1
|
Buccino AP, Yuan X, Emmenegger V, Xue X, Gänswein T, Hierlemann A. An automated method for precise axon reconstruction from recordings of high-density micro-electrode arrays. J Neural Eng 2022; 19:026026. [PMID: 35234667 PMCID: PMC7612575 DOI: 10.1088/1741-2552/ac59a2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022]
Abstract
Objective:Neurons communicate with each other by sending action potentials (APs) through their axons. The velocity of axonal signal propagation describes how fast electrical APs can travel. This velocity can be affected in a human brain by several pathologies, including multiple sclerosis, traumatic brain injury and channelopathies. High-density microelectrode arrays (HD-MEAs) provide unprecedented spatio-temporal resolution to extracellularly record neural electrical activity. The high density of the recording electrodes enables to image the activity of individual neurons down to subcellular resolution, which includes the propagation of axonal signals. However, axon reconstruction, to date, mainly relies on manual approaches to select the electrodes and channels that seemingly record the signals along a specific axon, while an automated approach to track multiple axonal branches in extracellular action-potential recordings is still missing.Approach:In this article, we propose a fully automated approach to reconstruct axons from extracellular electrical-potential landscapes, so-called 'electrical footprints' of neurons. After an initial electrode and channel selection, the proposed method first constructs a graph based on the voltage signal amplitudes and latencies. Then, the graph is interrogated to extract possible axonal branches. Finally, the axonal branches are pruned, and axonal action-potential propagation velocities are computed.Main results:We first validate our method using simulated data from detailed reconstructions of neurons, showing that our approach is capable of accurately reconstructing axonal branches. We then apply the reconstruction algorithm to experimental recordings of HD-MEAs and show that it can be used to determine axonal morphologies and signal-propagation velocities at high throughput.Significance:We introduce a fully automated method to reconstruct axonal branches and estimate axonal action-potential propagation velocities using HD-MEA recordings. Our method yields highly reliable and reproducible velocity estimations, which constitute an important electrophysiological feature of neuronal preparations.
Collapse
Affiliation(s)
| | - Xinyue Yuan
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | | | - Xiaohan Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Tobias Gänswein
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| |
Collapse
|
2
|
Terzic B, Davatolhagh MF, Ho Y, Tang S, Liu YT, Xia Z, Cui Y, Fuccillo MV, Zhou Z. Temporal manipulation of Cdkl5 reveals essential postdevelopmental functions and reversible CDKL5 deficiency disorder-related deficits. J Clin Invest 2021; 131:143655. [PMID: 34651584 DOI: 10.1172/jci143655] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/05/2021] [Indexed: 12/23/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is an early onset, neurodevelopmental syndrome associated with pathogenic variants in the X-linked gene encoding cyclin-dependent kinase-like 5 (CDKL5). CDKL5 has been implicated in neuronal synapse maturation, yet its postdevelopmental necessity and the reversibility of CDD-associated impairments remain unknown. We temporally manipulated endogenous Cdkl5 expression in male mice and found that postdevelopmental loss of CDKL5 disrupts numerous behavioral domains, hippocampal circuit communication, and dendritic spine morphology, demonstrating an indispensable role for CDKL5 in the adult brain. Accordingly, restoration of Cdkl5 after the early stages of brain development using a conditional rescue mouse model ameliorated CDD-related behavioral impairments and aberrant NMDA receptor signaling. These findings highlight the requirement of CDKL5 beyond early development, underscore the potential for disease reversal in CDD, and suggest that a broad therapeutic time window exists for potential treatment of CDD-related deficits.
Collapse
Affiliation(s)
| | - M Felicia Davatolhagh
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
3
|
Yeh LH, Chowdhury S, Repina NA, Waller L. Speckle-structured illumination for 3D phase and fluorescence computational microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:3635-3653. [PMID: 31467796 PMCID: PMC6706021 DOI: 10.1364/boe.10.003635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 05/29/2023]
Abstract
High-content biological microscopy targets high-resolution imaging across large fields-of-view, often achieved by computational imaging approaches. Previously, we demonstrated 2D multimodal high-content microscopy via structured illumination microscopy (SIM) with resolution > 2 × the diffraction limit, using speckle illumination from Scotch tape. In this work, we extend the method to 3D by leveraging the fact that the speckle illumination is in fact a 3D structured pattern. We use both a coherent and an incoherent imaging model to develop algorithms for joint retrieval of the 3D super-resolved fluorescent and complex-field distributions of the sample. Our reconstructed images resolve features beyond the physical diffraction-limit set by the system's objective and demonstrate 3D multimodal imaging with ∼ 0.6 × 0.6 × 6 μ m3 resolution over a volume of ∼ 314 × 500 × 24 μ m3.
Collapse
Affiliation(s)
- Li-Hao Yeh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720,
USA
| | - Shwetadwip Chowdhury
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720,
USA
| | - Nicole A. Repina
- Graduate Program in Bioengineering, University of California, Berkeley, CA 94720,
USA
| | - Laura Waller
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720,
USA
- Graduate Program in Bioengineering, University of California, Berkeley, CA 94720,
USA
| |
Collapse
|
4
|
Yeh LH, Chowdhury S, Waller L. Computational structured illumination for high-content fluorescence and phase microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:1978-1998. [PMID: 31061769 PMCID: PMC6485002 DOI: 10.1364/boe.10.001978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/17/2019] [Accepted: 03/13/2019] [Indexed: 05/05/2023]
Abstract
High-content biological microscopy targets high-resolution imaging across large fields-of-view (FOVs). Recent works have demonstrated that computational imaging can provide efficient solutions for high-content microscopy. Here, we use speckle structured illumination microscopy (SIM) as a robust and cost-effective solution for high-content fluorescence microscopy with simultaneous high-content quantitative phase (QP). This multi-modal compatibility is essential for studies requiring cross-correlative biological analysis. Our method uses laterally-translated Scotch tape to generate high-resolution speckle illumination patterns across a large FOV. Custom optimization algorithms then jointly reconstruct the sample's super-resolution fluorescent (incoherent) and QP (coherent) distributions, while digitally correcting for system imperfections such as unknown speckle illumination patterns, system aberrations and pattern translations. Beyond previous linear SIM works, we achieve resolution gains of 4× the objective's diffraction-limited native resolution, resulting in 700 nm fluorescence and 1.2 μm QP resolution, across a FOV of 2 × 2.7 mm 2 , giving a space-bandwidth product (SBP) of 60 megapixels.
