1
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Yin J, Zhang C, Zhang Q, Long F, Hu W, Zhou Y, Mou F, Zhong Y, Wu B, Zhu M, Zou L, Zhu X. A single amino acid substitution in the AAA-type ATPase LRD6-6 activates immune responses but decreases grain quality in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1451897. [PMID: 39166250 PMCID: PMC11333209 DOI: 10.3389/fpls.2024.1451897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Plant spotted leaf (spl) mutants are useful to reveal the regulatory mechanisms of immune responses. Thus, in crop plants, their agronomic traits, especially the grain quality are usually ignored. Here, we characterized a rice spl mutant named spl-A (spotted leaf mutant from A814) that shows autoimmunity, broad-spectrum disease resistance and growth deterioration including decreased rice quality. A single nucleotide mutation of C1144T, which leads to change of the 382nd proline to serine, in the gene encoding the ATPases associated with diverse cellular activities (AAA)-type ATPase LRD6-6 is responsible for the phenotype of the spl-A mutant. Mechanistically, this mutation impairs LRD6-6 ATPase activity and disrupts its interaction with endosomal sorting complex required for transport (ESCRT)-III subunits OsSNF7.1/7.2/7.3. And thus, leading to compromise of multivesicular bodies (MVBs)-mediated vesicle trafficking and accumulation of ubiquitinated proteins in both leaves and seeds of spl-A. Therefore, the immune response of spl-A is activated, and the growth and grain quality are deteriorated. Our study identifies a new amino acid residue that important for LRD6-6 and provides new insight into our understanding of how MVBs-mediated vesicle trafficking regulates plant immunity and growth, including grain quality in rice.
Collapse
Affiliation(s)
- Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Cheng Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Qianyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Feiyan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Wen Hu
- Agricultural and Rural Bureau, Hanyuan County Government, Yaan, Sichuan, China
| | - Yi Zhou
- Agricultural and Rural Bureau, Hanyuan County Government, Yaan, Sichuan, China
| | - Fengying Mou
- Agricultural and Rural Bureau, Hanyuan County Government, Yaan, Sichuan, China
| | - Yufeng Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Bingxiu Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Min Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Lijuan Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers’ College, Mianyang, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Xu Y, Li W, Chen Y, Xu T, Sun Y. STAM2 negatively regulates the MyD88-mediated NF-κB signaling pathway in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109550. [PMID: 38593891 DOI: 10.1016/j.fsi.2024.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/10/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Signal transducing adapter molecule 2 (STAM2), a member of the Signal Transducing Adapter Molecule (STAM) family, is a protein with significant implications in diverse signaling pathways and endocytic membrane trafficking. However, the role of the STAM2, especially in fish, remains largely unknown. In this study, we discovered that STAM2 negatively regulates the NF-κB signaling pathway, and its inhibitory effect is enhanced upon LPS induction. Our study confirmed that STAM2 can enhance the degradation of myeloid differentiation primary-response protein 88 (MyD88), an upstream regulator of NF-κB pathway. Furthermore, the UIM domain of STAM2 is important for the inhibition of MyD88. Mechanistically, STAM2 inhibits the NF-κB signaling pathway by targeting the MyD88 autophagy pathway. In addition, we showed that STAM2 promotes the proliferation of Vibrio harveyi. In summary, our study reveals that STAM2 inhibits NF-κB signaling activation and mediates innate immunity in teleost via the autophagy pathway.
Collapse
Affiliation(s)
- Yan Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenxin Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ya Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Yuena Sun
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
4
|
Rochín-Hernández LJ, Jiménez-Acosta MA, Ramírez-Reyes L, Figueroa-Corona MDP, Sánchez-González VJ, Orozco-Barajas M, Meraz-Ríos MA. The Proteome Profile of Olfactory Ecto-Mesenchymal Stem Cells-Derived from Patients with Familial Alzheimer's Disease Reveals New Insights for AD Study. Int J Mol Sci 2023; 24:12606. [PMID: 37628788 PMCID: PMC10454072 DOI: 10.3390/ijms241612606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease and the first cause of dementia worldwide, has no effective treatment, and its pathological mechanisms are not yet fully understood. We conducted this study to explore the proteomic differences associated with Familial Alzheimer's Disease (FAD) in olfactory ecto-mesenchymal stem cells (MSCs) derived from PSEN1 (A431E) mutation carriers compared with healthy donors paired by age and gender through two label-free liquid chromatography-mass spectrometry approaches. The first analysis compared carrier 1 (patient with symptoms, P1) and its control (healthy donor, C1), and the second compared carrier 2 (patient with pre-symptoms, P2) with its respective control cells (C2) to evaluate whether the protein alterations presented in the symptomatic carrier were also present in the pre-symptom stages. Finally, we analyzed the differentially expressed proteins (DEPs) for biological and functional enrichment. These proteins showed impaired expression in a stage-dependent manner and are involved in energy metabolism, vesicle transport, actin cytoskeleton, cell proliferation, and proteostasis pathways, in line with previous AD reports. Our study is the first to conduct a proteomic analysis of MSCs from the Jalisco FAD patients in two stages of the disease (symptomatic and presymptomatic), showing these cells as a new and excellent in vitro model for future AD studies.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Lorena Ramírez-Reyes
- Unidad de Genómica, Proteómica y Metabolómica, Laboratorio Nacional de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados, Ciudad de México 07360, Mexico;
| | - María del Pilar Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Víctor J. Sánchez-González
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Maribel Orozco-Barajas
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| |
Collapse
|
5
|
Molecular basis of ubiquitin-specific protease 8 autoinhibition by the WW-like domain. Commun Biol 2021; 4:1272. [PMID: 34750505 PMCID: PMC8576004 DOI: 10.1038/s42003-021-02802-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Ubiquitin-specific protease 8 (USP8) is a deubiquitinating enzyme involved in multiple membrane trafficking pathways. The enzyme activity is inhibited by binding to 14-3-3 proteins. Mutations in the 14-3-3-binding motif in USP8 are related to Cushing’s disease. However, the molecular basis of USP8 activity regulation remains unclear. This study identified amino acids 645–684 of USP8 as an autoinhibitory region, which might interact with the catalytic USP domain, as per the results of pull-down and single-molecule FRET assays performed in this study. In silico modelling indicated that the region forms a WW-like domain structure, plugs the catalytic cleft, and narrows the entrance to the ubiquitin-binding pocket. Furthermore, 14-3-3 inhibited USP8 activity partly by enhancing the interaction between the WW-like and USP domains. These findings provide the molecular basis of USP8 autoinhibition via the WW-like domain. Moreover, they suggest that the release of autoinhibition may underlie Cushing’s disease due to USP8 mutations. In order to advance our understanding of the regulation of Ubiquitin-specific protease 8 (USP8), which is known to play a role in Cushing’s Disease, Kakihara et al identify and characterise amino acids 645–684 of USP8, which serve as an autoinhibitory region. Their pull-down and single-molecule FRET analysis, as well as in silico modelling, suggest that the release of USP8 autoinhibition may underlie Cushing’s disease.
Collapse
|
6
|
Mostovenko E, Saunders S, Muldoon PP, Bishop L, Campen MJ, Erdely A, Ottens AK. Carbon Nanotube Exposure Triggers a Cerebral Peptidomic Response: Barrier Compromise, Neuroinflammation, and a Hyperexcited State. Toxicol Sci 2021; 182:107-119. [PMID: 33892499 DOI: 10.1093/toxsci/kfab042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The unique physicochemical properties of carbon nanomaterials and their ever-growing utilization generate a serious concern for occupational risk. Pulmonary exposure to these nanoparticles induces local and systemic inflammation, cardiovascular dysfunction, and even cognitive deficits. Although multiple routes of extrapulmonary toxicity have been proposed, the mechanism for and manner of neurologic effects remain minimally understood. Here, we examine the cerebral spinal fluid (CSF)-derived peptidomic fraction as a reflection of neuropathological alterations induced by pulmonary carbon nanomaterial exposure. Male C57BL/6 mice were exposed to 10 or 40 µg of multiwalled carbon nanotubes (MWCNT) by oropharyngeal aspiration. Serum and CSFs were collected 4 h post exposure. An enriched peptide fraction of both biofluids was analyzed using ion mobility-enabled data-independent mass spectrometry for label-free quantification. MWCNT exposure induced a prominent peptidomic response in the blood and CSF; however, correlation between fluids was limited. Instead, we determined that a MWCNT-induced peptidomic shift occurred specific to the CSF with 292 significant responses found that were not in serum. Identified MWCNT-responsive peptides depicted a mechanism involving aberrant fibrinolysis (fibrinopeptide A), blood-brain barrier permeation (homeobox protein A4), neuroinflammation (transmembrane protein 131L) with reactivity by astrocytes and microglia, and a pro-degradative (signal transducing adapter molecule, phosphoglycerate kinase), antiplastic (AF4/FMR2 family member 1, vacuolar protein sorting-associated protein 18) state with the excitation-inhibition balance shifted to a hyperexcited (microtubule-associated protein 1B) phenotype. Overall, the significant pathologic changes observed were consistent with early neurodegenerative disease and were diagnostically reflected in the CSF peptidome.
