1
|
Tholen J. Branch site recognition by the spliceosome. RNA (NEW YORK, N.Y.) 2024; 30:1397-1407. [PMID: 39187383 PMCID: PMC11482624 DOI: 10.1261/rna.080198.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024]
Abstract
The spliceosome is a eukaryotic multimegadalton RNA-protein complex that removes introns from transcripts. The spliceosome ensures the selection of each exon-intron boundary through multiple recognition events. Initially, the 5' splice site (5' SS) and branch site (BS) are bound by the U1 small nuclear ribonucleoprotein (snRNP) and the U2 snRNP, respectively, while the 3' SS is mostly determined by proximity to the branch site. A large number of splicing factors recognize the splice sites and recruit the snRNPs before the stable binding of the snRNPs occurs by base-pairing the snRNA to the transcript. Fidelity of this process is crucial, as mutations in splicing factors and U2 snRNP components are associated with many diseases. In recent years, major advances have been made in understanding how splice sites are selected in Saccharomyces cerevisiae and humans. Here, I review and discuss the current understanding of the recognition of splice sites by the spliceosome with a focus on recognition and binding of the branch site by the U2 snRNP in humans.
Collapse
Affiliation(s)
- Jonas Tholen
- Department of Structural Biology, Genentech Inc., South San Francisco, California 94080, USA
| |
Collapse
|
2
|
Iruzubieta P, Damborenea A, Ioghen M, Bajew S, Fernandez-Torrón R, Töpf A, Herrero-Reiriz Á, Epure D, Vill K, Hernández-Laín A, Manterola M, Azkargorta M, Pikatza-Menoio O, Pérez-Fernandez L, García-Puga M, Gaina G, Bastian A, Streata I, Walter MC, Müller-Felber W, Thiele S, Moragón S, Bastida-Lertxundi N, López-Cortajarena A, Elortza F, Gereñu G, Alonso-Martin S, Straub V, de Sancho D, Teleanu R, López de Munain A, Blázquez L. Biallelic variants in SNUPN cause a limb girdle muscular dystrophy with myofibrillar-like features. Brain 2024; 147:2867-2883. [PMID: 38366623 PMCID: PMC11292911 DOI: 10.1093/brain/awae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
Alterations in RNA-splicing are a molecular hallmark of several neurological diseases, including muscular dystrophies, where mutations in genes involved in RNA metabolism or characterized by alterations in RNA splicing have been described. Here, we present five patients from two unrelated families with a limb-girdle muscular dystrophy (LGMD) phenotype carrying a biallelic variant in SNUPN gene. Snurportin-1, the protein encoded by SNUPN, plays an important role in the nuclear transport of small nuclear ribonucleoproteins (snRNPs), essential components of the spliceosome. We combine deep phenotyping, including clinical features, histopathology and muscle MRI, with functional studies in patient-derived cells and muscle biopsies to demonstrate that variants in SNUPN are the cause of a new type of LGMD according to current definition. Moreover, an in vivo model in Drosophila melanogaster further supports the relevance of Snurportin-1 in muscle. SNUPN patients show a similar phenotype characterized by proximal weakness starting in childhood, restrictive respiratory dysfunction and prominent contractures, although inter-individual variability in terms of severity even in individuals from the same family was found. Muscle biopsy showed myofibrillar-like features consisting of myotilin deposits and Z-disc disorganization. MRI showed predominant impairment of paravertebral, vasti, sartorius, gracilis, peroneal and medial gastrocnemius muscles. Conservation and structural analyses of Snurportin-1 p.Ile309Ser variant suggest an effect in nuclear-cytosol snRNP trafficking. In patient-derived fibroblasts and muscle, cytoplasmic accumulation of snRNP components is observed, while total expression of Snurportin-1 and snRNPs remains unchanged, which demonstrates a functional impact of SNUPN variant in snRNP metabolism. Furthermore, RNA-splicing analysis in patients' muscle showed widespread splicing deregulation, in particular in genes relevant for muscle development and splicing factors that participate in the early steps of spliceosome assembly. In conclusion, we report that SNUPN variants are a new cause of limb girdle muscular dystrophy with specific clinical, histopathological and imaging features, supporting SNUPN as a new gene to be included in genetic testing of myopathies. These results further support the relevance of splicing-related proteins in muscle disorders.
Collapse
Affiliation(s)
- Pablo Iruzubieta
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Department of Neurology, Donostia University Hospital, Osakidetza Basque Health Service, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Alberto Damborenea
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Mihaela Ioghen
- Clinical Neurosciences Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Paediatric Neurology, 020021 Bucharest, Romania
| | - Simon Bajew
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Roberto Fernandez-Torrón
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Department of Neurology, Donostia University Hospital, Osakidetza Basque Health Service, 20014 San Sebastián, Spain
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, NE4 5NR Newcastle Upon Tyne, UK
| | - Álvaro Herrero-Reiriz
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Diana Epure
- Department of Paediatric Neurology, Doctor Victor Gomoiu Children’s Hospital, 022102 Bucharest, Romania
| | - Katharina Vill
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, LMU University Hospital, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Aurelio Hernández-Laín
- Neuropathology Unit, Department of Pathology, 12 de Octubre University Hospital, 28041 Madrid, Spain
- Department of Neuro-oncology, Instituto de Investigación Sanitaria imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Universidad Complutense de Madrid, Facultad de Medicina, 28040 Madrid, Spain
| | - María Manterola
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Oihane Pikatza-Menoio
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Laura Pérez-Fernandez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain
| | - Mikel García-Puga
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Gisela Gaina
- Department of Cell Biology, Neurosciences and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Alexandra Bastian
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Ioana Streata
- Human Genomics Laboratory, Regional Centre of Medical Genetics, Craiova University of Medicine and Pharmacy, 200349 Dolj, Romania
| | - Maggie C Walter
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Wolfgang Müller-Felber
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Simone Thiele
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Saioa Moragón
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Nerea Bastida-Lertxundi
- Department of Clinical Genetics, Donostia University Hospital, Osakidetza Basque Health Service, 20014 San Sebastián, Spain
| | - Aitziber López-Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Gorka Gereñu
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Sonia Alonso-Martin
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, NE4 5NR Newcastle Upon Tyne, UK
| | - David de Sancho
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Faculty of Chemistry, University of the Basque Country, 20018 San Sebastián, Spain
| | - Raluca Teleanu
- Clinical Neurosciences Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Paediatric Neurology, 020021 Bucharest, Romania
| | - Adolfo López de Munain
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Department of Neurology, Donostia University Hospital, Osakidetza Basque Health Service, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Faculty of Medicine, University of the Basque Country, 20014 San Sebastián, Spain
- Faculty of Medicine, University of Deusto, 48007 Bilbao, Spain
| | - Lorea Blázquez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
3
|
Staněk D. Coilin and Cajal bodies. Nucleus 2023; 14:2256036. [PMID: 37682044 PMCID: PMC10494742 DOI: 10.1080/19491034.2023.2256036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
The nucleus of higher eukaryotes contains a number of structures that concentrate specific biomolecules and play distinct roles in nuclear metabolism. In recent years, the molecular mechanisms controlling their formation have been intensively studied. In this brief review, I focus on coilin and Cajal bodies. Coilin is a key scaffolding protein of Cajal bodies that is evolutionarily conserved in metazoans. Cajal bodies are thought to be one of the archetypal nuclear structures involved in the metabolism of several short non-coding nuclear RNAs. Yet surprisingly little is known about the structure and function of coilin, and a comprehensive model to explain the origin of Cajal bodies is also lacking. Here, I summarize recent results on Cajal bodies and coilin and discuss them in the context of the last three decades of research in this field.
Collapse
Affiliation(s)
- David Staněk
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Tolue Ghasaban F, Maharati A, Zangouei AS, Zangooie A, Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in head and neck cancers. Cancer Cell Int 2023; 23:170. [PMID: 37587481 PMCID: PMC10428558 DOI: 10.1186/s12935-023-03010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Although, there is a high rate of good prognosis in early stage head and neck tumors, about half of these tumors are detected in advanced stages with poor prognosis. A combination of chemotherapy, radiotherapy, and surgery is the treatment option in head and neck cancer (HNC) patients. Although, cisplatin (CDDP) as the first-line drug has a significant role in the treatment of HNC patients, CDDP resistance can be observed in a large number of these patients. Therefore, identification of the molecular mechanisms involved in CDDP resistance can help to reduce the side effects and also provides a better therapeutic management. MicroRNAs (miRNAs) as the post-transcriptional regulators play an important role in drug resistance. Therefore, in the present review we investigated the role of miRNAs in CDDP response of head and neck tumors. It has been reported that the miRNAs exerted their roles in CDDP response by regulation of signaling pathways such as WNT, NOTCH, PI3K/AKT, TGF-β, and NF-kB as well as apoptosis, autophagy, and EMT process. The present review paves the way to suggest a non-invasive miRNA based panel marker for the prediction of CDDP response among HNC patients. Therefore, such diagnostic miRNA based panel marker reduces the CDDP side effects and improves the clinical outcomes of these patients following an efficient therapeutic management.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Student research committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Arfelli VC, Chang YC, Bagnoli JW, Kerbs P, Ciamponi FE, Paz LMDS, Pankivskyi S, de Matha Salone J, Maucuer A, Massirer KB, Enard W, Kuster B, Greif PA, Archangelo LF. UHMK1 is a novel splicing regulatory kinase. J Biol Chem 2023; 299:103041. [PMID: 36803961 PMCID: PMC10033318 DOI: 10.1016/j.jbc.2023.103041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
The U2AF Homology Motif Kinase 1 (UHMK1) is the only kinase that contains the U2AF homology motif, a common protein interaction domain among splicing factors. Through this motif, UHMK1 interacts with the splicing factors SF1 and SF3B1, known to participate in the 3' splice site recognition during the early steps of spliceosome assembly. Although UHMK1 phosphorylates these splicing factors in vitro, the involvement of UHMK1 in RNA processing has not previously been demonstrated. Here, we identify novel putative substrates of this kinase and evaluate UHMK1 contribution to overall gene expression and splicing, by integrating global phosphoproteomics, RNA-seq, and bioinformatics approaches. Upon UHMK1 modulation, 163 unique phosphosites were differentially phosphorylated in 117 proteins, of which 106 are novel potential substrates of this kinase. Gene Ontology analysis showed enrichment of terms previously associated with UHMK1 function, such as mRNA splicing, cell cycle, cell division, and microtubule organization. The majority of the annotated RNA-related proteins are components of the spliceosome but are also involved in several steps of gene expression. Comprehensive analysis of splicing showed that UHMK1 affected over 270 alternative splicing events. Moreover, splicing reporter assay further supported UHMK1 function on splicing. Overall, RNA-seq data demonstrated that UHMK1 knockdown had a minor impact on transcript expression and pointed to UHMK1 function in epithelial-mesenchymal transition. Functional assays demonstrated that UHMK1 modulation affects proliferation, colony formation, and migration. Taken together, our data implicate UHMK1 as a splicing regulatory kinase, connecting protein regulation through phosphorylation and gene expression in key cellular processes.