Collapse
Affiliation(s)
- Li-Hao Yeh
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720,
USA
| | - Shwetadwip Chowdhury
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720,
USA
| | - Laura Waller
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720,
USA
| |
Collapse
|
5
|
Dixon AR, Horst EN, Garcia JJ, Ndjouyep-Yamaga PR, Mehta G. Morphometric and computational assessments to evaluate neuron survival and maturation within compartmentalized microfluidic devices: The influence of design variation on diffusion-driven nutrient transport. Neurosci Lett 2019; 703:58-67. [PMID: 30885631 DOI: 10.1016/j.neulet.2019.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/26/2022]
Abstract
Burgeoning use of segregated microfluidic platforms that parse somas and neurites into discrete compartments is fueling unique examinations of neuronal structure and physiology in a manner impossible to achieve with non-compartmentalized systems. However, even though this line of axon-soma polarizing microfluidic devices stems from the same general design of a Campenot chamber set-up, slight deviations in device geometry appear to induce vastly different nutrient transport profiles that influence neuron survival and maturation. Here we examine the uptake of nerve growth factor (NGF) by a pheochromocytoma PC12 cell line cultured using two Campenot-like device designs, a "Standard" layout, representative of a commercial device, and a custom "Notch" layout, predicted to encourage more efficient nutrient transfer that gives rise to sustained neuron viability and extensive neurite elaboration. Exploiting in vitro culture schemes coupled with computational analyses, we identify the influence of device design geometry on the interplay between neuronal survival and maturation, gauged from morphometric assessments and the spatiotemporal distribution of NGF. Computer simulations of NGF transport within the devices revealed that the microfluidic neuron culture system is highly sensitive to change, where nutrient transport is intricately linked to device geometry and cell plating density, and premature depletion of nutrients is observed if specific design criteria are not met. This study underscores the importance of validating specific device geometries for a particular neuro-based assessment, while showcasing computational modeling as a powerful tool to achieve this goal.
Collapse
Affiliation(s)
- Angela R Dixon
- Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Eric N Horst
- Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Material Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeniffer J Garcia
- Neuroscience, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Patricia R Ndjouyep-Yamaga
- Neuroscience, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Geeta Mehta
- Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Material Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Macromolecular Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
van de Willige D, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in neuronal development. Cell Mol Life Sci 2016; 73:2053-77. [PMID: 26969328 PMCID: PMC4834103 DOI: 10.1007/s00018-016-2168-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Regulation of the microtubule cytoskeleton is of pivotal importance for neuronal development and function. One such regulatory mechanism centers on microtubule plus-end tracking proteins (+TIPs): structurally and functionally diverse regulatory factors, which can form complex macromolecular assemblies at the growing microtubule plus-ends. +TIPs modulate important properties of microtubules including their dynamics and their ability to control cell polarity, membrane transport and signaling. Several neurodevelopmental and neurodegenerative diseases are associated with mutations in +TIPs or with misregulation of these proteins. In this review, we focus on the role and regulation of +TIPs in neuronal development and associated disorders.
Collapse
Affiliation(s)
- Dieudonnée van de Willige
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Goodin MM, Zaitlin D, Naidu RA, Lommel SA. Nicotiana benthamiana: Its History and Future as a Model for Plant-Pathogen Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:28-39. [PMID: 27839076 DOI: 10.1094/mpmi-00-00-1015-rev.testissue] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Addi- tionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host-pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus- induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, inter- action, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions cur- rently used by the research community. In addition to ad- dressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.
Collapse
Affiliation(s)
| | - David Zaitlin
- 2 Kentucky Tobacco Research and Development Center (KTRDC), University of Kentucky, Lexington 40546, U.S.A
| | - Rayapati A Naidu
- 3 Department of Plant Pathology, Irrigated Agriculture Research & Extension Center, Washington State University, Prosser 99350, U.S.A
| | - Steven A Lommel
- 4 Department of Plant Pathology, North Carolina State University, Raleigh 27695, U.S.A
| |
Collapse
|
8
|
Chalei V, Sansom SN, Kong L, Lee S, Montiel JF, Vance KW, Ponting CP. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. eLife 2014; 3:e04530. [PMID: 25415054 PMCID: PMC4383022 DOI: 10.7554/elife.04530] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/21/2014] [Indexed: 12/11/2022] Open
Abstract
Many intergenic long noncoding RNA (lncRNA) loci regulate the expression of adjacent protein coding genes. Less clear is whether intergenic lncRNAs commonly regulate transcription by modulating chromatin at genomically distant loci. Here, we report both genomically local and distal RNA-dependent roles of Dali, a conserved central nervous system expressed intergenic lncRNA. Dali is transcribed downstream of the Pou3f3 transcription factor gene and its depletion disrupts the differentiation of neuroblastoma cells. Locally, Dali transcript regulates transcription of the Pou3f3 locus. Distally, it preferentially targets active promoters and regulates expression of neural differentiation genes, in part through physical association with the POU3F3 protein. Dali interacts with the DNMT1 DNA methyltransferase in mouse and human and regulates DNA methylation status of CpG island-associated promoters in trans. These results demonstrate, for the first time, that a single intergenic lncRNA controls the activity and methylation of genomically distal regulatory elements to modulate large-scale transcriptional programmes.
