1
|
Lysikova DV, Vasileva VY, Chubinskiy-Nadezhdin VI, Morachevskaya EA, Sudarikova AV. Capsazepine activates amiloride-insensitive ENaC-like channels in human leukemia cells. Biochem Biophys Res Commun 2023; 687:149187. [PMID: 37944472 DOI: 10.1016/j.bbrc.2023.149187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Sodium influx carried out by ion channels is one of the main regulators of water-salt and volume balance in cells of blood origin. Previously, we described amiloride-insensitive ENaC-like channels in human myeloid leukemia K562 cells; the intracellular regulatory mechanisms of the channels are associated with actin cytoskeleton dynamics. Recently, an extracellular mechanism of ENaC-like channels activation in K562 cells by the action of serine protease trypsin has been revealed. The other extracellular pathways that modulate ENaC (epithelial Na+ channel) activity and sodium permeability in transformed blood cells are not yet fully investigated. Here, we study the action of capsazepine (CPZ), as δ-ENaC activator, on single channel activity in K562 cells in whole-cell patch clamp experiments. Addition of CPZ (2 μM) to the extracellular solution caused an activation of sodium channels with typical features; unitary conductance was 15.1 ± 0.8 pS. Amiloride derivative benzamil (50 μM) did not inhibit their activity. Unitary currents and conductance of CPZ-activated channels were higher in Na+-containing extracellular solution than in Li+, that is one of the main fingerprints of δ-ENaC. The results of RT-PCR analysis and immunofluorescence staining also confirmed the expression of δ-hENaC (as well as α-, β-, γ-ENaC) at the mRNA and protein level. These findings allow us to speculate that CPZ activates amiloride-insensitive ENaC-like channels that contain δ-ENaC in К562 cells. Our data reveal a novel extracellular mechanism for ENaC-like activation in human leukemia cells.
Collapse
Affiliation(s)
- Daria V Lysikova
- Institute of Cytology, Russian Academy of Sciences, 194064 Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Valeria Y Vasileva
- Institute of Cytology, Russian Academy of Sciences, 194064 Tikhoretsky Ave. 4, St. Petersburg, Russia
| | | | - Elena A Morachevskaya
- Institute of Cytology, Russian Academy of Sciences, 194064 Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Anastasia V Sudarikova
- Institute of Cytology, Russian Academy of Sciences, 194064 Tikhoretsky Ave. 4, St. Petersburg, Russia.
| |
Collapse
|
2
|
Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022; 23:ijms23084413. [PMID: 35457230 PMCID: PMC9028019 DOI: 10.3390/ijms23084413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3β is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3β is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3β acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3β. Here, we discuss the direct and indirect mechanisms by which GSK3β phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3β activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3β-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.
Collapse
|
3
|
Boente-Juncal A, Raposo-García S, Louzao MC, Vale C, Botana LM. Targeting Chloride Ion Channels: New Insights into the Mechanism of Action of the Marine Toxin Azaspiracid. Chem Res Toxicol 2021; 34:865-879. [PMID: 33512997 DOI: 10.1021/acs.chemrestox.0c00494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Azaspiracids (AZAs) are marine toxins produced by dinoflagellates belonging to the genera Azadinium and Amphidoma that caused human intoxications after consumption of contaminated fishery products, such as mussels. However, the exact mechanism for the AZA induced cytotoxic and neurotoxic effects is still unknown. In this study several pharmacological approaches were employed to evaluate the role of anion channels on the AZA effects that demonstrated that cellular anion dysregulation was involved in the toxic effects of these compounds. The results presented here demonstrated that volume regulated anion channels (VRACs) are affected by this group of toxins, and, because there is not any specific activator of VRACs besides the intracellular application of GTPγ-S molecule, this group of natural compounds could represent a powerful tool to analyze the role of these channels in cellular homeostasis. In addition to this, in this work, a detailed pharmacological approach was performed in order to elucidate the anion channels present in human HEK293 cells as well as their regulation by the marine toxins azaspiracids. Altogether, the data presented here demonstrated that the effect of azaspiracids in human cells was completely dependent on ATP-regulated anion channels, whose upregulation by these toxins could lead to regulatory volume decrease and underlie the reported toxicity of these compounds.