Collapse
Affiliation(s)
- Vanessa C Arfelli
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Yun-Chien Chang
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Johannes W Bagnoli
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University (LMU), Martinsried, Germany
| | - Paul Kerbs
- Laboratory for Experimental Leukemia and Lymphoma Research, Munich University Hospital, Ludwig-Maximilians University (LMU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felipe E Ciamponi
- Center for Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Laissa M da S Paz
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Serhii Pankivskyi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | | | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Katlin B Massirer
- Center for Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Wolfgang Enard
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University (LMU), Martinsried, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Philipp A Greif
- Laboratory for Experimental Leukemia and Lymphoma Research, Munich University Hospital, Ludwig-Maximilians University (LMU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leticia Fröhlich Archangelo
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
6
|
Olthof AM, White AK, Kanadia RN. The emerging significance of splicing in vertebrate development. Development 2022; 149:dev200373. [PMID: 36178052 PMCID: PMC9641660 DOI: 10.1242/dev.200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Splicing is a crucial regulatory node of gene expression that has been leveraged to expand the proteome from a limited number of genes. Indeed, the vast increase in intron number that accompanied vertebrate emergence might have aided the evolution of developmental and organismal complexity. Here, we review how animal models for core spliceosome components have provided insights into the role of splicing in vertebrate development, with a specific focus on neuronal, neural crest and skeletal development. To this end, we also discuss relevant spliceosomopathies, which are developmental disorders linked to mutations in spliceosome subunits. Finally, we discuss potential mechanisms that could underlie the tissue-specific phenotypes often observed upon spliceosome inhibition and identify gaps in our knowledge that, we hope, will inspire further research.
Collapse
Affiliation(s)
- Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Alisa K. White
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Nameki N, Takizawa M, Suzuki T, Tani S, Kobayashi N, Sakamoto T, Muto Y, Kuwasako K. Structural basis for the interaction between the first SURP domain of the SF3A1 subunit in U2 snRNP and the human splicing factor SF1. Protein Sci 2022; 31:e4437. [PMID: 36173164 PMCID: PMC9514218 DOI: 10.1002/pro.4437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/08/2022]
Abstract
SURP domains are exclusively found in splicing-related proteins in all eukaryotes. SF3A1, a component of the U2 snRNP, has two tandem SURP domains, SURP1, and SURP2. SURP2 is permanently associated with a specific short region of SF3A3 within the SF3A protein complex whereas, SURP1 binds to the splicing factor SF1 for recruitment of U2 snRNP to the early spliceosomal complex, from which SF1 is dissociated during complex conversion. Here, we determined the solution structure of the complex of SURP1 and the human SF1 fragment using nuclear magnetic resonance (NMR) methods. SURP1 adopts the canonical topology of α1-α2-310 -α3, in which α1 and α2 are connected by a single glycine residue in a particular backbone conformation, allowing the two α-helices to be fixed at an acute angle. A hydrophobic patch, which is part of the characteristic surface formed by α1 and α2, specifically contacts a hydrophobic cluster on a 16-residue α-helix of the SF1 fragment. Furthermore, whereas only hydrophobic interactions occurred between SURP2 and the SF3A3 fragment, several salt bridges and hydrogen bonds were found between the residues of SURP1 and the SF1 fragment. This finding was confirmed through mutational studies using bio-layer interferometry. The study also revealed that the dissociation constant between SURP1 and the SF1 fragment peptide was approximately 20 μM, indicating a weak or transient interaction. Collectively, these results indicate that the interplay between U2 snRNP and SF1 involves a transient interaction of SURP1, and this transient interaction appears to be common to most SURP domains, except for SURP2.
Collapse
Affiliation(s)
- Nobukazu Nameki
- Division of Molecular ScienceGraduate School of Science and Technology, Gunma UniversityKiryuGunmaJapan
| | - Masayuki Takizawa
- Faculty of Pharmacy and Research Institute of Pharmaceutical SciencesMusashino UniversityNishitokyoTokyoJapan
| | - Takayuki Suzuki
- Faculty of Pharmacy and Research Institute of Pharmaceutical SciencesMusashino UniversityNishitokyoTokyoJapan
| | - Shoko Tani
- Faculty of Pharmacy and Research Institute of Pharmaceutical SciencesMusashino UniversityNishitokyoTokyoJapan
| | | | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced EngineeringChiba Institute of TechnologyNarashinoChibaJapan
| | - Yutaka Muto
- Faculty of Pharmacy and Research Institute of Pharmaceutical SciencesMusashino UniversityNishitokyoTokyoJapan
| | - Kanako Kuwasako
- Faculty of Pharmacy and Research Institute of Pharmaceutical SciencesMusashino UniversityNishitokyoTokyoJapan
| |
Collapse
|
8
|
Galardi JW, Bela VN, Jeffery N, He X, Glasser E, Loerch S, Jenkins JL, Pulvino MJ, Boutz PL, Kielkopf CL. A UHM - ULM interface with unusual structural features contributes to U2AF2 and SF3B1 association for pre-mRNA splicing. J Biol Chem 2022; 298:102224. [PMID: 35780835 PMCID: PMC9364107 DOI: 10.1016/j.jbc.2022.102224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022] Open
Abstract
During spliceosome assembly, the 3′ splice site is recognized by sequential U2AF2 complexes, first with Splicing Factor 1 (SF1) and second by the SF3B1 subunit of the U2 small nuclear ribonuclear protein particle. The U2AF2–SF1 interface is well characterized, comprising a U2AF homology motif (UHM) of U2AF2 bound to a U2AF ligand motif (ULM) of SF1. However, the structure of the U2AF2–SF3B1 interface and its importance for pre-mRNA splicing are unknown. To address this knowledge gap, we determined the crystal structure of the U2AF2 UHM bound to a SF3B1 ULM site at 1.8-Å resolution. We discovered a distinctive trajectory of the SF3B1 ULM across the U2AF2 UHM surface, which differs from prior UHM/ULM structures and is expected to modulate the orientations of the full-length proteins. We established that the binding affinity of the U2AF2 UHM for the cocrystallized SF3B1 ULM rivals that of a nearly full-length U2AF2 protein for an N-terminal SF3B1 region. An additional SF3B6 subunit had no detectable effect on the U2AF2–SF3B1 binding affinities. We further showed that key residues at the U2AF2 UHM–SF3B1 ULM interface contribute to coimmunoprecipitation of the splicing factors. Moreover, disrupting the U2AF2–SF3B1 interface changed splicing of representative human transcripts. From analysis of genome-wide data, we found that many of the splice sites coregulated by U2AF2 and SF3B1 differ from those coregulated by U2AF2 and SF1. Taken together, these findings support distinct structural and functional roles for the U2AF2—SF1 and U2AF2—SF3B1 complexes during the pre-mRNA splicing process.
Collapse
Affiliation(s)
- Justin W Galardi
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Victoria N Bela
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Nazish Jeffery
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Xueyang He
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Eliezra Glasser
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sarah Loerch
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jermaine L Jenkins
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mary J Pulvino
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Paul L Boutz
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clara L Kielkopf
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
9
|
Chen D, Zhou H, Cai Z, Cai K, Liu J, Wang W, Miao H, Li H, Li R, Li X, Chen Y, Wang HY, Wen Z. CircSCAP interacts with SF3A3 to inhibit the malignance of non-small cell lung cancer by activating p53 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:120. [PMID: 35365208 PMCID: PMC8973551 DOI: 10.1186/s13046-022-02299-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/23/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Circular RNA (circRNA) has been recently identified as a critical regulator during carcinogenesis. However, the biological function and potential underlying mechanisms of circRNAs in lung cancer remain to be further elucidated. METHODS Here, we first evaluated the differentially expressed circRNAs between tumor and the matched adjacent nontumor tissues (3 pairs) of lung cancer patients via circRNA microarray. The expression of top five dysregulated circRNAs were tested in lung cancer cell lines and the circSCAP with concordant alteration in microarray data and cell lines was selected for further investigation. Then we validated the expression level of circSCAP in tumor and corresponding adjacent tissues (161 pairs) from a lung cancer cohort by RT-PCR analysis followed by correlation and prognosis analysis between circSCAP and clinical characteristics. Non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer diagnosis (about 80% in the cohort used in this study). Therefore, we focused the role of circSCAP in NSCLC in the present study. In vitro and in vivo assays were performed to study the biological function of circSCAP in NSCLC. Biotin-labeled RNA pulldown and RNA immunoprecipitation (RIP) assays were carried out to identify the proteins directly interacting with circSCAP. The molecular mechanism of circSCAP-driven tumor suppression was demonstrated by immunoblotting, immunoprecipitation and luciferase reporter assays. In vitro and in vivo rescue experiments were conducted to verify the role of the circSCAP/SF3A3/p53 signaling axis in NSCLC. RESULTS We screened the expression profiles of human circRNAs in lung cancer tissues and found that hsa_circ_0065214 (termed as circSCAP) was significantly decreased. Kaplan-Meier analysis showed that patients with low level of circSCAP had a significantly poor prognosis. Gain- and loss-of-function experiments suggested that circSCAP played an important role in NSCLC cell proliferation, cell migration and apoptosis. Mechanistically, circSCAP directly binds to the SF3A3 protein, facilitating the reduction of SF3A3 by promoting its ubiquitin-proteasome-mediated degradation, which enhances the expression of MDM4-S to finally activate its downstream p53 signaling. CONCLUSION These findings illustrate a novel circSCAP/SF3A3/p53 signaling axis involved in suppressing the malignance of NSCLC and provide a promising target for NSCLC prognosis prediction and treatment.
Collapse
Affiliation(s)
- Dongni Chen
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510089, China
| | - Hongli Zhou
- Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhuochen Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510089, China
| | - Ji Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Weidong Wang
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Huikai Miao
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hongmu Li
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rongzhen Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaodong Li
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Youfang Chen
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Zhesheng Wen
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Liu KL, Yin YW, Lu BS, Niu YL, Wang DD, Shi B, Zhang H, Guo PY, Yang Z, Li W. E2F6/KDM5C promotes SF3A3 expression and bladder cancer progression through a specific hypomethylated DNA promoter. Cancer Cell Int 2022; 22:109. [PMID: 35248043 PMCID: PMC8897952 DOI: 10.1186/s12935-022-02475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/18/2022] [Indexed: 12/01/2022] Open
Abstract
Background Abnormal expression of splicing factor 3A subunit 3 (SF3A3), a component of the spliceosome, has been confirmed to be related to the occurrence and development of various cancers. However, the expression and function of SF3A3 in bladder cancer (BC) remains unclear. Methods The SF3A3 mRNA and protein level were measured in clinical samples and cell lines by quantitative real-time PCR, Western blot and immunofluorescence staining. Evaluate the clinical correlation between SF3A3 expression and clinicopathological characteristics through statistical analysis in BC patients. The function of SF3A3 in BC cells was determined in vitro using MTT and colony analysis. Co-immunoprecipitation (CoIP) assay was used to detected E2F6 and KDM5C interaction. Luciferase reporter and chromatin immunoprecipitation (ChIP) were used to examine the relationship between E2F6/KDM5C and SF3A3 expression. Results In the present study, we demonstrated that expression of SF3A3 was elevated in BC tissue compared to the normal bladder tissue. Importantly, the upregulation of SF3A3 in patients was correlated with poor prognosis. Additionally, overexpression of SF3A3 promoted while depletion of SF3A3 reduced the growth of BC cells in vivo and in vitro. Data from the TCGA database and clinical samples revealed that hypomethylation of the DNA promoter leads to high expression of SF3A3 in BC tissue. We found that upregulation of lysine-specific demethylase 5C (KDM5C) promotes SF3A3 expression via hypomethylation of the DNA promoter. The transcription factor E2F6 interacts with KDM5C, recruits KDM5C to the SF3A3 promoter, and demethylates the GpC island of H3K4me2, leading to high SF3A3 expression and BC progression. Conclusions The results demonstrated that depletion of the KDM5C/SF3A3 prevents the growth of BC in vivo and in vitro. The E2F6/KDM5C/SF3A3 pathway may be a potential therapeutic target for BC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02475-4.