Collapse
Affiliation(s)
- Vladislava Chalei
- MRC Functional Genomics
Unit, Department of Physiology, Anatomy and Genetics,
University of Oxford, Oxford, United
Kingdom
| | - Stephen N Sansom
- MRC Functional Genomics
Unit, Department of Physiology, Anatomy and Genetics,
University of Oxford, Oxford, United
Kingdom
- Computational Genomics
Analysis and Training Programme, University of
Oxford, Oxford, United Kingdom
| | - Lesheng Kong
- MRC Functional Genomics
Unit, Department of Physiology, Anatomy and Genetics,
University of Oxford, Oxford, United
Kingdom
| | - Sheena Lee
- Department of
Physiology, Anatomy and Genetics, University of
Oxford, Oxford, United Kingdom
| | - Juan F Montiel
- MRC Functional Genomics
Unit, Department of Physiology, Anatomy and Genetics,
University of Oxford, Oxford, United
Kingdom
| | - Keith W Vance
- MRC Functional Genomics
Unit, Department of Physiology, Anatomy and Genetics,
University of Oxford, Oxford, United
Kingdom
| | - Chris P Ponting
- MRC Functional Genomics
Unit, Department of Physiology, Anatomy and Genetics,
University of Oxford, Oxford, United
Kingdom
| |
Collapse
|
9
|
Zhao J, Cheng YY, Fan W, Yang CB, Ye SF, Cui W, Wei W, Lao LX, Cai J, Han YF, Rong JH. Botanical drug puerarin coordinates with nerve growth factor in the regulation of neuronal survival and neuritogenesis via activating ERK1/2 and PI3K/Akt signaling pathways in the neurite extension process. CNS Neurosci Ther 2014; 21:61-70. [PMID: 25310912 DOI: 10.1111/cns.12334] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 01/11/2023] Open
Abstract
AIM Nerve growth factor (NGF) regulates neuronal survival and differentiation by activating extracellular signal-regulated-kinases (ERK) 1/2 and phosphoinositide-3-kinase (PI3K)/Akt pathways in two distinct processes: latency process and neurite extension process. This study was designed to investigate whether botanical drug C-glucosylated isoflavone puerarin coordinates with NGF to regulate neuritogenesis via activating ERK1/2 and PI3K/Akt in neurite extension process. METHODS We investigated the neuroprotective and neurotrophic activities of puerarin in MPTP-lesioned mice and dopaminergic PC12 cells. The effects of puerarin on ERK1/2, Akt, Nrf2, and HO-1 were assessed by Western blotting. The neurite outgrowth was assayed by neurite outgrowth staining kit. RESULTS Puerarin protected dopaminergic cells and ameliorated the behavioral impairments in MPTP-lesioned mice. Puerarin potentiated the effect of NGF on neuritogenesis in PC12 cells by >10-fold. Mechanistic studies revealed: (1) puerarin rapidly activated ERK1/2 and Akt, leading to the activation of Nrf2/heme oxygenase-1 (HO-1) pathways; (2) ERK1/2, PI3K/Akt, and HO-1 inhibitors attenuated the neuritogenic activity of puerarin. Notably, puerarin enhanced NGF-induced neuritogenesis in a timing-dependent manner. CONCLUSION Puerarin effectively coordinated with NGF to stimulate neuritogenesis via activating ERK1/2 and PI3K/Akt pathways in neurite extension process. These results demonstrated a general mechanism supporting the therapeutic application of puerarin-related compounds in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia Zhao
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The NAP motif of activity-dependent neuroprotective protein (ADNP) regulates dendritic spines through microtubule end binding proteins. Mol Psychiatry 2014; 19:1115-24. [PMID: 25178163 DOI: 10.1038/mp.2014.97] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/14/2014] [Accepted: 07/08/2014] [Indexed: 12/29/2022]
Abstract
The NAP motif of activity-dependent neuroprotective protein (ADNP) enhanced memory scores in patients suffering from mild cognitive impairment and protected activities of daily living in schizophrenia patients, while fortifying microtubule (MT)-dependent axonal transport, in mice and flies. The question is how does NAP fortify MTs? Our sequence analysis identified the MT end-binding protein (EB1)-interacting motif SxIP (SIP, Ser-Ile-Pro) in ADNP/NAP and showed specific SxIP binding sites in all members of the EB protein family (EB1-3). Others found that EB1 enhancement of neurite outgrowth is attenuated by EB2, while EB3 interacts with postsynaptic density protein 95 (PSD-95) to modulate dendritic plasticity. Here, NAP increased PSD-95 expression in dendritic spines, which was inhibited by EB3 silencing. EB1 or EB3, but not EB2 silencing inhibited NAP-mediated cell protection, which reflected NAP binding specificity. NAPVSKIPQ (SxIP=SKIP), but not NAPVAAAAQ mimicked NAP activity. ADNP, essential for neuronal differentiation and brain formation in mouse, a member of the SWI/SNF chromatin remodeling complex and a major protein mutated in autism and deregulated in schizophrenia in men, showed similar EB interactions, which were enhanced by NAP treatment. The newly identified shared MT target of NAP/ADNP is directly implicated in synaptic plasticity, explaining the breadth and efficiency of neuroprotective/neurotrophic capacities.
