1
|
Ma G, Qi H, Deng H, Dong L, Zhang Q, Ma J, Yang Y, Yan X, Duan Y, Lei H. Prime Editing of Vascular Endothelial Growth Factor Receptor 2 Attenuates Angiogenesis In Vitro. CRISPR J 2024; 7:188-196. [PMID: 39111828 DOI: 10.1089/crispr.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Vascular endothelial growth factor receptor (VEGFR)-2 is a key switch for angiogenesis, which is observed in various human diseases. In this study, a novel system for advanced prime editing (PE), termed PE6h, is developed, consisting of dual lentiviral vectors: (1) a clustered regularly interspaced palindromic repeat-associated protein 9 (H840A) nickase fused with reverse transcriptase and an enhanced PE guide RNA and (2) a dominant negative (DN) MutL homolog 1 gene with nicking guide RNA. PE6h was used to edit VEGFR2 (c.18315T>A, 50.8%) to generate a premature stop codon (TAG from AAG), resulting in the production of DN-VEGFR2 (787 aa) in human retinal microvascular endothelial cells (HRECs). DN-VEGFR2 impeded VEGF-induced phosphorylation of VEGFR2, Akt, and extracellular signal-regulated kinase-1/2 and tube formation in PE6h-edited HRECs in vitro. Overall, our results highlight the potential of PE6h to inhibit angiogenesis in vivo.
Collapse
Affiliation(s)
- Gaoen Ma
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Hongwei Deng
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Lijun Dong
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Qing Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Junkai Ma
- Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanhui Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, the School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaohe Yan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Yajian Duan
- Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Hetian Lei
- Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Harris DD, Sabe SA, Broadwin M, Stone C, Xu C, Kanuparthy M, Malhotra A, Abid MR, Sellke FW. Intramyocardial injection of hypoxia-conditioned extracellular vesicles increases myocardial perfusion in a swine model of chronic coronary disease. JTCVS OPEN 2024; 20:49-63. [PMID: 39296447 PMCID: PMC11405997 DOI: 10.1016/j.xjon.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 09/21/2024]
Abstract
Objective Coronary artery disease remains a leading cause of morbidity and mortality worldwide. Patients with advanced coronary artery disease who are not eligible for endovascular or surgical revascularization have limited options. Extracellular vesicles have shown potential to improve myocardial function in preclinical models. Extracellular vesicles can be conditioned to modify their components. Hypoxia-conditioned extracellular vesicles have demonstrated the ability to reduce infarct size and apoptosis in small animals. Our objective is to assess the potential benefits of hypoxia-conditioned extracellular vesicles in a large animal model of coronary artery disease. Methods Coronary artery disease was induced in 14 Yorkshire swine by ameroid constriction of the left circumflex coronary artery. Two weeks postsurgery, swine underwent a repeat left thoracotomy for injections of hypoxia-conditioned extracellular vesicles (n = 7) or saline (control, n = 7). Five weeks later, all animals underwent terminal harvest for perfusion measurements and myocardial sectioning. Results Myocardial perfusion analysis demonstrated a trend toward increase at rest and a significant increase during rapid pacing (P = .09, P < .001). There were significant increases in activated phosphorylated endothelial nitric oxide synthase, endothelial nitric oxide synthase, phosphatidylinositol 3-kinase, phosphorylated protein kinase B, and the phosphorylated protein kinase B/protein kinase B ratio in the hypoxia-conditioned extracellular vesicles group compared with the control group (all P < .05). Additionally, there was a significant decrease in the antiangiogenic proteins collagen 18 and angiostatin (P = .01, P = .01) in the hypoxia-conditioned extracellular vesicles group. Conclusions Intramyocardial injection of hypoxia-conditioned extracellular vesicles results in increased myocardial perfusion without a corresponding change in vessel density. Therefore, this improvement in perfusion is possibly due to changes in nitric oxide signaling. Hypoxia-conditioned extracellular vesicles represent a potential therapeutic strategy to increase myocardial perfusion in patients with advanced coronary artery disease.
Collapse
Affiliation(s)
- Dwight D Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Christopher Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Cynthia Xu
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Meghamsh Kanuparthy
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Akshay Malhotra
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
3
|
Stuart S, Tarade D, Ohh M. Cathepsins L and B target HIF1α for oxygen-independent proteolytic cleavage. Sci Rep 2024; 14:14799. [PMID: 38926538 PMCID: PMC11208597 DOI: 10.1038/s41598-024-65537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
The oxygen-labile transcription factor called hypoxia-inducible factor (HIF) is responsible for the cellular and organismal adaptive response to reduced oxygen availability. Deregulation of HIF is associated with the pathogenesis of major human diseases including cardiovascular disease and cancer. Under normoxia, the HIFα subunit is hydroxylated on conserved proline residues within the oxygen-dependent degradation domain (ODD) that labels HIFα for proteasome-mediated degradation. Despite similar oxygen-dependent degradation machinery acting on HIF1α and HIF2α, these two paralogs have been shown to exhibit unique kinetics under hypoxia, which suggests that other regulatory processes may be at play. Here, we characterize the protease activity found in rabbit reticulocytes that specifically cleaves the ODD of HIF1α but not HIF2α. Notably, the cleavage product is observed irrespective of the oxygen-dependent prolyl-hydroxylation potential of HIF1α, suggesting independence from oxygen. HIF1α M561T substitution, which mimics an evolutionary substitution that occurred during the duplication and divergence of HIF1α and HIF2α, diminished the cleavage of HIF1α. Protease inhibitor screening suggests that cysteine proteases cathepsins L and B preferentially cleave HIF1αODD, thereby revealing an additional layer of differential HIF regulation.
Collapse
Affiliation(s)
- Sarah Stuart
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Daniel Tarade
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
4
|
Liu F, Zhou T, Zhang S, Li Y, Chen Y, Miao Z, Wang X, Yang G, Li Q, Zhang L, Liu Y. Cathepsin B: The dawn of tumor therapy. Eur J Med Chem 2024; 269:116329. [PMID: 38508117 DOI: 10.1016/j.ejmech.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Cathepsin B (CTSB) is a key lysosomal protease that plays a crucial role in the development of cancer. This article elucidates the relationship between CTSB and cancer from the perspectives of its structure, function, and role in tumor growth, migration, invasion, metastasis, angiogenesis and autophagy. Further, we summarized the research progress of cancer treatment related drugs targeting CTSB, as well as the potential and advantages of Traditional Chinese medicine in treating tumors by regulating the expression of CTSB.
Collapse
Affiliation(s)
- Fuxian Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Experimental & Training Teaching Centers, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhiming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gengqiang Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qiyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China.
| |
Collapse
|
5
|
Duan J, Liu D, Zhao Z, Liang L, Pan S, Tian F, Yu P, Li G, Liu Z. Short-term duration of diabetic retinopathy as a predictor for development of diabetic kidney disease. J Transl Int Med 2023; 11:449-458. [PMID: 38130638 PMCID: PMC10732346 DOI: 10.2478/jtim-2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Diabetic retinopathy (DR) is a risk factor for diabetic kidney disease (DKD). Whether the duration, especially the short-term duration, of DR is associated with the development and progression of DKD remains unclear. Materials and Methods A retrospective study and two-sample Mendelian randomization (MR) analysis were conducted. Kidney disease was defined by the urinary albumin-to-creatinine ratio (ACR) and the estimated glomerular filtration rate (eGFR). DR was diagnosed by an expert ophthalmologist by using a digital fundus camera. Binary and ordinal logistic regression analyses were performed. A restricted cubic spline was utilized to detect nonlinear associations. Summary statistics for DR- and DKD-associated single-nuclear polymorphisms (SNPs) were extracted from the FinnGen and the UK Biobank consortia. Results A total of 2674 patients with type 2 diabetes mellitus (T2DM) and type 2 diabetic kidney disease (T2DKD) were included. The prevalence and mean duration of DR increased with elevation of ACR and decline in eGFR. Renal function was significantly reduced in patients with DR in the fifth year of life. Binary and ordinal logistic regression showed that each 1-year increase in DR duration was associated with a 19% risk increase in the development of DKD, 16% in the elevation of ACR, and 21% in the decline of renal function. MR estimates indicated that DR was causally associated with DKD development, with an odds ratio of 2.89. Conclusions DR and the duration of DR were independent risk factors for the development and progression of DKD. The short-term duration of DR may be associated with DKD development. DR had a statistically significant effect on DKD.
Collapse
Affiliation(s)
- Jiayu Duan
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Henan Province Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Henan Province Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
| | - Zihao Zhao
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- Henan Province Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
| | - Lulu Liang
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Fei Tian
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Pei Yu
- Henan Province Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
| | - Guangpu Li
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Henan Province Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
| |
Collapse
|
6
|
Goyal JL, Gupta A, Gandhi P. Ocular manifestations in renal diseases. Indian J Ophthalmol 2023; 71:2938-2943. [PMID: 37530260 PMCID: PMC10538849 DOI: 10.4103/ijo.ijo_3234_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 08/03/2023] Open
Abstract
The eyes and kidneys are the targets for end-organ damage in multiple pathologies. Both these organs develop during the same embryonic stage around the fourth to sixth week of gestation, thus sharing a strong correlation between both eye and kidney diseases. Both the eyes and kidneys can be the target of the systemic disease process; however, the eyes can also be affected as a consequence of renal disease or its treatment. Risk factors such as diabetes, hypertension, and smoking are commonly shared between kidney and eye diseases. Ocular manifestations can be predictive of renal disease, and/or patients with renal disease are at higher risk for developing ocular manifestations. Various congenital anomalies of the eyes and kidneys can also present as an oculorenal syndrome. This article summarizes the ocular pathology, which can be seen in renal diseases.
Collapse
Affiliation(s)
- Jawahar Lal Goyal
- Department of Ophthalmology, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Arushi Gupta
- Department of Ophthalmology, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pulkit Gandhi
- Rochester General Hospital, Centre for Kidney Disease and Hypertension, Rochester, New York, USA
| |
Collapse
|
7
|
Wang J, Zheng M, Yang X, Zhou X, Zhang S. The Role of Cathepsin B in Pathophysiologies of Non-tumor and Tumor tissues: A Systematic Review. J Cancer 2023; 14:2344-2358. [PMID: 37576397 PMCID: PMC10414043 DOI: 10.7150/jca.86531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Cathepsin B (CTSB), a lysosomal cysteine protease, plays an important role in human physiology and pathology. CTSB is associated with various human diseases, and its expression level and activity are closely related to disease progression and severity. Physiologically, CTSB is integrated into almost all lysosome-related processes, including protein turnover, degradation, and lysosome-mediated cell death. CTSB can lead to the development of various pathological processes through degradation and remodeling of the extracellular matrix. During tumor development and progression, CTSB has two opposing effects. Its pro-apoptotic properties reduce malignancy, while its proteolytic enzymatic activity promotes invasion and metastasis, thereby inducing malignancy. Here, we discuss the roles of CTSB in tumor and non-tumor disease pathophysiologies. We conclude that targeting the activity or expression of CTSB may be important for treating tumor and non-tumor diseases.
