristiansen K, Pedersen SF, Saunier S, Christensen ST. Inversin/Nephrocystin-2 is required for fibroblast polarity and directional cell migration. PLoS One 2013; 8:e60193. [PMID: 23593172 PMCID: PMC3620528 DOI: 10.1371/journal.pone.0060193] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/22/2013] [Indexed: 12/30/2022] Open
Abstract
Inversin is a ciliary protein that critically regulates developmental processes and tissue homeostasis in vertebrates, partly through the degradation of Dishevelled (Dvl) proteins to coordinate Wnt signaling in planar cell polarity (PCP). Here, we investigated the role of Inversin in coordinating cell migration, which highly depends on polarity processes at the single-cell level, including the spatial and temporal organization of the cytoskeleton as well as expression and cellular localization of proteins in leading edge formation of migrating cells. Using cultures of mouse embryonic fibroblasts (MEFs) derived from inv(-/-) and inv(+/+) animals, we confirmed that both inv(-/-) and inv(+/+) MEFs form primary cilia, and that Inversin localizes to the primary cilium in inv(+/+) MEFs. In wound healing assays, inv(-/-) MEFs were severely compromised in their migratory ability and exhibited cytoskeletal rearrangements, including distorted lamellipodia formation and cilia orientation. Transcriptome analysis revealed dysregulation of Wnt signaling and of pathways regulating actin organization and focal adhesions in inv(-/-) MEFs as compared to inv(+/+) MEFs. Further, Dvl-1 and Dvl-3 localized to MEF primary cilia, and β-catenin/Wnt signaling was elevated in inv(-/-) MEFs, which moreover showed reduced ciliary localization of Dvl-3. Finally, inv(-/-) MEFs displayed dramatically altered activity and localization of RhoA, Rac1, and Cdc42 GTPases, and aberrant expression and targeting of the Na(+)/H(+) exchanger NHE1 and ezrin/radixin/moesin (ERM) proteins to the edge of cells facing the wound. Phosphorylation of β-catenin at the ciliary base and formation of well-defined lamellipodia with localization and activation of ERM to the leading edge of migrating cells were restored in inv(-/-) MEFs expressing Inv-GFP. Collectively, our findings point to the significance of Inversin in controlling cell migration processes, at least in part through transcriptional regulation of genes involved in Wnt signaling and pathways that control cytoskeletal organization and ion transport.
Collapse
Affiliation(s)
- Iben R. Veland
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rodrick Montjean
- Inserm U-983, Imagine Institut, Paris Descartes-Sorbonne Paris Cité University, Necker Hospital, Paris, France
| | - Lorraine Eley
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lotte B. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Albrecht Schwab
- Institute of Physiology II, Münster University, Münster, Germany
| | - Judith Goodship
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Stine F. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Saunier
- Inserm U-983, Imagine Institut, Paris Descartes-Sorbonne Paris Cité University, Necker Hospital, Paris, France
| | | |
Collapse
|
20
|
Werner ME, Ward HH, Phillips CL, Miller C, Gattone VH, Bacallao RL. Inversin modulates the cortical actin network during mitosis. Am J Physiol Cell Physiol 2013; 305:C36-47. [PMID: 23515530 DOI: 10.1152/ajpcell.00279.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mutations in inversin cause nephronophthisis type II, an autosomal recessive form of polycystic kidney disease associated with situs inversus, dilatation, and kidney cyst formation. Since cyst formation may represent a planar polarity defect, we investigated whether inversin plays a role in cell division. In developing nephrons from inv-/- mouse embryos we observed heterogeneity of nuclear size, increased cell membrane perimeters, cells with double cilia, and increased frequency of binuclear cells. Depletion of inversin by siRNA in cultured mammalian cells leads to an increase in bi- or multinucleated cells. While spindle assembly, contractile ring formation, or furrow ingression appears normal in the absence of inversin, mitotic cell rounding and the underlying rearrangement of the cortical actin cytoskeleton are perturbed. We find that inversin loss causes extensive filopodia formation in both interphase and mitotic cells. These cells also fail to round up in metaphase. The resultant spindle positioning defects lead to asymmetric division plane formation and cell division. In a cell motility assay, fibroblasts isolated from inv-/- mouse embryos migrate at half the speed of wild-type fibroblasts. Together these data suggest that inversin is a regulator of cortical actin required for cell rounding and spindle positioning during mitosis. Furthermore, cell division defects resulting from improper spindle position and perturbed actin organization contribute to altered nephron morphogenesis in the absence of inversin.
Collapse
Affiliation(s)
- Michael E Werner
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
21
|
Eley L, Turnpenny L, Yates LM, Craighead AS, Morgan D, Whistler C, Goodship JA, Strachan T. A perspective on inversin. Cell Biol Int 2013; 28:119-24. [PMID: 14984757 DOI: 10.1016/j.cellbi.2003.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 11/04/2003] [Indexed: 01/19/2023]
Abstract
Over the past 5 years, there has been increasing evidence for the role of primary (9+0) cilia in renal physiology and in establishing the left-right axis. The cilia in the renal tract are immotile and thought to have a sensory function. Cilia at the murine embryonic node have a vortical movement that sets up a leftward flow. Inversin, the protein defective in the inv mouse and in patients with type-2 nephronophthisis, localizes to both renal and node primary cilia. However, we present evidence that it is also expressed before the node forms and that its subcellular localization in renal tubular cells is not confined to the cilia. Its role in both the pathway determining left-right axis and renal function remains to be elucidated.