Collapse
|
11
|
Transcriptional analysis of apoptotic cerebellar granule neurons following rescue by gastric inhibitory polypeptide. Int J Mol Sci 2014; 15:5596-622. [PMID: 24694544 PMCID: PMC4013584 DOI: 10.3390/ijms15045596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022] Open
Abstract
Apoptosis triggered by exogenous or endogenous stimuli is a crucial phenomenon to determine the fate of neurons, both in physiological and in pathological conditions. Our previous study established that gastric inhibitory polypeptide (Gip) is a neurotrophic factor capable of preventing apoptosis of cerebellar granule neurons (CGNs), during its pre-commitment phase. In the present study, we conducted whole-genome expression profiling to obtain a comprehensive view of the transcriptional program underlying the rescue effect of Gip in CGNs. By using DNA microarray technology, we identified 65 genes, we named survival related genes, whose expression is significantly de-regulated following Gip treatment. The expression levels of six transcripts were confirmed by real-time quantitative polymerase chain reaction. The proteins encoded by the survival related genes are functionally grouped in the following categories: signal transduction, transcription, cell cycle, chromatin remodeling, cell death, antioxidant activity, ubiquitination, metabolism and cytoskeletal organization. Our data outline that Gip supports CGNs rescue via a molecular framework, orchestrated by a wide spectrum of gene actors, which propagate survival signals and support neuronal viability.
Collapse
|
12
|
Pani G, De Vos WH, Samari N, de Saint-Georges L, Baatout S, Van Oostveldt P, Benotmane MA. MorphoNeuroNet: an automated method for dense neurite network analysis. Cytometry A 2013; 85:188-99. [PMID: 24222510 DOI: 10.1002/cyto.a.22408] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/06/2013] [Accepted: 10/05/2013] [Indexed: 02/05/2023]
Abstract
High content cell-based screens are rapidly gaining popularity in the context of neuronal regeneration studies. To analyze neuronal morphology, automatic image analysis pipelines have been conceived, which accurately quantify the shape changes of neurons in cell cultures with non-dense neurite networks. However, most existing methods show poor performance for well-connected and differentiated neuronal networks, which may serve as valuable models for inter alia synaptogenesis. Here, we present a fully automated method for quantifying the morphology of neurons and the density of neurite networks, in dense neuronal cultures, which are grown for more than 10 days. MorphoNeuroNet, written as a script for ImageJ, Java based freeware, automatically determines various morphological parameters of the soma and the neurites (size, shape, starting points, and fractional occupation). The image analysis pipeline consists of a multi-tier approach in which the somas are segmented by adaptive region growing using nuclei as seeds, and the neurites are delineated by a combination of various intensity and edge detection algorithms. Quantitative comparison showed a superior performance of MorphoNeuroNet to existing analysis tools, especially for revealing subtle changes in thin neurites, which have weak fluorescence intensity compared to the rest of the network. The proposed method will help determining the effects of compounds on cultures with dense neurite networks, thereby boosting physiological relevance of cell-based assays in the context of neuronal diseases.
Collapse
Affiliation(s)
- Giuseppe Pani
- Radiobiology Unit, Molecular and Cellular Biology Expert Group, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium; Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
13
|
The kinesin-2 family member KIF3C regulates microtubule dynamics and is required for axon growth and regeneration. J Neurosci 2013; 33:11329-45. [PMID: 23843507 DOI: 10.1523/jneurosci.5221-12.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axon regeneration after injury requires the extensive reconstruction, reorganization, and stabilization of the microtubule cytoskeleton in the growth cones. Here, we identify KIF3C as a key regulator of axonal growth and regeneration by controlling microtubule dynamics and organization in the growth cone. KIF3C is developmentally regulated. Rat embryonic sensory axons and growth cones contain undetectable levels of KIF3C protein that is locally translated immediately after injury. In adult neurons, KIF3C is axonally transported from the cell body and is enriched at the growth cone where it preferentially binds to tyrosinated microtubules. Functionally, the interaction of KIF3C with EB3 is necessary for its localization at the microtubule plus-ends in the growth cone. Depletion of KIF3C in adult neurons leads to an increase in stable, overgrown and looped microtubules because of a strong decrease in the microtubule frequency of catastrophes, suggesting that KIF3C functions as a microtubule-destabilizing factor. Adult axons lacking KIF3C, by RNA interference or KIF3C gene knock-out, display an impaired axonal outgrowth in vitro and a delayed regeneration after injury both in vitro and in vivo. Murine KIF3C knock-out embryonic axons grow normally but do not regenerate after injury because they are unable to locally translate KIF3C. These data show that KIF3C is an injury-specific kinesin that contributes to axon growth and regeneration by regulating and organizing the microtubule cytoskeleton in the growth cone.
Collapse
|
14
|
Simske JS. Claudins reign: The claudin/EMP/PMP22/γ channel protein family in C. elegans. Tissue Barriers 2013; 1:e25502. [PMID: 24665403 PMCID: PMC3879130 DOI: 10.4161/tisb.25502] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 01/06/2023] Open
Abstract
The claudin family of integral membrane proteins was identified as the major protein component of the tight junctions in all vertebrates. Since their identification, claudins, and their associated pfam00822 superfamily of proteins have been implicated in a wide variety of cellular processes. Claudin homologs have been identified in invertebrates as well, including Drosophila and C. elegans. Recent studies demonstrate that the C. elegans claudins, clc-1-clc- 5, and similar proteins in the greater PMP22/EMP/claudin/voltage-gated calcium channel γ subunit family, including nsy-4, and vab-9, while highly divergent at a sequence level from each other and from the vertebrate claudins, in many cases play roles similar to those traditionally assigned to their vertebrate homologs. These include regulating cell adhesion and passage of small molecules through the paracellular space, channel activity, protein aggregation, sensitivity to pore-forming toxins, intercellular signaling, cell fate specification and dynamic changes in cell morphology. Study of claudin superfamily proteins in C. elegans should continue to provide clues as to how claudin family protein function has been adapted to perform diverse functions at specialized cell-cell contacts in metazoans.