Collapse
Affiliation(s)
- Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Samantha Saunders
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Pretal P Muldoon
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Lindsey Bishop
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Aaron Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
7
|
Roach TG, Lång HKM, Xiong W, Ryhänen SJ, Capelluto DGS. Protein Trafficking or Cell Signaling: A Dilemma for the Adaptor Protein TOM1. Front Cell Dev Biol 2021; 9:643769. [PMID: 33718385 PMCID: PMC7952518 DOI: 10.3389/fcell.2021.643769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Lysosomal degradation of ubiquitinated transmembrane protein receptors (cargo) relies on the function of Endosomal Sorting Complex Required for Transport (ESCRT) protein complexes. The ESCRT machinery is comprised of five unique oligomeric complexes with distinct functions. Target of Myb1 (TOM1) is an ESCRT protein involved in the initial steps of endosomal cargo sorting. To exert its function, TOM1 associates with ubiquitin moieties on the cargo via its VHS and GAT domains. Several ESCRT proteins, including TOLLIP, Endofin, and Hrs, have been reported to form a complex with TOM1 at early endosomal membrane surfaces, which may potentiate the role of TOM1 in cargo sorting. More recently, it was found that TOM1 is involved in other physiological processes, including autophagy, immune responses, and neuroinflammation, which crosstalk with its endosomal cargo sorting function. Alteration of TOM1 function has emerged as a phosphoinositide-dependent survival mechanism for bacterial infections and cancer progression. Based on current knowledge of TOM1-dependent cellular processes, this review illustrates how TOM1 functions in coordination with an array of protein partners under physiological and pathological scenarios.
Collapse
Affiliation(s)
- Tiffany G. Roach
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - Heljä K. M. Lång
- Division of Hematology, Oncology, and Stem Cell Transplantation, Children’s Hospital, and Pediatric Research Center, The New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wen Xiong
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - Samppa J. Ryhänen
- Division of Hematology, Oncology, and Stem Cell Transplantation, Children’s Hospital, and Pediatric Research Center, The New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Daniel G. S. Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Meusser B, Purfuerst B, Luft FC. HIV-1 Gag release from yeast reveals ESCRT interaction with the Gag N-terminal protein region. J Biol Chem 2020; 295:17950-17972. [PMID: 32994219 PMCID: PMC7939435 DOI: 10.1074/jbc.ra120.014710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
The HIV-1 protein Gag assembles at the plasma membrane and drives virion budding, assisted by the cellular endosomal complex required for transport (ESCRT) proteins. Two ESCRT proteins, TSG101 and ALIX, bind to the Gag C-terminal p6 peptide. TSG101 binding is important for efficient HIV-1 release, but how ESCRTs contribute to the budding process and how their activity is coordinated with Gag assembly is poorly understood. Yeast, allowing genetic manipulation that is not easily available in human cells, has been used to characterize the cellular ESCRT function. Previous work reported Gag budding from yeast spheroplasts, but Gag release was ESCRT-independent. We developed a yeast model for ESCRT-dependent Gag release. We combined yeast genetics and Gag mutational analysis with Gag-ESCRT binding studies and the characterization of Gag-plasma membrane binding and Gag release. With our system, we identified a previously unknown interaction between ESCRT proteins and the Gag N-terminal protein region. Mutations in the Gag-plasma membrane-binding matrix domain that reduced Gag-ESCRT binding increased Gag-plasma membrane binding and Gag release. ESCRT knockout mutants showed that the release enhancement was an ESCRT-dependent effect. Similarly, matrix mutation enhanced Gag release from human HEK293 cells. Release enhancement partly depended on ALIX binding to p6, although binding site mutation did not impair WT Gag release. Accordingly, the relative affinity for matrix compared with p6 in GST-pulldown experiments was higher for ALIX than for TSG101. We suggest that a transient matrix-ESCRT interaction is replaced when Gag binds to the plasma membrane. This step may activate ESCRT proteins and thereby coordinate ESCRT function with virion assembly.
Collapse
Affiliation(s)
- Birgit Meusser
- Charité Medical Faculty, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Friedrich C Luft
- Charité Medical Faculty, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Experimental and Clinical Research Center, Berlin, Germany.
| |
Collapse
|
9
|
Santonico E. Old and New Concepts in Ubiquitin and NEDD8 Recognition. Biomolecules 2020; 10:biom10040566. [PMID: 32272761 PMCID: PMC7226360 DOI: 10.3390/biom10040566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modifications by ubiquitin and ubiquitin-like proteins (Ubls) have known roles in a myriad of cellular processes. Ubiquitin- and Ubl-binding domains transmit the information conferred by these post-translational modifications by recognizing functional surfaces and, when present, different chain structures. Numerous domains binding to ubiquitin have been characterized and their structures solved. Analogously, motifs selectively interacting with SUMO (small ubiquitin-like modifier) have been identified in several proteins and their role in SUMO-dependent processes investigated. On the other hand, proteins that specifically recognize other Ubl modifications are known only in a few cases. The high sequence identity between NEDD8 and ubiquitin has made the identification of specific NEDD8-binding domains further complicated due to the promiscuity in the recognition by several ubiquitin-binding domains. Two evolutionarily related domains, called CUBAN (cullin-binding domain associating with NEDD8) and CoCUN (cousin of CUBAN), have been recently described. The CUBAN binds monomeric NEDD8 and neddylated cullins, but it also interacts with di-ubiquitin chains. Conversely, the CoCUN domain only binds ubiquitin. CUBAN and CoCUN provide an intriguing example of how nature solved the issue of promiscuity versus selectivity in the recognition of these two highly related molecules. The structural information available to date suggests that the ancestor of CUBAN and CoCUN was a three-helix bundle domain that diversified in KHNYN (KH and NYN domain-containing) and N4BP1 (NEDD4-binding protein-1) by acquiring different features. Indeed, these domains diverged towards two recognition modes, that recall respectively the electrostatic interaction utilized by the E3-ligase RBX1/2 in the interaction with NEDD8, and the hydrophobic features described in the recognition of ubiquitin by CUE (coupling ubiquitin conjugation to ER degradation) domains. Intriguingly, CUBAN and CoCUN domains are only found in KHNYN and N4BP1, respectively, both proteins belonging to the PRORP family whose members are characterized by the combination of protein modules involved in RNA metabolism with domains mediating ubiquitin/NEDD8 recognition. This review recapitulates the current knowledge and recent findings of CUBAN and CoCUN domains and the proteins containing them.
Collapse
Affiliation(s)
- Elena Santonico
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy
| |
Collapse
|
10
|
The 'dark matter' of ubiquitin-mediated processes: opportunities and challenges in the identification of ubiquitin-binding domains. Biochem Soc Trans 2020; 47:1949-1962. [PMID: 31829417 DOI: 10.1042/bst20190869] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Ubiquitin modifications of target proteins act to localise, direct and specify a diverse range of cellular processes, many of which are biomedically relevant. To allow this diversity, ubiquitin modifications exhibit remarkable complexity, determined by a combination of polyubiquitin chain length, linkage type, numbers of ubiquitin chains per target, and decoration of ubiquitin with other small modifiers. However, many questions remain about how different ubiquitin signals are specifically recognised and transduced by the decoding ubiquitin-binding domains (UBDs) within ubiquitin-binding proteins. This review briefly outlines our current knowledge surrounding the diversity of UBDs, identifies key challenges in their discovery and considers recent structural studies with implications for the increasing complexity of UBD function and identification. Given the comparatively low numbers of functionally characterised polyubiquitin-selective UBDs relative to the ever-expanding variety of polyubiquitin modifications, it is possible that many UBDs have been overlooked, in part due to limitations of current approaches used to predict their presence within the proteome. Potential experimental approaches for UBD discovery are considered; web-based informatic analyses, Next-Generation Phage Display, deubiquitinase-resistant diubiquitin, proximity-dependent biotinylation and Ubiquitin-Phototrap, including possible advantages and limitations. The concepts discussed here work towards identifying new UBDs which may represent the 'dark matter' of the ubiquitin system.