Collapse
Affiliation(s)
- Lorraine Eley
- Institute of Human Genetics, University of Newcastle, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Arts HH, Knoers NVAM. Current insights into renal ciliopathies: what can genetics teach us? Pediatr Nephrol 2013; 28:863-74. [PMID: 22829176 PMCID: PMC3631122 DOI: 10.1007/s00467-012-2259-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 01/08/2023]
Abstract
Ciliopathies are a group of clinically and genetically overlapping disorders whose etiologies lie in defective cilia. These are antenna-like organelles on the apical surface of numerous cell types in a variety of tissues and organs, the kidney included. Cilia play essential roles during development and tissue homeostasis, and their dysfunction in the kidney has been associated with renal cyst formation and renal failure. Recently, the term "renal ciliopathies" was coined for those human genetic disorders that are characterized by nephronophthisis, cystic kidneys or renal cystic dysplasia. This review focuses on renal ciliopathies from a human genetics perspective. We survey the newest insights with respect to gene identification and genotype-phenotype correlations, and we reflect on candidate ciliopathies. The opportunities and challenges of next-generation sequencing (NGS) for genetic renal research and clinical DNA diagnostics are also reviewed, and we discuss the contribution of NGS to the development of personalized therapy for patients with renal ciliopathies.
Collapse
Affiliation(s)
- Heleen H. Arts
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, and Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Nine V. A. M. Knoers
- Department of Medical Genetics, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
23
|
Petzoldt AG, Coutelis JB, Géminard C, Spéder P, Suzanne M, Cerezo D, Noselli S. DE-Cadherin regulates unconventional Myosin ID and Myosin IC in Drosophila left-right asymmetry establishment. Development 2012; 139:1874-84. [DOI: 10.1242/dev.047589] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In bilateria, positioning and looping of visceral organs requires proper left-right (L/R) asymmetry establishment. Recent work in Drosophila has identified a novel situs inversus gene encoding the unconventional type ID myosin (MyoID). In myoID mutant flies, the L/R axis is inverted, causing reversed looping of organs, such as the gut, spermiduct and genitalia. We have previously shown that MyoID interacts physically with β-Catenin, suggesting a role of the adherens junction in Drosophila L/R asymmetry. Here, we show that DE-Cadherin co-immunoprecipitates with MyoID and is required for MyoID L/R activity. We further demonstrate that MyoIC, a closely related unconventional type I myosin, can antagonize MyoID L/R activity by preventing its binding to adherens junction components, both in vitro and in vivo. Interestingly, DE-Cadherin inhibits MyoIC, providing a protective mechanism to MyoID function. Conditional genetic experiments indicate that DE-Cadherin, MyoIC and MyoID show temporal synchronicity for their function in L/R asymmetry. These data suggest that following MyoID recruitment by β-Catenin at the adherens junction, DE-Cadherin has a twofold effect on Drosophila L/R asymmetry by promoting MyoID activity and repressing that of MyoIC. Interestingly, the product of the vertebrate situs inversus gene inversin also physically interacts with β-Catenin, suggesting that the adherens junction might serve as a conserved platform for determinants to establish L/R asymmetry both in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Astrid G. Petzoldt
- Institute of Biology Valrose, University of Nice Sophia-Antipolis, UMR7277-CNRS, UMR1091 INSERM, Parc Valrose, 06108 Nice Cedex 2, France
- Center for Biological Systems Analysis, University of Freiburg; Habsburger Str. 49, 78104 Freiburg, Germany
| | - Jean-Baptiste Coutelis
- Institute of Biology Valrose, University of Nice Sophia-Antipolis, UMR7277-CNRS, UMR1091 INSERM, Parc Valrose, 06108 Nice Cedex 2, France
| | - Charles Géminard
- Institute of Biology Valrose, University of Nice Sophia-Antipolis, UMR7277-CNRS, UMR1091 INSERM, Parc Valrose, 06108 Nice Cedex 2, France
| | - Pauline Spéder
- Institute of Biology Valrose, University of Nice Sophia-Antipolis, UMR7277-CNRS, UMR1091 INSERM, Parc Valrose, 06108 Nice Cedex 2, France
- The Gurdon Institute; University of Cambridge; Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Magali Suzanne
- Institute of Biology Valrose, University of Nice Sophia-Antipolis, UMR7277-CNRS, UMR1091 INSERM, Parc Valrose, 06108 Nice Cedex 2, France
- Laboratory of Cellular and Molecular Biology of Cell Proliferation (LBCMCP) UMR5088, University Paul Sabatier, 31062 Toulouse, France
| | - Delphine Cerezo
- Institute of Biology Valrose, University of Nice Sophia-Antipolis, UMR7277-CNRS, UMR1091 INSERM, Parc Valrose, 06108 Nice Cedex 2, France
| | - Stéphane Noselli
- Institute of Biology Valrose, University of Nice Sophia-Antipolis, UMR7277-CNRS, UMR1091 INSERM, Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
24
|
Warburton-Pitt SRF, Jauregui AR, Li C, Wang J, Leroux MR, Barr MM. Ciliogenesis in Caenorhabditis elegans requires genetic interactions between ciliary middle segment localized NPHP-2 (inversin) and transition zone-associated proteins. J Cell Sci 2012; 125:2592-603. [PMID: 22393243 DOI: 10.1242/jcs.095539] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The cystic kidney diseases nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS) and Joubert syndrome (JBTS) share an underlying etiology of dysfunctional cilia. Patients diagnosed with NPHP type II have mutations in the gene INVS (also known as NPHP2), which encodes inversin, a cilia localizing protein. Here, we show that the C. elegans inversin ortholog, NPHP-2, localizes to the middle segment of sensory cilia and that nphp-2 is partially redundant with nphp-1 and nphp-4 (orthologs of human NPHP1 and NPHP4, respectively) for cilia placement within the head and tail sensilla. nphp-2 also genetically interacts with MKS ciliopathy gene orthologs, including mks-1, mks-3, mks-6, mksr-1 and mksr-2, in a sensilla-dependent manner to control cilia formation and placement. However, nphp-2 is not required for correct localization of the NPHP- and MKS-encoded ciliary transition zone proteins or for intraflagellar transport (IFT). We conclude that INVS/NPHP2 is conserved in C. elegans and that nphp-2 plays an important role in C. elegans cilia by acting as a modifier of the NPHP and MKS pathways to control cilia formation and development.