Collapse
|
11
|
Borao S, Ayté J, Hümmer S. Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing. Int J Mol Sci 2021; 22:ijms222212444. [PMID: 34830325 PMCID: PMC8624252 DOI: 10.3390/ijms222212444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is a major process in the regulated expression of genes in eukaryotes, and alternative splicing is used to generate different proteins from the same coding gene. Splicing is a catalytic process that removes introns and ligates exons to create the RNA sequence that codifies the final protein. While this is achieved in an autocatalytic process in ancestral group II introns in prokaryotes, the spliceosome has evolved during eukaryogenesis to assist in this process and to finally provide the opportunity for intron-specific splicing. In the early stage of splicing, the RNA 5' and 3' splice sites must be brought within proximity to correctly assemble the active spliceosome and perform the excision and ligation reactions. The assembly of this first complex, termed E-complex, is currently the least understood process. We focused in this review on the formation of the E-complex and compared its composition and function in three different organisms. We highlight the common ancestral mechanisms in S. cerevisiae, S. pombe, and mammals and conclude with a unifying model for intron definition in constitutive and regulated co-transcriptional splicing.
Collapse
Affiliation(s)
- Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Correspondence: (J.A.); (S.H.)
| | - Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Translational Molecular Pathology, Vall d’Hebron Research Institute (VHIR), CIBERONC, 08035 Barcelona, Spain
- Correspondence: (J.A.); (S.H.)
| |
Collapse
|
12
|
Stemm-Wolf AJ, O’Toole ET, Sheridan RM, Morgan JT, Pearson CG. The SON RNA splicing factor is required for intracellular trafficking structures that promote centriole assembly and ciliogenesis. Mol Biol Cell 2021; 32:ar4. [PMID: 34406792 PMCID: PMC8684746 DOI: 10.1091/mbc.e21-06-0305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022] Open
Abstract
Control of centrosome assembly is critical for cell division, intracellular trafficking, and cilia. Regulation of centrosome number occurs through the precise duplication of centrioles that reside in centrosomes. Here we explored transcriptional control of centriole assembly and find that the RNA splicing factor SON is specifically required for completing procentriole assembly. Whole genome mRNA sequencing identified genes whose splicing and expression are affected by the reduction of SON, with an enrichment in genes involved in the microtubule (MT) cytoskeleton, centrosome, and centriolar satellites. SON is required for the proper splicing and expression of CEP131, which encodes a major centriolar satellite protein and is required to organize the trafficking and MT network around the centrosomes. This study highlights the importance of the distinct MT trafficking network that is intimately associated with nascent centrioles and is responsible for procentriole development and efficient ciliogenesis.
Collapse
Affiliation(s)
- Alexander J. Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | | | - Ryan M. Sheridan
- RNA Biosciences Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Jacob T. Morgan
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
13
|
Hojka-Osinska A, Chlebowski A, Grochowska J, Owczarek EP, Affek K, Kłosowska-Kosicka K, Szczesny RJ, Dziembowski A. Landscape of functional interactions of human processive ribonucleases revealed by high-throughput siRNA screenings. iScience 2021; 24:103036. [PMID: 34541468 PMCID: PMC8437785 DOI: 10.1016/j.isci.2021.103036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Processive exoribonucleases are executors of RNA decay. In humans, their physical but not functional interactions were thoughtfully investigated. Here we have screened cells deficient in DIS3, XRN2, EXOSC10, DIS3L, and DIS3L2 with a custom siRNA library and determined their genetic interactions (GIs) with diverse pathways of RNA metabolism. We uncovered a complex network of positive interactions that buffer alterations in RNA degradation and reveal reciprocal cooperation with genes involved in transcription, RNA export, and splicing. Further, we evaluated the functional distinctness of nuclear DIS3 and cytoplasmic DIS3L using a library of all known genes associated with RNA metabolism. Our analysis revealed that DIS3 mutation suppresses RNA splicing deficiency, while DIS3L GIs disclose the interplay of cytoplasmic RNA degradation with nuclear RNA processing. Finally, genome-wide DIS3 GI map uncovered relations with genes not directly involved in RNA metabolism, like microtubule organization or regulation of telomerase activity.
Collapse
Affiliation(s)
- Anna Hojka-Osinska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Aleksander Chlebowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joanna Grochowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewelina P. Owczarek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Kamila Affek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | - Roman J. Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| |
Collapse
|
14
|
Floro J, Dai A, Metzger A, Mora-Martin A, Ganem N, Cifuentes D, Wu CS, Dalal J, Lyons S, Labadorf A, Flynn R. SDE2 is an essential gene required for ribosome biogenesis and the regulation of alternative splicing. Nucleic Acids Res 2021; 49:9424-9443. [PMID: 34365507 PMCID: PMC8450105 DOI: 10.1093/nar/gkab647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022] Open
Abstract
RNA provides the framework for the assembly of some of the most intricate macromolecular complexes within the cell, including the spliceosome and the mature ribosome. The assembly of these complexes relies on the coordinated association of RNA with hundreds of trans-acting protein factors. While some of these trans-acting factors are RNA-binding proteins (RBPs), others are adaptor proteins, and others still, function as both. Defects in the assembly of these complexes results in a number of human pathologies including neurodegeneration and cancer. Here, we demonstrate that Silencing Defective 2 (SDE2) is both an RNA binding protein and also a trans-acting adaptor protein that functions to regulate RNA splicing and ribosome biogenesis. SDE2 depletion leads to widespread changes in alternative splicing, defects in ribosome biogenesis and ultimately complete loss of cell viability. Our data highlight SDE2 as a previously uncharacterized essential gene required for the assembly and maturation of the complexes that carry out two of the most fundamental processes in mammalian cells.
Collapse
Affiliation(s)
- Jess Floro
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anqi Dai
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
- Bioinformatics Program, Boston University, Boston, MA 02118 USA
| | - Abigail Metzger
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alexandra Mora-Martin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Neil J Ganem
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ching-Shyi Wu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Jasbir Dalal
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shawn M Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Adam Labadorf
- Bioinformatics Program, Boston University, Boston, MA 02118 USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118 USA
| | - Rachel L Flynn
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
15
|
Martelly W, Fellows B, Kang P, Vashisht A, Wohlschlegel JA, Sharma S. Synergistic roles for human U1 snRNA stem-loops in pre-mRNA splicing. RNA Biol 2021; 18:2576-2593. [PMID: 34105434 DOI: 10.1080/15476286.2021.1932360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
During spliceosome assembly, interactions that bring the 5' and 3' ends of an intron in proximity are critical for the production of mature mRNA. Here, we report synergistic roles for the stem-loops 3 (SL3) and 4 (SL4) of the human U1 small nuclear RNA (snRNA) in maintaining the optimal U1 snRNP function, and formation of cross-intron contact with the U2 snRNP. We find that SL3 and SL4 bind distinct spliceosomal proteins and combining a U1 snRNA activity assay with siRNA-mediated knockdown, we demonstrate that SL3 and SL4 act through the RNA helicase UAP56 and the U2 protein SF3A1, respectively. In vitro analysis using UV crosslinking and splicing assays indicated that SL3 likely promotes the SL4-SF3A1 interaction leading to enhancement of A complex formation and pre-mRNA splicing. Overall, these results highlight the vital role of the distinct contacts of SL3 and SL4 in bridging the pre-mRNA bound U1 and U2 snRNPs during the early steps of human spliceosome assembly.
Collapse
Affiliation(s)
- William Martelly
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bernice Fellows
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Paul Kang
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Ajay Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| |
Collapse
|
16
|
Godavarthi JD, Polk S, Nunez L, Shivachar A, Glenn Griesinger NL, Matin A. Deficiency of Splicing Factor 1 (SF1) Reduces Intestinal Polyp Incidence in ApcMin/+ Mice. BIOLOGY 2020; 9:biology9110398. [PMID: 33202710 PMCID: PMC7697247 DOI: 10.3390/biology9110398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Splicing factor 1 (SF1) is a conserved alternative splicing factor expressed in many different mammalian cell types. The genetically modified Sf1+/- (or Sf1β-geo/+) mice express reduced levels of SF1 protein in mouse tissues, including in cells of the intestines. Mutational inactivation of human adenomatous polyposis coli (APC) gene deregulates the Wnt signaling pathway and is a frequent genetic event in colon cancers. Mice with a point mutation in the Apc gene (ApcMin/+) also develop numerous intestinal polyps at a young age. Our aim was to determine the effect of reduced SF1 levels on polyp development due to the strong driver ApcMin/+ mutation. METHODS We utilized mice genetically deficient for expression of SF1 to assess how SF1 levels affect intestinal tumorigenesis. We crossed ApcMin/+ to Sf1+/- mice to generate a cohort of heterozygous mutant ApcMin/+;Sf1+/- mice and compared intestinal polyp development in these mice to that in a control cohort of sibling ApcMin/+ mice. We compared total polyp numbers, sizes of polyps and gender differences in polyp numbers between ApcMin/+;Sf1+/- and ApcMin/+ mice. RESULTS Our results showed that ApcMin/+ mice with lower SF1 expression developed 25-30% fewer intestinal polyps compared to their ApcMin/+ siblings with normal SF1 levels. Interestingly, this difference was most significant for females (ApcMin/+;Sf1+/- and ApcMin/+ females developed 39 and 55 median number of polyps, respectively). Furthermore, the difference in polyp numbers between ApcMin/+;Sf1+/- and ApcMin/+ mice was significant for smaller polyps with a size of 2 mm or less, whereas both groups developed similar numbers of larger polyps. CONCLUSIONS Our results suggest that lower SF1 levels likely inhibit the rate of initiation of polyp development due to ApcMin/+ driver mutation in the mouse intestine. Thus, therapeutic lowering of SF1 levels in the intestine could attenuate intestinal polyp development.
Collapse
Affiliation(s)
- Jyotsna D. Godavarthi
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX 77004, USA; (J.D.G.); (S.P.); (L.N.); (A.S.)
| | - Shahrazad Polk
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX 77004, USA; (J.D.G.); (S.P.); (L.N.); (A.S.)
| | - Lisa Nunez
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX 77004, USA; (J.D.G.); (S.P.); (L.N.); (A.S.)
| | - Amruthesh Shivachar
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX 77004, USA; (J.D.G.); (S.P.); (L.N.); (A.S.)
| | | | - Angabin Matin
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX 77004, USA; (J.D.G.); (S.P.); (L.N.); (A.S.)