Collapse
|
15
|
Azhibekov TA, Wu Z, Padiyar A, Bruggeman LA, Simske JS. TM4SF10 and ADAP interaction in podocytes: role in Fyn activity and nephrin phosphorylation. Am J Physiol Cell Physiol 2011; 301:C1351-9. [PMID: 21881001 DOI: 10.1152/ajpcell.00166.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TM4SF10 [transmembrane tetra(4)-span family 10] is a claudin-like cell junction protein that is transiently expressed during podocyte development where its expression is downregulated in differentiating podocytes coincident with the appearance of nephrin at the slit diaphragm. In a yeast two-hybrid screen, we identified adhesion and degranulation-promoting adaptor protein (ADAP), a well-known Fyn substrate and Fyn binding partner, as a TM4SF10 interacting protein in mouse kidney. Using coimmunoprecipitation and immunohistochemistry experiments in cultured human podocytes, we show that TM4SF10 colocalizes with Fyn and ADAP but does not form a stable complex with Fyn. Cytoskeletal changes and phosphorylation events mediated by Fyn activity were reversed by TM4SF10 overexpression, including a decrease in the activating tyrosine phosphorylation of Fyn (Y(421)), suggesting TM4SF10 may have a regulatory role in suppressing Fyn activity. In addition, TM4SF10 was reexpressed following podocyte injury by puromycin aminonucleoside treatment, and its expression enhanced the abundance of high-molecular-weight forms of nephrin indicating it may participate in a mechanism controlling nephrin's appearance at the plasma membrane. Therefore, these studies have identified ADAP as another Fyn adapter protein expressed in podocytes, and that TM4SF10, possibly through ADAP, may regulate Fyn activity. Since TM4SF10 expression is temporally regulated during kidney development, these studies may help define a mechanism by which the slit diaphragm matures as a highly specialized cell junction during podocyte differentiation.
Collapse
Affiliation(s)
- Timur A Azhibekov
- Rammelkamp Center for Education and Research, Division of Neonatology, Department of Pediatrics, MetroHealth Medical Center, 2500 MetroHealth Dr., Cleveland, OH 44109, USA
| | | | | | | | | |
Collapse
|
16
|
Mortazavi MM, Verma K, Deep A, Esfahani FB, Pritchard PR, Tubbs RS, Theodore N. Chemical priming for spinal cord injury: a review of the literature part II-potential therapeutics. Childs Nerv Syst 2011; 27:1307-16. [PMID: 21174102 DOI: 10.1007/s00381-010-1365-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Spinal cord injury is a complex cascade of reactions secondary to the initial mechanical trauma that puts into action the innate properties of the injured cells, the circulatory, inflammatory, and chemical status around them, into a non-permissive and destructive environment for neuronal function and regeneration. Priming means putting a cell, in a state of "arousal" towards better function. Priming can be mechanical as trauma is known to enhance activity in cells. MATERIALS AND METHODS A comprehensive review of the literature was performed to better understand the possible chemical primers used for spinal cord injuries. CONCLUSIONS Taken together, many studies have shown various promising results using the substances outlined herein for treating SCI.
Collapse
Affiliation(s)
- Martin M Mortazavi
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AR, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Mortazavi MM, Verma K, Deep A, Esfahani FB, Pritchard PR, Tubbs RS, Theodore N. Chemical priming for spinal cord injury: a review of the literature. Part I-factors involved. Childs Nerv Syst 2011; 27:1297-306. [PMID: 21170536 DOI: 10.1007/s00381-010-1364-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 12/29/2022]
Abstract
INTRODUCTION There are significant differences between the propensity of neural regeneration between the central and peripheral nervous systems. MATERIALS AND METHODS Following a review of the literature, we describe the role of growth factors, guiding factors, and neurite outgrowth inhibitors in the physiology and development of the nervous system as well as the pathophysiology of the spinal cord. We also detail their therapeutic role as well as those of other chemical substances that have recently been found to modify regrowth following cord injury. CONCLUSIONS Multiple factors appear to have promising futures for the possibility of improving spinal cord injury following injury.
Collapse
Affiliation(s)
- Martin M Mortazavi
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AR, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ho SY, Chao CY, Huang HL, Chiu TW, Charoenkwan P, Hwang E. NeurphologyJ: an automatic neuronal morphology quantification method and its application in pharmacological discovery. BMC Bioinformatics 2011; 12:230. [PMID: 21651810 PMCID: PMC3121649 DOI: 10.1186/1471-2105-12-230] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 06/08/2011] [Indexed: 01/26/2023] Open
Abstract
Background Automatic quantification of neuronal morphology from images of fluorescence microscopy plays an increasingly important role in high-content screenings. However, there exist very few freeware tools and methods which provide automatic neuronal morphology quantification for pharmacological discovery. Results This study proposes an effective quantification method, called NeurphologyJ, capable of automatically quantifying neuronal morphologies such as soma number and size, neurite length, and neurite branching complexity (which is highly related to the numbers of attachment points and ending points). NeurphologyJ is implemented as a plugin to ImageJ, an open-source Java-based image processing and analysis platform. The high performance of NeurphologyJ arises mainly from an elegant image enhancement method. Consequently, some morphology operations of image processing can be efficiently applied. We evaluated NeurphologyJ by comparing it with both the computer-aided manual tracing method NeuronJ and an existing ImageJ-based plugin method NeuriteTracer. Our results reveal that NeurphologyJ is comparable to NeuronJ, that the coefficient correlation between the estimated neurite lengths is as high as 0.992. NeurphologyJ can accurately measure neurite length, soma number, neurite attachment points, and neurite ending points from a single image. Furthermore, the quantification result of nocodazole perturbation is consistent with its known inhibitory effect on neurite outgrowth. We were also able to calculate the IC50 of nocodazole using NeurphologyJ. This reveals that NeurphologyJ is effective enough to be utilized in applications of pharmacological discoveries. Conclusions This study proposes an automatic and fast neuronal quantification method NeurphologyJ. The ImageJ plugin with supports of batch processing is easily customized for dealing with high-content screening applications. The source codes of NeurphologyJ (interactive and high-throughput versions) and the images used for testing are freely available (see Availability).