Collapse
|
25
|
Gascue C, Tan PL, Cardenas-Rodriguez M, Libisch G, Fernandez-Calero T, Liu YP, Astrada S, Robello C, Naya H, Katsanis N, Badano JL. Direct role of Bardet-Biedl syndrome proteins in transcriptional regulation. J Cell Sci 2012; 125:362-75. [PMID: 22302990 DOI: 10.1242/jcs.089375] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Primary cilia are conserved organelles that play crucial roles as mechano- and chemosensors, as well as transducing signaling cascades. Consequently, ciliary dysfunction results in a broad range of phenotypes: the ciliopathies. Bardet-Biedl syndrome (BBS), a model ciliopathy, is caused by mutations in 16 known genes. However, the biochemical functions of the BBS proteins are not fully understood. Here we show that the BBS7 protein (localized in the centrosomes, basal bodies and cilia) probably has a nuclear role by virtue of the presence of a biologically confirmed nuclear export signal. Consistent with this observation, we show that BBS7 interacts physically with the polycomb group (PcG) member RNF2 and regulate its protein levels, probably through a proteasome-mediated mechanism. In addition, our data supports a similar role for other BBS proteins. Importantly, the interaction with this PcG member is biologically relevant because loss of BBS proteins leads to the aberrant expression of endogenous RNF2 targets in vivo, including several genes that are crucial for development and for cellular and tissue homeostasis. Our data indicate a hitherto unappreciated, direct role for the BBS proteins in transcriptional regulation and potentially expand the mechanistic spectrum that underpins the development of ciliary phenotypes in patients.
Collapse
Affiliation(s)
- Cecilia Gascue
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, CP 11400, Uruguay
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lienkamp S, Ganner A, Walz G. Inversin, Wnt signaling and primary cilia. Differentiation 2012; 83:S49-55. [DOI: 10.1016/j.diff.2011.11.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 12/28/2022]
|
27
|
Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1239-48. [DOI: 10.1016/j.bbadis.2011.05.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 12/29/2022]
|
28
|
Zhao C, Malicki J. Nephrocystins and MKS proteins interact with IFT particle and facilitate transport of selected ciliary cargos. EMBO J 2011; 30:2532-44. [PMID: 21602787 DOI: 10.1038/emboj.2011.165] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 04/19/2011] [Indexed: 01/16/2023] Open
Abstract
Cilia are required for the development and function of many organs. Efficient transport of protein cargo along ciliary axoneme is necessary to sustain these processes. Despite its importance, the mode of interaction between the intraflagellar ciliary transport (IFT) mechanism and its cargo proteins remains poorly understood. Our studies demonstrate that IFT particle components, and a Meckel-Gruber syndrome 1 (MKS1)-related, B9 domain protein, B9d2, bind each other and contribute to the ciliary localization of Inversin (Nephrocystin 2). B9d2, Inversin, and Nephrocystin 5 support, in turn, the transport of a cargo protein, Opsin, but not another photoreceptor ciliary transmembrane protein, Peripherin. Interestingly, the components of this mechanism also contribute to the formation of planar cell polarity in mechanosensory epithelia. These studies reveal a molecular mechanism that mediates the transport of selected ciliary cargos and is of fundamental importance for the differentiation and survival of sensory cells.
Collapse
Affiliation(s)
- Chengtian Zhao
- Division of Craniofacial and Molecular Genetics, and Program in Genetics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| | | |
Collapse
|
29
|
Zhou W, Dai J, Attanasio M, Hildebrandt F. Nephrocystin-3 is required for ciliary function in zebrafish embryos. Am J Physiol Renal Physiol 2010; 299:F55-62. [PMID: 20462968 DOI: 10.1152/ajprenal.00043.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nephronophthisis (NPHP) is the most frequent genetic cause of end-stage renal failure in the first three decades of life. It is characterized primarily by renal cysts with extrarenal involvements of the eye and brain. Ten recessive genes responsible for NPHP have been identified by positional cloning. This discovery supported a unifying theory of renal cystic disease, which states that all proteins mutated in cystic kidney diseases of human, mice, or zebrafish are expressed in primary cilia of renal epithelial cells. Mutations in nephrocystin-3 (NPHP3) are the cause of human nephronophthisis type 3 and polycystic kidney disease (pcy) mouse mutants. To study the functional role of NPHP3 in normal embryonic development and in the pathogenesis of cystic kidney disease, we characterized the zebrafish ortholog nphp3 by morpholino oligo (MO)-mediated knockdown. When nphp3 function was suppressed by either of the two MOs blocking the translation of the protein or the splicing of mRNA, zebrafish embryos displayed hydrocephalus and pronephric cysts. Knockdown of nphp3 also led to situs inversus phenotypes due to defective cilia at Kupffer's vesicle. We showed that nphp3 genetically interacts with nphp2/inversin and human NPHP3 localizes to primary cilia in Madin-Darby canine kidney cells. Like nphp2/inversin, nphp3 knockdown affected morphogenic cell movement during gastrulation, suggesting nphp3 is essential to regulate convergent extension. Thus nphp3, cooperating with nphp2/inversin, plays an essential role related to ciliary function, and the knockdown provides an animal model that may be used for studies of the pathogenesis and therapy for this disease.