- Correspondence: ; Tel.: +1-713-313-7160; Fax: +1-713-313-1091
| |
Collapse
|
17
|
Zhang KL, Feng Z, Yang JF, Yang F, Yuan T, Zhang D, Hao GF, Fang YM, Zhang J, Wu C, Chen MX, Zhu FY. Systematic characterization of the branch point binding protein, splicing factor 1, gene family in plant development and stress responses. BMC PLANT BIOLOGY 2020; 20:379. [PMID: 32811430 PMCID: PMC7433366 DOI: 10.1186/s12870-020-02570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Among eukaryotic organisms, alternative splicing is an important process that can generate multiple transcripts from one same precursor messenger RNA, which greatly increase transcriptome and proteome diversity. This process is carried out by a super-protein complex defined as the spliceosome. Specifically, splicing factor 1/branchpoint binding protein (SF1/BBP) is a single protein that can bind to the intronic branchpoint sequence (BPS), connecting the 5' and 3' splice site binding complexes during early spliceosome assembly. The molecular function of this protein has been extensively investigated in yeast, metazoa and mammals. However, its counterpart in plants has been seldomly reported. RESULTS To this end, we conducted a systematic characterization of the SF1 gene family across plant lineages. In this work, a total of 92 sequences from 59 plant species were identified. Phylogenetic relationships of these sequences were constructed, and subsequent bioinformatic analysis suggested that this family likely originated from an ancient gene transposition duplication event. Most plant species were shown to maintain a single copy of this gene. Furthermore, an additional RNA binding motif (RRM) existed in most members of this gene family in comparison to their animal and yeast counterparts, indicating that their potential role was preserved in the plant lineage. CONCLUSION Our analysis presents general features of the gene and protein structure of this splicing factor family and will provide fundamental information for further functional studies in plants.
Collapse
Affiliation(s)
- Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Zhen Feng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China
| | - Feng Yang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Tian Yuan
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Di Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 PR China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| |
Collapse
|
18
|
Jackson TC, Kochanek PM. RNA Binding Motif 5 (RBM5) in the CNS-Moving Beyond Cancer to Harness RNA Splicing to Mitigate the Consequences of Brain Injury. Front Mol Neurosci 2020; 13:126. [PMID: 32765218 PMCID: PMC7381114 DOI: 10.3389/fnmol.2020.00126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Gene splicing modulates the potency of cell death effectors, alters neuropathological disease processes, influences neuronal recovery, but may also direct distinct mechanisms of secondary brain injury. Therapeutic targeting of RNA splicing is a promising avenue for next-generation CNS treatments. RNA-binding proteins (RBPs) regulate a variety of RNA species and are prime candidates in the hunt for druggable targets to manipulate and tailor gene-splicing responses in the brain. RBPs preferentially recognize unique consensus sequences in targeted mRNAs. Also, RBPs often contain multiple RNA-binding domains (RBDs)—each having a unique consensus sequence—suggesting the possibility that drugs could be developed to block individual functional domains, increasing the precision of RBP-targeting therapies. Empirical characterization of most RBPs is lacking and represents a major barrier to advance this emerging therapeutic area. There is a paucity of data on the role of RBPs in the brain including, identification of their unique mRNA targets, defining how CNS insults affect their levels and elucidating which RBPs (and individual domains within) to target to improve neurological outcomes. This review focuses on the state-of-the-art of the RBP tumor suppressor RNA binding motif 5 (RBM5) in the CNS. We discuss its potent pro-death roles in cancer, which motivated our interest to study it in the brain. We review recent studies showing that RBM5 levels are increased after CNS trauma and that it promotes neuronal death in vitro. Finally, we conclude with recent reports on the first set of RBM5 regulated genes identified in the intact brain, and discuss how those findings provide new clues germane to its potential function(s) in the CNS, and pose new questions on its therapeutic utility to mitigate CNS injury.
Collapse
Affiliation(s)
- Travis C Jackson
- Morsani College of Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, United States.,Morsani College of Medicine, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Hou S, Qu D, Li Y, Zhu B, Liang D, Wei X, Tang W, Zhang Q, Hao J, Guo W, Wang W, Zhao S, Wang Q, Azam S, Khan M, Zhao H, Zhang L, Lei H. XAB2 depletion induces intron retention in POLR2A to impair global transcription and promote cellular senescence. Nucleic Acids Res 2019; 47:8239-8254. [PMID: 31216022 PMCID: PMC6735682 DOI: 10.1093/nar/gkz532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
XAB2 is a multi-functional protein participating processes including transcription, splicing, DNA repair and mRNA export. Here, we report POLR2A, the largest catalytic subunit of RNA polymerase II, as a major target gene down-regulated after XAB2 depletion. XAB2 depletion led to severe splicing defects of POLR2A with significant intron retention. Such defects resulted in substantial loss of POLR2A at RNA and protein levels, which further impaired global transcription. Treatment of splicing inhibitor madrasin induced similar reduction of POLR2A. Screen using TMT-based quantitative proteomics identified several proteins involved in mRNA surveillance including Dom34 with elevated expression. Inhibition of translation or depletion of Dom34 rescued the expression of POLR2A by stabilizing its mRNA. Immuno-precipitation further confirmed that XAB2 associated with spliceosome components important to POLR2A expression. Domain mapping revealed that TPR motifs 2–4 and 11 of XAB2 were critical for POLR2A expression by interacting with SNW1. Finally, we showed POLR2A mediated cell senescence caused by XAB2 deficiency. Depletion of XAB2 or POLR2A induced cell senescence by up-regulation of p53 and p21, re-expression of POLR2A after XAB2 depletion alleviated cellular senescence. These data together support that XAB2 serves as a guardian of POLR2A expression to ensure global gene expression and antagonize cell senescence.
Collapse
Affiliation(s)
- Shuai Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Dajun Qu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yue Li
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Baohui Zhu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Xinyue Wei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wei Tang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qian Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Weijie Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Siqi Zhao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Qi Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Sikandar Azam
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Misbah Khan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Haidong Zhao
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Martelly W, Fellows B, Senior K, Marlowe T, Sharma S. Identification of a noncanonical RNA binding domain in the U2 snRNP protein SF3A1. RNA (NEW YORK, N.Y.) 2019; 25:1509-1521. [PMID: 31383795 PMCID: PMC6795144 DOI: 10.1261/rna.072256.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
During splicing of pre-mRNA, 5' and 3' splice sites are brought within proximity by interactions between the pre-mRNA bound U1 and U2 snRNPs, followed by recruitment of the tri-snRNP for assembly of the mature spliceosome. Previously, we identified an interaction between the U2 snRNP-specific protein SF3A1 and the stem-loop 4 (SL4) of the U1 snRNA that occurs during the early steps of spliceosome assembly. Although harboring many annotated domains, SF3A1 lacks a canonical RNA binding domain. To identify the U1-SL4 binding region in SF3A1, we expressed amino- and carboxy-terminal deletion constructs using a HeLa cell-based cell free expression system. UV-crosslinking of the truncated proteins with 32P-U1-SL4 RNA identified the carboxy-terminal ubiquitin-like (UBL) domain of SF3A1 as the RNA binding region. Characterization of the interaction between SF3A1-UBL and U1-SL4 by electrophoretic mobility shift assay and surface plasmon resonance determined high binding affinity (KD = ∼97 nM), and revealed the double-stranded G-C rich stem of U1-SL4 as an important feature for binding to the UBL domain. Further, mutations of two conserved tyrosine residues, Y772 and Y773, were found to cause a two- and fivefold decrease in the binding affinity for U1-SL4, respectively. Finally, we found that SF3A1-UBL can specifically pull down the U1 snRNP from HeLa nuclear extract, demonstrating its capacity to bind U1-SL4 in the context of the intact snRNP. Thus, the data show that the UBL domain of SF3A1 can function as an RNA binding domain and that mutations in this region may interfere with U1-SL4 binding.
Collapse
Affiliation(s)
- William Martelly
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona 85004, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Bernice Fellows
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona 85004, USA
| | - Kristen Senior
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona 85004, USA
| | - Tim Marlowe
- Molecular Analysis Core, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona 85004, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona 85004, USA
| |
Collapse
|
21
|
Zuo Y, Feng F, Qi W, Song R. Dek42 encodes an RNA-binding protein that affects alternative pre-mRNA splicing and maize kernel development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:728-748. [PMID: 30839161 DOI: 10.1111/jipb.12798] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/28/2019] [Indexed: 05/22/2023]
Abstract
RNA-binding proteins (RBPs) play an important role in post-transcriptional gene regulation. However, the functions of RBPs in plants remain poorly understood. Maize kernel mutant dek42 has small defective kernels and lethal seedlings. Dek42 was cloned by Mutator tag isolation and further confirmed by an independent mutant allele and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 materials. Dek42 encodes an RRM_RBM48 type RNA-binding protein that localizes to the nucleus. Dek42 is constitutively expressed in various maize tissues. The dek42 mutation caused a significant reduction in the accumulation of DEK42 protein in mutant kernels. RNA-seq analysis showed that the dek42 mutation significantly disturbed the expression of thousands of genes during maize kernel development. Sequence analysis also showed that the dek42 mutation significantly changed alternative splicing in expressed genes, which were especially enriched for the U12-type intron-retained type. Yeast two-hybrid screening identified SF3a1 as a DEK42-interacting protein. DEK42 also interacts with the spliceosome component U1-70K. These results suggested that DEK42 participates in the regulation of pre-messenger RNA splicing through its interaction with other spliceosome components. This study showed the function of a newly identified RBP and provided insights into alternative splicing regulation during maize kernel development.
Collapse
Affiliation(s)
- Yi Zuo
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
22
|
Roithová A, Klimešová K, Pánek J, Will CL, Lührmann R, Staněk D, Girard C. The Sm-core mediates the retention of partially-assembled spliceosomal snRNPs in Cajal bodies until their full maturation. Nucleic Acids Res 2018; 46:3774-3790. [PMID: 29415178 PMCID: PMC5909452 DOI: 10.1093/nar/gky070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 01/23/2023] Open
Abstract
Cajal bodies (CBs) are nuclear non-membrane bound organelles where small nuclear ribonucleoprotein particles (snRNPs) undergo their final maturation and quality control before they are released to the nucleoplasm. However, the molecular mechanism how immature snRNPs are targeted and retained in CBs has yet to be described. Here, we microinjected and expressed various snRNA deletion mutants as well as chimeric 7SK, Alu or bacterial SRP non-coding RNAs and provide evidence that Sm and SMN binding sites are necessary and sufficient for CB localization of snRNAs. We further show that Sm proteins, and specifically their GR-rich domains, are important for accumulating snRNPs in CBs. Accordingly, core snRNPs containing the Sm proteins, but not naked snRNAs, restore the formation of CBs after their depletion. Finally, we show that immature but not fully assembled snRNPs are able to induce CB formation and that microinjection of an excess of U2 snRNP-specific proteins, which promotes U2 snRNP maturation, chases U2 snRNA from CBs. We propose that the accessibility of the Sm ring represents the molecular basis for the quality control of the final maturation of snRNPs and the sequestration of immature particles in CBs.