Collapse
Affiliation(s)
- Jiangping Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, P.R. China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, P.R. China
| |
Collapse
|
8
|
PramodKumar TA, Sivaprasad S, Venkatesan U, Mohan V, Anjana RM, Unnikrishnan R, Cherian J, Giridhar A, Gopalakrishnan M, Rajalakshmi R. Role of cystatin C in the detection of sight-threatening diabetic retinopathy in Asian Indians with type 2 diabetes. J Diabetes Complications 2023; 37:108545. [PMID: 37348180 DOI: 10.1016/j.jdiacomp.2023.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
AIM To study the association between cystatin C and sight-threatening diabetic retinopathy (STDR) in Asian Indians with type 2 diabetes (T2DM). METHODS In a cross-sectional study carried out at two tertiary centres in India in 2022, individuals with T2DM underwent clinical and ophthalmic assessments and estimation of serum cystatin C. Grading of DR was done by retina specialists. STDR was defined by the presence of severe non-proliferative DR (NPDR), proliferative DR (PDR) and/or diabetic macular edema. Receiver operating characteristic (ROC) curves were used to identify cystatin C cut-off value for detecting STDR. RESULTS Among 420 individuals with T2DM (mean age 56 ± 9 years; mean duration of diabetes 14.5 ± 7.9 years), 121 (24.1 %) had No-DR, 119 (28.3 %) had No-STDR and 200 (49.6 %) had STDR. Mean cystatin C level was significantly higher in individuals with STDR compared to those with no-STDR and No-DR (1.34 vs 1.06 vs 0.93 mg/L, p < 0.001). Cystatin C cut-off value ≥1.11 mg/L had a C statistic of 0.944 (95 % CI: 0.909-0.968, p < 0.001), 96.8 % sensitivity and 78.2 % specificity for detection of STDR. CONCLUSION Elevated serum cystatin C was strongly associated with STDR and could possibly be used as a biomarker for screening for sight-threatening diabetic retinopathy.
Collapse
Affiliation(s)
| | - Sobha Sivaprasad
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK; Vision Sciences, UCL Institute of Ophthalmology, London, UK
| | | | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Chennai, India
| | - Ranjit Mohan Anjana
- Department of Diabetology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Chennai, India
| | - Ranjit Unnikrishnan
- Department of Diabetology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Chennai, India
| | | | | | | | - Ramachandran Rajalakshmi
- Department of Ophthalmology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Chennai, India.
| |
Collapse
|
9
|
Abdel-Azziz IA, Amin NH, El-Saadi MT, Abdel-Rahman HM. Design, synthesis and mechanistic studies of benzophenones hydrazone derivatives as cathepsin inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Zamyatnin AA, Gregory LC, Townsend PA, Soond SM. Beyond basic research: the contribution of cathepsin B to cancer development, diagnosis and therapy. Expert Opin Ther Targets 2022; 26:963-977. [PMID: 36562407 DOI: 10.1080/14728222.2022.2161888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In view of other candidate proteins from the cathepsin family of proteases holding great potential in being targeted during cancer therapy, the importance of Cathepsin B (CtsB) stands out as being truly exceptional. Based on its contribution to oncogenesis, its intimate connection with regulating apoptosis and modulating extracellular and intracellular functions through its secretion or compartmentalized subcellular localization, collectively highlight its complex molecular involvement with a myriad of normal and pathological regulatory processes. Despite its complex functional nature, CtsB is emerging as one of the few cathepsin proteases that has been extensively researched to yield tangible outcomes for cancer therapy. AREAS COVERED In this article, we review the scientific literature that has justified or shaped the importance of CtsB expression in cancer progression, from the perspective of highlighting a paradigm that is rapidly changing from basic research toward a broader clinical and translational context. EXPERT OPINION In doing so, we detail its maturation as a diagnostic marker through describing the development of CtsB-specific Activity-Based Probes, the rapid evolution of these toward a new generation of Prodrugs, and the evaluation of these in model systems for their therapeutic potential as anti-cancer agents in the clinic.
Collapse
Affiliation(s)
- Andrey A Zamyatnin
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Levy C Gregory
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Paul A Townsend
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Surinder M Soond
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
11
|
Sharma A, Swetha R, Bajad NG, Ganeshpurkar A, Singh R, Kumar A, Singh SK. Cathepsin B - A Neuronal Death Mediator in Alzheimer’s Disease Leads to Neurodegeneration. Mini Rev Med Chem 2022; 22:2012-2023. [DOI: 10.2174/1389557522666220214095859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
The lysosomal cysteine protease enzyme, named Cathepsin B, mainly degrades the protein and manages its average turnover in our body. The Cathepsin B active form is mostly present inside the lysosomal part at a cellular level, providing the slightly acidic medium for its activation. Multiple findings on Cathepsin B reveal its involvement in neurons' degeneration and a possible role as a neuronal death mediator in several neurodegenerative diseases. In this review article, we highlight the participation of Cathepsin B in the etiology/progress of AD, along with various other factors. The enzyme is involved in producing neurotoxic Aβ amyloid in the AD brain by acting as the β-secretase enzyme in the regulated secretory pathways responsible for APP processing. Aβ amyloid accumulation and amyloid plaque formation lead to neuronal degeneration, one of the prominent pathological hallmarks of AD. Cathepsin B is also involved in the production of PGlu-Aβ, which is a truncated and highly neurotoxic form of Aβ. Some of the findings also revealed that Cathepsin B specific gene deletion decreases the level of PGlu-Aβ inside the brain of experimental mice. Therefore, neurotoxicity might be considered a new pathological indication of AD due to the involvement of Cathepsin B. It also damages neurons present in the CNS region by producing inflammatory responses and generating mitochondrial ROS. However, Cathepsin B inhibitors, i.e., CA-074, can prevent neuronal death in AD patients. The other natural inhibitors are also equally effective against neuronal damage with higher selectivity. Its synthetic inhibitors are specific for their target; however, they lose their selectivity in the presence of quite a few reducing agents. Therefore, a humanized monoclonal antibody is used as a selective Cathepsin B inhibitor to overcome the problem experienced. The use of Cathepsin B for the treatment of AD and other neurodegenerative diseases could be considered a rational therapeutic target.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rayala Swetha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
12
|
Zhou L, Xu Z, Oh Y, Gamuyao R, Lee G, Xie Y, Cho H, Lee S, Duh EJ. Myeloid cell modulation by a GLP-1 receptor agonist regulates retinal angiogenesis in ischemic retinopathy. JCI Insight 2021; 6:93382. [PMID: 34673570 PMCID: PMC8675187 DOI: 10.1172/jci.insight.93382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Ischemic retinopathies including diabetic retinopathy are major causes of blindness. Although neurons and Müller glia are recognized as important regulators of reparative and pathologic angiogenesis, the role of mononuclear phagocytes (MPs) — particularly microglia, the resident retinal immune cells — is unclear. Here, we found MP activation in human diabetic retinopathy, especially in neovessels from human neovascular membranes in proliferative retinopathy, including TNF-α expression. There was similar activation in the mouse oxygen-induced retinopathy (OIR) model of ischemia-induced neovascularization. Glucagon-like peptide-1 receptor (GLP-1R) agonists are in clinical use for glycemic control in diabetes and are also known to modulate microglia. Herein, we investigated the effect of a long-acting GLP-1R agonist, NLY01. Following intravitreal administration, NLY01 selectively localized to MPs in retina with OIR. NLY01 modulated MPs but not retinal endothelial cell viability, apoptosis, and tube formation in vitro. In OIR, NLY01 treatment inhibited MP infiltration and activation, including MP expression of cytokines in vivo. NLY01 significantly suppressed global induction of retinal inflammatory cytokines, promoted reparative angiogenesis, and suppressed pathologic retinal neovascularization. Collectively, these findings indicate the important role of mononuclear phagocytes in regulation of retinal vascularization in ischemia and suggest modulation of MPs as a potentially new treatment strategy for ischemic retinopathies.
Collapse
Affiliation(s)
| | | | - Yumin Oh
- Wilmer Eye Institute and.,The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | - Seulki Lee
- Wilmer Eye Institute and.,The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
13
|
Kaur D, Behl T, Chigurupati S, Sehgal A, Singh S, Sharma N, Badavath VN, Vargas-De-La-Cruz C, Bhatia S, Al-Harrasi A, Dey A, Aleya L, Bungau S. Deciphering the focal role of endostatin in Alzheimer's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61998-62011. [PMID: 34561808 DOI: 10.1007/s11356-021-16567-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a paramount chronic neurodegenerative condition that has been affecting elderly people since the 1900s. It causes memory loss, disorientation, and poor mental function. AD is considered to be one of the most serious problems that dementia sufferers face. Despite extensive investigation, the pathological origin of Alzheimer's disease remains a mystery. The amyloid cascade theory and the vascular hypothesis, which stresses the buildup of Aβ plaques, have dominated research into dementia and aging throughout history. However, research into this task failed to yield the long-awaited therapeutic miracle lead for Alzheimer's disease. Perhaps a hypothetical fragility in the context of Alzheimer's disease was regarded as a state distinct from aging in general, as suggested by the angiogenesis hypothesis, which suggests that old age is one state associated with upregulation of angiogenic growth factors, resulting in decreased microcirculation throughout the body. There has also been evidence that by controlling or inhibiting the components involved in the sequence of events that cause angiogenesis, there is a visible progression in AD patients. In Alzheimer's disease, one such antiangiogenic drug is being used.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza e Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
14
|
Decreased endostatin in db/db retinas is associated with optic disc intravitreal vascularization. Exp Eye Res 2021; 212:108801. [PMID: 34688624 DOI: 10.1016/j.exer.2021.108801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Endostatin, a naturally cleaved fragment of type XVIII collagen with antiangiogenic activity, has been involved in the regulation of neovascularization during diabetic retinopathy. Here, the intracellular distribution of endostatin in healthy mouse and human neuroretinas has been analyzed. In addition, to study the effect of experimental hyperglycemia on retinal endostatin, the db/db mouse model has been used. Endostatin protein expression in mouse and human retinas was studied by immunofluorescence and Western blot, and compared with db/db mice. Eye fundus angiography, histology, and immunofluorescence were used to visualize mouse retinal and intravitreal vessels. For the first time, our results revealed the presence of endostatin in neurons of mouse and human retinas. Endostatin was mainly expressed in bipolar cells and photoreceptors, in contrast to the optic disc, where endostatin expression was undetectable. Diabetic mice showed a reduction of endostatin in their retinas associated with the appearance of intravitreal vessels at the optic disc in 50% of db/db mice. Intravitreal vessels showed GFAP positive neuroglia sheath, basement membrane thickening by collagen IV deposition, and presence of MMP-2 and MMP-9 in the vascular wall. All together, these results point that decreased retinal endostatin during experimental diabetes is associated with optic disc intravitreal vascularization. Based on their phenotype, these intravitreal vessels could be neovessels. However, it cannot be ruled out the possibility that they may also represent persistent hyaloid vessels.