Collapse
Affiliation(s)
- Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Walshe TE, Leach LL, D'Amore PA. TGF-β signaling is required for maintenance of retinal ganglion cell differentiation and survival. Neuroscience 2011; 189:123-31. [PMID: 21664439 DOI: 10.1016/j.neuroscience.2011.05.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/11/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE To determine the role of TGF-β1 in the maintenance of retinal ganglion cell line (RGC-5) differentiation and integrity. METHODS RGC-5 cells were differentiated in media conditioned by human non-pigmented ciliary epithelial cells (HNPE) for 4 days before treatment with TGF-β1 for 24 h. Cells were examined for morphological changes and harvested for western blot and real-time PCR analysis. For study of apoptosis, differentiated RGC-5 cells were grown in serum-free medium for 24 h in the presence or absence of TGF-β1 and collected for Annexin V/Propidium iodide FACs analysis. The role of MAPK pathways in TGF-β1-dependent signaling was determined by treatment with specific inhibitors of ERK, JNK and p38. RESULTS Differentiation of RGC-5 cells in HNPE-conditioned media (CM) increased the neural cell markers, Brn-3c, NF-160, Thy1.2, Tau and PGP9.5. Treatment with TGF-β1 significantly increased the length of neurites extended by differentiated RGC-5s, concomitant with increased expression of NF-160 and PGP9.5, but not Brn-3c, Thy1.2 or Tau. TGF-β1 also decreased RGC-5 cell apoptosis in serum-free medium. p38 phosphorylation, but not smad2/3, JNK or ERK phosphorylation, was increased in TGF-β1 treated cells. Specific inhibition of p38 signaling reversed TGF-β1 induced neurite growth. CONCLUSIONS These findings demonstrate the induction of RGC-5 cell differentiation by HNPE-derived CM and illustrate a role for TGF-β1 in maintaining RGC-5 cell survival and promoting neurite outgrowth through p38 MAPK.
Collapse
Affiliation(s)
- T E Walshe
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
20
|
Abstract
In the last decade, the claudin family of integral membrane proteins has been identified as the major protein component of the tight junctions in all vertebrates. The claudin superfamily proteins also function to regulate channel activity, intercellular signaling, and cell morphology. Subsequently, claudin homologues have been identified in invertebrates, including Drosophila and Caenorhabditis elegans. Recent studies demonstrate that the C. elegans claudins, clc-1 to clc-5, and similar proteins in the greater PMP22/EMP/claudin/calcium channel γ subunit family, including nsy-1-nsy-4 and vab-9, while highly divergent at a sequence level from each other and from the vertebrate claudins, in some cases play roles similar to those traditionally assigned to their vertebrate homologues. These include regulating cell adhesion and passage of small molecules through the paracellular space. The claudin superfamily proteins also function to regulate channel activity, intercellular signaling, and cell morphology. Study of claudin superfamily proteins in C. elegans should continue to provide clues as to how core claudin protein function can be modified to serve various specific roles at regions of cell-cell contact in metazoans.
Collapse
|
21
|
Yeyeodu ST, Witherspoon SM, Gilyazova N, Ibeanu GC. A rapid, inexpensive high throughput screen method for neurite outgrowth. CURRENT CHEMICAL GENOMICS 2010; 4:74-83. [PMID: 21347208 PMCID: PMC3040990 DOI: 10.2174/1875397301004010074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 11/22/2022]
Abstract
Neurite outgrowth assays are the most common phenotypic screen to assess chemical effects on neuronal cells. Current automated assays involve expensive equipment, lengthy sample preparation and handling, costly reagents and slow rates of data acquisition and analysis. We have developed a high throughput screen (HTS) for neurite outgrowth using a robust neuronal cell model coupled to fast and inexpensive visualization methods, reduced data volume and rapid data analysis. Neuroscreen-1 (NS-1) cell, a subclone of PC12, possessing rapid growth and enhanced sensitivity to NGF was used as a model neuron. This method reduces preparation time by using cells expressing GFP or native cells stained with HCS CellMask(™) Red in a multiplexed 30 min fixation and staining step. A 2x2 camera binning process reduced both image data files and analysis times by 75% and 60% respectively, compared to current protocols. In addition, eliminating autofocus steps during montage generation reduced data collection time. Pharmacological profiles for stimulation and inhibition of neurite outgrowth by NGF and SU6656 were comparable to current standard method utilizing immunofluorescence detection of tubulin. Potentiation of NGF-induced neurite outgrowth by members of a 1,120-member Prestwick compound library as assayed using this method identified six molecules, including etoposide, isoflupredone acetate, fludrocortisone acetate, thioguanosine, oxyphenbutazone and gibberellic acid, that more than doubled the neurite mass primed by 2 ng/ml NGF. This simple procedure represents an important routine approach in high throughput screening of large chemical libraries using the neurite outgrowth phenotype as a measure of the effects of chemical molecules on neuronal cells.
Collapse
Affiliation(s)
- Susan T Yeyeodu
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, 1801 Fayetteville Street, Durham, NC. 27707, USA
| | | | | | | |
Collapse
|
22
|
Accelerated neurite growth from spiral ganglion neurons exposed to the Rho kinase inhibitor H-1152. Neuroscience 2010; 169:855-62. [PMID: 20478368 DOI: 10.1016/j.neuroscience.2010.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 12/18/2022]
Abstract
Upon the death of their hair cell synaptic partners, bipolar cochlear spiral ganglion neurons either die or retract their peripheral nerve fibers. Efforts to induce the regrowth of the peripheral neurites have had to rely on limited knowledge of the mechanisms underlying spiral ganglion neurite regeneration and have been restricted by the impracticality of undertaking large numbers of manual analyses of neurite growth responses. Here we have used dissociated cultures of postnatal mouse spiral ganglia to assess the effects of the Rho kinase inhibitor H-1152 on neurite growth and to determine the utility of automated high content analysis for evaluating neurite length from spiral ganglion neurons in vitro. In cultures of postnatal mouse spiral ganglion, greater than 95% of the neurons develop bipolar, monopolar or neurite-free morphologies in ratios dependent on whether the initial medium composition contains leukemia inhibitory factor or bone morphogenetic protein 4. Cultures under both conditions were maintained for 24 h, then exposed for 18 h to H-1152. None of the cultures exposed to H-1152 showed decreased neuronal survival or alterations in the ratios of different neuronal morphologies. However, as measured manually, the population of neurite lengths was increased in the presence of H-1152 in both types of cultures. High content analysis using the Arrayscan VTi imager and Cellomics software confirmed the rank order differences in neurite lengths among culture conditions. These data suggest the presence of an inhibitory regulatory mechanism(s) in the signaling pathway of Rho kinase that slows the growth of spiral ganglion neurites. The automated analysis demonstrates the feasibility of using primary cultures of dissociated mouse spiral ganglion for large scale screens of chemicals, genes or other factors that regulate neurite growth.