Collapse
Affiliation(s)
- Andrea Boente-Juncal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Sandra Raposo-García
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - M Carmen Louzao
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Carmen Vale
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Luis M Botana
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| |
Collapse
|
4
|
Morachevskaya EA, Sudarikova AV. Actin dynamics as critical ion channel regulator: ENaC and Piezo in focus. Am J Physiol Cell Physiol 2021; 320:C696-C702. [PMID: 33471624 DOI: 10.1152/ajpcell.00368.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ion channels in plasma membrane play a principal role in different physiological processes, including cell volume regulation, signal transduction, and modulation of membrane potential in living cells. Actin-based cytoskeleton, which exists in a dynamic balance between monomeric and polymeric forms (globular and fibrillar actin), can be directly or indirectly involved in various cellular responses including modulation of ion channel activity. In this mini-review, we present an overview of the role of submembranous actin dynamics in the regulation of ion channels in excitable and nonexcitable cells. Special attention is focused on the important data about the involvement of actin assembly/disassembly and some actin-binding proteins in the control of the epithelial Na+ channel (ENaC) and mechanosensitive Piezo channels whose integral activity has a potential impact on membrane transport and multiple coupled cellular reactions. Growing evidence suggests that actin elements of the cytoskeleton can represent a "converging point" of various signaling pathways modulating the activity of ion transport proteins in cell membranes.
Collapse
|
5
|
Allen D, Zhou Y, Wilhelm A, Blum P. Intracellular G-actin targeting of peripheral sensory neurons by the multifunctional engineered protein C2C confers relief from inflammatory pain. Sci Rep 2020; 10:12789. [PMID: 32732905 PMCID: PMC7393082 DOI: 10.1038/s41598-020-69612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/15/2020] [Indexed: 11/09/2022] Open
Abstract
The engineered multifunctional protein C2C was tested for control of sensory neuron activity by targeted G-actin modification. C2C consists of the heptameric oligomer, C2II-CI, and the monomeric ribosylase, C2I. C2C treatment of sensory neurons and SH-SY5Y cells in vitro remodeled actin and reduced calcium influx in a reversible manner. C2C prepared using fluorescently labeled C2I showed selective in vitro C2I delivery to primary sensory neurons but not motor neurons. Delivery was dependent on presence of both C2C subunits and blocked by receptor competition. Immunohistochemistry of mice treated subcutaneously with C2C showed colocalization of subunit C2I with CGRP-positive sensory neurons and fibers but not with ChAT-positive motor neurons and fibers. The significance of sensory neuron targeting was pursued subsequently by testing C2C activity in the formalin inflammatory mouse pain model. Subcutaneous C2C administration reduced pain-like behaviors by 90% relative to untreated controls 6 h post treatment and similarly to the opioid buprenorphene. C2C effects were dose dependent, equally potent in female and male animals and did not change gross motor function. One dose was effective in 2 h and lasted 1 week. Administration of C2I without C2II-CI did not reduce pain-like behavior indicating its intracellular delivery was required for behavioral effect.
Collapse
Affiliation(s)
- Derek Allen
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - You Zhou
- Center for Biotechnology, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - Audrey Wilhelm
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - Paul Blum
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA.
| |
Collapse
|
6
|
Shaw JE, Koleske AJ. Functional interactions of ion channels with the actin cytoskeleton: does coupling to dynamic actin regulate NMDA receptors? J Physiol 2020; 599:431-441. [PMID: 32034761 DOI: 10.1113/jp278702] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 01/12/2023] Open
Abstract
Synapses are enriched in the cytoskeletal protein actin, which determines the shape of the pre- and postsynaptic compartments, organizes the neurotransmitter release machinery, and provides a framework for trafficking of components. In the postsynaptic compartment, interactions with actin or its associated proteins are also critical for the localization and activity of synaptic neurotransmitter receptors and ion channels. Actin binding proteins, including spectrin and α-actinin, serve as molecular linkages between the actin cytoskeleton and a diverse collection of receptors, including the NMDA receptor (NMDAR) and voltage-gated Na+ channels. The actin cytoskeleton can regulate neurotransmitter receptors and ion channels by controlling their trafficking and localization at the synapse and by directly gating receptor channel opening. We highlight evidence that synaptic actin couples physically and functionally to the NMDAR and supports its activity. The molecular mechanisms by which actin regulates NMDARs are only just emerging, and recent advancements in light and electron microscopy-based imaging techniques should aide in elucidating these mechanisms.