Collapse
Affiliation(s)
- Adriana Roithová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Klimešová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Pánek
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Cindy L Will
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Cyrille Girard
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
23
|
Fang Z, Zhao J, Xie W, Sun Q, Wang H, Qiao B. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression. Cancer Med 2017; 6:2897-2908. [PMID: 29125238 PMCID: PMC5727307 DOI: 10.1002/cam4.1253] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy resistance has become the main obstacle for the effective treatment of human cancers. Long non‐coding RNA urothelial cancer associated 1 (UCA1) is generally regarded as an oncogene in some cancers. However, the function and molecular mechanism of UCA1 implicated in cisplatin (CDDP) chemoresistance of oral squamous cell carcinoma (OSCC) is still not fully established. UCA1 expression in tumor tissues and cells was tested by qRT‐PCR. MTT, flow cytometry and caspase‐3 activity analysis were explored to evaluate the CDDP sensitivity in OSCC cells. Western blot analysis was used to measure BCL2, Bax and SF1 protein expression. Luciferase reporter assay was conducted to investigate the molecular relationship between UCA1, miR‐184, and SF1. Nude mice model was used to confirm the functional role of UCA1 in CDDP resistance in vivo. UCA1 expression was upregulated in OSCC tissues, cell lines, and CDDP resistant OSCC cells. Function analysis revealed that UCA1 facilitated proliferation, enhanced CDDP chemoresistance, and suppressed apoptosis in OSCC cells. Mechanisms investigation indicated that UCA1 could interact with miR‐184 to repress its expression. Rescue experiments suggested that downregulation of miR‐184 partly reversed the tumor suppression effect and CDDP chemosensitivity of UCA1 knockdown in CDDP‐resistant OSCC cells. Moreover, UCA1 could perform as a miR‐184 sponge to modulate SF1 expression. The OSCC nude mice model experiments demonstrated that depletion of UCA1 further boosted CDDP‐mediated repression effect on tumor growth. UCA1 accelerated proliferation, increased CDDP chemoresistance and restrained apoptosis partly through modulating SF1 via sponging miR‐184 in OSCC cells, suggesting that targeting UCA1 may be a potential therapeutic strategy for OSCC patients
Collapse
Affiliation(s)
- Zheng Fang
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junfang Zhao
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weihong Xie
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiang Sun
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haibin Wang
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bin Qiao
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
24
|
ALS Associated Mutations in Matrin 3 Alter Protein-Protein Interactions and Impede mRNA Nuclear Export. Sci Rep 2017; 7:14529. [PMID: 29109432 PMCID: PMC5674072 DOI: 10.1038/s41598-017-14924-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in Matrin 3 have recently been linked to ALS, though the mechanism that induces disease in these patients is unknown. To define the protein interactome of wild-type and ALS-linked MATR3 mutations, we performed immunoprecipitation followed by mass spectrometry using NSC-34 cells expressing human wild-type or mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 in mRNA transport centered on proteins in the TRanscription and EXport (TREX) complex, known to function in mRNA biogenesis and nuclear export. ALS-linked mutations in Matrin 3 led to its re-distribution within the nucleus, decreased co-localization with endogenous Matrin 3 and increased co-localization with specific TREX components. Expression of disease-causing Matrin 3 mutations led to nuclear mRNA export defects of both global mRNA and more specifically the mRNA of TDP-43 and FUS. Our findings identify a potential pathogenic mechanism attributable to MATR3 mutations and further link cellular transport defects to ALS.
Collapse
|
25
|
Chen L, Weinmeister R, Kralovicova J, Eperon LP, Vorechovsky I, Hudson AJ, Eperon IC. Stoichiometries of U2AF35, U2AF65 and U2 snRNP reveal new early spliceosome assembly pathways. Nucleic Acids Res 2017; 45:2051-2067. [PMID: 27683217 PMCID: PMC5389562 DOI: 10.1093/nar/gkw860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Abstract
The selection of 3΄ splice sites (3΄ss) is an essential early step in mammalian RNA splicing reactions, but the processes involved are unknown. We have used single molecule methods to test whether the major components implicated in selection, the proteins U2AF35 and U2AF65 and the U2 snRNP, are able to recognize alternative candidate sites or are restricted to one pre-specified site. In the presence of adenosine triphosphate (ATP), all three components bind in a 1:1 stoichiometry with a 3΄ss. Pre-mRNA molecules with two alternative 3΄ss can be bound concurrently by two molecules of U2AF or two U2 snRNPs, so none of the components are restricted. However, concurrent occupancy inhibits splicing. Stoichiometric binding requires conditions consistent with coalescence of the 5΄ and 3΄ sites in a complex (I, initial), but if this cannot form the components show unrestricted and stochastic association. In the absence of ATP, when complex E forms, U2 snRNP association is unrestricted. However, if protein dephosphorylation is prevented, an I-like complex forms with stoichiometric association of U2 snRNPs and the U2 snRNA is base-paired to the pre-mRNA. Complex I differs from complex A in that the formation of complex A is associated with the loss of U2AF65 and 35.
Collapse
Affiliation(s)
- Li Chen
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Robert Weinmeister
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Lucy P Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Andrew J Hudson
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Chemistry, Leicester LE1 7RH, UK
| | - Ian C Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| |
Collapse
|
26
|
Lee KC, Jang YH, Kim SK, Park HY, Thu MP, Lee JH, Kim JK. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes. PLANT CELL REPORTS 2017; 36:1083-1095. [PMID: 28401337 DOI: 10.1007/s00299-017-2140-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/04/2017] [Indexed: 05/20/2023]
Abstract
The RNA recognition motif of Arabidopsis splicing factor SF1 affects the alternative splicing of FLOWERING LOCUS M pre-mRNA and a heat shock transcription factor HsfA2 pre-mRNA. Splicing factor 1 (SF1) plays a crucial role in 3' splice site recognition by binding directly to the intron branch point. Although plant SF1 proteins possess an RNA recognition motif (RRM) domain that is absent in its fungal and metazoan counterparts, the role of the RRM domain in SF1 function has not been characterized. Here, we show that the RRM domain differentially affects the full function of the Arabidopsis thaliana AtSF1 protein under different experimental conditions. For example, the deletion of RRM domain influences AtSF1-mediated control of flowering time, but not the abscisic acid sensitivity response during seed germination. The alternative splicing of FLOWERING LOCUS M (FLM) pre-mRNA is involved in flowering time control. We found that the RRM domain of AtSF1 protein alters the production of alternatively spliced FLM-β transcripts. We also found that the RRM domain affects the alternative splicing of a heat shock transcription factor HsfA2 pre-mRNA, thereby mediating the heat stress response. Taken together, our results suggest the importance of RRM domain for AtSF1-mediated alternative splicing of a subset of genes involved in the regulation of flowering and adaptation to heat stress.
Collapse
Affiliation(s)
- Keh Chien Lee
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yun Hee Jang
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soon-Kap Kim
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Hyo-Young Park
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - May Phyo Thu
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Hwan Lee
- Department of Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
27
|
Chatrikhi R, Wang W, Gupta A, Loerch S, Maucuer A, Kielkopf CL. SF1 Phosphorylation Enhances Specific Binding to U2AF 65 and Reduces Binding to 3'-Splice-Site RNA. Biophys J 2017; 111:2570-2586. [PMID: 28002734 DOI: 10.1016/j.bpj.2016.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 12/25/2022] Open
Abstract
Splicing factor 1 (SF1) recognizes 3' splice sites of the major class of introns as a ternary complex with U2AF65 and U2AF35 splicing factors. A conserved SPSP motif in a coiled-coil domain of SF1 is highly phosphorylated in proliferating human cells and is required for cell proliferation. The UHM kinase 1 (UHMK1), also called KIS, double-phosphorylates both serines of this SF1 motif. Here, we use isothermal titration calorimetry to demonstrate that UHMK1 phosphorylation of the SF1 SPSP motif slightly enhances specific binding of phospho-SF1 to its cognate U2AF65 protein partner. Conversely, quantitative fluorescence anisotropy RNA binding assays and isothermal titration calorimetry experiments establish that double-SPSP phosphorylation reduces phospho-SF1 and phospho-SF1-U2AF65 binding affinities for either optimal or suboptimal splice-site RNAs. Domain-substitution and mutagenesis experiments further demonstrate that arginines surrounding the phosphorylated SF1 loop are required for cooperative 3' splice site recognition by the SF1-U2AF65 complex (where cooperativity is defined as a nonadditive increase in RNA binding by the protein complex relative to the individual proteins). In the context of local, intracellular concentrations, the subtle effects of SF1 phosphorylation on its associations with U2AF65 and splice-site RNAs are likely to influence pre-mRNA splicing. However, considering roles for SF1 in pre-mRNA retention and transcriptional repression, as well as in splicing, future comprehensive investigations are needed to fully explain the requirement for SF1 SPSP phosphorylation in proliferating human cells.
Collapse
Affiliation(s)
- Rakesh Chatrikhi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York
| | - Wenhua Wang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York
| | - Ankit Gupta
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York
| | - Sarah Loerch
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York
| | | | - Clara L Kielkopf
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York.
| |
Collapse
|
28
|
Heintz C, Doktor TK, Lanjuin A, Escoubas C, Zhang Y, Weir HJ, Dutta S, Silva-García CG, Bruun GH, Morantte I, Hoxhaj G, Manning BD, Andresen BS, Mair WB. Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans. Nature 2017; 541:102-106. [PMID: 27919065 PMCID: PMC5361225 DOI: 10.1038/nature20789] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
Ageing is driven by a loss of transcriptional and protein homeostasis and is the key risk factor for multiple chronic diseases. Interventions that attenuate or reverse systemic dysfunction associated with age therefore have the potential to reduce overall disease risk in the elderly. Precursor mRNA (pre-mRNA) splicing is a fundamental link between gene expression and the proteome, and deregulation of the splicing machinery is linked to several age-related chronic illnesses. However, the role of splicing homeostasis in healthy ageing remains unclear. Here we demonstrate that pre-mRNA splicing homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or subjected to dietary restriction, we find defects in global pre-mRNA splicing with age that are reduced by dietary restriction via splicing factor 1 (SFA-1; the C. elegans homologue of SF1, also known as branchpoint binding protein, BBP). We show that SFA-1 is specifically required for lifespan extension by dietary restriction and by modulation of the TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 kinase. We also demonstrate that overexpression of SFA-1 is sufficient to extend lifespan. Together, these data demonstrate a role for RNA splicing homeostasis in dietary restriction longevity and suggest that modulation of specific spliceosome components may prolong healthy ageing.