Collapse
|
23
|
Abstract
The analysis of live cells using automated fluorescence microscopy systems on an industrial scale is known as high content screening/analysis (HCS/A). Its development has been driven both by the demands of compound screening in the drug discovery industry and by the promise of whole genome functional analyses using siRNA knockouts. This chapter outlines the primary applications of HCS/A within the drug discovery process and in systems cell biology. It discusses specific issues which must be addressed when undertaking HCS/A, such as choice of cells, probes, labels, and assay type. Drawing from information gathered from surveys of key users of HCS/A in industry and academia, it then provides a detailed description of HCS/A user issues and requirements, before concluding with a summary of the imaging instrumentation currently available for live cell HCS/A.
Collapse
|
24
|
Koga T, Shen X, Park JS, Qiu Y, Park BC, Shyam R, Yue BYJT. Differential effects of myocilin and optineurin, two glaucoma genes, on neurite outgrowth. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:343-52. [PMID: 19959812 DOI: 10.2353/ajpath.2010.090194] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myocilin and optineurin are two genes linked to glaucoma, a major blinding disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons. To investigate the effects of force-expressed wild-type and mutant myocilin and optineurin on neurite outgrowth in neuronal cells, we transiently transfected cells with pEGFP-N1 (mock control) as well as myocilin and optineurin plasmids including pMYOC(WT)-EGFP, pMYOC(P370L)-EGFP, pMYOC(1-367)-EGFP, pOPTN(WT)-EGFP, and pOPTN(E50K)-EGFP. PC12 cells transfected with pEGFP-N1 produced, as anticipated, long and extensive neuritis on nerve growth factor induction. The neurite length in those cells transfected with myocilin constructs was shortened and the number of neurites was also reduced. A similar inhibitory effect on neurite outgrowth was also elicited by myocilin transfection in RGC5 cells. In contrast, neither transfection of the optineurin constructs pOPTN(WT)-EGFP and pOPTN(E50K)-EGFP nor the myocilin and optineurin small-interfering RNA treatments induced significant alterations in neurite outgrowth. Transfection with the wild-type optineurin construct, but not with that of the wild-type myocilin, increased the apoptotic activity in cells. These results demonstrated that the two glaucoma genes, myocilin and optineurin, exhibited differential effects on neurite outgrowth. They may contribute to the development of neurodegenerative glaucoma via distinct mechanisms.
Collapse
Affiliation(s)
- Takahisa Koga
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Laketa V, Zarbakhsh S, Morbier E, Subramanian D, Dinkel C, Brumbaugh J, Zimmermann P, Pepperkok R, Schultz C. Membrane-Permeant Phosphoinositide Derivatives as Modulators of Growth Factor Signaling and Neurite Outgrowth. ACTA ACUST UNITED AC 2009; 16:1190-6. [DOI: 10.1016/j.chembiol.2009.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
|
26
|
The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players. Mol Cell Neurosci 2009; 43:15-32. [PMID: 19660553 DOI: 10.1016/j.mcn.2009.07.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 07/27/2009] [Indexed: 11/24/2022] Open
Abstract
Nervous system function and plasticity rely on the complex architecture of neuronal networks elaborated during development, when neurons acquire their specific and complex shape. During neuronal morphogenesis, the formation and outgrowth of functionally and structurally distinct axons and dendrites require a coordinated and dynamic reorganization of the microtubule cytoskeleton involving numerous regulators. While most of these factors act directly on microtubules to stabilize them or promote their assembly, depolymerization or fragmentation, others are now emerging as essential regulators of neuronal differentiation by controlling tubulin availability and modulating microtubule dynamics. In this review, we recapitulate how the microtubule network is actively regulated during the successive phases of neuronal morphogenesis, and what are the specific roles of the various microtubule-regulating proteins in that process. We then describe the specific signaling pathways and inter-regulations that coordinate the different activities of these proteins to sustain neuronal development in response to environmental cues.