Collapse
Affiliation(s)
- Juliana E Shaw
- Department of Molecular Biophysics and Biochemistry , Yale University, New Haven, CT, 06520, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry , Yale University, New Haven, CT, 06520, USA.,Department of Neuroscience, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
7
|
Sudarikova AV, Vasileva VY, Vassilieva IO, Negulyaev YA, Morachevskaya EA, Chubinskiy-Nadezhdin VI. Extracellular protease trypsin activates amiloride-insensitive sodium channels in human leukemia cells. J Cell Biochem 2018; 120:461-469. [PMID: 30203535 DOI: 10.1002/jcb.27402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/10/2018] [Indexed: 11/11/2022]
Abstract
Sodium influx is tightly regulated in the cells of blood origin. Amiloride-insensitive sodium channels were identified as one of the main sodium-transporting pathways in leukemia cells. To date, all known regulatory pathways of these channels are coupled with intracellular actin cytoskeleton dynamics. Here, to search for physiological mechanisms controlling epithelial Na+ channel (ENaC)-like channels, we utilized leukemia K562 cells as a unique model to examine single channel behavior in a whole-cell patch-clamp experiments. We have shown for the first time that extracellular serine protease trypsin directly activates sodium channels in plasma membrane of K562 cells. The whole-cell single current recordings clearly demonstrate no inhibition of trypsin-activated channels by amiloride or benzamil. Involvement of proteolytic cleavage in channel opening was confirmed in experiments with soybean trypsin inhibitor. More importantly, stabilization of F-actin with intracellular phalloidin did not prevent trypsin-induced channel activation indicating no implication of cytoskeleton rearrangements in stimulatory effect of extracellular protease. Our data reveals a novel mechanism modulating amiloride-insensitive ENaC-like channel activity and integral sodium permeability in leukemia cells.
Collapse
Affiliation(s)
| | - Valeria Y Vasileva
- Institute of Cytology, Russian Academy of Science, St Petersburg, Russia
| | - Irina O Vassilieva
- Institute of Cytology, Russian Academy of Science, St Petersburg, Russia
| | - Yuri A Negulyaev
- Institute of Cytology, Russian Academy of Science, St Petersburg, Russia.,Department of Medical Physics, Peter the Great St Petersburg Polytechnic University, St Petersburg, Russia
| | | | | |
Collapse
|
8
|
Levy AD, Xiao X, Shaw JE, Sudarsana Devi SP, Katrancha SM, Bennett AM, Greer CA, Howe JR, Machida K, Koleske AJ. Noonan Syndrome-Associated SHP2 Dephosphorylates GluN2B to Regulate NMDA Receptor Function. Cell Rep 2018; 24:1523-1535. [PMID: 30089263 PMCID: PMC6234505 DOI: 10.1016/j.celrep.2018.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/21/2018] [Accepted: 07/01/2018] [Indexed: 11/23/2022] Open
Abstract
Hyperactivating mutations in the non-receptor tyrosine phosphatase SHP2 cause Noonan syndrome (NS). NS is associated with cognitive deficits, but how hyperactivation of SHP2 in NS changes neuron function is not well understood. We find that mice bearing an NS-associated SHP2 allele (NS mice) have selectively impaired Schaffer collateral-CA1 NMDA (N-methyl-D-aspartate) receptor (NMDAR)-mediated neurotransmission and that residual NMDAR-mediated currents decay faster in NS mice because of reduced contribution of GluN1:GluN2B diheteromers. Consistent with altered GluN2B function, we identify GluN2B Y1252 as an NS-associated SHP2 substrate both in vitro and in vivo. Mutation of Y1252 does not alter recombinant GluN1:GluN2B receptor kinetics. Instead, phospho-Y1252 binds the actin-regulatory adaptor protein Nck2, and this interaction is required for proper NMDAR function. These results establish SHP2 and Nck2 as NMDAR regulatory proteins and strongly suggest that NMDAR dysfunction contributes to NS cognitive deficits.