Collapse
|
11
|
Xiong W, Tang TX, Littleton E, Karcini A, Lazar IM, Capelluto DGS. Preferential phosphatidylinositol 5-phosphate binding contributes to a destabilization of the VHS domain structure of Tom1. Sci Rep 2019; 9:10868. [PMID: 31350523 PMCID: PMC6659632 DOI: 10.1038/s41598-019-47386-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
Tom1 transports endosomal ubiquitinated proteins that are targeted for degradation in the lysosomal pathway. Infection of eukaryotic cells by Shigella flexneri boosts oxygen consumption and promotes the synthesis of phosphatidylinositol-5-phosphate (PtdIns5P), which triggers Tom1 translocation to signaling endosomes. Removing Tom1 from its cargo trafficking function hinders protein degradation in the host and, simultaneously, enables bacterial survival. Tom1 preferentially binds PtdIns5P via its VHS domain, but the effects of a reducing environment as well as PtdIns5P on the domain structure and function are unknown. Thermal denaturation studies demonstrate that, under reducing conditions, the monomeric Tom1 VHS domain switches from a three-state to a two-state transition behavior. PtdIns5P reduced thermostability, interhelical contacts, and conformational compaction of Tom1 VHS, suggesting that the phosphoinositide destabilizes the protein domain. Destabilization of Tom1 VHS structure was also observed with other phospholipids. Isothermal calorimetry data analysis indicates that, unlike ubiquitin, Tom1 VHS endothermically binds to PtdIns5P through two noncooperative binding sites, with its acyl chains playing a relevant role in the interaction. Altogether, these findings provide mechanistic insights about the recognition of PtdIns5P by the VHS domain that may explain how Tom1, when in a different VHS domain conformational state, interacts with downstream effectors under S. flexneri infection.
Collapse
Affiliation(s)
- Wen Xiong
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Tuo-Xian Tang
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Evan Littleton
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Arba Karcini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, United States.
| |
Collapse
|
12
|
Breindel L, Burz DS, Shekhtman A. Interaction proteomics by using in-cell NMR spectroscopy. J Proteomics 2019; 191:202-211. [PMID: 29427760 PMCID: PMC6082733 DOI: 10.1016/j.jprot.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 12/17/2022]
Abstract
A synopsis of in-cell NMR spectroscopic approaches to study interaction proteomics in prokaryotic and eukaryotic cells is presented. We describe the use of in-cell NMR spectroscopy to resolve high resolution protein structures, discuss methodologies for determining and analyzing high and low affinity protein-target structural interactions, including intrinsically disordered proteins, and detail important functional interactions that result from these interactions. SIGNIFICANCE: The ultimate goal of structural and biochemical research is to understand how macromolecular interactions give rise to and regulate biological activity in living cells. The challenge is formidable due to the complexity that arises not only from the number of proteins (genes) expressed by the organism, but also from the combinatorial interactions between them. Despite ongoing efforts to decipher the complex nature of protein interactions, new methods for structurally characterizing protein complexes are needed to fully understand molecular networks. With the onset of in-cell NMR spectroscopy, molecular structures and interactions can be studied under physiological conditions shedding light on the structural underpinning of biological activity.
Collapse
Affiliation(s)
- Leonard Breindel
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
13
|
Abstract
Ubiquitylation is an essential posttranslational modification that controls cell division, differentiation, and survival in all eukaryotes. By combining multiple E3 ligases (writers), ubiquitin-binding effectors (readers), and de-ubiquitylases (erasers) with functionally distinct ubiquitylation tags, the ubiquitin system constitutes a powerful signaling network that is employed in similar ways from yeast to humans. Here, we discuss conserved principles of ubiquitin-dependent signaling that illustrate how this posttranslational modification shapes intracellular signaling networks to establish robust development and homeostasis throughout the eukaryotic kingdom.
Collapse
Affiliation(s)
- Eugene Oh
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - David Akopian
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
14
|
Frankel EB, Audhya A. ESCRT-dependent cargo sorting at multivesicular endosomes. Semin Cell Dev Biol 2018; 74:4-10. [PMID: 28797838 PMCID: PMC5803488 DOI: 10.1016/j.semcdb.2017.08.020] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 01/26/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of five multi-subunit protein complexes, which act cooperatively at specialized endosomes to facilitate the movement of specific cargoes from the limiting membrane into vesicles that bud into the endosome lumen. Over the past decade, numerous proteins, lipids, and RNAs have been shown to be incorporated into intralumenal vesicles (ILVs), but the mechanisms by which these unique cargoes are captured are only now becoming better understood. Here, we discuss the potential roles that the ESCRT machinery plays during cargo sorting at multivesicular endosomes (MVEs).
Collapse
Affiliation(s)
- E B Frankel
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI, 53706, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
15
|
Parchure A, Vyas N, Mayor S. Wnt and Hedgehog: Secretion of Lipid-Modified Morphogens. Trends Cell Biol 2018; 28:157-170. [PMID: 29132729 PMCID: PMC6941938 DOI: 10.1016/j.tcb.2017.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/07/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
Morphogens are signaling molecules produced by a localized source, specifying cell fate in a graded manner. The source secretes morphogens into the extracellular milieu to activate various target genes in an autocrine or paracrine manner. Here we describe various secreted forms of two canonical morphogens, the lipid-anchored Hedgehog (Hh) and Wnts, indicating the involvement of multiple carriers in the transport of these morphogens. These different extracellular secreted forms are likely to have distinct functions. Here we evaluate newly identified mechanisms that morphogens use to traverse the required distance to activate discrete paracrine signaling.
Collapse
Affiliation(s)
- Anup Parchure
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India; Current address: Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Neha Vyas
- St John's Research Institute, St John's National Academy of Health Sciences, Bangalore 560034, India.
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India.
| |
Collapse
|
16
|
Schreij AMA, Fon EA, McPherson PS. Endocytic membrane trafficking and neurodegenerative disease. Cell Mol Life Sci 2016; 73:1529-45. [PMID: 26721251 PMCID: PMC11108351 DOI: 10.1007/s00018-015-2105-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are amongst the most devastating of human disorders. New technologies have led to a rapid increase in the identification of disease-related genes with an enhanced appreciation of the key roles played by genetics in the etiology of these disorders. Importantly, pinpointing the normal function of disease gene proteins leads to new understanding of the cellular machineries and pathways that are altered in the disease process. One such emerging pathway is membrane trafficking in the endosomal system. This key cellular process controls the localization and levels of a myriad of proteins and is thus critical for normal cell function. In this review we will focus on three neurodegenerative diseases; Parkinson disease, amyotrophic lateral sclerosis, and hereditary spastic paraplegias, for which a large number of newly discovered disease genes encode proteins that function in endosomal membrane trafficking. We will describe how alterations in these proteins affect endosomal function and speculate on the contributions of these disruptions to disease pathophysiology.
Collapse
Affiliation(s)
- Andrea M A Schreij
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
17
|
Burana D, Yoshihara H, Tanno H, Yamamoto A, Saeki Y, Tanaka K, Komada M. The Ankrd13 Family of Ubiquitin-interacting Motif-bearing Proteins Regulates Valosin-containing Protein/p97 Protein-mediated Lysosomal Trafficking of Caveolin 1. J Biol Chem 2016; 291:6218-31. [PMID: 26797118 PMCID: PMC4813590 DOI: 10.1074/jbc.m115.710707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/15/2016] [Indexed: 12/11/2022] Open
Abstract
Caveolin 1 (Cav-1) is an oligomeric protein that forms flask-shaped, lipid-rich pits, termed caveolae, on the plasma membrane. Cav-1 is targeted for lysosomal degradation in ubiquitination- and valosin-containing protein (VCP)-dependent manners. VCP, an ATPase associated with diverse cellular activities that remodels or segregates ubiquitinated protein complexes, has been proposed to disassemble Cav-1 oligomers on the endosomal membrane, facilitating the trafficking of Cav-1 to the lysosome. Genetic mutations in VCP compromise the lysosomal trafficking of Cav-1, leading to a disease called inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia (IBMPFD). Here we identified the Ankrd13 family of ubiquitin-interacting motif (UIM)-containing proteins as novel VCP-interacting molecules on the endosome. Ankrd13 proteins formed a ternary complex with VCP and Cav-1 and exhibited high binding affinity for ubiquitinated Cav-1 oligomers in an UIM-dependent manner. Mass spectrometric analyses revealed that Cav-1 undergoes Lys-63-linked polyubiquitination, which serves as a lysosomal trafficking signal, and that the UIMs of Ankrd13 proteins bind preferentially to this ubiquitin chain type. The overexpression of Ankrd13 caused enlarged hollow late endosomes, which was reminiscent of the phenotype of the VCP mutations in IBMPFD. Overexpression of Ankrd13 proteins also stabilized ubiquitinated Cav-1 oligomers on the limiting membrane of enlarged endosomes. The interaction with Ankrd13 was abrogated in IMBPFD-associated VCP mutants. Collectively, our results suggest that Ankrd13 proteins cooperate with VCP to regulate the lysosomal trafficking of ubiquitinated Cav-1.