Collapse
|
27
|
Gasparri F. An overview of cell phenotypes in HCS: limitations and advantages. Expert Opin Drug Discov 2009; 4:643-57. [DOI: 10.1517/17460440902992870] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Jensen NA, Gerth K, Grotjohann T, Kapp D, Keck M, Niehaus K. Establishment of a high content assay for the identification and characterisation of bioactivities in crude bacterial extracts that interfere with the eukaryotic cell cycle. J Biotechnol 2009; 140:124-34. [DOI: 10.1016/j.jbiotec.2008.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/21/2008] [Accepted: 12/03/2008] [Indexed: 01/18/2023]
|
29
|
Bakota L, Brandt R. Chapter 2 Live‐Cell Imaging in the Study of Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:49-103. [DOI: 10.1016/s1937-6448(09)76002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
30
|
In-tube transfection improves the efficiency of gene transfer in primary neuronal cultures. J Neurosci Methods 2008; 177:348-54. [PMID: 19014969 DOI: 10.1016/j.jneumeth.2008.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 11/20/2022]
Abstract
To facilitate genetic studies in primary neurons, we analyzed the efficiency of cationic lipid-mediated plasmid DNA transfection using adherent and acutely dissociated neuronal suspensions derived from embryonic mouse cortical tissue. Compared to transfections using adherent cultures, the in-tube procedure enhanced the delivery of a GFP reporter plasmid between four- to eightfold depending on the age of the harvested embryo. The procedure required relatively brief complex incubation times, and supported the transfection of cells expressing the neuronal markers NeuN and TuJ1 with improved uniformity in transfection events across the well surface. To demonstrate the utility of this approach in studying the genetic mechanisms controlling neuron development, we provide data regarding the role of the bZIP transcription factor c/EBP-beta in regulating neurite outgrowth. It is anticipated that this in vitro protocol will facilitate the identification of novel genes involved in both developmental and disease-relevant signaling pathways.
Collapse
|
31
|
Goodin MM, Zaitlin D, Naidu RA, Lommel SA. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1015-26. [PMID: 18616398 DOI: 10.1094/mpmi-21-8-1015] [Citation(s) in RCA: 396] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Additionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host-pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus-induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, interaction, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions currently used by the research community. In addition to addressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.
Collapse
Affiliation(s)
- Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington 40546, USA.
| | | | | | | |
Collapse
|
32
|
Arien-Zakay H, Lecht S, Perets A, Roszell B, Lelkes PI, Lazarovici P. Quantitative assessment of neuronal differentiation in three-dimensional collagen gels using enhanced green fluorescence protein expressing PC12 pheochromocytoma cells. J Mol Neurosci 2008; 37:225-37. [PMID: 18629654 DOI: 10.1007/s12031-008-9123-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 06/05/2008] [Indexed: 11/28/2022]
Abstract
There is a paucity of quantitative methods for evaluating the morphological differentiation of neuronal cells in a three-dimensional (3-D) system to assist in quality control of neural tissue engineering constructs for use in reparative medicine. Neuronal cells tend to aggregate in the 3-D scaffolds, hindering the application of two-dimensional (2-D) morphological methods to quantitate neuronal differentiation. To address this problem, we developed a stable transfectant green fluorescence protein (GFP)-PC12 neuronal cell model, in which the differentiation process in 3-D can be monitored with high sensitivity by fluorescence microscopy. Under 2-D conditions, the green cells showed collagen adherence, round morphology, proliferation properties, expression of the nerve growth factor (NGF) receptors TrkA and p75(NTR), stimulation of extracellular signal-regulated kinase phosphorylation by NGF and were able to differentiate in a dose-dependent manner upon NGF treatment, like wild-type (wt)-PC12 cells. When grown within 3-D collagen gels, upon NGF treatment, the GFP-PC12 cells differentiated, expressing long neurite outgrowths. We describe here a new validated method to measure NGF-induced differentiation in 3-D. Having properties similar to those of wt-PC12 and an ability to grow and differentiate in 3-D structures, these highly visualized GFP-expressing PC12 cells may serve as an ideal model for investigating various aspects of differentiation to serve in neural engineering.
Collapse
Affiliation(s)
- Hadar Arien-Zakay
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | | | | | | | | | | |
Collapse
|
33
|
Starkuviene V, Pepperkok R. The potential of high-content high-throughput microscopy in drug discovery. Br J Pharmacol 2007; 152:62-71. [PMID: 17603554 PMCID: PMC1978277 DOI: 10.1038/sj.bjp.0707346] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fluorescence microscopy is a powerful method to study protein function in its natural habitat, the living cell. With the availability of the green fluorescent protein and its spectral variants, almost any gene of interest can be fluorescently labelled in living cells opening the possibility to study protein localization, dynamics and interactions. The emergence of automated cellular systems allows rapid visualization of large groups of cells and phenotypic analysis in a quantitative manner. Here, we discuss recent advances in high-content high-throughput microscopy and its potential application to several steps of the drug discovery process.
Collapse
Affiliation(s)
- V Starkuviene
- Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
34
|
Ozawa A, Cai Y, Lindberg I. Production of bioactive peptides in an in vitro system. Anal Biochem 2007; 366:182-9. [PMID: 17540328 PMCID: PMC2128726 DOI: 10.1016/j.ab.2007.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/31/2007] [Accepted: 04/14/2007] [Indexed: 11/23/2022]
Abstract
An in vitro system for the preparation of bioactive peptides is described. This system couples three different posttranslational modification enzymes, prohormone convertases (PCs), carboxypeptidase E, and peptidyl alpha-amidating enzyme, to transform recombinant precursors into bioactive peptides. Three different precursors, mouse proopiomelanocortin (mPOMC), rat proenkephalin (rPE), and human proghrelin, were used as model systems. The conversion of mPOMC and rPE to smaller peptide products was measured by radioimmunoassay. After optimization of the system, excellent efficiency was obtained: about 85% of starting mPOMC was converted to des-acetyl alpha-melanocyte-stimulating hormone (alpha-MSH). For proenkephalin, 75 and 96% yields were obtained for the opioid peptides Met-RGL and Met-enk, respectively. Cell-based assays demonstrated that in-vitro-generated des-acetyl alpha-MSH successfully activated the melanocortin 4 receptor. Proghrelin digestion was used to screen the specificity of PC cleavage and to confirm the cleavage site by mass spectroscopy. Mature ghrelin was produced by human furin, mouse prohormone convertase 1, and human prohormone convertase 7 but not by mouse prohormone convertase 2. These results demonstrate that our in vitro system (1) can produce peptides in quantities sufficient to carry out functional analyses, (2) can be used to determine the specificity of proprotein convertases on recombinant precursors, and (3) has the potential to identify novel peptide functions on both known and orphan G-protein-coupled receptors.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|