Collapse
|
15
|
Yang N, Lu YF, Yang X, Jiang K, Sang AM, Wu HQ. Association between cystatin C and diabetic retinopathy among type 2 diabetic patients in China: a Meta-analysis. Int J Ophthalmol 2021; 14:1430-1440. [PMID: 34540622 DOI: 10.18240/ijo.2021.09.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To explore the correlation between cystatin C (Cys-C) and diabetic retinopathy (DR) in those patients with type 2 diabetes mellitus (DM) in China. METHODS Articles were collected from China National Knowledge Infrastructure (CNKI), Wanfang, VIP, PubMed, EMBASE, Cochrane Library, Clinical Trials.gov, and Google Scholar. Quality and risk of bias within included studies was assessed using the Newcastle-Ottawa scale (NOS). Heterogeneity was determined by using Cochran's Q-test and Higgins I 2 statistics. Mean differences (MDs) and 95% confidence intervals (CIs) of Cys-C within the diabetes without retinopathy (DWR) and DR, DWR and non-proliferative diabetic retinopathy (NPDR), NPDR and proliferative diabetic retinopathy (PDR) were collected by using random-effects model because of high heterogeneity. Meta-analysis was conducted based on 23 articles of 2331 DR including NPDR and PDR patients and 2023 DWR patients through Review Manager 5.3. Subgroup analyses were also performed according to DM duration, body mass index (BMI), total cholesterol (TC), total triglycerides (TG), low-density lipoprotein C (LDL-C), and high-density lipoprotein C (HDL-C), sample origins and methods. Publication bias was assessed by the funnel plot. RESULTS Cys-C level in DR patients was increased compared with that of DWR (total MD: 0.69, 95%CI: 0.41 to 0.97, Z=4.79, P<0.01). Besides, the synthesized results of the studies showed the similar findings in the DWR vs NPDR group (total MD: 0.29, 95%CI 0.20 to 0.39, Z=6.02, P<0.01) and the NPDR vs PDR group (total MD: 0.63, 95%CI 0.43 to 0.82, Z=6.33, P<0.01). Heterogeneity of most of the subgroup analyses was still obvious (I 2≥50%, P<0.1). Forest plots of different subgroups indicated that there was a slight increase of Cys-C during the period between DWR and DR, DWR and NPDR, NPDR and PDR. Funnel plot showed that there was no significant publication bias. CONCLUSION The elevated Cys-C is closely related with DR and probably plays a critical role in its progression.
Collapse
Affiliation(s)
- Nan Yang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yun-Fei Lu
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiao Yang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Kui Jiang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ai-Min Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hui-Qun Wu
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
16
|
Ferreira BA, Toyama D, Henrique-Silva F, Araújo FDA. Recombinant sugarcane cystatin CaneCPI-5 down regulates inflammation and promotes angiogenesis and collagen deposition in a mouse subcutaneous sponge model. Int Immunopharmacol 2021; 96:107801. [PMID: 34162162 DOI: 10.1016/j.intimp.2021.107801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022]
Abstract
Cystatins are natural inhibitors of cysteine peptidases that are found practically in all living organisms. CaneCPI-5 is a sugarcane cystatin with inhibitory activity against human cathepsins B, K and L, which are cysteine proteases highly expressed in a variety of pathological conditions, usually marked by persistent inflammation and processing of the extracellular matrix. This work evaluated the effects of daily administration of the recombinant cystatin CaneCPI-5 [0.01, 0.1 or 1.0 μg in 10 μL of Phosphate-Buffered Saline (PBS)] on the inflammatory, angiogenic and fibrogenic components during chronic inflammatory response induced by subcutaneous sponge implants. The anti-inflammatory effect of treatment with CaneCPI-5 was confirmed by reduction of the levels of the pro-inflammatory mediators TNF-α, CXCL1 and CCL2/JE/MCP-1, as well as the activity of the myeloperoxidase and n-acetyl-β-D-glucosaminidase. Treatment with CaneCPI-5 promoted angiogenesis in the implants, increasing the production of cytokines VEGF and FGF and the formation of new blood vessels. Finally, the administration of the recombinant cystatin favored the production of the pro-fibrogenic cytokine TGF-β1 and collagen deposition next to the implants. Together, these results show the potential therapeutic application of CaneCPI-5 as an anti-inflammatory agent, capable of favoring angiogenesis and fibrogenesis processes, necessary for tissue repair.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Programa de Pós-graduação em Genética e Bioquímica, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Danyelle Toyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Flávio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Fernanda de Assis Araújo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
17
|
Mazzotta C, Marden G, Farina A, Bujor A, Trojanowski MA, Trojanowska M. FLI1 and ERG protein degradation is regulated via Cathepsin B lysosomal pathway in human dermal microvascular endothelial cells. Microcirculation 2020; 28:e12660. [PMID: 32979864 PMCID: PMC7988617 DOI: 10.1111/micc.12660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023]
Abstract
Objectives Friend leukemia integration 1 and erythroblast transformation‐specific, important regulators of endothelial cell homeostasis, are reduced in microvascular endothelial cells in scleroderma patients, and their deficiency has been implicated in disease pathogenesis. The goal of this study was to identify the mechanisms involved in the protein turnover of friend leukemia integration 1 and erythroblast transformation‐specific in microvascular endothelial cells. Methods The effects of lysosome and proteosome inhibitors on friend leukemia integration 1 and erythroblast transformation‐specific levels were assessed by Western blotting and capillary morphogenesis. The effect of scleroderma and control sera on the levels of friend leukemia integration 1 and erythroblast transformation‐specific was examined. Results The reduction in the protein levels of friend leukemia integration 1 and erythroblast transformation‐specific in response to interferon α or Poly:(IC) was reversed by blocking either lysosomal (leupeptin and Cathepsin B inhibitor) or proteosomal degradation (MG132). MG132, leupeptin or CTSB‐(i) also counteracted the anti‐angiogenic effects of Poly:(IC) or interferon α. Scleroderma sera reduced protein levels of friend leukemia integration 1 and erythroblast transformation‐specific in comparison to control sera. Treatment with CTSB(i) increased the levels of friend leukemia integration 1 and erythroblast transformation‐specific in a majority of serum‐treated samples. Conclusions Inhibition of cathepsin B was effective in reversing the reduction of friend leukemia integration 1 and erythroblast transformation‐specific protein levels after treatment with interferon α or scleroderma sera, suggesting that targeting cathepsin B may have a beneficial effect in SSc vascular disease.
Collapse
Affiliation(s)
- Celestina Mazzotta
- Arthritis and Autoimmune Diseases Center, School of Medicine, Boston University, Boston, MA, USA
| | - Grace Marden
- Arthritis and Autoimmune Diseases Center, School of Medicine, Boston University, Boston, MA, USA
| | - Alessandra Farina
- Arthritis and Autoimmune Diseases Center, School of Medicine, Boston University, Boston, MA, USA
| | - Andreea Bujor
- Arthritis and Autoimmune Diseases Center, School of Medicine, Boston University, Boston, MA, USA
| | - Marcin A Trojanowski
- Arthritis and Autoimmune Diseases Center, School of Medicine, Boston University, Boston, MA, USA
| | - Maria Trojanowska
- Arthritis and Autoimmune Diseases Center, School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
18
|
Abstract
Abstract
At the end of 2019, a new coronavirus infection occurred in the People’s Republic of China with an epicentre in the city of Wuhan. On February 11th, 2020, the World Health Organization assigned the official name of the infection caused by the new coronavirus – COVID-19. COVID-19 has affected people from all over the world given that the infection was noted in 200 countries resulting in annunciation of the pandemic situation. Human corona viruses cause mild to moderate respiratory infections. At the end of 2002, a new coronavirus appeared (SARS-CoV), the causal agent of atypical pneumonia, which caused acute respiratory distress syndrome (ARDS). The initial stage of COVID-19 infection is the penetration of SARS-CoV-2 into target cells that have angiotensin converting enzyme type II receptors. The virus enters the body through the respiratory tract and interacts primarily with toll-like receptors (TLRs). The events in SARS-Cov-2 induced infection follow the next scenario: epithelial cells via TLRs recognize and identify SARS-Cov-2, and after that the information is transmitted to the transcriptional NF-κB, which causes expression of the corresponding genes. Activated in this way, the epithelial cells begin to synthesize various biologically active molecules. The results obtained on preclinical material indicate that ROS generation increases and the antioxidant protection decreases, which plays a major role in the pathogenesis of SARS-CoV, as well as in the progression and severity of this respiratory disease.
Collapse
|
19
|
Wazny V, Siau A, Wu KX, Cheung C. Vascular underpinning of COVID-19. Open Biol 2020; 10:200208. [PMID: 32847471 PMCID: PMC7479931 DOI: 10.1098/rsob.200208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
COVID-19 management guidelines have largely attributed critically ill patients who develop acute respiratory distress syndrome, to a systemic overproduction of pro-inflammatory cytokines. Cardiovascular dysfunction may also represent a primary phenomenon, with increasing data suggesting that severe COVID-19 reflects a confluence of vascular dysfunction, thrombosis and dysregulated inflammation. Here, we first consolidate the information on localized microvascular inflammation and disordered cytokine release, triggering vessel permeability and prothrombotic conditions that play a central role in perpetuating the pathogenic COVID-19 cascade. Secondly, we seek to clarify the gateways which SARS-CoV-2, the causative COVID-19 virus, uses to enter host vascular cells. Post-mortem examinations of patients' tissues have confirmed direct viral endothelial infection within several organs. While there have been advances in single-cell RNA sequencing, endothelial cells across various vascular beds express low or undetectable levels of those touted SARS-CoV-2 entry factors. Emerging studies postulate alternative pathways and the apicobasal distribution of host cell surface factors could influence endothelial SARS-CoV-2 entry and replication. Finally, we provide experimental considerations such as endothelial polarity, cellular heterogeneity in organoids and shear stress dynamics in designing cellular models to facilitate research on viral-induced endothelial dysfunctions. Understanding the vascular underpinning of COVID-19 pathogenesis is crucial to managing outcomes and mortality.