Collapse
Affiliation(s)
- Daocharad Burana
- From the Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hidehito Yoshihara
- the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan, and
| | - Hidetaka Tanno
- From the Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Akitsugu Yamamoto
- the Department of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama 526-0829, Japan
| | - Yasushi Saeki
- the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan, and
| | - Keiji Tanaka
- the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan, and
| | - Masayuki Komada
- From the Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan,
| |
Collapse
|
18
|
Nam H, Lee S. Identification of STAM1 as a novel effector of ventral projection of spinal motor neurons. Development 2016; 143:2334-43. [DOI: 10.1242/dev.135848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
During spinal cord development, motor neuron (MN) axons exit the spinal cord ventrally, although the molecular basis for this process remains poorly understood. STAM1 and Hrs form a complex involved with endosomal targeting of cargo proteins, including the chemokine receptor CXCR4. Interestingly, the absence of CXCR4 signaling in spinal MNs is known to enforce improper extension of the axons into the dorsal side of the spinal cord. Here we report that the MN-specific Isl1-Lhx3 complex directly transactivates the Stam1 gene and STAM1 functions in determining the ventral spinal MN axonal projections. STAM1 is co-expressed with Hrs in embryonic spinal MNs, and knock-down of STAM1 in the developing chick spinal cord results in down-regulation of the expression of CXCR4, accompanied by dorsally projecting motor axons. Interestingly, overexpression of STAM1 or CXCR4 also results in dorsal projection of motor axons, suggesting that proper CXCR4 protein level is critical for the ventral motor axon trajectory. Our results reveal a critical regulatory axis for the ventral axonal trajectory of developing spinal MNs, consisting of the Isl1-Lhx3 complex, STAM1 and CXCR4.
Collapse
Affiliation(s)
- Heejin Nam
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
19
|
The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion. PLoS Pathog 2015; 11:e1005123. [PMID: 26431433 PMCID: PMC4592276 DOI: 10.1371/journal.ppat.1005123] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022] Open
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) is an important cellular machinery for the sorting and trafficking of ubiquitinated cargos. It is also known that ESCRT is required for the egress of a number of viruses. To investigate the relationship between ESCRT and hepatitis B virus (HBV), we conducted an siRNA screening of ESCRT components for their potential effect on HBV replication and virion release. We identified a number of ESCRT factors required for HBV replication, and focused our study here on HGS (HRS, hepatocyte growth factor-regulated tyrosine kinase substrate) in the ESCRT-0 complex. Aberrant levels of HGS suppressed HBV transcription, replication and virion secretion. Hydrodynamic delivery of HGS in a mouse model significantly suppressed viral replication in the liver and virion secretion in the serum. Surprisingly, overexpression of HGS stimulated the release of HBV naked capsids, irrespective of their viral RNA, DNA, or empty contents. Mutant core protein (HBc 1-147) containing no arginine-rich domain (ARD) failed to secrete empty virions with or without HGS. In contrast, empty naked capsids of HBc 1-147 could still be promoted for secretion by HGS. HGS exerted a strong positive effect on the secretion of naked capsids, at the expense of a reduced level of virions. The association between HGS and HBc appears to be ubiquitin-independent. Furthermore, HBc is preferentially co-localized with HGS near the cell periphery, instead of near the punctate endosomes in the cytoplasm. In summary, our work demonstrated the importance of an optimum level of HGS in HBV propagation. In addition to an effect on HBV transcription, HGS can diminish the pool size of intracellular nucleocapsids with ongoing genome maturation, probably in part by promoting the secretion of naked capsids. The secretion routes of HBV virions and naked capsids can be clearly distinguished based on the pleiotropic effect of HGS involved in the ESCRT-0 complex.
Collapse
|
20
|
Hierro A, Gershlick DC, Rojas AL, Bonifacino JS. Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:159-202. [PMID: 26315886 DOI: 10.1016/bs.ircmb.2015.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endosomes undergo extensive spatiotemporal rearrangements as proteins and lipids flux through them in a series of fusion and fission events. These controlled changes enable the concentration of cargo for eventual degradation while ensuring the proper recycling of other components. A growing body of studies has now defined multiple recycling pathways from endosomes to the trans-Golgi network (TGN) which differ in their molecular machineries. The recycling process requires specific sets of lipids, coats, adaptors, and accessory proteins that coordinate cargo selection with membrane deformation and its association with the cytoskeleton. Specific tethering factors and SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) complexes are then required for the docking and fusion with the acceptor membrane. Herein, we summarize some of the current knowledge of the machineries that govern the retrograde transport from endosomes to the TGN.
Collapse
Affiliation(s)
- Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - David C Gershlick
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Kapuralin K, Ćurlin M, Mitrečić D, Kosi N, Schwarzer C, Glavan G, Gajović S. STAM2, a member of the endosome-associated complex ESCRT-0 is highly expressed in neurons. Mol Cell Neurosci 2015; 67:104-15. [DOI: 10.1016/j.mcn.2015.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 06/03/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022] Open
|
22
|
Mageswaran SK, Johnson NK, Odorizzi G, Babst M. Constitutively active ESCRT-II suppresses the MVB-sorting phenotype of ESCRT-0 and ESCRT-I mutants. Mol Biol Cell 2014; 26:554-68. [PMID: 25501366 PMCID: PMC4310745 DOI: 10.1091/mbc.e14-10-1469] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study is a step toward understanding the minimal requirements for MVB biogenesis and for ESCRT machinery in this process. Early ESCRT complexes (ESCRT-0 and -I) seem to have redundant functions in cargo sorting. Furthermore, vesicle formation seems to require cargo sorting in addition to late ESCRT machinery. The endosomal sorting complex required for transport (ESCRT) protein complexes function at the endosome in the formation of intraluminal vesicles (ILVs) containing cargo proteins destined for the vacuolar/lysosomal lumen. The early ESCRTs (ESCRT-0 and -I) are likely involved in cargo sorting, whereas ESCRT-III and Vps4 function to sever the neck of the forming ILVs. ESCRT-II links these functions by initiating ESCRT-III formation in an ESCRT-I–regulated manner. We identify a constitutively active mutant of ESCRT-II that partially suppresses the phenotype of an ESCRT-I or ESCRT-0 deletion strain, suggesting that these early ESCRTs are not essential and have redundant functions. However, the ESCRT-III/Vps4 system alone is not sufficient for ILV formation but requires cargo sorting mediated by one of the early ESCRTs.
Collapse
Affiliation(s)
- Shrawan Kumar Mageswaran
- Center for Cell and Genome Science and Department of Biology, University of Utah, Salt Lake City, UT 84112
| | - Natalie K Johnson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Greg Odorizzi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Markus Babst
- Center for Cell and Genome Science and Department of Biology, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
23
|
Föcking M, Opstelten R, Prickaerts J, Steinbusch HWM, Dunn MJ, van den Hove DLA, Cotter DR. Proteomic investigation of the hippocampus in prenatally stressed mice implicates changes in membrane trafficking, cytoskeletal, and metabolic function. Dev Neurosci 2014; 36:432-42. [PMID: 25138076 DOI: 10.1159/000365327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
Prenatal stress influences the development of the fetal brain and so contributes to the risk of the development of psychiatric disorders in later life. The hippocampus is particularly sensitive to prenatal stress, and robust abnormalities have been described in the hippocampus in schizophrenia and depression. The aim of this study was to determine whether prenatal stress is associated with distinct patterns of differential protein expression in the hippocampus using a validated mouse model. We therefore performed a comparative proteomic study assessing female hippocampal samples from 8 prenatally stressed mice and 8 control mice. Differential protein expression was assessed using 2-dimensional difference in gel electrophoresis and subsequent mass spectrometry. The observed changes in a selected group of differentially expressed proteins were confirmed by Western blotting. In comparison to controls, 47 protein spots (38 individual proteins) were found to be differentially expressed in the hippocampus of prenatally stressed mice. Functional grouping of these proteins revealed that prenatal stress influenced the expression of proteins involved in brain development, cytoskeletal composition, stress response, and energy metabolism. Western blotting was utilized to validate the changes in calretinin, hippocalcin, profilin-1 and the signal-transducing adaptor molecule STAM1. Septin-5 could not be validated via Western blotting due to methodological issues. Closer investigation of the validated proteins also pointed to an interesting role for membrane trafficking deficits mediated by prenatal stress. Our findings demonstrate that prenatal stress leads to altered hippocampal protein expression, implicating numerous molecular pathways that may provide new targets for psychotropic drug development.