Collapse
Affiliation(s)
- Weibin Zhou
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
30
|
Zullo A, Iaconis D, Barra A, Cantone A, Messaddeq N, Capasso G, Dollé P, Igarashi P, Franco B. Kidney-specific inactivation of Ofd1 leads to renal cystic disease associated with upregulation of the mTOR pathway. Hum Mol Genet 2010; 19:2792-803. [PMID: 20444807 DOI: 10.1093/hmg/ddq180] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The oral-facial-digital type I syndrome (OFDI; MIM 311200) is a rare syndromic form of inherited renal cystic disease. It is transmitted as an X-linked dominant, male lethal disorder and is caused by mutations in the OFD1 gene. Previous studies demonstrated that OFDI belongs to the growing number of disorders ascribed to dysfunction of primary cilia. We generated a conditional inactivation of the mouse Ofd1 gene using the Ksp-Cre transgenic line, which resulted in a viable model characterized by renal cystic disease and progressive impairment of renal function. The study of this model allowed us to demonstrate that primary cilia initially form and then disappear after the development of cysts, suggesting that the absence of primary cilia is a consequence rather than the primary cause of renal cystic disease. Immunofluorescence and western blotting analysis revealed upregulation of the mTOR pathway in both dilated and non-dilated renal structures. Treatment with rapamycin, a specific inhibitor of the mTOR pathway, resulted in a significant reduction in the number and size of renal cysts and a decrease in the cystic index compared with untreated mutant animals, suggesting that dysregulation of this pathway in our model is mTOR-dependent. The animal model we have generated could thus represent a valuable tool to understand the molecular link between mTOR and cyst development, and eventually to the identification of novel drug targets for renal cystic disease.
Collapse
Affiliation(s)
- Alessandro Zullo
- Telethon Institute of Genetics and Medicine, via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nürnberger J, Feldkamp T, Kavapurackal R, Opazo Saez A, Becker J, Hörbelt M, Kribben A. N-cadherin is depleted from proximal tubules in experimental and human acute kidney injury. Histochem Cell Biol 2010; 133:641-9. [PMID: 20440507 DOI: 10.1007/s00418-010-0702-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2010] [Indexed: 01/18/2023]
Abstract
Ischemia remains the most common cause of acute kidney injury (AKI). Decreased intercellular adhesion and alterations in adhesion molecules may contribute to the loss of renal function observed in AKI. In the present study, we evaluated the distribution of adhesion molecules in the human kidney and analyzed their expression in human and experimental AKI. Specimens of human kidneys obtained from patients with and without AKI were stained for the cell adhesion molecules E-cadherin, N-cadherin and beta-catenin. Experimental AKI in rats was induced by renal artery clamping. Immunostaining and immunoblotting were carried out for E-cadherin, N-cadherin and beta-catenin. Proximal tubule cells from opossum kidneys (OKs) were used to analyze the effect of chemical hypoxia (ATP depletion) in vitro. In the adult human kidney, N-cadherin was expressed in proximal tubules, while E-cadherin was expressed in other nephron segments. beta-Catenin was expressed in both proximal and distal tubules. In human AKI and in ischemic rat kidneys, N-cadherin immunostaining was depleted from proximal tubules. There was no change in E-cadherin or beta-catenin. In vitro, OK cells expressed N-cadherin only in the presence of collagen, and ATP depletion led to a depletion of N-cadherin. Collagen IV staining was reduced in ischemic rat kidneys compared to controls. The results of the study suggest that N-cadherin may play a significant role in human and experimental AKI.
Collapse
Affiliation(s)
- Jens Nürnberger
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Oki S, Kitajima K, Marques S, Belo JA, Yokoyama T, Hamada H, Meno C. Reversal of left-right asymmetry induced by aberrant Nodal signaling in the node of mouse embryos. Development 2009; 136:3917-25. [DOI: 10.1242/dev.039305] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The node at the anterior tip of the primitive streak serves as an initial generator of the left-right (L-R) axis in mammalian embryos. We now show that a small disturbance in molecular signaling at the node is responsible for the L-R reversal of visceral organs in the inv mutant mouse. In the node of wild-type embryos, the expression of Nodal and Cerl2 (Dand5), which encodes an inhibitor of Nodal, is asymmetric, with the level of Nodal expression being higher on the left side and that of Cerl2 expression higher on the right. In inv/inv embryos, however, a localized reduction in the level of Cerl2 expression results in upregulation of the Nodal signal and a consequent induction of Lefty expression in the node. The ectopic expression of Lefty1 delays the onset of Nodal expression in the lateral plate mesoderm. L-R asymmetry of Cerl2 expression in the node also becomes reversed in a manner dependent on the Nodal signal. Nodal expression in the lateral plate mesoderm then appears on the right side, probably reflecting the balance between Nodal and Cerl2 in the node. The inhibition of Cerl2 expression by the Nodal signal suggests a mechanism for amplification of the cue for L-R asymmetry provided by nodal flow and for stabilization of asymmetric gene expression around the node. In inv/inv embryos, this system may function in reverse as a result of ectopic production of Lefty, which inhibits the Nodal signal on the left side in a manner dependent on leftward nodal flow.