Collapse
Affiliation(s)
- Vanessa Wazny
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore636921, Singapore
| | - Anthony Siau
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore636921, Singapore
| | - Kan Xing Wu
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore636921, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore636921, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore138673, Singapore
| |
Collapse
|
20
|
Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence. J Clin Med 2020; 9:E1417. [PMID: 32403217 PMCID: PMC7290769 DOI: 10.3390/jcm9051417] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The symptoms most commonly reported by patients affected by coronavirus disease (COVID-19) include cough, fever, and shortness of breath. However, other major events usually observed in COVID-19 patients (e.g., high blood pressure, arterial and venous thromboembolism, kidney disease, neurologic disorders, and diabetes mellitus) indicate that the virus is targeting the endothelium, one of the largest organs in the human body. Herein, we report a systematic and comprehensive evaluation of both clinical and preclinical evidence supporting the hypothesis that the endothelium is a key target organ in COVID-19, providing a mechanistic rationale behind its systemic manifestations.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
- Department of Medical Sciences, International University of Health and Medical Sciences “Saint Camillus”, 00131 Rome, Italy
| | - Jessica Gambardella
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| |
Collapse
|
21
|
Paschoalin T, Martens AA, Omori ÁT, Pereira FV, Juliano L, Travassos LR, Machado-Santelli GM, Cunha RLOR. Antitumor effect of chiral organotelluranes elicited in a murine melanoma model. Bioorg Med Chem 2019; 27:2537-2545. [PMID: 30962115 DOI: 10.1016/j.bmc.2019.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
Protease roles in cancer progression have been demonstrated and their inhibitors display antitumor effects. Cathepsins are lysosomal cysteine proteases that have increased expression in tumor cells, and tellurium compounds were described as potent cysteine protease inhibitors and also assayed in several animal models. In this work, the two enantiomeric forms of 1-[Butyl(dichloro)-λ4-tellanyl]-2-[1S-methoxyethyl]benzene (organotelluranes RF-13R and RF-13S) were evaluated as inhibitors of cathepsins B and L, showing significant enantiodiscrimination. We observed their cytotoxic effects on a murine melanoma model, effectively inhibiting tumor progression in vivo. The enantiomers were able to inhibit melanoma cell viability, migration and invasion in vitro. Besides, RF-13S and RF-13R were able to inhibit endothelial cell angiogenesis using a tube formation assay in vitro, in a stereodependent manner. These organotelluranes affected cell morphology, showing disassembling of the actin cytoskeleton. These results suggest organotelluranes as potential antitumor agents, acting directly on tumor cell proliferation, migration and invasion, and on endothelial cells, disrupting angiogenesis, showing low toxicity and high efficiency. Taken together our results suggest that this class of compounds should be further studied to reveal their potential as antitumoral agents.
Collapse
Affiliation(s)
- Thaysa Paschoalin
- Departamento de Microbiologia, Imunologia e Parasitologia, Unidade de Oncologia Experimental (UNONEX), Universidade Federal de São Paulo, São Paulo, Brazil; Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Adam A Martens
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Álvaro T Omori
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Felipe V Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Unidade de Oncologia Experimental (UNONEX), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz R Travassos
- Departamento de Microbiologia, Imunologia e Parasitologia, Unidade de Oncologia Experimental (UNONEX), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Glaucia M Machado-Santelli
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo L O R Cunha
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
22
|
Schwenck J, Maurer A, Fehrenbacher B, Mehling R, Knopf P, Mucha N, Haupt D, Fuchs K, Griessinger CM, Bukala D, Holstein J, Schaller M, Menendez IG, Ghoreschi K, Quintanilla-Martinez L, Gütschow M, Laufer S, Reinheckel T, Röcken M, Kalbacher H, Pichler BJ, Kneilling M. Cysteine-type cathepsins promote the effector phase of acute cutaneous delayed-type hypersensitivity reactions. Theranostics 2019; 9:3903-3917. [PMID: 31281521 PMCID: PMC6587341 DOI: 10.7150/thno.31037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/28/2019] [Indexed: 01/09/2023] Open
Abstract
Cysteine-type cathepsins such as cathepsin B are involved in various steps of inflammatory processes such as antigen processing and angiogenesis. Here, we uncovered the role of cysteine-type cathepsins in the effector phase of T cell-driven cutaneous delayed-type hypersensitivity reactions (DTHR) and the implication of this role on therapeutic cathepsin B-specific inhibition. Methods: Wild-type, cathepsin B-deficient (Ctsb-/-) and cathepsin Z-deficient (Ctsz-/-) mice were sensitized with 2,4,6-trinitrochlorobenzene (TNCB) on the abdomen and challenged with TNCB on the right ear to induce acute and chronic cutaneous DTHR. The severity of cutaneous DTHR was assessed by evaluating ear swelling responses and histopathology. We performed fluorescence microscopy on tissue from inflamed ears and lymph nodes of wild-type mice, as well as on biopsies from psoriasis patients, focusing on cathepsin B expression by T cells, B cells, macrophages, dendritic cells and NK cells. Cathepsin activity was determined noninvasively by optical imaging employing protease-activated substrate-like probes. Cathepsin expression and activity were validated ex vivo by covalent active site labeling of proteases and Western blotting. Results: Noninvasive in vivo optical imaging revealed strong cysteine-type cathepsin activity in inflamed ears and draining lymph nodes in acute and chronic cutaneous DTHR. In inflamed ears and draining lymph nodes, cathepsin B was expressed by neutrophils, dendritic cells, macrophages, B, T and natural killer (NK) cells. Similar expression patterns were found in psoriatic plaques of patients. The biochemical methods confirmed active cathepsin B in tissues of mice with cutaneous DTHR. Topically applied cathepsin B inhibitors significantly reduced ear swelling in acute but not chronic DTHR. Compared with wild-type mice, Ctsb-/- mice exhibited an enhanced ear swelling response during acute DTHR despite a lack of cathepsin B expression. Cathepsin Z, a protease closely related to cathepsin B, revealed compensatory expression in inflamed ears of Ctsb-/- mice, while cathepsin B expression was reciprocally elevated in Ctsz-/- mice. Conclusion: Cathepsin B is actively involved in the effector phase of acute cutaneous DTHR. Thus, topically applied cathepsin B inhibitors might effectively limit DTHR such as contact dermatitis or psoriasis. However, the cathepsin B and Z knockout mouse experiments suggested a complementary role for these two cysteine-type proteases.
Collapse
|
23
|
Nusinovici S, Sabanayagam C, Teo BW, Tan GSW, Wong TY. Vision Impairment in CKD Patients: Epidemiology, Mechanisms, Differential Diagnoses, and Prevention. Am J Kidney Dis 2019; 73:846-857. [PMID: 30929852 DOI: 10.1053/j.ajkd.2018.12.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/31/2018] [Indexed: 11/11/2022]
Abstract
Eyes and kidneys have numerous structural, developmental, physiologic, and pathogenic pathways in common, suggesting that many kidney and eye diseases may be interlinked. Studies suggest that the prevalence of eye diseases and vision impairment are higher among persons with end-stage kidney disease and earlier stages of chronic kidney disease (CKD) than in those without. Ocular morbidity in persons with CKD and end-stage kidney disease may be due to the following risk factors: (1) underlying conditions and risk factors for CKD such as diabetes or hypertension, (2) metabolic disorders associated with CKD, (3) uremia and anemia, and (4) CKD treatment. Among the chief eye diseases, diabetic retinopathy and age-related macular degeneration are most consistently associated with CKD. Further research for eye diseases such as glaucoma and cataract is needed to determine their relationships with CKD. Despite the high prevalence and burden of vision impairment among persons with CKD, eye screening in patients with CKD is not currently recommended as standard practice. This review suggests that patients with CKD should be encouraged to undergo a complete eye examination. Furthermore, physicians should be aware that patients undergoing dialysis may develop acute eye problems such as acute glaucoma, and appropriate referral to ophthalmologists should be considered in those with a history of glaucoma or recent ocular surgery. Interdisciplinary collaboration between nephrologists and ophthalmologists will ensure enhanced and appropriate management of patients with CKD.
Collapse
Affiliation(s)
- Simon Nusinovici
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Boon Wee Teo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Siew Wei Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore.