Collapse
Affiliation(s)
- Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
24
|
Hwang GW, Murai Y, Takahashi T, Naganuma A. The protein transportation pathway from Golgi to vacuoles via endosomes plays a role in enhancement of methylmercury toxicity. Sci Rep 2014; 4:5888. [PMID: 25074250 PMCID: PMC4118254 DOI: 10.1038/srep05888] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/14/2014] [Indexed: 11/09/2022] Open
Abstract
Methylmercury causes serious damage to the central nervous system, but the molecular mechanisms of methylmercury toxicity are only marginally understood. In this study, we used a gene-deletion mutant library of budding yeast to conduct genome-wide screening for gene knockouts affecting the sensitivity of methylmercury toxicity. We successfully identified 31 genes whose deletions confer resistance to methylmercury in yeast, and 18 genes whose deletions confer hypersensitivity to methylmercury. Yeast genes whose deletions conferred resistance to methylmercury included many gene encoding factors involved in protein transport to vacuoles. Detailed examination of the relationship between the factors involved in this transport system and methylmercury toxicity revealed that mutants with loss of the factors involved in the transportation pathway from the trans-Golgi network (TGN) to the endosome, protein uptake into the endosome, and endosome-vacuole fusion showed higher methylmercury resistance than did wild-type yeast. The results of our genetic engineering study suggest that this vesicle transport system (proteins moving from the TGN to vacuole via endosome) is responsible for enhancing methylmercury toxicity due to the interrelationship between the pathways. There is a possibility that there may be proteins in the cell that enhance methylmercury toxicity through the protein transport system.
Collapse
Affiliation(s)
- Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yasutaka Murai
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tsutomu Takahashi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
25
|
Schuh AL, Audhya A. The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit Rev Biochem Mol Biol 2014; 49:242-61. [PMID: 24456136 DOI: 10.3109/10409238.2014.881777] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The manipulation and reorganization of lipid bilayers are required for diverse cellular processes, ranging from organelle biogenesis to cytokinetic abscission, and often involves transient membrane disruption. A set of membrane-associated proteins collectively known as the endosomal sorting complex required for transport (ESCRT) machinery has been implicated in membrane scission steps, which transform a single, continuous bilayer into two distinct bilayers, while simultaneously segregating cargo throughout the process. Components of the ESCRT pathway, which include 5 distinct protein complexes and an array of accessory factors, each serve discrete functions. This review focuses on the molecular mechanisms by which the ESCRT proteins facilitate cargo sequestration and membrane remodeling and highlights their unique roles in cellular homeostasis.
Collapse
Affiliation(s)
- Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health , Madison, WI , USA
| | | |
Collapse
|
26
|
Mitra S, Traughber CA, Brannon MK, Gomez S, Capelluto DGS. Ubiquitin interacts with the Tollip C2 and CUE domains and inhibits binding of Tollip to phosphoinositides. J Biol Chem 2013; 288:25780-25791. [PMID: 23880770 DOI: 10.1074/jbc.m113.484170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large number of cellular signaling processes are directed through internalization, via endocytosis, of polyubiquitinated cargo proteins. Tollip is an adaptor protein that facilitates endosomal cargo sorting for lysosomal degradation. Tollip preferentially binds phosphatidylinositol 3-phosphate (PtdIns(3)P) via its C2 domain, an association that may be required for endosomal membrane targeting. Here, we show that Tollip binds ubiquitin through its C2 and CUE domains and that its association with the C2 domain inhibits PtdIns(3)P binding. NMR analysis demonstrates that the C2 and CUE domains bind to overlapping sites on ubiquitin, suggesting that two ubiquitin molecules associate with Tollip simultaneously. Hydrodynamic studies reveal that ubiquitin forms heterodimers with the CUE domain, indicating that the association disrupts the dimeric state of the CUE domain. We propose that, in the absence of polyubiquitinated cargo, the dual binding of ubiquitin partitions Tollip into membrane-bound and membrane-free states, a function that contributes to the engagement of Tollip in both membrane trafficking and cytosolic pathways.
Collapse
Affiliation(s)
- Sharmistha Mitra
- From the Department of Biological Sciences, Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia 24061
| | - C Alicia Traughber
- From the Department of Biological Sciences, Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia 24061
| | - Mary K Brannon
- From the Department of Biological Sciences, Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia 24061
| | - Stephanie Gomez
- From the Department of Biological Sciences, Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia 24061
| | - Daniel G S Capelluto
- From the Department of Biological Sciences, Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia 24061.
| |
Collapse
|
27
|
UVSSA and USP7, a new couple in transcription-coupled DNA repair. Chromosoma 2013; 122:275-84. [PMID: 23760561 PMCID: PMC3714559 DOI: 10.1007/s00412-013-0420-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/23/2023]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) specifically removes transcription-blocking lesions from our genome. Defects in this pathway are associated with two human disorders: Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS). Despite a similar cellular defect in the UV DNA damage response, patients with these syndromes exhibit strikingly distinct symptoms; CS patients display severe developmental, neurological, and premature aging features, whereas the phenotype of UVSS patients is mostly restricted to UV hypersensitivity. The exact molecular mechanism behind these clinical differences is still unknown; however, they might be explained by additional functions of CS proteins beyond TC-NER. A short overview of the current hypotheses addressing possible molecular mechanisms and the proteins involved are presented in this review. In addition, we will focus on two new players involved in TC-NER which were recently identified: UV-stimulated scaffold protein A (UVSSA) and ubiquitin-specific protease 7 (USP7). UVSSA has been found to be the causative gene for UVSS and, together with USP7, is implicated in regulating TC-NER activity. We will discuss the function of UVSSA and USP7 and how the discovery of these proteins contributes to a better understanding of the molecular mechanisms underlying the clinical differences between UVSS and the more severe CS.
Collapse
|
28
|
Tanno H, Komada M. The ubiquitin code and its decoding machinery in the endocytic pathway. J Biochem 2013; 153:497-504. [PMID: 23564907 DOI: 10.1093/jb/mvt028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The level of individual plasma membrane proteins needs to be regulated strictly depending on the situation under which the cell is placed. To reduce the level of a specific plasma membrane protein in a short period, cells internalize the protein from the cell surface by endocytosis and degrade it in the lysosome. Internalized cargo proteins are transported to the limiting membrane of the early endosome, from which they are incorporated into the lumenal vesicles of the endosome. Such endosomes, called the late endosome or multivesicular body, fuse with the lysosome, thereby delivering cargo proteins to the lysosomal lumen and exposing them to acid hydrolases. During this lysosomal trafficking process, ubiquitination serves as a signal that drives internalization and endosome-to-lysosome transport of the cargo proteins. In this review, we discuss the types of ubiquitination that drive these trafficking processes, and how the ubiquitin (Ub) modifications are recognized by specific Ub-binding proteins.
Collapse
Affiliation(s)
- Hidetaka Tanno
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | |
Collapse
|
29
|
Haglund K, Dikic I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 2013; 125:265-75. [PMID: 22357968 DOI: 10.1242/jcs.091280] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ligand-induced activation of transmembrane receptors activates intracellular signaling cascades that control vital cellular processes, such as cell proliferation, differentiation, migration and survival. Receptor signaling is modulated by several mechanisms to ensure that the correct biological outcome is achieved. One such mechanism, which negatively regulates receptor signaling, involves the modification of receptors with ubiquitin. This post-translational modification can promote receptor endocytosis and targets receptors for lysosomal degradation, thereby ensuring termination of receptor signaling. In this Commentary, we review the roles of ubiquitylation in receptor endocytosis and degradative endosomal sorting by drawing on the epidermal growth factor receptor (EGFR) as a well-studied example. Furthermore, we elaborate on the molecular basis of ubiquitin recognition along the endocytic pathway through compartment-specific ubiquitin-binding proteins and highlight how endocytic sorting machineries control these processes. In addition, we discuss the importance of ubiquitin-dependent receptor endocytosis for the maintenance of cellular homeostasis and in the prevention of diseases such as cancer.
Collapse
Affiliation(s)
- Kaisa Haglund
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway.
| | | |
Collapse
|
30
|
Ali N, Zhang L, Taylor S, Mironov A, Urbé S, Woodman P. Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr Biol 2013; 23:453-61. [PMID: 23477725 DOI: 10.1016/j.cub.2013.02.033] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/04/2013] [Accepted: 02/14/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sorting ubiquitinated epidermal growth factor receptor (EGFR) to the intralumenal vesicles of the multivesicular body requires the coordinated action of several ESCRT complexes. A central question is how EGFR transits vectorially from early, ubiquitin-binding ESCRTs to the final complex, ESCRT-III, such that cargo sequestration is coupled with intralumenal vesicle formation. RESULTS We show that the ESCRT accessory protein HD-PTP/PTPN23 associates with EGFR and combines with the deubiquitinating enzyme UBPY/USP8 to transfer EGFR from ESCRT-0 to ESCRT-III and drive EGFR sorting to intralumenal vesicles. HD-PTP binds ESCRT-0 via two interactions with the STAM2 subunit. First, the HD-PTP Bro1 domain binds the core domain of STAM2. This is competed by the ESCRT-III subunit CHMP4B, which binds an overlapping site on HD-PTP Bro1. Second, a proline-rich peptide in HD-PTP binds the SH3 domain of STAM2. Similar proline-rich peptides on UBPY also bind STAM2 SH3 to facilitate EGFR deubiquitination. Hence, locally recruited UBPY would be expected to compete with HD-PTP for STAM2 binding at this second site. Indeed, we show that HD-PTP recruits UBPY to EGFR. Association of UBPY with HD-PTP involves UBPY interacting with HD-PTP-bound CHMP4B, as well as additional interaction(s) between UBPY and HD-PTP. CONCLUSIONS This study identifies HD-PTP as a central coordinator of the ESCRT pathway for EGFR. Based on these studies, we propose a model whereby the concerted recruitment of CHMP4B and UBPY to HD-PTP and the engagement of UBPY by STAM2 displaces ESCRT-0 from HD-PTP, deubiquitinates EGFR, and releases ESCRT-0 from cargo in favor of ESCRT-III.