Collapse
Affiliation(s)
- Shinya Oki
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiko Kitajima
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Sara Marques
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal, and Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - José António Belo
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal, and Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Takahiko Yokoyama
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroshi Hamada
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Chikara Meno
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Cardenas-Rodriguez M, Badano JL. Ciliary biology: Understanding the cellular and genetic basis of human ciliopathies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2009; 151C:263-80. [PMID: 19876935 DOI: 10.1002/ajmg.c.30227] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Delous M, Hellman NE, Gaudé HM, Silbermann F, Le Bivic A, Salomon R, Antignac C, Saunier S. Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum Mol Genet 2009; 18:4711-23. [PMID: 19755384 PMCID: PMC2778369 DOI: 10.1093/hmg/ddp434] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive disorder characterized by renal fibrosis, tubular basement membrane disruption and corticomedullary cyst formation leading to end-stage renal failure. The disease is caused by mutations in NPHP1-9 genes, which encode the nephrocystins, proteins localized to cell–cell junctions and centrosome/primary cilia. Here, we show that nephrocystin mRNA expression is dramatically increased during cell polarization, and shRNA-mediated knockdown of either NPHP1 or NPHP4 in MDCK cells resulted in delayed tight junction (TJ) formation, abnormal cilia formation and disorganized multi-lumen structures when grown in a three-dimensional collagen matrix. Some of these phenotypes are similar to those reported for cells depleted of the TJ proteins PALS1 or Par3, and interestingly, we demonstrate a physical interaction between these nephrocystins and PALS1 as well as their partners PATJ and Par6 and show their partial co-localization in human renal tubules. Taken together, these results demonstrate that the nephrocystins play an essential role in epithelial cell organization, suggesting a plausible mechanism by which the in vivo histopathologic features of NPH might develop.
Collapse
Affiliation(s)
- Marion Delous
- INSERM, U-574, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ocbina PJR, Tuson M, Anderson KV. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PLoS One 2009; 4:e6839. [PMID: 19718259 PMCID: PMC2729396 DOI: 10.1371/journal.pone.0006839] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/29/2009] [Indexed: 01/08/2023] Open
Abstract
Background Sonic hedgehog (Shh) signaling in the mouse requires the microtubule-based organelle, the primary cilium. The primary cilium is assembled and maintained through the process of intraflagellar transport (IFT) and the response to Shh is blocked in mouse mutants that lack proteins required for IFT. Although the phenotypes of mouse IFT mutants do not overlap with phenotypes of known Wnt pathway mutants, recent studies report data suggesting that the primary cilium modulates responses to Wnt signals. Methodology/Principal Findings We therefore carried out a systematic analysis of canonical Wnt signaling in mutant embryos and cells that lack primary cilia because of loss of the anterograde IFT kinesin-II motor (Kif3a) or IFT complex B proteins (Ift172 or Ift88). We also analyzed mutant embryos with abnormal primary cilia due to defects in retrograde IFT (Dync2h1). The mouse IFT mutants express the canonical Wnt target Axin2 and activate a transgenic canonical Wnt reporter, BAT-gal, in the normal spatial pattern and to the same quantitative level as wild type littermates. Similarly, mouse embryonic fibroblasts (MEFs) derived from IFT mutants respond normally to added Wnt3a. The switch from canonical to non-canonical Wnt also appears normal in IFT mutant MEFs, as both wild-type and mutant cells do not activate the canonical Wnt reporter in the presence of both Wnt3a and Wnt5a. Conclusions We conclude that loss of primary cilia or defects in retrograde IFT do not affect the response of the midgestation embryo or embryo-derived fibroblasts to Wnt ligands.
Collapse
Affiliation(s)
- Polloneal Jymmiel R. Ocbina
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Miquel Tuson
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | - Kathryn V. Anderson
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
Consistent left-right (LR) patterning is a clinically important embryonic process. However, key questions remain about the origin of asymmetry and its amplification across cell fields. Planar cell polarity (PCP) solves a similar morphogenetic problem, and although core PCP proteins have yet to be implicated in embryonic LR asymmetry, studies of mutations affecting planar polarity, together with exciting new data in cell and developmental biology, provide a new perspective on LR patterning. Here we propose testable models for the hypothesis that LR asymmetry propagates as a type of PCP that imposes coherent orientation onto cell fields, and that the cue that orients this polarization is a chiral intracellular structure.
Collapse
Affiliation(s)
- Sherry Aw
- Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave., Suite 4600, Boston, MA 02155, USA
| | | |
Collapse
|
37
|
Abstract
Cilia are complex structures that have garnered interest because of their roles in vertebrate development and their involvement in human genetic disorders. In contrast to multicellular invertebrates in which cilia are restricted to specific cell types, these organelles are found almost ubiquitously in vertebrate cells, where they serve a diverse set of signaling functions. Here, we highlight properties of vertebrate cilia, with particular emphasis on their relationship with other subcellular structures, and explore the physiological consequences of ciliary dysfunction.