Collapse
Affiliation(s)
- Aaron D Levy
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Xiao Xiao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Juliana E Shaw
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Sara Marie Katrancha
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University, New Haven, CT 06520, USA
| | - Charles A Greer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - James R Howe
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Anthony J Koleske
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Wang ZM, Song N, Ren YL. Anti-proliferative and cytoskeleton-disruptive effects of icariin on HepG2 cells. Mol Med Rep 2015; 12:6815-20. [PMID: 26329131 DOI: 10.3892/mmr.2015.4282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/24/2015] [Indexed: 11/06/2022] Open
Abstract
Several biological properties of icariin have been identified, including its anticancer effect. However, the potential mechanisms underlying the effect of icariin on HepG2 hepatocellular carcinoma cells remain to be elucidated. The aim of the present study was to examine the effects of icariin on the proliferation and cytoskeleton of HepG2 cells. A 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5 diphenyltetrazolium bromide assay was used to assess the antiproliferative effects of icariin and to determine the optimal concentration and treatment schedule of icariin on the HepG2 cells. Cell cycle analysis was performed using fluorescence activated cell sorting, the protein expression of B‑cell lymphoma (Bcl)‑2 was determined using immunohistochemical and western blot analyses, and F‑actin in the cells was examined using confocal microscopy. The chemotherapeutic drug, oxaliplatin, was used as a positive control. The results demonstrated that the optimal concentration of icarrin to produce an antiproliferative effect on HepG2 cells was 10‑5 mol/l, and the optimal treatment duration was 72 h. The icariin group had a significantly higher proportion of cells in the G0/G1 phase, compared with the control group, treated with high glucose Dulbecco's modified Eagles medium with 10% fetal bovine serum (P<0.05). The proportion of HepG2 cells in the S phase was significantly lower in the oxaliplatin (24.19%; P<0.05) and icariin (21.07%; P<0.01) groups, compared with the control group (28.62%). Icariin markedly decreased the expression of Bcl‑2, compared with the control (P<0.01), and disrupted the polymerization of F‑actin filaments in the HepG2 cells. Therefore, the present study demonstrated that, at an optimum concentration of 10‑5 mol/l, icariin inhibited the proliferation of the HepG2 cells, promoted apoptosis by decreasing the expression of Bcl‑2, and disrupted the actin cytoskeleton.
Collapse
Affiliation(s)
- Zhi-Min Wang
- The First Clinical Institute, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Nan Song
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Yan-Ling Ren
- School of Chinese Medical Formulae, College of Basic Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| |
Collapse
|
10
|
Amiloride-insensitive sodium channels are directly regulated by actin cytoskeleton dynamics in human lymphoma cells. Biochem Biophys Res Commun 2015; 461:54-8. [DOI: 10.1016/j.bbrc.2015.03.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/28/2015] [Indexed: 01/03/2023]
|
11
|
Chubinskiy-Nadezhdin VI, Sudarikova AV, Nikolsky NN, Morachevskaya EA. Role of submembranous actin cytoskeleton in regulation of non-voltage-gated sodium channels. DOKL BIOCHEM BIOPHYS 2013; 450:126-9. [DOI: 10.1134/s1607672913030010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Indexed: 11/23/2022]
|
12
|
Roubinet C, Tran PT, Piel M. Common mechanisms regulating cell cortex properties during cell division and cell migration. Cytoskeleton (Hoboken) 2012; 69:957-72. [PMID: 23125194 DOI: 10.1002/cm.21086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 12/14/2022]
Abstract
Single cell morphogenesis results from a balance of forces involving internal pressure (also called turgor pressure in plants and fungi) and the plastic and dynamic outer shell of the cell. Dominated by the cell wall in plants and fungi, mechanical properties of the outer shell of animal cells arise from the cell cortex, which is mostly composed of the plasma membrane (and membrane proteins) and the underlying meshwork of actin filaments and myosin motors (and associated proteins). In this review, following Bray and White [1988; Science 239:883-889], we draw a parallel between the regulation of the cell cortex during cell division and cell migration in animal cells. Starting from the similarities in shape changes and underlying mechanical properties, we further propose that the analogy between cell division and cell migration might run deeper, down to the basic molecular mechanisms driving cell cortex remodeling. We focus our attention on how an heterogeneous and dynamic cortex can be generated to allow cell shape changes while preserving cell integrity.