| |
Collapse
|
24
|
Karnthaler-Benbakka C, Koblmüller B, Mathuber M, Holste K, Berger W, Heffeter P, Kowol CR, Keppler BK. Synthesis, Characterization and in vitro Studies of a Cathepsin B-Cleavable Prodrug of the VEGFR Inhibitor Sunitinib. Chem Biodivers 2018; 16:e1800520. [PMID: 30566287 PMCID: PMC6391952 DOI: 10.1002/cbdv.201800520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Since several decades, the prodrug concept has raised considerable interest in cancer research due to its potential to overcome common problems associated with chemotherapy. However, for small‐molecule tyrosine kinase inhibitors, which also cause severe side effects, hardly any strategies to generate prodrugs for therapeutic improvement have been reported so far. Here, we present the synthesis and biological investigation of a cathepsin B‐cleavable prodrug of the VEGFR inhibitor sunitinib. Cell viability assays and Western blot analyses revealed, that, in contrast to the non‐cathepsin B‐cleavable reference compound, the prodrug shows activity comparable to the original drug sunitinib in the highly cathepsin B‐expressing cell lines Caki‐1 and RU‐MH. Moreover, a cathepsin B cleavage assay confirmed the desired enzymatic activation of the prodrug. Together, the obtained data show that the concept of cathepsin B‐cleavable prodrugs can be transferred to the class of targeted therapeutics, allowing the development of optimized tyrosine kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Claudia Karnthaler-Benbakka
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, AT-1090, Wien
| | - Bettina Koblmüller
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8 A, AT-1090, Wien
| | - Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, AT-1090, Wien
| | - Katharina Holste
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8 A, AT-1090, Wien
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8 A, AT-1090, Wien.,Research Cluster 'Translational Cancer Therapy Research', University of Vienna and Medical University of Vienna, AT-1090, Wien
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8 A, AT-1090, Wien.,Research Cluster 'Translational Cancer Therapy Research', University of Vienna and Medical University of Vienna, AT-1090, Wien
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, AT-1090, Wien.,Research Cluster 'Translational Cancer Therapy Research', University of Vienna and Medical University of Vienna, AT-1090, Wien
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, AT-1090, Wien.,Research Cluster 'Translational Cancer Therapy Research', University of Vienna and Medical University of Vienna, AT-1090, Wien
| |
Collapse
|
25
|
Kim HJ, Byun DW, Suh K, Yoo MH, Park HK. Association between Serum Cystatin C and Vascular Complications in Type 2 Diabetes Mellitus without Nephropathy. Diabetes Metab J 2018; 42:513-518. [PMID: 30398035 PMCID: PMC6300438 DOI: 10.4093/dmj.2018.0006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/09/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recent studies have correlated serum cystatin C (CysC) with vascular complications, but few studies have investigated this correlation in diabetes patients without nephropathy. This study aimed to evaluate if higher serum CysC levels increase the risk for vascular complications in type 2 diabetes mellitus patients with normal renal function or mild renal impairment. METHODS A total of 806 consecutive patients with type 2 diabetes mellitus who were admitted to the diabetes center of Soonchunhyang University Hospital for blood glucose control were retrospectively reviewed. Patients with nephropathy were excluded. Subjects were categorized into quartiles of serum CysC levels (Q1, ≤0.65 mg/L; Q2, 0.66 to 0.79 mg/L; Q3, 0.80 to 0.94 mg/L; and Q4, ≥0.95 mg/L). RESULTS The proportion of patients with diabetic retinopathy (DR) (P for trend <0.001), coronary heart disease (CHD) (P for trend <0.001), and stroke (P for trend <0.001) increased across the serum CysC quartiles. After adjustment for confounding factors, the highest serum CysC level remained a significant risk factor for DR (odds ratio [OR], 1.929; 95% confidence interval [CI], 1.007 to 4.144; P=0.040). Compared with Q1, a significant positive association was observed between serum CysC and CHD in Q2 (OR, 7.321; 95% CI, 1.114 to 48.114; P=0.012), Q3 (OR, 6.027; 95% CI, 0.952 to 38.161; P=0.020), and Q4 (OR, 8.122; 95% CI, 1.258 to 52.453; P=0.007). No associations were observed between CysC and stroke after additional adjustment for confounding variables. CONCLUSION Serum CysC levels are independently associated with DR and CHD, suggesting that CysC may be useful for identifying type 2 diabetes mellitus patients without nephropathy who are at high risk for vascular complications.
Collapse
Affiliation(s)
- Hye Jeong Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Dong Won Byun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Kyoil Suh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Myung Hi Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Hyeong Kyu Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
26
|
McMahon D, Mah E, Hynynen K. Angiogenic response of rat hippocampal vasculature to focused ultrasound-mediated increases in blood-brain barrier permeability. Sci Rep 2018; 8:12178. [PMID: 30111814 PMCID: PMC6093874 DOI: 10.1038/s41598-018-30825-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/06/2018] [Indexed: 01/12/2023] Open
Abstract
Focused ultrasound (FUS) and circulating microbubbles can induce a targeted and transient increase in blood-brain barrier permeability. While preclinical research has demonstrated the utility of FUS for efficacious drug deliver to the brain, there remain gaps in our knowledge regarding the long-term response of brain vasculature to this intervention. Previous work has demonstrated transcriptional changes in hippocampal microvessels following sonication that are indicative of the initiation of angiogenic processes. Moreover, blood vessel growth has been reported in skeletal muscle following application of FUS and microbubbles. The current study demonstrates that blood vessel density in the rat hippocampus is modestly elevated at 7 and 14 d post-FUS compared to the contralateral hemisphere (7 d: 10.9 ± 6.0%, p = 0.02; 14 d: 12.1 ± 3.2%, p < 0.01), but returns to baseline by 21 d (5.9 ± 2.6%, p = 0.12). Concurrently, relative newborn endothelial cell density and frequency of small blood vessel segments were both elevated in the sonicated hippocampus. While further work is required to determine the mechanisms driving these changes, the findings presented here may have relevance to the optimal frequency of repeated treatments.
Collapse
Affiliation(s)
- Dallan McMahon
- Sunnybrook Research Institute, Toronto, M4N 3M5, Canada. .,University of Toronto, Department of Medical Biophysics, Toronto, M4N 3M5, Canada.
| | - Ethan Mah
- Sunnybrook Research Institute, Toronto, M4N 3M5, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, M4N 3M5, Canada.,University of Toronto, Department of Medical Biophysics, Toronto, M4N 3M5, Canada.,University of Toronto, Institute of Biomaterials and Biomedical Engineering, Toronto, M5S 3G9, Canada
| |
Collapse
|
27
|
Srivastava A, Shukla V, Tiwari D, Gupta J, Kumar S, Kumar A. Targeted therapy of chronic liver diseases with the inhibitors of angiogenesis. Biomed Pharmacother 2018; 105:256-266. [PMID: 29859468 DOI: 10.1016/j.biopha.2018.05.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 01/09/2023] Open
Abstract
Angiogenesis appears to be intrinsically associated with the progression of chronic liver diseases, which eventually leads to the development of cirrhosis and related complications, including hepatocellular carcinoma. Several studies have suggested that this association is relevant for chronic liver disease (CLD) progression, with angiogenesis. The fact that angiogenesis plays a pivotal role in CLDs gives rise to new opportunities for treating CLDs. Inhibitor of angiogenesis has proved effective for the treatment of patients suffering from CLD. However, it is limited in diagnosis. The last decade has witnessed a plethora of publications which elucidate the potential of angiogenesis inhibitors for the therapy of CLD. The close relationship between the progression of CLDs and angiogenesis emphasizes the need for anti-angiogenic therapy to block/slow down CLD progression. The present review summarizes all these discussions, the results of the related studies carried out to date and the future prospects in this field. We discuss liver angiogenesis in normal and pathophysiologic conditions with a focus on the role and future use of angiogenic factors as second-line treatment of CLD. This review compiles relevant findings and offers opinions that have emerged in last few years relating liver angiogenesis and its treatment using anti-angiogenic factors.
Collapse
Affiliation(s)
- Ankita Srivastava
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Vanistha Shukla
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Deepika Tiwari
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Jaya Gupta
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Sunil Kumar
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| |
Collapse
|
28
|
Shariatzadeh M, Brandt MM, Cheng C, Ten Berge JC, Rothova A, Leenen PJM, Dik WA. Three-dimensional tubule formation assay as therapeutic screening model for ocular microvascular disorders. Eye (Lond) 2018; 32:1380-1386. [PMID: 29743587 DOI: 10.1038/s41433-018-0089-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/22/2018] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This study is aimed to adapt a three-dimensional (3-D) in vitro angiogenesis model to the ophthalmology field using retinal endothelial cells (REC). This system is applied to assess the angiogenic capacity of aqueous humor (AH) from patients with ocular disorders, and to test the effect of VEGF inhibitor (aflibercept) on induced angiogenesis. METHODS Human REC and umbilical vein endothelial cells (HUVEC) and pericytes were co-cultured in a gel matrix with 25-200 ng/ml pro-angiogenic growth factors (GF). AH from patients with cataract, glaucoma or proliferative diabetic retinopathy (PDR) was tested in the REC-pericyte co-culture. Aflibercept was then introduced to the co-culture containing PDR AH. The surface area and total tubule length were measured using Image J. RESULTS Optimal GF concentrations at 200 ng/ml induced angiogenesis by REC as well as HUVEC, while vessel formation by both cell types was strongly reduced using 25-50 ng/ml GF. Addition of AH from the PDR patient triggered tubule formation by REC at low GF concentration. Aflibercept, however, significantly inhibited angiogenesis induced by PDR AH, but showed no significant influence on other conditions. CONCLUSION REC can be applied efficiently in the 3-D in vitro angiogenesis model as a diagnostic tool to assess the AH angiogenic status and to validate new anti-angiogenic therapeutic compounds prior to clinical trial.
Collapse
Affiliation(s)
- Mahnaz Shariatzadeh
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Maarten M Brandt
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josianne C Ten Berge
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aniki Rothova
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Willem A Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Lemoine AY, Ledoux S, Larger E. Adipose tissue angiogenesis in obesity. Thromb Haemost 2017; 110:661-8. [DOI: 10.1160/th13-01-0073] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/25/2013] [Indexed: 12/30/2022]
Abstract
summaryAdipose tissue is the most plastic tissue in all multicellular organisms, being constantly remodelled along with weight gain and weight loss. Expansion of adipose tissue must be accompanied by that of its vascularisation, through processes of angiogenesis, whereas weight loss is associated with the regression of blood vessels. Adipose tissue is thus among the tissues that have the highest angiogenic capacities. These changes of the vascular bed occur through close interactions of adipocytes with blood vessels, and involve several angiogenic factors. This review presents studies that are the basis of our understanding of the regulation of adipose tissue angiogenesis. The growth factors that are involved in the processes of angiogenesis and vascular regression are discussed with a focus on their potential modulation for the treatment of obesity. The hypothesis that inflammation of adipose tissue and insulin resistance could be related to altered angiogenesis in adipose tissue is presented, as well as the beneficial or deleterious effect of inhibition of adipose tissue angiogenesis on metabolic diseases.