Collapse
Affiliation(s)
- Nazim Ali
- University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
31
|
Non-covalent interaction between polyubiquitin and GTP cyclohydrolase 1 dictates its degradation. PLoS One 2012; 7:e43306. [PMID: 22984419 PMCID: PMC3440371 DOI: 10.1371/journal.pone.0043306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
GTP cyclohydrolase 1 (GTPCH1) is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4). GTPCH1 protein degradation has been reported in animal models of several diseases, including diabetes mellitus and hypertension. However, the molecular mechanisms by which GTPCH1 is degraded remain uncharacterized. Here we report a novel non-covalent interaction between polyubiquitin and GTPCH1 in vitro and in vivo. The non-covalent binding of GTPCH1 to polyubiquitin via an ubiquitin-binding domain (UBD) results in ubiquitination and degradation. Ectopic expression of ubiquitin in cultured cells accelerated GTPCH1 degradation. In cultured cells and in vitro assays, Lys48-linked ubiquitin chains, but not Lys63-linked chains, interacted with GTPCH1 and targeted it for degradation. Consistently, proteasome inhibition attenuated GTPCH1 degradation. Finally, direct mutagenesis of an isoleucine (Ile131) in the hydrophobic patch of the GTPCH1 UBD affected its ubiquitin binding and the enzyme stability. Taken together, we conclude that GTPCH1 non-covalently interacts with polyubiquitin via an ubiquitin-binding domain. The polyubiquitin binding directs GTPCH1 ubiquitination and proteasome degradation.
Collapse
|
32
|
Schwertman P, Lagarou A, Dekkers DHW, Raams A, van der Hoek AC, Laffeber C, Hoeijmakers JHJ, Demmers JAA, Fousteri M, Vermeulen W, Marteijn JA. UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat Genet 2012; 44:598-602. [PMID: 22466611 DOI: 10.1038/ng.2230] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/29/2012] [Indexed: 02/07/2023]
Abstract
Transcription-coupled nucleotide-excision repair (TC-NER) is a subpathway of NER that efficiently removes the highly toxic RNA polymerase II blocking lesions in DNA. Defective TC-NER gives rise to the human disorders Cockayne syndrome and UV-sensitive syndrome (UV(S)S). NER initiating factors are known to be regulated by ubiquitination. Using a SILAC-based proteomic approach, we identified UVSSA (formerly known as KIAA1530) as part of a UV-induced ubiquitinated protein complex. Knockdown of UVSSA resulted in TC-NER deficiency. UVSSA was found to be the causative gene for UV(S)S, an unresolved NER deficiency disorder. The UVSSA protein interacts with elongating RNA polymerase II, localizes specifically to UV-induced lesions, resides in chromatin-associated TC-NER complexes and is implicated in stabilizing the TC-NER master organizing protein ERCC6 (also known as CSB) by delivering the deubiquitinating enzyme USP7 to TC-NER complexes. Together, these findings indicate that UVSSA-USP7–mediated stabilization of ERCC6 represents a critical regulatory mechanism of TC-NER in restoring gene expression.
Collapse
Affiliation(s)
- Petra Schwertman
- Department of Genetics and Netherlands Proteomics Centre, Centre for Biomedical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Post-translational modification by ubiquitin (ubiquitination, ubiquitylation, ubiquitinylation) is used as a robust signaling mechanism in a variety of processes that are essential for cell homeostasis. Its signaling specificity is conferred by the inherent dynamics of ubiquitin, the multivalency of ubiquitin chains, and its subcellular context, often defined by ubiquitin receptors and the substrate. Greater than 150 ubiquitin receptors have been found and their ubiquitin-binding domains (UBDs) are structurally diverse and include alpha-helical motifs, zinc fingers (ZnF), pleckstrin-homology (PH) domains, ubiquitin conjugating (Ubc)-related structures and src homology 3 (SH3) domains. New UBD structural motifs continue to be identified expanding the ubiquitin-signaling map to proteins and structural families not previously associated with ubiquitin trafficking. In this manuscript, we highlight several ubiquitin receptors from the multiple UBD folds with a focus on the structural characteristics of their interaction with ubiquitin.
Collapse
Affiliation(s)
- Leah Randles
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
34
|
Rahighi S, Dikic I. Selectivity of the ubiquitin-binding modules. FEBS Lett 2012; 586:2705-10. [DOI: 10.1016/j.febslet.2012.04.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 12/31/2022]
|
35
|
Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 2012; 81:291-322. [PMID: 22482907 DOI: 10.1146/annurev-biochem-051810-094654] [Citation(s) in RCA: 583] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ubiquitin acts as a versatile cellular signal that controls a wide range of biological processes including protein degradation, DNA repair, endocytosis, autophagy, transcription, immunity, and inflammation. The specificity of ubiquitin signaling is achieved by alternative conjugation signals (monoubiquitin and ubiquitin chains) and interactions with ubiquitin-binding proteins (known as ubiquitin receptors) that decode ubiquitinated target signals into biochemical cascades in the cell. Herein, we review the current knowledge pertaining to the structural and functional features of ubiquitin-binding proteins and the mechanisms by which they recognize various types of ubiquitin topologies. The combinatorial use of diverse ubiquitin-binding domains (UBDs) in full-length proteins, selective recognition of chains with distinct linkages and length, and posttranslational modifications of ubiquitin receptors or multivalent interactions within protein complexes illustrate a few mechanisms by which a circuitry of signaling networks can be rewired by ubiquitin-binding proteins to control cellular functions in vivo.
Collapse
Affiliation(s)
- Koraljka Husnjak
- Institute of Biochemistry II, School of Medicine, Goethe University, 60590 Frankfurt am Main, Germany.
| | | |
Collapse
|
36
|
Lange A, Castañeda C, Hoeller D, Lancelin JM, Fushman D, Walker O. Evidence for cooperative and domain-specific binding of the signal transducing adaptor molecule 2 (STAM2) to Lys63-linked diubiquitin. J Biol Chem 2012; 287:18687-99. [PMID: 22493438 DOI: 10.1074/jbc.m111.324954] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As the upstream component of the ESCRT (endosomal sorting complexes required for transport) machinery, the ESCRT-0 complex is responsible for directing ubiquitinated membrane proteins to the multivesicular body pathway. ESCRT-0 is formed by two subunits known as Hrs (hepatocyte growth factor-regulated substrate) and STAM (signal transducing adaptor molecule), both of which harbor multiple ubiquitin-binding domains (UBDs). In particular, STAM2 possesses two UBDs, the VHS (Vps27/Hrs/Stam) and UIM (ubiquitin interacting motif) domains, connected by a 20-amino acid flexible linker. In the present study, we report the interactions of the UIM domain and VHS-UIM construct of STAM2 with monoubiquitin (Ub), Lys(48)- and Lys(63)-linked diubiquitins. Our results demonstrate that the UIM domain alone binds monoubiquitin, Lys(48)- and Lys(63)-linked diubiquitins with the same affinity and in the same binding mode. Interestingly, binding of VHS-UIM to Lys(63)-linked diubiquitin is not only avid, but also cooperative. We also show that the distal domain of Lys(63)-linked diubiquitin stabilizes the helical structure of the UIM domain and that the corresponding complex adopts a specific structural organization responsible for its greater affinity. In contrast, binding of VHS-UIM to Lys(48)-linked diubiquitin and monoubiquitin is not cooperative and does not show any avidity. These results may explain the better sorting efficiency of some cargoes polyubiquitinated with Lys(63)-linked chains over monoubiquitinated cargoes or those tagged with Lys(48)-linked chains.