Collapse
Affiliation(s)
- Chantal Roubinet
- Université de Toulouse, UPS, Centre de Biologie du Développement, Bâtiment 4R3, 118 route de Narbonne, F-31062 Toulouse, France.
| | | | | |
Collapse
|
13
|
Sudarikova AV, Vassilieva IO, Morachevskaya EA, Negulyaev YA. Molecular and functional identification of sodium channels in K562 cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s1990519x12050124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Schmid E, Gu S, Yang W, Münzer P, Schaller M, Lang F, Stournaras C, Shumilina E. Serum- and glucocorticoid-inducible kinase SGK1 regulates reorganization of actin cytoskeleton in mast cells upon degranulation. Am J Physiol Cell Physiol 2012; 304:C49-55. [PMID: 23015548 DOI: 10.1152/ajpcell.00179.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aggregation of the high-affinity IgE receptor (FcεRI) on mast cells (MCs) causes MC degranulation, a process that involves cortical F-actin disassembly. Actin depolymerization may be triggered by increase of cytosolic Ca(2+). Entry of Ca(2+) through the Ca(2+) release-activated Ca(2+) (CRAC) channels is under powerful regulation by the serum- and glucocorticoid-inducible kinase SGK1. Moreover, FcεRI-dependent degranulation is decreased in SGK1-deficient (sgk1(-/-)) MCs. The present study addressed whether SGK1 is required for actin cytoskeleton rearrangement in MCs and whether modulation of actin architecture could underlie decreased degranulation of sgk1(-/-) MCs. Confirming previous results, release of β-hexosaminidase reflecting FcεRI-dependent degranulation was impaired in sgk1(-/-) MCs compared with sgk1(+/+) MCs. When CRAC channels were inhibited by 2-aminoethoxydiphenyl borate (2-APB; 50 μM), MC degranulation was strongly decreased in both sgk1(+/+) and sgk1(-/-) MCs and the difference between genotypes was abolished. Moreover, degranulation was impaired by actin-stabilizing (phallacidin) and enhanced by actin-disrupting (cytochalasin B) agents to a similar extent in sgk1(+/+) MCs and sgk1(-/-) MCs, implying a regulatory role of actin reorganization in this event. In line with this, measurements of monomeric (G) and filamentous (F) actin content by FACS analysis and Western blotting of detergent-soluble and -insoluble cell fractions indicated an increase of the G/F-actin ratio in sgk1(+/+) MCs but not in sgk1(-/-) MCs upon FcεRI ligation, an observation reflecting actin depolymerization. In sgk1(+/+) MCs, FcεRI-induced actin depolymerization was abolished by 2-APB. The observed actin reorganization was confirmed by confocal laser microscopic analysis. Our observations uncover SGK1-dependent Ca(2+) entry in mast cells as a novel mechanism regulating actin cytoskeleton.