Collapse
|
30
|
Nakao S, Zandi S, Sun D, Hafezi-Moghadam A. Cathepsin B-mediated CD18 shedding regulates leukocyte recruitment from angiogenic vessels. FASEB J 2017; 32:143-154. [PMID: 28904019 DOI: 10.1096/fj.201601229r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 08/21/2017] [Indexed: 01/19/2023]
Abstract
Cathepsin B (CtsB) contributes to atherosclerosis and cancer progression by processing the extracellular matrix and promoting angiogenesis. Although CtsB was reported to promote and reduce angiogenesis, there is no mechanistic explanation that reconciles this apparent discrepancy. CtsB cleaves CD18 from the surface of immune cells, but its contribution to angiogenesis has not been studied. We developed an in vivo technique for visualization of immune cell transmigration from corneal vessels toward implanted cytokines. Wild-type (WT) leukocytes extravasated from limbal vessels, angiogenic stalks, and growing tip vessels and migrated toward the cytokines, indicating immune competence of angiogenic vessels. Compared to WT leukocytes, CtsB-/- leukocytes accumulated in a higher number in angiogenic vessels, but extravasated less toward the implanted cytokine. The accumulated CtsB-/- leukocytes in angiogenic vessels expressed more CD18. CD18-/- leukocytes extravasated later than WT leukocytes. However, once extravasated, CD18-/- leukocytes transmigrated more rapidly than their WT counterparts. These results suggest that, although CD18 facilitates efficient extravasation, outside of the vessel CD18 interaction with the extracellular matrix, it reduced transmigration velocity. Our results reveal an unexpected role for CtsB in leukocyte extravasation and transmigration, which advances our understanding of the complex contribution of CtsB to angiogenesis.-Nakao, S., Zandi, S., Sun, D., Hafezi-Moghadam, A. Cathepsin B-mediated CD18 shedding regulates leukocyte recruitment from angiogenic vessels.
Collapse
Affiliation(s)
- Shintaro Nakao
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Souska Zandi
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Dawei Sun
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| |
Collapse
|
31
|
Huang X, Zhou G, Wu W, Ma G, D'Amore PA, Mukai S, Lei H. Editing VEGFR2 Blocks VEGF-Induced Activation of Akt and Tube Formation. Invest Ophthalmol Vis Sci 2017; 58:1228-1236. [PMID: 28241310 PMCID: PMC5338630 DOI: 10.1167/iovs.16-20537] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose Vascular endothelial growth factor receptor 2 (VEGFR2) plays a key role in VEGF-induced angiogenesis. The goal of this project was to test the hypothesis that editing genomic VEGFR2 loci using the technology of clustered regularly interspaced palindromic repeats (CRISPR)-associated DNA endonuclease (Cas)9 in Streptococcus pyogenes (SpCas9) was able to block VEGF-induced activation of Akt and tube formation. Methods Four 20 nucleotides for synthesizing single-guide RNAs based on human genomic VEGFR2 exon 3 loci were selected and cloned into a lentiCRISPR v2 vector, respectively. The DNA fragments from the genomic VEGFR2 exon 3 of transduced primary human retinal microvascular endothelial cells (HRECs) were analyzed by Sanger DNA sequencing, surveyor nuclease assay, and next-generation sequencing (NGS). In the transduced cells, expression of VEGFR2 and VEGF-stimulated signaling events (e.g., Akt phosphorylation) were determined by Western blot analyses; VEGF-induced cellular responses (proliferation, migration, and tube formation) were examined. Results In the VEGFR2-sgRNA/SpCas9–transduced HRECs, Sanger DNA sequencing indicated that there were mutations, and NGS demonstrated that there were 83.57% insertion and deletions in the genomic VEGFR2 locus; expression of VEGFR2 was depleted in the VEGFR2-sgRNA/SpCas9–transduced HRECs. In addition, there were lower levels of Akt phosphorylation in HRECs with VEGFR2-sgRNA/SpCas9 than those with LacZ-sgRNA/SpCas9, and there was less VEGF-stimulated Akt activation, proliferation, migration, or tube formation in the VEGFR2-depleted HRECs than those treated with aflibercept or ranibizumab. Conclusions The CRISPR-SpCas9 technology is a potential novel approach to prevention of pathologic angiogenesis.
Collapse
Affiliation(s)
- Xionggao Huang
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States 2Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 4Hainan Eye Hospital, Hainan Province, China
| | - Guohong Zhou
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States 2Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Wenyi Wu
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States 2Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Gaoen Ma
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States 2Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Patricia A D'Amore
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States 2Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Shizuo Mukai
- Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Hetian Lei
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States 2Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
32
|
Abstract
Lysosomes (or lytic bodies) were so named because they contain high levels of hydrolytic enzymes. Lysosome function and dysfunction have been found to play important roles in human disease, including cancer; however, the ways in which lysosomes contribute to tumorigenesis and cancer progression are still being uncovered. Beyond serving as a cellular recycling center, recent evidence suggests that the lysosome is involved in energy homeostasis, generating building blocks for cell growth, mitogenic signaling, priming tissues for angiogenesis and metastasis formation, and activating transcriptional programs. This review examines emerging knowledge of how lysosomal processes contribute to the hallmarks of cancer and highlights vulnerabilities that might be exploited for cancer therapy.
Collapse
Affiliation(s)
- Shawn M Davidson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| |
Collapse
|
33
|
Interleukin-12 inhibits pathological neovascularization in mouse model of oxygen-induced retinopathy. Sci Rep 2016; 6:28140. [PMID: 27312090 PMCID: PMC4911585 DOI: 10.1038/srep28140] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-induced retinal neovascularization is a major pathological condition in many vision-threatening diseases. In the present study, we determined whether interleukin (IL)-12, a cytokine that regulates angiogenesis, plays a role in the neovascularization in a mouse model of oxygen-induced retinopathy (OIR). We found that the expressions of the mRNAs of both IL-12p35 and IL-12p40 were significantly reduced in the OIR retinas compared to that of the room air-raised control. The sizes of the avascular areas and neovascular tufts were larger in IL-12p40 knock-out (KO) mice than that in wild type (WT) mice. In addition, an intravitreal injection of recombinant IL-12 reduced both avascular areas and neovascular tufts. IL-12 injection enhanced the expressions of interferon-gamma (IFN-γ) and other downstream chemokines. In an in vitro system, IL-12 had no significant effect on tube formation of human retinal microvascular endothelial cells (HRECs). Moreover, a blockade of IFN-γ suppressed the inhibitory effect of IL-12 on pathological neovascularization. These results suggest that IL-12 plays important roles in inhibiting pathological retinal neovascularization.
Collapse
|
34
|
Nrf2 in ischemic neurons promotes retinal vascular regeneration through regulation of semaphorin 6A. Proc Natl Acad Sci U S A 2015; 112:E6927-36. [PMID: 26621751 DOI: 10.1073/pnas.1512683112] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Delayed revascularization of ischemic neural tissue is a major impediment to preservation of function in central nervous system (CNS) diseases including stroke and ischemic retinopathies. Therapeutic strategies allowing rapid revascularization are greatly needed to reduce ischemia-induced cellular damage and suppress harmful pathologic neovascularization. However, key mechanisms governing vascular recovery in ischemic CNS, including regulatory molecules governing the transition from tissue injury to tissue repair, are largely unknown. NF-E2-related factor 2 (Nrf2) is a major stress-response transcription factor well known for its cell-intrinsic cytoprotective function. However, its role in cell-cell crosstalk is less appreciated. Here we report that Nrf2 is highly activated in ischemic retina and promotes revascularization by modulating neurons in their paracrine regulation of endothelial cells. Global Nrf2 deficiency strongly suppresses retinal revascularization and increases pathologic neovascularization in a mouse model of ischemic retinopathy. Conditional knockout studies demonstrate a major role for neuronal Nrf2 in vascular regrowth into avascular retina. Deletion of neuronal Nrf2 results in semaphorin 6A (Sema6A) induction in hypoxic/ischemic retinal ganglion cells in a hypoxia-inducible factor-1 alpha (HIF-1α)-dependent fashion. Sema6A expression increases in avascular inner retina and colocalizes with Nrf2 in human fetal eyes. Extracellular Sema6A leads to dose-dependent suppression of the migratory phenotype of endothelial cells through activation of Notch signaling. Lentiviral-mediated delivery of Sema6A small hairpin RNA (shRNA) abrogates the defective retinal revascularization in Nrf2-deficient mice. Importantly, pharmacologic Nrf2 activation promotes reparative angiogenesis and suppresses pathologic neovascularization. Our findings reveal a unique function of Nrf2 in reprogramming ischemic tissue toward neurovascular repair via Sema6A regulation, providing a potential therapeutic strategy for ischemic retinal and CNS diseases.
Collapse
|
35
|
Ricard-Blum S, Vallet SD. Proteases decode the extracellular matrix cryptome. Biochimie 2015; 122:300-13. [PMID: 26382969 DOI: 10.1016/j.biochi.2015.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022]
Abstract
The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| | - Sylvain D Vallet
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
36
|
Rhee SH, Ma EL, Lee Y, Taché Y, Pothoulakis C, Im E. Corticotropin Releasing Hormone and Urocortin 3 Stimulate Vascular Endothelial Growth Factor Expression through the cAMP/CREB Pathway. J Biol Chem 2015; 290:26194-203. [PMID: 26350463 DOI: 10.1074/jbc.m115.678979] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 12/15/2022] Open
Abstract
Colonic epithelium is the first line of defense against various pathological offenses in the gut. Previous studies have shown that the peptides of the corticotropin-releasing hormone (CRH) family modulate vascular endothelial growth factor (VEGF)-A production in other cells. Here we sought to investigate whether CRH and urocortin (Ucn) 3 regulate VEGF-A secretion in colonocytes through CRH receptors and to elucidate the underlying mechanism of action. CRH and Ucn 3 significantly increased the expression levels of VEGF-A mRNA and protein through CRH receptor 1 and 2, respectively, in human colonic epithelial cells and primary mouse intestinal epithelial cells. Underlying mechanisms involve activation of adenylyl cyclase with subsequent increase of intracellular cAMP level and increased DNA binding activity of transcription factor CREB on VEGF-A promoter region. Finally, genetic deficiency of CREB decreased intestinal inflammation and VEGF-A expression in a dextran sodium sulfate-induced colitis model. These results show that activation of CRH receptors by CRH ligands stimulates VEGF-A expression in intestinal epithelial cells through the cAMP/CREB pathway. Since VEGF-A boosts inflammatory responses through angiogenesis, these data suggest that CREB may be a key effector of CRH and Ucn 3-dependent inflammatory angiogenesis.