Collapse
Affiliation(s)
- Jantje M Gerdes
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
38
|
Abstract
Nephronophthisis (NPHP), a recessive cystic kidney disease, is the most frequent genetic cause of end-stage kidney disease in children and young adults. Positional cloning of nine genes (NPHP1 through 9) and functional characterization of their encoded proteins (nephrocystins) have contributed to a unifying theory that defines cystic kidney diseases as "ciliopathies." The theory is based on the finding that all proteins mutated in cystic kidney diseases of humans or animal models are expressed in primary cilia or centrosomes of renal epithelial cells. Primary cilia are sensory organelles that connect mechanosensory, visual, and other stimuli to mechanisms of epithelial cell polarity and cell-cycle control. Mutations in NPHP genes cause defects in signaling mechanisms that involve the noncanonical Wnt signaling pathway and the sonic hedgehog signaling pathway, resulting in defects of planar cell polarity and tissue maintenance. The ciliary theory explains the multiple organ involvement in NPHP, which includes retinal degeneration, cerebellar hypoplasia, liver fibrosis, situs inversus, and mental retardation. Positional cloning of dozens of unknown genes that cause NPHP will elucidate further signaling mechanisms involved. Nephrocystins are highly conserved in evolution, thereby allowing the use of animal models to develop future therapeutic approaches.
Collapse
Affiliation(s)
- Friedhelm Hildebrandt
- Department of Pediatrics, Howard Hughes Medical Institute, University of Michigan Health System, 8220C MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5646, USA.
| | | | | |
Collapse
|
39
|
Uhlenhaut NH, Treier M. Transcriptional regulators in kidney disease: gatekeepers of renal homeostasis. Trends Genet 2008; 24:361-71. [PMID: 18514358 DOI: 10.1016/j.tig.2008.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 11/29/2022]
Abstract
Although we are rapidly gaining a more complete understanding of the genes required for kidney function, the molecular pathways that actively maintain organ homeostasis are only beginning to emerge. The study of the most common genetic cause of renal failure, polycystic kidney disease, has revealed a surprising role for primary cilia in controlling nuclear gene expression and cell division during development as well as maintenance of kidney architecture. Conditions that disturb kidney integrity seem to be associated with reversal of developmental processes that ultimately lead to kidney fibrosis and end-stage renal disease (ESRD). In this review, we discuss transcriptional regulators and networks that are important in kidney disease, focusing on those that mediate cilia function and drive renal fibrosis.
Collapse
Affiliation(s)
- N Henriette Uhlenhaut
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
40
|
Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 2008; 7:125-48. [PMID: 16722803 DOI: 10.1146/annurev.genom.7.080505.115610] [Citation(s) in RCA: 846] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cilia and flagella are ancient, evolutionarily conserved organelles that project from cell surfaces to perform diverse biological roles, including whole-cell locomotion; movement of fluid; chemo-, mechano-, and photosensation; and sexual reproduction. Consistent with their stringent evolutionary conservation, defects in cilia are associated with a range of human diseases, such as primary ciliary dyskinesia, hydrocephalus, polycystic liver and kidney disease, and some forms of retinal degeneration. Recent evidence indicates that ciliary defects can lead to a broader set of developmental and adult phenotypes, with mutations in ciliary proteins now associated with nephronophthisis, Bardet-Biedl syndrome, Alstrom syndrome, and Meckel-Gruber syndrome. The molecular data linking seemingly unrelated clinical entities are beginning to highlight a common theme, where defects in ciliary structure and function can lead to a predictable phenotypic pattern that has potentially predictive and therapeutic value.
Collapse
Affiliation(s)
- Jose L Badano
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
41
|
Coutelis JB, Petzoldt AG, Spéder P, Suzanne M, Noselli S. Left-right asymmetry in Drosophila. Semin Cell Dev Biol 2008; 19:252-62. [PMID: 18328746 DOI: 10.1016/j.semcdb.2008.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/11/2007] [Accepted: 01/23/2008] [Indexed: 01/22/2023]
Abstract
Seminal studies of left-right (L/R) patterning in vertebrate models have led to the discovery of roles for the nodal pathway, ion flows and cilia in this process. Although the molecular mechanisms underlying L/R asymmetries seen in protostomes are less well understood, recent work using Drosophila melanogaster as a novel genetic model system to study this process has identified a number of mutations affecting directional organ looping. The genetic analysis of this, the most evolutionary conserved feature of L/R patterning, revealed the existence of a L/R pathway that involves the actin cytoskeleton and an associated type I myosin. In this review, we describe this work in the context of Drosophila development, and discuss the implications of these results for our understanding of L/R patterning in general.
Collapse
Affiliation(s)
- J B Coutelis
- Institute of Developmental Biology & Cancer, University of Nice Sophia-Antipolis, CNRS UMR6543, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | | | |
Collapse
|
42
|
Abstract
With the increase in complexity of morphogenetic signaling cascades over the course of evolution and the emergence of broadly ciliated organisms, the cilium seems to have acquired a role as regulator of paracrine signal transduction. Recently, several lines of evidence have provided a link between basal body and ciliary proteins and Wnt signaling. In this chapter, we will evaluate the evidence linking the basal body and cilium with the regulation of beta-catenin-dependent (canonical) and beta-catenin-independent (noncanonical) signaling processes as well as which role(s) Wnt signaling might play in ciliogenesis. In addition, we will discuss aberrant Wnt signaling could contribute to phenotypes common to most ciliopathies and why these phenotypes might be driven by loss of noncanonical rather than gain of noncanonical Wnt signaling.