Collapse
Affiliation(s)
- Evi Schmid
- Dept. of Physiology, University of Tübingen, Gmelinstr. 5, D-72072 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Cholesterol depletion-induced inhibition of stretch-activated channels is mediated via actin rearrangement. Biochem Biophys Res Commun 2011; 412:80-5. [DOI: 10.1016/j.bbrc.2011.07.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 11/21/2022]
|
16
|
Sudarikova AV, Chubinsky-Nadezhdin VI, Negulyaev YA, Morachevskaya EA. Functional properties of sodium channels in cholesterol-depleted K562 cells. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09050095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zhang W, Fan LM. Actin dynamics regulates voltage-dependent calcium-permeable channels of the Vicia faba guard cell plasma membrane. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:912-21. [PMID: 19778401 DOI: 10.1111/j.1744-7909.2009.00859.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Free cytosolic Ca(2+) ([Ca(2+)](cyt)) is an ubiquitous second messenger in plant cell signaling, and [Ca(2+)](cyt) elevation is associated with Ca(2+)-permeable channels in the plasma membrane and endomembranes regulated by a wide range of stimuli. However, knowledge regarding Ca(2+) channels and their regulation remains limited in planta. A type of voltage-dependent Ca(2+)-permeable channel was identified and characterized for the Vicia faba L. guard cell plasma membrane by using patch-clamp techniques. These channels are permeable to both Ba(2+) and Ca(2+), and their activities can be inhibited by micromolar Gd(3+). The unitary conductance and the reversal potential of the channels depend on the Ca(2+) or Ba(2+) gradients across the plasma membrane. The inward whole-cell Ca(2+) (Ba(2+)) current, as well as the unitary current amplitude and NP(o) of the single Ca(2+) channel, increase along with the membrane hyperpolarization. Pharmacological experiments suggest that actin dynamics may serve as an upstream regulator of this type of calcium channel of the guard cell plasma membrane. Cytochalasin D, an actin polymerization blocker, activated the NPo of these channels at the single channel level and increased the current amplitude at the whole-cell level. But these channel activations and current increments could be restrained by pretreatment with an F-actin stabilizer, phalloidin. The potential physiological significance of this regulatory mechanism is also discussed.
Collapse
Affiliation(s)
- Wei Zhang
- National Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | |
Collapse
|
18
|
Protein–protein interactions involving voltage-gated sodium channels: Post-translational regulation, intracellular trafficking and functional expression. Int J Biochem Cell Biol 2009; 41:1471-81. [DOI: 10.1016/j.biocel.2009.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/23/2009] [Accepted: 01/26/2009] [Indexed: 01/06/2023]
|
19
|
Abstract
Forces are increasingly recognized as major regulators of cell structure and function, and the mechanical properties of cells are essential to the mechanisms by which cells sense forces, transmit them to the cell interior or to other cells, and transduce them into chemical signals that impact a spectrum of cellular responses. Comparison of the mechanical properties of intact cells with those of the purified cytoskeletal biopolymers that are thought to dominate their elasticity reveal the extent to which the studies of purified systems can account for the mechanical properties of the much more heterogeneous and complex cell. This review summarizes selected aspects of current work on cell mechanics with an emphasis on the structures that are activated in cell-cell contacts, that regulate ion flow across the plasma membrane, and that may sense fluid flow that produces low levels of shear stress.
Collapse
Affiliation(s)
- Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
20
|
|
21
|
Staruschenko AV, Sudarikova AV, Negulyaev YA, Morachevskaya EA. Magnesium permeation through mechanosensitive channels: single-current measurements. Cell Res 2006; 16:723-30. [PMID: 16871269 DOI: 10.1038/sj.cr.7310084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Compelling evidence shows that intracellular free magnesium [Mg(2+)](i) may be a critical regulator of cell activity in eukaryotes. However, membrane transport mechanisms mediating Mg(2+) influx in mammalian cells are poorly understood. Here, we show that mechanosensitive (MS) cationic channels activated by stretch are permeable for Mg(2+) ions at different extracellular concentrations including physiological ones. Single-channel currents were recorded from cell-attached and inside-out patches on K562 leukaemia cells at various concentrations of MgCl(2) when Mg(2+) was the only available carrier of inward currents. At 2 mM Mg(2+), inward mechanogated currents representing Mg(2+) influx through MS channels corresponded to the unitary conductance of about 5 pS. At higher Mg(2+) levels, only slight increase of single-channel currents and conductance occurred, implying that Mg(2+) permeation through MS channels is characterized by strong saturation. At 20 and 90 mM Mg(2+), mean conductance values for inward currents carried by Mg(2+) were rather similar, being equal to 6.8 +/- 0.5 and 6.4 +/- 0.5 pS, respectively. The estimation of the channel-selective permeability according to constant field equation is obviously limited due to saturation effects. We conclude that the detection of single currents is the main evidence for Mg(2+) permeation through membrane channels activated by stretch. Our single-current measurements document Mg(2+) influx through MS channels in the plasma membrane of leukaemia cells.