Collapse
Affiliation(s)
- Sang Hoon Rhee
- From the Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095 and
| | - Elise L Ma
- From the Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095 and
| | - Yunna Lee
- College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Yvette Taché
- From the Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095 and
| | - Charalabos Pothoulakis
- From the Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095 and
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| |
Collapse
|
37
|
Ghaffari-Tabrizi-Wizsy N, Cvitic S, Tam-Amersdorfer C, Bilban M, Majali-Martinez A, Schramke K, Desoye G, Hiden U. Different Preference of Degradome in Invasion versus Angiogenesis. Cells Tissues Organs 2015; 200:181-94. [PMID: 26068777 DOI: 10.1159/000381766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 11/19/2022] Open
Abstract
Proteases are required for a multitude of cellular processes including homeostatic tissue remodelling, invasion and angiogenesis. The physiological function of a cell or tissue is reflected by the set of proteases expressed, also termed degradome. The role of proteases in invasion and angiogenesis has been studied intensively, mostly in cancer. We aimed to compare the set of proteases required for physiological invasion versus physiological angiogenesis from cells deriving from the same organ, and to identify the proteases specific for each process. The human placenta comprises trophoblasts that invade the maternal uterus in a regulated, physiological manner, and it is the source of primary endothelial cells. We isolated the trophoblasts and endothelial cells and verified their invasive phenotype and angiogenic properties, respectively. We then performed gene expression analysis of the degradome, e.g. cysteine, metallo, serine, threonine and aspartic proteases, identified the differentially expressed proteases among the trophoblasts and endothelial cells, and clustered them hierarchically. The results revealed that the set of proteases in trophoblasts versus in endothelial cells overlaps, with a total of 69% in common. Nevertheless, 42% of the studied degradomes differed, with a fold change ≥2. For instance, metalloproteinases were predominantly expressed in trophoblasts, and 31% of the proteases were exclusively expressed in either trophoblasts or endothelial cells; this suggests particular roles for these proteases in either invasion or angiogenesis. Our data identify common and distinct proteases in cells capable of performing invasion and angiogenesis, and may provide basic information for the design of techniques to specifically investigate invasion or angiogenesis.
Collapse
|
38
|
Hotani T, Tachibana M, Mizuguchi H, Sakurai F. Reovirus double-stranded RNA genomes and polyI:C induce down-regulation of hypoxia-inducible factor 1α. Biochem Biophys Res Commun 2015; 460:1041-6. [PMID: 25843794 DOI: 10.1016/j.bbrc.2015.03.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Reovirus has genomes consisting of 10-segmented double-stranded RNAs, and have received much attention as an oncolytic virus. A previous study reported that reovirus down-regulates hypoxia-inducible factor 1α (HIF-1α) protein levels following infection in tumor cells, which contributes to the antitumor effects of reovirus; however, the mechanism remains to be elucidated. In this study, we examined which virus component was involved in reovirus-mediated down-regulation of HIF-1α. Reovirus induced significant down-regulation of HIF-1α protein levels in not only reovirus-permissive tumor cells but also reovirus-resistant tumor cells. UV-inactivated reovirus also induced a reduction in HIF-1α protein levels. These data indicate that reovirus induces HIF-1α down-regulation independently of virus replication. Furthermore, transfection with not only reovirus genomes but also polyI:C efficiently induced HIF-1α down-regulation in a manner similar to reovirus, indicating that double-stranded reovirus RNA genomes are a key component for HIF-1α down-regulation. Reovirus-mediated HIF-1α down-regulation was inhibited when tumor cells were pretreated with inhibitors of cathepsins B and L, which play a crucial role in endo-lysosomal escape of virions to the cytoplasm. These data suggest that endo-lysosomal escape of reovirus genome into the cytoplasm is crucial for HIF-1α down-regulation; however, the retinoic acid-inducible gene-I (RIG-I) or interferon-β promoter stimulator-1 (IPS-1), which are involved in reovirus genome-induced innate immunity in the cytoplasm, did not play a crucial role in reovirus-mediated HIF-1α reduction.
Collapse
Affiliation(s)
- Takuma Hotani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Hepatic Differentiation Research, National Institute of Biomedical Innovation, Osaka, Japan; Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan; Laboratory of iPS Research, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
39
|
Coppini LP, Visniauskas B, Costa EF, Filho MN, Rodrigues EB, Chagas JR, Farah ME, Barros NMT, Carmona AK. Corneal angiogenesis modulation by cysteine cathepsins: In vitro and in vivo studies. Exp Eye Res 2015; 134:39-46. [PMID: 25795052 DOI: 10.1016/j.exer.2015.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
Corneal avascularization is essential for normal vision. Several antiangiogenic factors were identified in cornea such as endostatin and angiostatin. Cathepsin V, which is highly expressed in the cornea, can hydrolyze human plasminogen to release angiostatin fragments. Herein, we describe a detailed investigation of the expression profile of cathepsins B, L, S and V in the human cornea and the role of cysteine peptidases in modulating angiogenesis both in vitro and in vivo. We used various methodological tools for this purpose, including real-time PCR, SDS-PAGE, western blotting, catalytic activity assays, cellular assays and induction of corneal neovascularity in rabbit eyes. Human corneal enzymatic activity assays revealed the presence of cysteine proteases that were capable of processing endogenous corneal plasminogen to produce angiostatin-like fragments. Comparative real-time analysis of cathepsin B, L, S and V expression revealed that cathepsin V was the most highly expressed, followed by cathepsins L, B and S. However, cathepsin V depletion revealed that this enzyme is not the major cysteine protease responsible for plasminogen degradation under non-pathological conditions. Furthermore, western blotting analysis indicated that only cathepsins B and S were present in their enzymatically active forms. In vivo analysis of angiogenesis demonstrated that treatment with the cysteine peptidase inhibitor E64 caused a reduction in neovascularization. Taken together, our results show that human corneal cysteine proteases are critically involved in angiogenesis.
Collapse
Affiliation(s)
- Larissa P Coppini
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Bruna Visniauskas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Elaine F Costa
- Departamento de Medicina I, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Milton N Filho
- Departamento de Oftalmologia e Ciências Visuais, Instituto da Visão (IPEPO), Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Eduardo B Rodrigues
- Departamento de Oftalmologia e Ciências Visuais, Instituto da Visão (IPEPO), Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Jair R Chagas
- Departamento de Ciências da Saúde, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Michel E Farah
- Departamento de Oftalmologia e Ciências Visuais, Instituto da Visão (IPEPO), Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Nilana M T Barros
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
40
|
Jacobo SMP, Kazlauskas A. Insulin-like growth factor 1 (IGF-1) stabilizes nascent blood vessels. J Biol Chem 2015; 290:6349-60. [PMID: 25564613 DOI: 10.1074/jbc.m114.634154] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Here we report that VEGF-A and IGF-1 differ in their ability to stabilize newly formed blood vessels and endothelial cell tubes. Although VEGF-A failed to support an enduring vascular response, IGF-1 stabilized neovessels generated from primary endothelial cells derived from various vascular beds and mouse retinal explants. In these experimental systems, destabilization/regression was driven by lysophosphatidic acid (LPA). Because previous studies have established that Erk antagonizes LPA-mediated regression, we considered whether Erk was an essential component of IGF-dependent stabilization. Indeed, IGF-1 lost its ability to stabilize neovessels when the Erk pathway was inhibited pharmacologically. Furthermore, stabilization was associated with prolonged Erk activity. In the presence of IGF-1, Erk activity persisted longer than in the presence of VEGF or LPA alone. These studies reveal that VEGF and IGF-1 can have distinct inputs in the angiogenic process. In contrast to VEGF, IGF-1 stabilizes neovessels, which is dependent on Erk activity and associated with prolonged activation.
Collapse
Affiliation(s)
- Sarah Melissa P Jacobo
- From the Department of Ophthalmology, Harvard Medical School, The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02115
| | - Andrius Kazlauskas
- From the Department of Ophthalmology, Harvard Medical School, The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02115
| |
Collapse
|
41
|
Wong CW, Teo BW, Lamoureux E, Ikram MK, Wang JJ, Tai ES, Sethi S, Wong TY, Sabanayagam C. Serum Cystatin C, Markers of Chronic Kidney Disease, and Retinopathy in Persons with Diabetes. J Diabetes Res 2015; 2015:404280. [PMID: 26576434 PMCID: PMC4630396 DOI: 10.1155/2015/404280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/13/2015] [Indexed: 12/14/2022] Open
Abstract
PURPOSE We examined the association of CKD defined by serum creatinine, serum cystatin C, and albuminuria with moderate diabetic retinopathy (DR). METHODS We examined 1,119 Indian adults with diabetes, aged 40-80 years, who participated in the Singapore Indian Eye Study (2007-2009), a population-based cross-sectional study. The associations of CKD defined by each of the three markers alone and in combination with moderate DR were examined using logistic regression models adjusted for potential confounding factors including duration of diabetes, smoking, body mass index, systolic blood pressure, and HbA1c. RESULTS The prevalence of moderate DR was significantly higher among those with CKD defined by triple markers (41.1%) compared to CKD defined separately by creatinine (26.6%), cystatin C (20.9%), and albuminuria (23.4%). People with CKD defined by triple markers had a fourteenfold higher odds of moderate DR (OR (95% CI) = 13.63 (6.08-30.54)) compared to those without CKD by any marker. Nearly half (48.7%) of participants with cystatin C ≥ 1.12 mg/L have moderate DR. CONCLUSIONS CKD defined by a triple marker panel was strongly associated with moderate DR in this Asian population with diabetes.
Collapse
Affiliation(s)
- Chee Wai Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856
| | - Boon Wee Teo
- Department of Medicine, Singapore National University Hospital, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074
| | - Ecosse Lamoureux
- Singapore Eye Research Institute, Singapore National Eye Centre, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 119074
- Department of Ophthalmology, Singapore National University Hospital, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074
| | - Mohammad Kamran Ikram
- Singapore Eye Research Institute, Singapore National Eye Centre, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856
- Department of Ophthalmology, Singapore National University Hospital, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074
| | - Jie Jin Wang
- Westmead Millennium Institute for Medical Research, C24 Westmead Hospital, University of Sydney, Sydney, NSW 2006, Australia
| | - E. Shyong Tai
- Department of Medicine, Singapore National University Hospital, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074
| | - Sunil Sethi
- Department of Pathology, Singapore National University Hospital, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 119074
- Department of Ophthalmology, Singapore National University Hospital, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 119074
- Department of Ophthalmology, Singapore National University Hospital, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074
- *Charumathi Sabanayagam:
| |
Collapse
|
42
|
Bakirtzi K, West G, Fiocchi C, Law IKM, Iliopoulos D, Pothoulakis C. The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3405-14. [PMID: 25307345 DOI: 10.1016/j.ajpath.2014.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 01/14/2023]
Abstract
The expression of neurotensin (NT) and its receptor (NTR1) is up-regulated in experimental colitis and inflammatory bowel disease; NT/NTR1 interactions regulate gut inflammation. During active inflammation, metabolic shifts toward hypoxia lead to the activation of hypoxia-inducible factor (HIF)-1, which enhances vascular endothelial growth factor (VEGF) expression, promoting angiogenesis. We hypothesized that NT/NTR1 signaling regulates intestinal manifestations of hypoxia and angiogenesis by promoting HIF-1 transcriptional activity and VEGFα expression in experimental colitis. We studied NTR1 signaling in colitis-associated angiogenesis using 2,4,6-trinitrobenzenesulfonic acid-treated wild-type and NTR1-knockout mice. The effects of NT on HIF-1α and VEGFα were assessed on human colonic epithelial cells overexpressing NTR1 (NCM460-NTR1) and human intestinal microvascular-endothelial cells. NTR1-knockout mice had reduced microvascular density and mucosal integrity score compared with wild-type mice after 2,4,6-trinitrobenzenesulfonic acid treatment. VEGFα mRNA levels were increased in NCM460-NTR1 cells treated with 10(-7) mol/L NT, at 1 and 6 hours post-treatment. NT exposure in NCM460-NTR1 cells caused stabilization, nuclear translocation, and transcriptional activity of HIF-1α in a diacylglycerol kinase-dependent manner. NT did not stimulate tube formation in isolated human intestinal macrovascular endothelial cells but did so in human intestinal macrovascular endothelial cells cocultured with NCM460-NTR1 cells. Our results demonstrate the importance of an NTR1-HIF-1α-VEGFα axis in intestinal angiogenic responses and in the pathophysiology of colitis and inflammatory bowel disease.