Collapse
Affiliation(s)
- Jantje M Gerdes
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
43
|
Christensen ST, Pedersen SF, Satir P, Veland IR, Schneider L. The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. Curr Top Dev Biol 2008; 85:261-301. [PMID: 19147009 DOI: 10.1016/s0070-2153(08)00810-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell cycle control and migration are critical processes during development and maintenance of tissue functions. Recently, primary cilia were shown to take part in coordination of the signaling pathways that control these cellular processes in human health and disease. In this review, we present an overview of the function of primary cilia and the centrosome in the signaling pathways that regulate cell cycle control and migration with focus on ciliary signaling via platelet-derived growth factor receptor alpha (PDGFRalpha). We also consider how the primary cilium and the centrosome interact with the extracellular matrix, coordinate Wnt signaling, and modulate cytoskeletal changes that impinge on both cell cycle control and cell migration.
Collapse
Affiliation(s)
- Søren T Christensen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark
| | | | | | | | | |
Collapse
|
44
|
Abstract
Primary (nonmotile) cilia are currently enjoying a renaissance in light of novel ascribed functions ranging from mechanosensory to signal transduction. Their importance for key developmental pathways such as Sonic Hedgehog (Shh) and Wnt is beginning to emerge. The function of nodal cilia, for example, is vital for breaking early embryonic symmetry, Shh signaling is important for tissue morphogenesis and successful Wnt signaling for organ growth and differentiation. When ciliary function is perturbed, photoreceptors may die, kidney tubules develop cysts, limb digits multiply and brains form improperly. The etiology of several uncommon disorders has recently been associated with cilia dysfunction. The causative genes are often similar and their cognate proteins certainly share cellular locations and/or pathways. Animal models of ciliary gene ablation such as Ift88, Kif3a, and Bbs have been invaluable for understanding the broad function of the cilium. Herein, we describe the wealth of information derived from the study of the ciliopathies and their animal models.
Collapse
|
45
|
Abstract
Polycystic kidney disease (PKD) is a diverse group of human monogenic lethal conditions inherited as autosomal dominant (AD) or recessive (AR) traits. Recent development of genetically engineered mouse models of ADPKD, ARPKD, and nephronophthisis/medullary cystic disease (NPHP) are providing additional insights into the molecular mechanisms governing of these disease processes as well as the developmental differentiation of the normal kidney. Genotypic and phenotypic mouse models are discussed and provide evidence for the fundamental involvement of cell-matrix, cell-cell, and primary cilia-lumen interactions, as well as epithelial proliferation, apoptosis, and polarization. Structure/function relationships between the PKD1, PKD2, PKHD1, and NPHP genes and proteins support the notion of a regulatory multiprotein cystic complex with a mechanosensory function that integrates signals from the extracellular environment. The plethora of intracellular signaling cascades that can impact renal cystic development suggest an exquisitely sensitive requirement for integrated downstream transduction and provide potential targets for therapeutic intervention. Appropriate genocopy models that faithfully recapitulate the phenotypic characteristics of the disease will be invaluable tools to analyze the effects of modifier genes and small molecule inhibitor therapies.
Collapse
|
46
|
Nornes S, Newman M, Verdile G, Wells S, Stoick-Cooper CL, Tucker B, Frederich-Sleptsova I, Martins R, Lardelli M. Interference with splicing of Presenilin transcripts has potent dominant negative effects on Presenilin activity. Hum Mol Genet 2007; 17:402-12. [PMID: 17981814 DOI: 10.1093/hmg/ddm317] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Missense mutations in the PRESENILIN1 (PSEN1) gene frequently underlie familial Alzheimer's disease (FAD). Nonsense and most splicing mutations result in the synthesis of truncated peptides, and it has been assumed that truncated PSEN1 protein is functionless so that heterozygotes for these mutations are unaffected. Some FAD mutations affecting PSEN1 mRNA splicing cause loss of exon 8 or 9 sequences while maintaining the reading frame. We attempted to model these exon-loss mutations in zebrafish embryos by injecting morpholino antisense oligonucleotides (morpholinos) directed against splice acceptor sites in zebrafish psen1 transcripts. However, this produced cryptic changes in splicing potentially forming mRNAs encoding truncated presenilin proteins. Aberrant splicing in the region between exons 6 and 8 produces potent dominant negative effects on Psen1 protein activity, including Notch signalling, and causes a hydrocephalus phenotype. Reductions in Psen1 activity feedback positively to increase psen1 transcription through a mechanism apparently independent of gamma-secretase. We present evidence that the dominant negative effects are mediated through production of truncated Psen1 peptides that interfere with the normal activity of both Psen1 and Psen2. Mutations causing such truncations would be dominant lethal in embryo development. Somatic cellular changes in ageing cells that interfere with PSEN1 splicing, or otherwise cause protein truncation, might contribute to sporadic Alzheimer's disease, cancer and other diseases.
Collapse
Affiliation(s)
- Svanhild Nornes
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, SA 5005, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hoefele J, Wolf MTF, O'Toole JF, Otto EA, Schultheiss U, Dêschenes G, Attanasio M, Utsch B, Antignac C, Hildebrandt F. Evidence of oligogenic inheritance in nephronophthisis. J Am Soc Nephrol 2007; 18:2789-95. [PMID: 17855640 DOI: 10.1681/asn.2007020243] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nephronophthisis is a recessive cystic renal disease that leads to end-stage renal failure in the first two decades of life. Twenty-five percent of nephronophthisis cases are caused by large homozygous deletions of NPHP1, but six genes responsible for nephronophthisis have been identified. Because oligogenic inheritance has been described for the related Bardet-Biedl syndrome, we evaluated whether mutations in more than one gene may also be detected in cases of nephronophthisis. Because the nephrocystins 1 to 4 are known to interact, we examined patients with nephronophthisis from 94 different families and sequenced all exons of the NPHP1, NPHP2, NPHP3, and NPHP4 genes. In our previous studies involving 44 families, we detected two mutations in one of the NPHP1-4 genes. Here, we detected in six families two mutations in either NPHP1, NPHP3, or NPHP4, and identified a third mutation in one of the other NPHP genes. Furthermore, we found possible digenic disease by detecting one individual who carried one mutation in NPHP2 and a second mutation in NPHP3. Finally, we detected the presence of a single mutation in nine families, suggesting that the second recessive mutation may be in another as yet unidentified NPHP gene. Our findings suggest that oligogenicity may occur in cases of nephronophthisis.