Collapse
Affiliation(s)
- Caroline Heintz
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, and Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Anne Lanjuin
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Caroline Escoubas
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS, UMR7284, INSERM U1081, University of Nice Sophia Antipolis, Faculty of Medicine, Nice, France
| | - Yue Zhang
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Heather J Weir
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sneha Dutta
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, and Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ianessa Morantte
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gerta Hoxhaj
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, and Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
29
|
An CI, Ichihashi Y, Peng J, Sinha NR, Hagiwara N. Transcriptome Dynamics and Potential Roles of Sox6 in the Postnatal Heart. PLoS One 2016; 11:e0166574. [PMID: 27832192 PMCID: PMC5104335 DOI: 10.1371/journal.pone.0166574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/31/2016] [Indexed: 01/20/2023] Open
Abstract
The postnatal heart undergoes highly coordinated developmental processes culminating in the complex physiologic properties of the adult heart. The molecular mechanisms of postnatal heart development remain largely unexplored despite their important clinical implications. To gain an integrated view of the dynamic changes in gene expression during postnatal heart development at the organ level, time-series transcriptome analyses of the postnatal hearts of neonatal through adult mice (P1, P7, P14, P30, and P60) were performed using a newly developed bioinformatics pipeline. We identified functional gene clusters by principal component analysis with self-organizing map clustering which revealed organized, discrete gene expression patterns corresponding to biological functions associated with the neonatal, juvenile and adult stages of postnatal heart development. Using weighted gene co-expression network analysis with bootstrap inference for each of these functional gene clusters, highly robust hub genes were identified which likely play key roles in regulating expression of co-expressed, functionally linked genes. Additionally, motivated by the role of the transcription factor Sox6 in the functional maturation of skeletal muscle, the role of Sox6 in the postnatal maturation of cardiac muscle was investigated. Differentially expressed transcriptome analyses between Sox6 knockout (KO) and control hearts uncovered significant upregulation of genes involved in cell proliferation at postnatal day 7 (P7) in the Sox6 KO heart. This result was validated by detecting mitotically active cells in the P7 Sox6 KO heart. The current report provides a framework for the complex molecular processes of postnatal heart development, thus enabling systematic dissection of the developmental regression observed in the stressed and failing adult heart.
Collapse
Affiliation(s)
- Chung-Il An
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| | - Jie Peng
- Department of Statistics, University of California Davis, Davis, California, United States of America
| | - Neelima R. Sinha
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Nobuko Hagiwara
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| |
Collapse
|
30
|
SF3A1 and pancreatic cancer: new evidence for the association of the spliceosome and cancer. Oncotarget 2016; 6:37750-7. [PMID: 26498691 PMCID: PMC4741962 DOI: 10.18632/oncotarget.5647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
A two-stage case-control study was conducted to examine the association between six candidate U2-depedent spliceosome genes (SRSF1, SRSF2, SF3A1, SF3B1, SF1 and PRPF40B) and pancreatic cancer (PC). Subjects with one or two T alleles at rs2074733 in SF3A1 had a lower risk of PC compared to those with two C alleles in combined two populations (OR: 0.59, 95% confidence interval: 0.48–0.73, False discovery rate (FDR)-P = 1.5E-05). Moreover, the presence of the higher-risk genotype at rs2074733 plus smoking or drinking had synergic effects on PC risk. These findings illustrate that RNA splicing-related genes appear to be associated with the occurrence of PC, and show synergic interactions with smoking and drinking in the additive model. In the future, our novel findings should be further confirmed by functional studies and independent large-scale population studies.
Collapse
|
31
|
Abstract
Spliceosomal snRNPs are complex particles that proceed through a fascinating maturation pathway. Several steps of this pathway are closely linked to nuclear non-membrane structures called Cajal bodies. In this review, I summarize the last 20 y of research in this field. I primarily focus on snRNP biogenesis, specifically on the steps that involve Cajal bodies. I also evaluate the contribution of the Cajal body in snRNP quality control and discuss the role of snRNPs in Cajal body formation.
Collapse
Affiliation(s)
- David Staněk
- a Institute of Molecular Genetics, Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
32
|
Zuo ZH, Yu YP, Martin A, Luo JH. Cellular stress response 1 down-regulates the expression of epidermal growth factor receptor and platelet-derived growth factor receptor through inactivation of splicing factor 3A3. Mol Carcinog 2016; 56:315-324. [PMID: 27148859 DOI: 10.1002/mc.22494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/19/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
Abstract
Cellular stress response 1 (CSR1) is a tumor suppressor gene that plays an important role in regulating cell death. In this report, we show that the N-terminus of CSR1 interacts with splicing factor 3A, subunit 3 (SF3A3). The SF3A3 binding motif was identified in the region of amino acids 62-91 of CSR1 through cell-free binding analyses. The interaction between CSR1 and SF3A3 led to migration of SF3A3 from nucleus to cytoplasm. The cytoplasmic redistribution of SF3A3 significantly reduced the splicing efficiency of epidermal growth factor receptor and platelet-derived growth factor receptor. Induction of CSR1 or down-regulation of SF3A3 also significantly reduced the splicing activity of oxytocin reporter gene both in vivo and in vitro. Mutant CSR1 that lacks the SF3A3 binding motif contained no RNA splicing regulatory activity, while the peptide corresponding to the SF3A3 binding motif in CSR1 interfered with the wild-type CSR1 mediated inhibition of RNA splicing. Interaction of CSR1 and SF3A3 is essential for CSR1 mediated cell death. To our knowledge, this is the first report demonstrating that RNA splicing is negatively regulated by redistribution of a splicing factor. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ze-Hua Zuo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yan P Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amantha Martin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Crisci A, Raleff F, Bagdiul I, Raabe M, Urlaub H, Rain JC, Krämer A. Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins. Nucleic Acids Res 2015; 43:10456-73. [PMID: 26420826 PMCID: PMC4666396 DOI: 10.1093/nar/gkv952] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/10/2015] [Indexed: 02/03/2023] Open
Abstract
Splicing factor 1 (SF1) recognizes the branch point sequence (BPS) at the 3′ splice site during the formation of early complex E, thereby pre-bulging the BPS adenosine, thought to facilitate subsequent base-pairing of the U2 snRNA with the BPS. The 65-kDa subunit of U2 snRNP auxiliary factor (U2AF65) interacts with SF1 and was shown to recruit the U2 snRNP to the spliceosome. Co-immunoprecipitation experiments of SF1-interacting proteins from HeLa cell extracts shown here are consistent with the presence of SF1 in early splicing complexes. Surprisingly almost all U2 snRNP proteins were found associated with SF1. Yeast two-hybrid screens identified two SURP domain-containing U2 snRNP proteins as partners of SF1. A short, evolutionarily conserved region of SF1 interacts with the SURP domains, stressing their role in protein–protein interactions. A reduction of A complex formation in SF1-depleted extracts could be rescued with recombinant SF1 containing the SURP-interaction domain, but only partial rescue was observed with SF1 lacking this sequence. Thus, SF1 can initially recruit the U2 snRNP to the spliceosome during E complex formation, whereas U2AF65 may stabilize the association of the U2 snRNP with the spliceosome at later times. In addition, these findings may have implications for alternative splicing decisions.
Collapse
Affiliation(s)
- Angela Crisci
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Flore Raleff
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Ivona Bagdiul
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Monika Raabe
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | | | - Angela Krämer
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
34
|
Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 2015; 35:2413-27. [PMID: 26300000 DOI: 10.1038/onc.2015.318] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023]
Abstract
Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.
Collapse
Affiliation(s)
- A Sveen
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - R A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - R I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
35
|
Age-related nuclear translocation of P2X6 subunit modifies splicing activity interacting with splicing factor 3A1. PLoS One 2015; 10:e0123121. [PMID: 25874565 PMCID: PMC4395284 DOI: 10.1371/journal.pone.0123121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/18/2015] [Indexed: 01/13/2023] Open
Abstract
P2X receptors are ligand-gated ion channels sensitive to extracellular nucleotides formed by the assembling of three equal or different P2X subunits. In this work we report, for the first time, the accumulation of the P2X6 subunit inside the nucleus of hippocampal neurons in an age-dependent way. This location is favored by its anchorage to endoplasmic reticulum through its N-terminal domain. The extracellular domain of P2X6 subunit is the key to reach the nucleus, where it presents a speckled distribution pattern and is retained by interaction with the nuclear envelope protein spectrin α2. The in vivo results showed that, once inside the nucleus, P2X6 subunit interacts with the splicing factor 3A1, which ultimately results in a reduction of the mRNA splicing activity. Our data provide new insights into post-transcriptional regulation of mRNA splicing, describing a novel mechanism that could explain why this process is sensitive to changes that occur with age.
Collapse
|
36
|
Lento S, Brioschi M, Barcella S, Nasim MT, Ghilardi S, Barbieri SS, Tremoli E, Banfi C. Proteomics of tissue factor silencing in cardiomyocytic cells reveals a new role for this coagulation factor in splicing machinery control. J Proteomics 2015; 119:75-89. [DOI: 10.1016/j.jprot.2015.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/08/2015] [Accepted: 01/25/2015] [Indexed: 12/12/2022]
|
37
|
Jackson TC, Du L, Janesko-Feldman K, Vagni VA, Dezfulian C, Poloyac SM, Jackson EK, Clark RSB, Kochanek PM. The nuclear splicing factor RNA binding motif 5 promotes caspase activation in human neuronal cells, and increases after traumatic brain injury in mice. J Cereb Blood Flow Metab 2015; 35:655-66. [PMID: 25586139 PMCID: PMC4420885 DOI: 10.1038/jcbfm.2014.242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/06/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022]
Abstract
Splicing factors (SFs) coordinate nuclear intron/exon splicing of RNA. Splicing factor disturbances can cause cell death. RNA binding motif 5 (RBM5) and 10 (RBM10) promote apoptosis in cancer cells by activating detrimental alternative splicing of key death/survival genes. The role(s) of RBM5/10 in neurons has not been established. Here, we report that RBM5 knockdown in human neuronal cells decreases caspase activation by staurosporine. In contrast, RBM10 knockdown augments caspase activation. To determine whether brain injury alters RBM signaling, we measured RBM5/10 protein in mouse cortical/hippocampus homogenates after controlled cortical impact (CCI) traumatic brain injury (TBI) plus hemorrhagic shock (CCI+HS). The RBM5/10 staining was higher 48 to 72 hours after injury and appeared to be increased in neuronal nuclei of the hippocampus. We also measured levels of other nuclear SFs known to be essential for cellular viability and report that splicing factor 1 (SF1) but not splicing factor 3A (SF3A) decreased 4 to 72 hours after injury. Finally, we confirm that RBM5/10 regulate protein expression of several target genes including caspase-2, cellular FLICE-like inhibitory protein (c-FLIP), LETM1 Domain-Containing Protein 1 (LETMD1), and amyloid precursor-like protein 2 (APLP2) in neuronal cells. Knockdown of RBM5 appeared to increase expression of c-FLIP(s), LETMD1, and APLP2 but decrease caspase-2.