Collapse
|
22
|
Staruschenko A, Negulyaev YA, Morachevskaya EA. Actin cytoskeleton disassembly affects conductive properties of stretch-activated cation channels in leukaemia cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1669:53-60. [PMID: 15842999 DOI: 10.1016/j.bbamem.2005.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 02/08/2005] [Accepted: 02/24/2005] [Indexed: 11/23/2022]
Abstract
Mechanosensitive channels in various eucaryotic cells are thought to be functionally and structurally coupled to the cortical cytoskeleton. However, the results of electrophysiological studies are rather controversial and the functional impact of cytoskeleton assembly-disassembly on stretch-activated channel properties remains unclear. Here, the possible involvement of cytoskeletal elements in the regulation of stretch-activated Ca2+-permeable channels was studied in human leukaemia K562 cells with the use of agents that selectively modify the actin or tubulin system. F-actin disassembly resulted in a considerable reduction of the amplitude of stretch-activated currents without significant change in channel open probability. The effects of treatments with cytochalasins or latrunculin were principally similar, developed gradually and consisted a strong decrease of single channel conductance. Microtubule disruption did not affect stretch-activated channels. The data presented here are in principal agreement with the general conclusion that mechanosensitive channel functions are largely dependent on the integrity of the cortical actin cytoskeleton. Specifically, changes in conductive properties of the pore may provide an essential mechanism of channel regulation underlying functional modulation of membrane currents. Our results allow one to speculate that microfilament organization may be an important determinant in modulating biophysical characteristics of stretch-activated cation channels in cells of blood origin.
Collapse
|
23
|
Krishnamurthy G, Patberg KW, Obreztchikova MN, Rybin AV, Rosen MR. Developmental evolution of the delayed rectifier current IKs in canine heart appears dependent on the beta subunit minK. Heart Rhythm 2005; 1:704-11. [PMID: 15851242 DOI: 10.1016/j.hrthm.2004.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 08/26/2004] [Indexed: 11/24/2022]
Abstract
OBJECTIVES We tested the hypothesis that the developmental changes occurring in I(Kr) and I(Ks) can be explained by changes in the expression of ERG encoding I(Kr), and KCNQ1, the beta subunit minK, and the recently reported subunit FHL2 encoding I(Ks). BACKGROUND The delayed rectifier current contributes importantly to the developmental evolution of the canine myocardial action potential. Specifically, in left ventricular epicardial myocytes, I(Ks) is absent and I(Kr) is the major repolarizing current until age 4 weeks. With subsequent development, I(Ks) density increases and I(Kr) decreases, resulting in an altered voltage-time course of repolarization. METHODS We used Western blotting and real-time polymerase chain reaction to compare the expression of ERG, KCNQ1, minK, and FHL2 in 1-week-old pups and adult dogs. RESULTS ERG levels are high at 1 week and decrease significantly with age, consistent with developmental decrease in I(Kr). Whereas expression of KCNQ1 and FHL2 is unchanged between the two age groups, minK is minimally expressed at 1 week and increases in adults, consistent with developmental increase in I(Ks). CONCLUSIONS A reduction in ERG explains the developmental decrease in I(Kr), whereas the accessory subunit minK appears to be the critical determinant of developmental evolution of I(Ks).
Collapse
Affiliation(s)
- Ganga Krishnamurthy
- Department of Pharmacology, Center for Molecular Therapeutics, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
AIM: To establish a method for optical sections of HepG2 human hepatoblastoma cells with confocal laser scanning microscope (CLSM) and to study the spatial structure of filamentous actin (F-actin) in HepG2 cells.