Collapse
Affiliation(s)
- Julia Hoefele
- Departments of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Giorgio G, Alfieri M, Prattichizzo C, Zullo A, Cairo S, Franco B. Functional characterization of the OFD1 protein reveals a nuclear localization and physical interaction with subunits of a chromatin remodeling complex. Mol Biol Cell 2007; 18:4397-404. [PMID: 17761535 PMCID: PMC2043566 DOI: 10.1091/mbc.e07-03-0198] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Oral-facial-digital (OFD) type I syndrome is an X-linked dominant disease (MIM311200) characterized by malformations of oral cavity, face, and digits and by cystic kidneys. We previously identified OFD1, the gene responsible for this disorder, which encodes for a centrosomal protein with an unknown function. We now report that OFD1 localizes both to the primary cilium and to the nucleus. Moreover, we demonstrate that the OFD1 protein is able to self-associate and that this interaction is mediated by its coiled-coil rich region. Interestingly, we identify an OFD1-interacting protein RuvBl1, a protein belonging to the AAA(+)-family of ATPases, which has been recently associated to cystic kidney in zebrafish and to ciliary assembly and function in Chlamydomonas reinhardtii. We also provide experimental evidence that OFD1, together with RuvBl1, is able to coimmunoprecipitate with subunits of the human TIP60 histone acetyltransferase (HAT) multisubunit complex. On the basis of these results, we hypothesize that OFD1 may be part of a multi-protein complex and could play different biological functions in the centrosome-primary cilium organelles as well as in the nuclear compartment.
Collapse
Affiliation(s)
- Giovanna Giorgio
- *Telethon Institute of Genetics and Medicine, 80131 Naples, Italy; and
| | | | | | - Alessandro Zullo
- *Telethon Institute of Genetics and Medicine, 80131 Naples, Italy; and
| | - Stefano Cairo
- *Telethon Institute of Genetics and Medicine, 80131 Naples, Italy; and
| | - Brunella Franco
- *Telethon Institute of Genetics and Medicine, 80131 Naples, Italy; and
- Medical Genetics, Department of Pediatrics, Federico II University, 80131 Naples, Italy
| |
Collapse
|
49
|
Abstract
Nephronophthisis (NPHP), an autosomal recessive cystic kidney disease, represents the most frequent genetic cause of end-stage kidney disease in the first three decades of life. Contrary to polycystic kidney disease, NPHP shows normal or diminished kidney size, cysts are concentrated at the corticomedullary junction, and tubulointerstitial fibrosis is dominant. NPHP can be associated with retinitis pigmentosa (Senior-Løken syndrome), liver fibrosis, and cerebellar vermis aplasia (Joubert syndrome) in approximately 10% of patients. Positional cloning of six novel genes (NPHP1 through 6) as mutated in NPHP and functional characterization of their encoded proteins have contributed to the concept of "ciliopathies." It has helped advance a new unifying theory of cystic kidney diseases. This theory states that the products of all genes that are mutated in cystic kidney diseases in humans, mice, or zebrafish are expressed in primary cilia or centrosomes of renal epithelial cells. Primary cilia are sensory organelles that connect mechanosensory, visual, osmotic, and other stimuli to mechanisms of cell-cycle control and epithelial cell polarity. The ciliary theory explains the multiple organ involvement in NPHP regarding retinitis pigmentosa, liver fibrosis, ataxia, situs inversus, and mental retardation. Mutations in NPHP genes cause defects in signaling mechanisms, including the noncanonical Wnt signaling pathway. The "ciliopathy" NPHP thereby is caused by defects in tissue differentiation and maintenance as a result of impaired processing of extracellular cues. Nephrocystins, the proteins that are encoded by NPHP genes, are highly conserved in evolution. Positional cloning of additional causative genes of NPHP will elucidate further signaling mechanisms that are involved, thereby establishing therapeutic approaches using animal models in mouse, zebrafish, and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Friedhelm Hildebrandt
- Department of Pediatrics, University of Michigan Health System, 8220C MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0646, USA.
| | | |
Collapse
|
50
|
Abstract
Wnt signaling cascades activate morphogenetic programs that range from cell migration and proliferation to cell fate determination and stem cell renewal. These pathways enable cells to translate environmental cues into the complex cellular programs that are needed to organize tissues and build organs. Wnt signaling is essential for renal development; however, the specific molecular underpinnings involved are poorly understood. Recent research has revealed an unexpected intersection between Wnt signaling and polycystic kidney disease. Some polycystic kidney disease proteins, such as Inversin and Bardet-Biedl syndrome family members, were found to use components of the Wnt signaling cascade to orient cells along a secondary polarity axis within the plane of the epithelium. These spatial cues may be needed to position nascent tubules with a defined geometry.
Collapse
Affiliation(s)
- Thomas Benzing
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | | | | |
Collapse
|