Collapse
Affiliation(s)
- Travis C Jackson
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lina Du
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vincent A Vagni
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cameron Dezfulian
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel M Poloyac
- Pharmaceutical Sciences Department, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
O’Connor BP, Danhorn T, De Arras L, Flatley BR, Marcus RA, Farias-Hesson E, Leach SM, Alper S. Regulation of toll-like receptor signaling by the SF3a mRNA splicing complex. PLoS Genet 2015; 11:e1004932. [PMID: 25658809 PMCID: PMC4450051 DOI: 10.1371/journal.pgen.1004932] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
The innate immune response plays a key role in fighting infection by activating inflammation and stimulating the adaptive immune response. However, chronic activation of innate immunity can contribute to the pathogenesis of many diseases with an inflammatory component. Thus, various negatively acting factors turn off innate immunity subsequent to its activation to ensure that inflammation is self-limiting and to prevent inflammatory disease. These negatively acting pathways include the production of inhibitory acting alternate proteins encoded by alternative mRNA splice forms of genes in Toll-like receptor (TLR) signaling pathways. We previously found that the SF3a mRNA splicing complex was required for a robust innate immune response; SF3a acts to promote inflammation in part by inhibiting the production of a negatively acting splice form of the TLR signaling adaptor MyD88. Here we inhibit SF3a1 using RNAi and subsequently perform an RNAseq study to identify the full complement of genes and splicing events regulated by SF3a in murine macrophages. Surprisingly, in macrophages, SF3a has significant preference for mRNA splicing events within innate immune signaling pathways compared with other biological pathways, thereby affecting the splicing of specific genes in the TLR signaling pathway to modulate the innate immune response. Within minutes after we are exposed to pathogens, our bodies react with a rapid response known as the “innate immune response.” This arm of the immune response regulates the process of inflammation, in which various immune cells are recruited to sites of infection and are activated to produce a host of antimicrobial compounds. This response is critical to fight infection. However, this response, if it is activated too strongly or if it becomes chronic, can do damage and can contribute to numerous very common diseases ranging from atherosclerosis to asthma to cancer. Thus it is essential that this response be tightly regulated, turned on when we have an infection, and turned off when not needed. We are investigating a mechanism that helps turn off this response, to ensure that inflammation is limited to prevent inflammatory disease. This mechanism involves the production of alternate forms of RNAs and proteins that control inflammation. We have discovered that a protein known as SF3a1 can regulate the expression of these alternate inhibitory RNA forms and are investigating how to use this knowledge to better control inflammation.
Collapse
Affiliation(s)
- Brian P. O’Connor
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Thomas Danhorn
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Lesly De Arras
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Brenna R. Flatley
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Roland A. Marcus
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Eveline Farias-Hesson
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Sonia M. Leach
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Scott Alper
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
39
|
Sharma S, Wongpalee SP, Vashisht A, Wohlschlegel JA, Black DL. Stem-loop 4 of U1 snRNA is essential for splicing and interacts with the U2 snRNP-specific SF3A1 protein during spliceosome assembly. Genes Dev 2015; 28:2518-31. [PMID: 25403181 PMCID: PMC4233244 DOI: 10.1101/gad.248625.114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pairing of 5′ and 3′ splice sites across an intron is a critical step in spliceosome formation and its regulation. Sharma et al. report a new interaction between stem–loop 4 (SL4) of the U1 snRNA, which recognizes the 5′ splice, and a component of the U2 snRNP complex, which assembles across the intron at the 3′ splice site. U1-SL4 interacts with the SF3A1 protein of the U2 snRNP, and this interaction occurs within prespliceosomal complexes assembled on the pre-mRNA. The pairing of 5′ and 3′ splice sites across an intron is a critical step in spliceosome formation and its regulation. Interactions that bring the two splice sites together during spliceosome assembly must occur with a high degree of specificity and fidelity to allow expression of functional mRNAs and make particular alternative splicing choices. Here, we report a new interaction between stem–loop 4 (SL4) of the U1 snRNA, which recognizes the 5′ splice site, and a component of the U2 small nuclear ribonucleoprotein particle (snRNP) complex, which assembles across the intron at the 3′ splice site. Using a U1 snRNP complementation assay, we found that SL4 is essential for splicing in vivo. The addition of free U1-SL4 to a splicing reaction in vitro inhibits splicing and blocks complex assembly prior to formation of the prespliceosomal A complex, indicating a requirement for a SL4 contact in spliceosome assembly. To characterize the interactions of this RNA structure, we used a combination of stable isotope labeling by amino acids in cell culture (SILAC), biotin/Neutravidin affinity pull-down, and mass spectrometry. We show that U1-SL4 interacts with the SF3A1 protein of the U2 snRNP. We found that this interaction between the U1 snRNA and SF3A1 occurs within prespliceosomal complexes assembled on the pre-mRNA. Thus, SL4 of the U1 snRNA is important for splicing, and its interaction with SF3A1 mediates contact between the 5′ and 3′ splice site complexes within the assembling spliceosome.
Collapse
Affiliation(s)
- Shalini Sharma
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona 85004, USA; Department of Microbiology, Immunology, and Molecular Genetics
| | | | | | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
40
|
Structure-guided U2AF65 variant improves recognition and splicing of a defective pre-mRNA. Proc Natl Acad Sci U S A 2014; 111:17420-5. [PMID: 25422459 DOI: 10.1073/pnas.1412743111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purine interruptions of polypyrimidine (Py) tract splice site signals contribute to human genetic diseases. The essential splicing factor U2AF(65) normally recognizes a Py tract consensus sequence preceding the major class of 3' splice sites. We found that neurofibromatosis- or retinitis pigmentosa-causing mutations in the 5' regions of Py tracts severely reduce U2AF(65) affinity. Conversely, we identified a preferred binding site of U2AF(65) for purine substitutions in the 3' regions of Py tracts. Based on a comparison of new U2AF(65) structures bound to either A- or G-containing Py tracts with previously identified pyrimidine-containing structures, we expected to find that a D231V amino acid change in U2AF(65) would specify U over other nucleotides. We found that the crystal structure of the U2AF(65)-D231V variant confirms favorable packing between the engineered valine and a target uracil base. The D231V amino acid change restores U2AF(65) affinity for two mutated splice sites that cause human genetic diseases and successfully promotes splicing of a defective retinitis pigmentosa-causing transcript. We conclude that reduced U2AF(65) binding is a molecular consequence of disease-relevant mutations, and that a structure-guided U2AF(65) variant is capable of manipulating gene expression in eukaryotic cells.
Collapse
|
41
|
Watrin E, Demidova M, Watrin T, Hu Z, Prigent C. Sororin pre-mRNA splicing is required for proper sister chromatid cohesion in human cells. EMBO Rep 2014; 15:948-55. [PMID: 25092791 DOI: 10.15252/embr.201438640] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sister chromatid cohesion, which depends on cohesin, is essential for the faithful segregation of replicated chromosomes. Here, we report that splicing complex Prp19 is essential for cohesion in both G2 and mitosis, and consequently for the proper progression of the cell through mitosis. Inactivation of splicing factors SF3a120 and U2AF65 induces similar cohesion defects to Prp19 complex inactivation. Our data indicate that these splicing factors are all required for the accumulation of cohesion factor Sororin, by facilitating the proper splicing of its pre-mRNA. Finally, we show that ectopic expression of Sororin corrects defective cohesion caused by Prp19 complex inactivation. We propose that the Prp19 complex and the splicing machinery contribute to the establishment of cohesion by promoting Sororin accumulation during S phase, and are, therefore, essential to the maintenance of genome stability.
Collapse
Affiliation(s)
- Erwan Watrin
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Maria Demidova
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Tanguy Watrin
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Zheng Hu
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Claude Prigent
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| |
Collapse
|
42
|
Ammon T, Mishra SK, Kowalska K, Popowicz GM, Holak TA, Jentsch S. The conserved ubiquitin-like protein Hub1 plays a critical role in splicing in human cells. J Mol Cell Biol 2014; 6:312-23. [PMID: 24872507 PMCID: PMC4141198 DOI: 10.1093/jmcb/mju026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Different from canonical ubiquitin-like proteins, Hub1 does not form covalent conjugates with substrates but binds proteins non-covalently. In Saccharomyces cerevisiae, Hub1 associates with spliceosomes and mediates alternative splicing of SRC1, without affecting pre-mRNA splicing generally. Human Hub1 is highly similar to its yeast homolog, but its cellular function remains largely unexplored. Here, we show that human Hub1 binds to the spliceosomal protein Snu66 as in yeast; however, unlike its S. cerevisiae homolog, human Hub1 is essential for viability. Prolonged in vivo depletion of human Hub1 leads to various cellular defects, including splicing speckle abnormalities, partial nuclear retention of mRNAs, mitotic catastrophe, and consequently cell death by apoptosis. Early consequences of Hub1 depletion are severe splicing defects, however, only for specific splice sites leading to exon skipping and intron retention. Thus, the ubiquitin-like protein Hub1 is not a canonical spliceosomal factor needed generally for splicing, but rather a modulator of spliceosome performance and facilitator of alternative splicing.
Collapse
Affiliation(s)
- Tim Ammon
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Shravan Kumar Mishra
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany Present address: Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, 140306 Punjab, India
| | - Kaja Kowalska
- NMR Spectroscopy, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Grzegorz M Popowicz
- NMR Spectroscopy, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany Present address: Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Tad A Holak
- NMR Spectroscopy, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany Present address: Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland
| | - Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
43
|
Jang YH, Park HY, Lee KC, Thu MP, Kim SK, Suh MC, Kang H, Kim JK. A homolog of splicing factor SF1 is essential for development and is involved in the alternative splicing of pre-mRNA in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:591-603. [PMID: 24580679 DOI: 10.1111/tpj.12491] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 05/20/2023]
Abstract
During initial spliceosome assembly, SF1 binds to intron branch points and interacts with U2 snRNP auxiliary factor 65 (U2AF65). Here, we present evidence indicating that AtSF1, the Arabidopsis SF1 homolog, interacts with AtU2AF65a and AtU2AF65b, the Arabidopsis U2AF65 homologs. A mutant allele of AtSF1 (At5g51300) that contains a T-DNA insertion conferred pleiotropic developmental defects, including early flowering and abnormal sensitivity to abscisic acid. An AtSF1 promoter-driven GUS reporter assay showed that AtSF1 promoter activity was temporally and spatially altered, and that full AtSF1 promoter activity required a significant proportion of the coding region. DNA chip analyses showed that only a small proportion of the transcriptome was altered by more than twofold in either direction in the AtSF1 mutant. Expression of the mRNAs of many heat shock proteins was more than fourfold higher in the mutant strain; these mRNAs were among those whose expression was increased most in the mutant strain. An RT-PCR assay revealed an altered alternative splicing pattern for heat shock transcription factor HsfA2 (At2g26150) in the mutant; this altered splicing is probably responsible for the increased expression of the target genes induced by HsfA2. Altered alternative splicing patterns were also detected for the transcripts of other genes in the mutant strain. These results suggest that AtSF1 has functional similarities to its yeast and metazoan counterparts.
Collapse
Affiliation(s)
- Yun Hee Jang
- Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nyambega B, Helbig C, Masiga DK, Clayton C, Levin MJ. Proteins associated with SF3a60 in T. brucei. PLoS One 2014; 9:e91956. [PMID: 24651488 PMCID: PMC3961280 DOI: 10.1371/journal.pone.0091956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/18/2014] [Indexed: 12/29/2022] Open
Abstract
Trypanosoma brucei relies on Spliced leader trans splicing to generate functional messenger RNAs. Trans splicing joins the specialized SL exon from the SL RNA to pre-mRNAs and is mediated by the trans-spliceosome, which is made up of small nuclear ribonucleoprotein particles and non-snRNP factors. Although the trans spliceosome is essential for trypanosomatid gene expression, not all spliceosomal protein factors are known and of these, only a few are completely characterized. In this study, we have characterized the trypanosome Splicing Factor, SF3a60, the only currently annotated SF3a component. As expected, epitope-tagged SF3a60 localizes in the trypanosome nucleus. SF3a60 is essential for cell viability but its depletion seem to have no detectable effect on trans-splicing. In addition, we used SF3a60 as bait in a Yeast-2-hybrid system screen and identified its interacting protein factors. The interactions with SF3a120, SF3a66 and SAP130 were confirmed by tandem affinity purification and mass spectrometry.