Collapse
Affiliation(s)
- Anja Lange
- Université de Lyon, CNRS, UMR 5280 Institut des Sciences Analytiques, 69622 Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
37
|
Ćurlin M, Kapuralin K, Muro AF, Baralle FE, Chowdhury K, Gajović S. Stam2 expression pattern during embryo development. Gene Expr Patterns 2012; 12:68-76. [DOI: 10.1016/j.gep.2011.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/19/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
|
38
|
Kapuralin K, Van Ginneken C, Curlin M, Timmermans JP, Gajovic S. Neurons and a Subset of Interstitial Cells of Cajal in the Enteric Nervous System Highly Express Stam2 Gene. Anat Rec (Hoboken) 2011; 295:113-20. [DOI: 10.1002/ar.21522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 09/15/2011] [Indexed: 11/08/2022]
|
39
|
Abstract
Multivesicular bodies (MVBs) deliver cargo destined for degradation to the vacuole or lysosome. The ESCRT (endosomal sorting complex required for transport) pathway is a key mediator of MVB biogenesis, but it also plays critical roles in retroviral budding and cytokinetic abscission. Despite these diverse roles, the ESCRT pathway can be simply seen as a cargo-recognition and membrane-sculpting machine viewable from three distinct perspectives: (1) the ESCRT proteins themselves, (2) the cargo they sort, and (3) the membrane they deform. Here, we review ESCRT function from these perspectives and discuss how ESCRTs may drive vesicle budding.
Collapse
|
40
|
Maldonado AY, Burz DS, Shekhtman A. In-cell NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 59:197-212. [PMID: 21920217 PMCID: PMC3175053 DOI: 10.1016/j.pnmrs.2010.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/08/2010] [Indexed: 05/23/2023]
Affiliation(s)
- Andres Y Maldonado
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | | | | |
Collapse
|
41
|
Akimov V, Rigbolt KTG, Nielsen MM, Blagoev B. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics. MOLECULAR BIOSYSTEMS 2011; 7:3223-33. [PMID: 21956701 DOI: 10.1039/c1mb05185g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Protein ubiquitination is a dynamic reversible post-translational modification that plays a key role in the regulation of numerous cellular processes including signal transduction, endocytosis, cell cycle control, DNA repair and gene transcription. The conjugation of the small protein ubiquitin or chains of ubiquitin molecules of various types and lengths to targeted proteins is known to alter proteins' lifespan, localization and function and to modulate protein interactions. Despite its central importance in various aspects of cellular life and function there are only a limited number of reports investigating ubiquitination on a proteomic scale, mainly due to the inherited complexity and heterogeneity of ubiquitination. We describe here a quantitative proteomics strategy based on the specificity of ubiquitin binding domains (UBDs) and Stable Isotope Labeling by Amino acids in Cell culture (SILAC) for selectively decoding ubiquitination-driven processes involved in the regulation of cellular signaling networks. We applied this approach to characterize the temporal dynamics of ubiquitination events accompanying epidermal growth factor receptor (EGFR) signal transduction. We used recombinant UBDs derived from endocytic adaptor proteins for specific enrichment of ubiquitinated complexes from the EGFR network and subsequent quantitative analyses by high accuracy mass spectrometry. We show that the strategy is suitable for profiling the dynamics of ubiquitination occurring on individual proteins as well as ubiquitination-dependent events in signaling pathways. In addition to a detailed seven time-point profile of EGFR ubiquitination over 30 minutes of ligand stimulation, our data determined prominent involvement of Lysine-63 ubiquitin branching in EGF signaling. Furthermore, we found two centrosomal proteins, PCM1 and Azi1, to form a multi-protein complex with the ubiquitin E3 ligases MIB1 and WWP2 downstream of the EGFR, thereby revealing possible ubiquitination cross-talk between EGF signaling and centrosomal-dependent rearrangements of the microtubules. This is a general strategy that can be utilized to study the dynamics of other cellular systems and post-translational modifications.
Collapse
Affiliation(s)
- Vyacheslav Akimov
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
42
|
Structural basis of cargo recognition by the myosin-X MyTH4-FERM domain. EMBO J 2011; 30:2734-47. [PMID: 21642953 PMCID: PMC3155308 DOI: 10.1038/emboj.2011.177] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/06/2011] [Indexed: 11/26/2022] Open
Abstract
Myosin-X is implicated in spindle assembly and filopodial transport. A detailed structure function analysis of the myosin-X tail domain in association with a cargo involved in axonal pathfinding, the netrin receptor DCC and competitive binding to integrin β5 and microtubules is presented. Myosin-X is an important unconventional myosin that is critical for cargo transportation to filopodia tips and is also utilized in spindle assembly by interacting with microtubules. We present a series of structural and biochemical studies of the myosin-X tail domain cassette, consisting of myosin tail homology 4 (MyTH4) and FERM domains in complex with its specific cargo, a netrin receptor DCC (deleted in colorectal cancer). The MyTH4 domain is folded into a helical VHS-like structure and is associated with the FERM domain. We found an unexpected binding mode of the DCC peptide to the subdomain C groove of the FERM domain, which is distinct from previously reported β–β associations found in radixin–adhesion molecule complexes. We also revealed direct interactions between the MyTH4–FERM cassette and tubulin C-terminal acidic tails, and identified a positively charged patch of the MyTH4 domain, which is involved in tubulin binding. We demonstrated that both DCC and integrin bindings interfere with microtubule binding and that DCC binding interferes with integrin binding. Our results provide the molecular basis by which myosin-X facilitates alternative dual binding to cargos and microtubules.
Collapse
|
43
|
Amano Y, Yamashita Y, Kojima K, Yoshino K, Tanaka N, Sugamura K, Takeshita T. Hrs recognizes a hydrophobic amino acid cluster in cytokine receptors during ubiquitin-independent endosomal sorting. J Biol Chem 2011; 286:15458-72. [PMID: 21362618 DOI: 10.1074/jbc.m110.191924] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a component of the ESCRT-0 protein complex that captures ubiquitylated cargo proteins and sorts them to the lysosomal pathway. Although Hrs acts as a key transporter for ubiquitin-dependent endosomal sorting, we previously reported that Hrs is also involved in ubiquitin-independent endosomal sorting of interleukin-2 receptor β (IL-2Rβ). Here, we show direct interactions between bacterially expressed Hrs and interleukin-4 receptor α (IL-4Rα), indicating that their binding is not required for ubiquitylation of the receptors, similar to the case for IL-2Rβ. Examinations of the Hrs binding regions of the receptors reveal that a hydrophobic amino acid cluster in both IL-2Rβ and IL-4Rα is essential for the binding. Whereas the wild-type receptors are delivered to LAMP1-positive late endosomes, mutant receptors lacking the hydrophobic amino acid cluster are sorted to lysobisphosphatidic acid-positive late endosomes rather than LAMP1-positive late endosomes. We also show that the degradation of these mutant receptors is attenuated. Accordingly, Hrs functions during ubiquitin-independent endosomal sorting of the receptors by recognizing the hydrophobic amino acid cluster. These findings suggest the existence of a group of cargo proteins that have this hydrophobic amino acid cluster as a ubiquitin-independent sorting signal.
Collapse
Affiliation(s)
- Yuji Amano
- Department of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Mayers JR, Fyfe I, Schuh AL, Chapman ER, Edwardson JM, Audhya A. ESCRT-0 assembles as a heterotetrameric complex on membranes and binds multiple ubiquitinylated cargoes simultaneously. J Biol Chem 2010; 286:9636-45. [PMID: 21193406 DOI: 10.1074/jbc.m110.185363] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ESCRT machinery consists of multiple protein complexes that collectively participate in the biogenesis of multivesicular endosomes (MVEs). The ESCRT-0 complex is composed of two subunits, Hrs and STAM, both of which can engage ubiquitinylated substrates destined for lysosomal degradation. Here, we conduct a comprehensive analysis of ESCRT-0:ubiquitin interactions using isothermal titration calorimetry and define the affinity of each ubiquitin-binding domain (UBD) within the intact ESCRT-0 complex. Our data demonstrate that ubiquitin binding is non-cooperative between the ESCRT-0 UBDs. Additionally, our findings show that the affinity of the Hrs double ubiquitin interacting motif (DUIM) for ubiquitin is more than 2-fold greater than that of UBDs found in STAM, suggesting that Hrs functions as the major ubiquitin-binding protein in ESCRT-0. In vivo, Hrs and STAM localize to endosomal membranes. To study recombinant ESCRT-0 assembly on lipid bilayers, we used atomic force microscopy. Our data show that ESCRT-0 forms mostly heterodimers and heterotetramers of Hrs and STAM when analyzed in the presence of membranes. Consistent with these findings, hydrodynamic analysis of endogenous ESCRT-0 indicates that it exists largely as a heterotetrameric complex of its two subunits. Based on these data, we present a revised model for ESCRT-0 function in cargo recruitment and concentration at the endosome.