METHODS: HepG2 cells were stained with FITC-phalloidin that specifically binds F-actin, with propidium iodide (PI) to the nucleus, and scanned with a CLSM to generate optically sectioned images. A series of optical sections taken successively at different focal levels in steps of 0.7 mm were reconstructed with the CLSM reconstruction program.
RESULTS: CLSM images showed that the FITC-stained F-actin was abundant microfilament bundles parallel or netted through the whole cell and its processes. Most F-actin microfilaments extended through the cell from one part toward the other or run through the process. Some microfilaments were attached to the plasma membrane, or formed a structural bridge connecting to the neighboring cells.
CONCLUSION: A method for double labeling HepG2 human hepatoblastoma cells and CLSM imaging F-actin microfilaments and nuclei by image thin optical sections and spatial structure was developed. It provides a very useful way to study the spatial structure of F-actin.
Collapse
Affiliation(s)
- Xia Huo
- Central Laboratory, Shantou University Medical College, Shantou 515031, Guangdong Province, China.
| | | | | | | | | |
Collapse
|
25
|
Arora PD, Glogauer M, Kapus A, Kwiatkowski DJ, McCulloch CA. Gelsolin mediates collagen phagocytosis through a rac-dependent step. Mol Biol Cell 2003; 15:588-99. [PMID: 14617805 PMCID: PMC329256 DOI: 10.1091/mbc.e03-07-0468] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The role of gelsolin, a calcium-dependent actin-severing protein, in mediating collagen phagocytosis, is not defined. We examined alpha 2 beta 1 integrin-mediated phagocytosis in fibroblasts from wild-type (WT) and gelsolin knockout (Gsn(-)) mice. After initial contact with collagen beads, collagen binding and internalization were 60% lower in Gsn(-) than WT cells. This deficiency was restored by transfection with gelsolin or with beta1 integrin-activating antibodies. WT cells showed robust rac activation and increased [Ca(2+)](i) during early contact with collagen beads, but Gsn(-) cells showed very limited responses. Transfected gelsolin in Gsn(-) cells restored rac activation after collagen binding. Transfection of Gsn(-) cells with active rac increased collagen binding to WT levels. Chelation of intracellular calcium inhibited collagen binding and rac activation, whereas calcium ionophore induced rac activation in WT and Gsn(-) cells. We conclude that the ability of gelsolin to remodel actin filaments is important for collagen-induced calcium entry; calcium in turn is required for rac activation, which subsequently enhances collagen binding to unoccupied alpha 2 beta 1 integrins.
Collapse
Affiliation(s)
- Pamela D Arora
- Canadian Institutes of Health Research Group in Matrix Dynamics, University of Toronto, Toronto, Ontario, Canada M5S 3E2
| | | | | | | | | |
Collapse
|
26
|
Shumilina EV, Khaitlina SY, Morachevskaya EA, Negulyaev YA. Non-hydrolyzable analog of GTP induces activity of Na+ channels via disassembly of cortical actin cytoskeleton. FEBS Lett 2003; 547:27-31. [PMID: 12860381 DOI: 10.1016/s0014-5793(03)00663-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The role of G proteins in regulation of non-voltage-gated Na+ channels in human myeloid leukemia K562 cells was studied by inside-out patch-clamp method. Na+ channels were activated by non-hydrolyzable analog of guanosine triphosphate (GTP), GTPgammaS, known to activate both heterotrimeric and small G proteins. Channel activity was not affected by aluminum fluoride that indiscriminately activates heterotrimeric G proteins. The effect of GTPgammaS was prevented by phalloidin and by G-actin, both interfering with actin disassembly, which indicates that GTPgammaS-induced channel activation was likely due to microfilament disruption. GTPgammaS-activated channels were inactivated by polymerizing actin. These data show, for the first time, that small G proteins can regulate Na+ channels, and an intracellular mechanism mediating their effect involves actin cytoskeleton rearrangements.
Collapse
|