Collapse
Affiliation(s)
- Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Gail West
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Claudio Fiocchi
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| |
Collapse
|
43
|
Abstract
PURPOSE Age-related macular degeneration (AMD) and chronic kidney disease both involve immune dysregulation and may share underlying pathophysiologic changes to systemic homeostasis. Hence, we aim to evaluate associations between impaired kidney function and early AMD, in a search for urinary biomarkers for AMD. METHODS A population-based, cross-sectional analysis of persons aged 45 to 84 years was conducted with renal function measured using serum creatinine and cystatin C levels and the estimated glomerular filtration rate (eGFR) calculated. Age-related macular degeneration status was ascertained from retinal photographs. RESULTS Of 5874 participants, 221 had early AMD. High serum cystatin C and low eGFR (≤60 ml/min/1.73 m) were not associated with early AMD in our multivariate analyses. Among normotensive persons, however, highest versus other deciles of cystatin C were associated with an increased prevalence of early AMD (odds ratio, 1.80; 95% confidence interval, 1.00 to 3.23). CONCLUSIONS Results could not confirm an association between kidney function and early AMD. The borderline association between cystatin C and early AMD in normotensive persons require further verification.
Collapse
|
44
|
Gao Q, Pan HT, Lin XH, Zhang JY, Jiang Y, Tian S, Chen LT, Liu ME, Xiong YM, Huang HF, Sheng JZ. Altered Protein Expression Profiles in Umbilical Veins: Insights into Vascular Dysfunctions of the Children Born after In Vitro Fertilization1. Biol Reprod 2014; 91:71. [DOI: 10.1095/biolreprod.114.120659] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
45
|
Balasubramanian SA, Krishna Kumar K, Baird PN. The role of proteases and inflammatory molecules in triggering neovascular age-related macular degeneration: basic science to clinical relevance. Transl Res 2014; 164:179-92. [PMID: 24794954 DOI: 10.1016/j.trsl.2014.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
Abstract
Age-related macular degeneration (AMD) causes severe vision impairment in aged individuals. The health impact and cost of the disease will dramatically increase over the years, with the increase in the aging population. Currently, antivascular endothelial growth factor agents are routinely used for managing late-stage AMD, and recent data have shown that up to 15%-33% of patients do not respond to this treatment. Henceforth, there is a need to develop better treatment options. One avenue is to investigate the role proteases and inflammatory molecules might have in regulating and being regulated by vascular endothelial growth factor. Moreover, emerging data indicate that proteases and inflammatory molecules might be critical in the development and progression of AMD. This article reviews recent literature that investigates proteases and inflammatory molecules involved in the development of AMD. Gaining insights into the proteolytic and inflammatory pathways associated with the pathophysiology of AMD could enable the development of additional or alternative drug strategies for the treatment of AMD.
Collapse
Affiliation(s)
- Sivaraman A Balasubramanian
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria, Australia.
| | - Kaavya Krishna Kumar
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Paul N Baird
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Raghav N, Kaur R. Synthesis and evaluation of some semicarbazone- and thiosemicarbazone-based cathepsin B inhibitors. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1036-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Motiejūnaitė R, Aranda J, Kazlauskas A. Pericytes prevent regression of endothelial cell tubes by accelerating metabolism of lysophosphatidic acid. Microvasc Res 2014; 93:62-71. [DOI: 10.1016/j.mvr.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/16/2014] [Accepted: 03/19/2014] [Indexed: 01/10/2023]
|
48
|
Shu Q, Li W, Li H, Sun G. Vasostatin inhibits VEGF-induced endothelial cell proliferation, tube formation and induces cell apoptosis under oxygen deprivation. Int J Mol Sci 2014; 15:6019-30. [PMID: 24722573 PMCID: PMC4013612 DOI: 10.3390/ijms15046019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 01/08/2023] Open
Abstract
Anti-angiogenesis treatment has been a promising new form of cancer therapy. Endothelial cells are critical for vascular homeostasis and play important roles in angiogenesis, vascular and tissue remodeling. Vasostatin, the 180 amino acid N-terminal fragment of the calreticulin protein, is reported to be a potent endogenous inhibitor of angiogenesis, suppressing tumor growth. However, the mechanism of these effects has not been sufficiently investigated. This study was performed to investigate the possible mechanism of vasostatin effects on primary cultured human umbilical vein endothelial cells (HUVEC). We found that vasostatin could inhibit the cell viability of HUVEC and induce cell apoptosis through mitochondrial pathways via activation of caspase-3 under oxygen deprivation conditions. Meanwhile, vasostatin also inhibited vascular endothelial growth factor-induced proliferation and tube formation of HUVEC. The possible mechanism of vasostatin-inhibited proliferation of HUVEC could be through down-regulation of endothelial nitric oxide synthase. These findings suggest that vasostatin could regulate endothelial cell function and might be used in anti-angiogenesis treatment.
Collapse
Affiliation(s)
- Qun Shu
- Shanghai Changning Maternity and Infant Health Hospital, 773 Wuyi Road, Shanghai 200051, China.
| | - Wenjiao Li
- Shanghai Changning Maternity and Infant Health Hospital, 773 Wuyi Road, Shanghai 200051, China.
| | - Haichuan Li
- Shanghai Changning Maternity and Infant Health Hospital, 773 Wuyi Road, Shanghai 200051, China.
| | - Gang Sun
- School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
49
|
Kidney and eye diseases: common risk factors, etiological mechanisms, and pathways. Kidney Int 2013; 85:1290-302. [PMID: 24336029 DOI: 10.1038/ki.2013.491] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/09/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease is an emerging health problem worldwide. The eye shares striking structural, developmental, and genetic pathways with the kidney, suggesting that kidney disease and ocular disease may be closely linked. A growing number of studies have found associations of chronic kidney disease with age-related macular degeneration, diabetic retinopathy, glaucoma, and cataract. In addition, retinal microvascular parameters have been shown to be predictive of chronic kidney disease. Chronic kidney disease shares common vascular risk factors including diabetes, hypertension, smoking, and obesity, and pathogenetic mechanisms including inflammation, oxidative stress, endothelial dysfunction, and microvascular dysfunction, with ocular diseases supporting the 'Common Soil Hypothesis.' In this review, we present major epidemiological evidence for these associations and explore underlying pathogenic mechanisms and common risk factors for kidney and ocular disease. Understanding the link between kidney and ocular disease can lead to the development of new treatment and screening strategies for both diseases.
Collapse
|
50
|
Abstract
Background Development of a cancerous cell takes place when it ceases to respond to growth-inhibiting signals and multiplies uncontrollably and can detach and move to other parts of the body; the process called as metastasis. A particular set of cysteine proteases are very active during cancer metastasis, Cathepsins being one of them. They are involved in tumor growth and malignancy and have also been reported to be overexpressed in tumor cell lines. In the present study, a combinatorial approach comprising three-dimensional quantitative structure-activity relationship (3D QSAR), ligand-based pharmacophore modelling and search followed by cathepsin L structure-based high throughput screening was carried out using an initial set of 28 congeneric thiosemicarbazone derivatives as cathepsin L inhibitors. A 3D QSAR was derived using the alignment of a common thiosemicarbazone substructure. Essential structural features responsible for biological activity were taken into account for development of a pharmacophore model based on 29 congeneric thiosemicarbazone derivatives. This model was used to carry out an exhaustive search on a large dataset of natural compounds. A further cathepsin L structure-based screen identified two top scoring compounds as potent anti-cancer leads. Results The generated 3D QSAR model showed statistically significant results with an r2 value of 0.8267, cross-validated correlation coefficient q2 of 0.7232, and a pred_r2 (r2 value for test set) of 0.7460. Apart from these, a high F test value of 30.2078 suggested low probability of the model's failure. The pharmacophoric hypothesis chosen for searching the natural compound libraries was identified as DDHRR, where two Ds denote 2 hydrogen donors, H represents a hydrophobic group and two Rs represent aromatic rings, all of which are essential for the biological activity. We report two potential drug leads ZINC08764437 (NFP) and ZINC03846634 (APQ) obtained after a combined approach of pharmacophore-based search and structure-based virtual screen. These two compounds displayed extra precision docking scores of -7.972908 and -7.575686 respectively suggesting considerable binding affinity for cathepsin L. High activity values of 5.72 and 5.75 predicted using the 3D QSAR model further substantiated the inhibitory potential of these identified leads. Conclusion The present study attempts to correlate the structural features of thiosemicarbazone group with their biological activity by development of a robust 3D QSAR model. Being statistically valid, this model provides near accurate values of the activities predicted for the congeneric set on which it is based. These predicted activities are good for the test set compounds making it indeed a statistically sound 3D QSAR model. The identified pharmacophore model DDHRR.8 comprised of all the essential features required to interact with the catalytic triad of cathepsin L. A search for natural compounds based on this pharmacophore followed by docking studies further screened out two top scoring candidates: NFP and AFQ. The high binding affinity and presence of essential structural features in these two compounds make them ideal for consideration as natural anti-tumoral agents. Activity prediction using 3D QSAR model further validated their potential as worthy drug candidates against cathepsin L for treatment of cancer.
Collapse
|