Collapse
Affiliation(s)
- Benson Nyambega
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigacíones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina
- Molecular Biology and Biotechnology Department, International Center for Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Claudia Helbig
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Daniel K. Masiga
- Molecular Biology and Biotechnology Department, International Center for Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Mariano J. Levin
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigacíones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina
| |
Collapse
|
45
|
Effenberger KA, Anderson DD, Bray WM, Prichard BE, Ma N, Adams MS, Ghosh AK, Jurica MS. Coherence between cellular responses and in vitro splicing inhibition for the anti-tumor drug pladienolide B and its analogs. J Biol Chem 2013; 289:1938-47. [PMID: 24302718 DOI: 10.1074/jbc.m113.515536] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pladienolide B (PB) is a potent cancer cell growth inhibitor that targets the SF3B1 subunit of the spliceosome. There is considerable interest in the compound as a potential chemotherapeutic, as well as a tool to study SF3B1 function in splicing and cancer development. The molecular structure of PB, a bacterial natural product, contains a 12-member macrolide ring with an extended epoxide-containing side chain. Using a novel concise enantioselective synthesis, we created a series of PB structural analogs and the structurally related compound herboxidiene. We show that two methyl groups in the PB side chain, as well as a feature of the macrolide ring shared with herboxidiene, are required for splicing inhibition in vitro. Unexpectedly, we find that the epoxy group contributes only modestly to PB potency and is not absolutely necessary for activity. The orientations of at least two chiral centers off the macrolide ring have no effect on PB activity. Importantly, the ability of analogs to inhibit splicing in vitro directly correlated with their effects in a series of cellular assays. Those effects likely arise from inhibition of some, but not all, endogenous splicing events in cells, as previously reported for the structurally distinct SF3B1 inhibitor spliceostatin A. Together, our data support the idea that the impact of PB on cells is derived from its ability to impair the function of SF3B1 in splicing and also demonstrate that simplification of the PB scaffold is feasible.
Collapse
|
46
|
De Arras L, Alper S. Limiting of the innate immune response by SF3A-dependent control of MyD88 alternative mRNA splicing. PLoS Genet 2013; 9:e1003855. [PMID: 24204290 PMCID: PMC3812059 DOI: 10.1371/journal.pgen.1003855] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 08/20/2013] [Indexed: 12/16/2022] Open
Abstract
Controlling infectious disease without inducing unwanted inflammatory disease requires proper regulation of the innate immune response. Thus, innate immunity needs to be activated when needed during an infection, but must be limited to prevent damage. To accomplish this, negative regulators of innate immunity limit the response. Here we investigate one such negative regulator encoded by an alternative splice form of MyD88. MyD88 mRNA exists in two alternative splice forms: MyD88L, a long form that encodes a protein that activates innate immunity by transducing Toll-like receptor (TLR) signals; and a short form that encodes a different protein, MyD88S, that inhibits the response. We find that MyD88S levels regulate the extent of inflammatory cytokine production in murine macrophages. MyD88S mRNA levels are regulated by the SF3A and SF3B mRNA splicing complexes, and these mRNA splicing complexes function with TLR signaling to regulate MyD88S production. Thus, the SF3A mRNA splicing complex controls production of a negative regulator of TLR signaling that limits the extent of innate immune activation.
Collapse
Affiliation(s)
- Lesly De Arras
- Integrated Department of Immunology and Integrated Center for Genes, Environment, and Health, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Scott Alper
- Integrated Department of Immunology and Integrated Center for Genes, Environment, and Health, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
47
|
Natalizio AH, Matera AG. Identification and characterization of Drosophila Snurportin reveals a role for the import receptor Moleskin/importin-7 in snRNP biogenesis. Mol Biol Cell 2013; 24:2932-42. [PMID: 23885126 PMCID: PMC3771954 DOI: 10.1091/mbc.e13-03-0118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous work established Importin-β and Snurportin1 as the vertebrate snRNP import receptor and adaptor proteins, respectively. This study identifies Drosophila Snurportin and shows that it uses an alternative import receptor, Importin7/Moleskin. Moleskin is required for the stability of other snRNP biogenesis factors. Nuclear import is an essential step in small nuclear ribonucleoprotein (snRNP) biogenesis. Snurportin1 (SPN1), the import adaptor, binds to trimethylguanosine (TMG) caps on spliceosomal small nuclear RNAs. Previous studies indicated that vertebrate snRNP import requires importin-β, the transport receptor that binds directly to SPN1. We identify CG42303/snup as the Drosophila orthologue of human snurportin1 (SNUPN). Of interest, the importin-β binding (IBB) domain of SPN1, which is essential for TMG cap–mediated snRNP import in humans, is not well conserved in flies. Consistent with its lack of an IBB domain, we find that Drosophila SNUP (dSNUP) does not interact with Ketel/importin-β. Fruit fly snRNPs also fail to bind Ketel; however, the importin-7 orthologue Moleskin (Msk) physically associates with both dSNUP and spliceosomal snRNPs and localizes to nuclear Cajal bodies. Strikingly, we find that msk-null mutants are depleted of the snRNP assembly factor, survival motor neuron, and the Cajal body marker, coilin. Consistent with a loss of snRNP import function, long-lived msk larvae show an accumulation of TMG cap signal in the cytoplasm. These data indicate that Ketel/importin-β does not play a significant role in Drosophila snRNP import and demonstrate a crucial function for Msk in snRNP biogenesis.
Collapse
Affiliation(s)
- Amanda Hicks Natalizio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Departments of Biology, University of North Carolina, Chapel Hill, NC 27599 Departments of Genetics, University of North Carolina, Chapel Hill, NC 27599 Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | | |
Collapse
|
48
|
Seetharam A, Stuart GW. A study on the distribution of 37 well conserved families of C2H2 zinc finger genes in eukaryotes. BMC Genomics 2013; 14:420. [PMID: 23800006 PMCID: PMC3701560 DOI: 10.1186/1471-2164-14-420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 06/19/2013] [Indexed: 12/17/2022] Open
Abstract
Background The C2H2 zinc-finger (ZNF) containing gene family is one of the largest and most complex gene families in metazoan genomes. These genes are known to exist in almost all eukaryotes, and they constitute a major subset of eukaryotic transcription factors. The genes of this family usually occur as clusters in genomes and are thought to have undergone a massive expansion in vertebrates by multiple tandem duplication events (BMC Evol Biol 8:176, 2008). Results In this study, we combined two popular approaches for homolog detection, Reciprocal Best Hit (RBH) (Proc Natl Acad Sci USA 95:6239–6244, 1998) and Hidden–Markov model (HMM) profiles search (Bioinformatics 14:755-763, 1998), on a diverse set of complete genomes of 124 eukaryotic species ranging from excavates to humans to identify all detectable members of 37 C2H2 ZNF gene families. We succeeded in identifying 3,890 genes as distinct members of 37 C2H2 gene families. These 37 families are distributed among the eukaryotes as progressive additions of gene blocks with increasing complexity of the organisms. The first block featuring the protists had 7 families, the second block featuring plants had 2 families, the third block featuring the fungi had 2 families (one of which was also present in plants) and the final block consisted of metazoans with 25 families. Among the metazoans, the simpler unicellular metazoans had just 15 of the 25 families while most of the bilaterians had all 25 families making up a total of 37 families. Multiple potential examples of lineage-specific gene duplications and gene losses were also observed. Conclusions Our hybrid approach combines features of the both RBH and HMM methods for homolog detection. This largely automated technique is much faster than manual methods and is able to detect homologs accurately and efficiently among a diverse set of organisms. Our analysis of the 37 evolutionarily conserved C2H2 ZNF gene families revealed a stepwise appearance of ZNF families, agreeing well with the phylogenetic relationship of the organisms compared and their presumed stepwise increase in complexity (Science 300:1694, 2003).
Collapse
Affiliation(s)
- Arun Seetharam
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
| | | |
Collapse
|
49
|
Wang W, Maucuer A, Gupta A, Manceau V, Thickman KR, Bauer WJ, Kennedy SD, Wedekind JE, Green MR, Kielkopf CL. Structure of phosphorylated SF1 bound to U2AF⁶⁵ in an essential splicing factor complex. Structure 2012; 21:197-208. [PMID: 23273425 DOI: 10.1016/j.str.2012.10.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 11/15/2022]
Abstract
The essential splicing factors U2AF⁶⁵ and SF1 cooperatively bind consensus sequences at the 3' end of introns. Phosphorylation of SF1 on a highly conserved "SPSP" motif enhances its interaction with U2AF⁶⁵ and the pre-mRNA. Here, we reveal that phosphorylation induces essential conformational changes in SF1 and in the SF1/U2AF⁶⁵/3' splice site complex. Crystal structures of the phosphorylated (P)SF1 domain bound to the C-terminal domain of U2AF⁶⁵ at 2.29 Å resolution and of the unphosphorylated SF1 domain at 2.48 Å resolution demonstrate that phosphorylation induces a disorder-to-order transition within a previously unknown SF1/U2AF⁶⁵ interface. We find by small-angle X-ray scattering that the local folding of the SPSP motif transduces into global conformational changes in the nearly full-length (P)SF1/U2AF⁶⁵/3' splice site assembly. We further determine that SPSP phosphorylation and the SF1/U2AF⁶⁵ interface are essential in vivo. These results offer a structural prototype for phosphorylation-dependent control of pre-mRNA splicing factors.
Collapse
Affiliation(s)
- Wenhua Wang
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
De Arras L, Seng A, Lackford B, Keikhaee MR, Bowerman B, Freedman JH, Schwartz DA, Alper S. An evolutionarily conserved innate immunity protein interaction network. J Biol Chem 2012; 288:1967-78. [PMID: 23209288 DOI: 10.1074/jbc.m112.407205] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The innate immune response plays a critical role in fighting infection; however, innate immunity also can affect the pathogenesis of a variety of diseases, including sepsis, asthma, cancer, and atherosclerosis. To identify novel regulators of innate immunity, we performed comparative genomics RNA interference screens in the nematode Caenorhabditis elegans and mouse macrophages. These screens have uncovered many candidate regulators of the response to lipopolysaccharide (LPS), several of which interact physically in multiple species to form an innate immunity protein interaction network. This protein interaction network contains several proteins in the canonical LPS-responsive TLR4 pathway as well as many novel interacting proteins. Using RNAi and overexpression studies, we show that almost every gene in this network can modulate the innate immune response in mouse cell lines. We validate the importance of this network in innate immunity regulation in vivo using available mutants in C. elegans and mice.
Collapse
Affiliation(s)
- Lesly De Arras
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver, Colorado 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|