Collapse
Affiliation(s)
- Jonathan R Mayers
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lange A, Hoeller D, Wienk H, Marcillat O, Lancelin JM, Walker O. NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin. Biochemistry 2010; 50:48-62. [PMID: 21121635 DOI: 10.1021/bi101594a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The VHS domain of the Stam2 protein is a ubiquitin binding domain involved in the recognition of ubiquitinated proteins committed to lysosomal degradation. Among all VHS domains, the VHS domain of Stam proteins is the strongest binder to monoubiqiuitin and exhibits preferences for K63-linked chains. In the present paper, we report the solution NMR structure of the Stam2-VHS domain in complex with monoubiquitin by means of chemical shift perturbations, spin relaxation, and paramagnetic relaxation enhancements. We also characterize the interaction of Stam2-VHS with K48- and K63-linked diubiquitin chains and report the first evidence that VHS binds differently to these two chains. Our data reveal that VHS enters the hydrophobic pocket of K48-linked diubiquitin and binds the two ubiquitin subunits with different affinities. In contrast, VHS interacts with K63-linked diubiquitin in a mode similar to its interaction with monoubiquitin. We also suggest possible structural models for both K48- and K63-linked diubiquitin in interaction with VHS. Our results, which demonstrate a different mode of binding of VHS for K48- and K63-linked diubiquitin, may explain the preference of VHS for K63- over K48-linked diubiquitin chains and monoubiquitin.
Collapse
Affiliation(s)
- Anja Lange
- Université de Lyon, UMR-CNRS 5180 Sciences Analytiques, 69622 Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
46
|
Zhadina M, Bieniasz PD. Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding. PLoS Pathog 2010; 6:e1001153. [PMID: 20975941 PMCID: PMC2958808 DOI: 10.1371/journal.ppat.1001153] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/17/2010] [Indexed: 12/17/2022] Open
Abstract
The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed. The release of an enveloped virus particle from an infected cell requires the separation of the viral and cell membranes. Many enveloped viruses accomplish this by parasitizing a set of cellular proteins, termed the ESCRT pathway, that normally separates cellular membranes from each other. In some cases, viral structural proteins encode peptides motifs that bind directly to, and thereby recruit, the ESCRT machinery. Alternatively, viruses can recruit enzymes, termed ubiquitin ligases, that bind to other proteins, and catalyze the addition of ubiquitin to them. It has, heretofore, been somewhat unclear precisely how the recruitment of ubiquitin ligases leads to the engagement of the ESCRT machinery. We show that the simple recruitment of a fragment of a ubiquitin ligase that is responsible for the addition of ubiquitin to other proteins is sufficient to drive virus particle release, even when it is not possible to attach ubiquitin to viral proteins. Paradoxically, we also found that simple attachment of ubiquitin to the same viral protein can also drive particle release. These results show that there is flexibility in the ways in which the ESCRT machinery can be recruited and how ubiquitin can be co-opted to enable this.
Collapse
Affiliation(s)
- Maria Zhadina
- Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, the Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, the Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Zhou R, Kabra R, Olson DR, Piper RC, Snyder PM. Hrs controls sorting of the epithelial Na+ channel between endosomal degradation and recycling pathways. J Biol Chem 2010; 285:30523-30. [PMID: 20675381 DOI: 10.1074/jbc.m110.150755] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial Na(+) absorption is regulated by Nedd4-2, an E3 ubiquitin ligase that reduces expression of the epithelial Na(+) channel (ENaC) at the cell surface. Defects in this regulation cause Liddle syndrome, an inherited form of hypertension. Previous work found that Nedd4-2 functions through two distinct effects on trafficking, enhancing both ENaC endocytosis and ENaC degradation in lysosomes. To investigate the mechanism by which Nedd4-2 targets ENaC to lysosomes, we tested the role of hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), a component of the endosomal sorting complexes required for transport (ESCRT)-0 complex. We found that α-, β-, and γENaC each interact with Hrs. These interactions were enhanced by Nedd4-2 and were dependent on the catalytic function of Nedd4-2 as well as its WW domains. Mutation of ENaC PY motifs, responsible for inherited hypertension (Liddle syndrome), decreased Hrs binding to ENaC. Moreover, binding of ENaC to Hrs was reduced by dexamethasone/serum- and glucocorticoid-inducible kinase and cAMP, which are signaling pathways that inhibit Nedd4-2. Nedd4-2 bound to Hrs and catalyzed Hrs ubiquitination but did not alter Hrs protein levels. Expression of a dominant negative Hrs lacking its ubiquitin-interacting motif (Hrs-ΔUIM) increased ENaC surface expression and current. This occurred through reduced degradation of the cell surface pool of proteolytically activated ENaC, which enhanced its recycling to the cell surface. In contrast, Hrs-ΔUIM had no effect on degradation of uncleaved inactive channels. The data support a model in which Nedd4-2 induces binding of ENaC to Hrs, which mediates the sorting decision between ENaC degradation and recycling.
Collapse
Affiliation(s)
- Ruifeng Zhou
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
The ESCRT machinery consists of the peripheral membrane protein complexes ESCRT-0, -I, -II, -III, and Vps4-Vta1, and the ALIX homodimer. The ESCRT system is required for degradation of unneeded or dangerous plasma membrane proteins; biogenesis of the lysosome and the yeast vacuole; the budding of most membrane enveloped viruses; the membrane abscission step in cytokinesis; macroautophagy; and several other processes. From their initial discovery in 2001-2002, the literature on ESCRTs has grown exponentially. This review will describe the structure and function of the six complexes noted above and summarize current knowledge of their mechanistic roles in cellular pathways and in disease.
Collapse
Affiliation(s)
- James H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Stuible M, Abella JV, Feldhammer M, Nossov M, Sangwan V, Blagoev B, Park M, Tremblay ML. PTP1B targets the endosomal sorting machinery: dephosphorylation of regulatory sites on the endosomal sorting complex required for transport component STAM2. J Biol Chem 2010; 285:23899-907. [PMID: 20504764 DOI: 10.1074/jbc.m110.115295] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dephosphorylation and endocytic down-regulation are distinct processes that together control the signaling output of a variety of receptor tyrosine kinases (RTKs). PTP1B can directly dephosphorylate several RTKs, but it can also promote activation of downstream pathways through largely unknown mechanisms. These positive signaling functions likely contribute to the tumor-promoting effect of PTP1B in mouse cancer models. Here, we have identified STAM2, an endosomal protein involved in sorting activated RTKs for lysosomal degradation, as a substrate of PTP1B. PTP1B interacts with STAM2 at defined phosphotyrosine sites, and knockdown of PTP1B expression augments STAM2 phosphorylation. Intriguingly, manipulating the expression and phosphorylation state of STAM2 did not have a general effect on epidermal growth factor (EGF)-induced EGF receptor trafficking, degradation, or signaling. Instead, phosphorylated STAM2 specifically suppressed Akt activation, and a phosphorylation-deficient STAM2 mutant displayed prolonged localization on endosomes following EGF stimulation. These results reveal a novel link between the dephosphorylation and endocytic machinery and suggest that PTP1B can affect RTK signaling in a previously unrecognized manner.
Collapse
Affiliation(s)
- Matthew Stuible
- Rosalind and Morris Goodman Cancer Centre and Departments of Biochemistry and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sierra MI, Wright MH, Nash PD. AMSH interacts with ESCRT-0 to regulate the stability and trafficking of CXCR4. J Biol Chem 2010; 285:13990-4004. [PMID: 20159979 PMCID: PMC2859561 DOI: 10.1074/jbc.m109.061309] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 02/01/2010] [Indexed: 11/06/2022] Open
Abstract
Reversible ubiquitination is essential for the endocytic sorting and down-regulation of G protein-coupled receptors, such as the chemokine receptor CXCR4. The deubiquitinating enzyme AMSH has been implicated in the endocytic sorting of both G protein-coupled receptors and receptor-tyrosine kinases. Herein, we examine the role of AMSH in the regulation of CXCR4 stability and trafficking and characterize protein-protein interactions critical for this function. Loss of AMSH catalytic activity or depletion by RNAi results in increased steady-state levels of CXCR4 under basal conditions. Analysis of truncation and point mutation of AMSH reveal the importance of an RXXK motif for CXCR4 degradation. The RXXK motif of AMSH interacts with the SH3 domains of the STAM and Grb2 families of adaptor proteins with high affinity. Cells expressing a catalytically inactive mutant of AMSH show basal hyperubiquitination, but not increased degradation, of the ESCRT-0 components STAM1 and Hrs. This is dependent on the RXXK motif of AMSH. Ubiquitination of endocytic machinery modulates their activity, suggesting that AMSH may directly regulate endocytic adaptor protein function. This is reflected in CXCR4 trafficking and provides a mechanism by which AMSH specifies the fate of endocytosed receptors. Taken together, these studies implicate AMSH as a key modulator of receptor fate determination through its action on components of the endocytic machinery.
Collapse
Affiliation(s)
- Maria I. Sierra
- From the Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Michelle H. Wright
- From the Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Piers D. Nash
- From the Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|