1
|
Weidner P, Saar D, Söhn M, Schroeder T, Yu Y, Zöllner FG, Ponelies N, Zhou X, Zwicky A, Rohrbacher FN, Pattabiraman VR, Tanriver M, Bauer A, Ahmed H, Ametamey SM, Riffel P, Seger R, Bode JW, Wade RC, Ebert MPA, Kragelund BB, Burgermeister E. Myotubularin-related-protein-7 inhibits mutant (G12V) K-RAS by direct interaction. Cancer Lett 2024; 588:216783. [PMID: 38462034 DOI: 10.1016/j.canlet.2024.216783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Inhibition of K-RAS effectors like B-RAF or MEK1/2 is accompanied by treatment resistance in cancer patients via re-activation of PI3K and Wnt signaling. We hypothesized that myotubularin-related-protein-7 (MTMR7), which inhibits PI3K and ERK1/2 signaling downstream of RAS, directly targets RAS and thereby prevents resistance. Using cell and structural biology combined with animal studies, we show that MTMR7 binds and inhibits RAS at cellular membranes. Overexpression of MTMR7 reduced RAS GTPase activities and protein levels, ERK1/2 phosphorylation, c-FOS transcription and cancer cell proliferation in vitro. We located the RAS-inhibitory activity of MTMR7 to its charged coiled coil (CC) region and demonstrate direct interaction with the gastrointestinal cancer-relevant K-RASG12V mutant, favouring its GDP-bound state. In mouse models of gastric and intestinal cancer, a cell-permeable MTMR7-CC mimicry peptide decreased tumour growth, Ki67 proliferation index and ERK1/2 nuclear positivity. Thus, MTMR7 mimicry peptide(s) could provide a novel strategy for targeting mutant K-RAS in cancers.
Collapse
Affiliation(s)
- Philip Weidner
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Saar
- Structural Biology and NMR Laboratory (SBiNLab) and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Söhn
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Torsten Schroeder
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yanxiong Yu
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Cooperative Core Facility Animal Scanner ZI, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Ponelies
- Orthopaedics & Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaobo Zhou
- Department of Medicine I, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - André Zwicky
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Florian N Rohrbacher
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Vijaya R Pattabiraman
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Alexander Bauer
- Structural Biology and NMR Laboratory (SBiNLab) and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hazem Ahmed
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences of ETH, Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences of ETH, Zurich, Switzerland
| | - Philipp Riffel
- Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Rebecca C Wade
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany; Heidelberg University, Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany
| | - Matthias P A Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ-Hector Institute at the University Medical Center, Mannheim, Germany
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab) and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
2
|
Wang J, Guo W, Wang Q, Yang Y, Sun X. Recent advances of myotubularin-related (MTMR) protein family in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1364604. [PMID: 38529329 PMCID: PMC10961392 DOI: 10.3389/fcvm.2024.1364604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Belonging to a lipid phosphatase family containing 16 members, myotubularin-related proteins (MTMRs) are widely expressed in a variety of tissues and organs. MTMRs preferentially hydrolyzes phosphatidylinositol 3-monophosphate and phosphatidylinositol (3,5) bis-phosphate to generate phosphatidylinositol and phosphatidylinositol 5-monophosphate, respectively. These phosphoinositides (PIPs) promote membrane degradation during autophagosome-lysosomal fusion and are also involved in various regulatory signal transduction. Based on the ability of modulating the levels of these PIPs, MTMRs exert physiological functions such as vesicle trafficking, cell proliferation, differentiation, necrosis, cytoskeleton, and cell migration. It has recently been found that MTMRs are also involved in the occurrence and development of several cardiovascular diseases, including cardiomyocyte hypertrophy, proliferation of vascular smooth muscle cell, LQT1, aortic aneurysm, etc. This review summarizes the functions of MTMRs and highlights their pathophysiological roles in cardiovascular diseases.
Collapse
Affiliation(s)
- Jia Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wei Guo
- Clinical Research Center, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiongshan Sun
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Adhikari E, Liu Q, Johnson J, Stewart P, Marusyk V, Fang B, Izumi V, Bowers K, Guzman KM, Koomen JM, Marusyk A, Lau EK. Brain metastasis-associated fibroblasts secrete fucosylated PVR/CD155 that induces breast cancer invasion. Cell Rep 2023; 42:113463. [PMID: 37995180 DOI: 10.1016/j.celrep.2023.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Brain metastasis cancer-associated fibroblasts (bmCAFs) are emerging as crucial players in the development of breast cancer brain metastasis (BCBM), but our understanding of the underlying molecular mechanisms is limited. In this study, we aim to elucidate the pathological contributions of fucosylation (the post-translational modification of proteins by the dietary sugar L-fucose) to tumor-stromal interactions that drive the development of BCBM. Here, we report that patient-derived bmCAFs secrete high levels of polio virus receptor (PVR), which enhance the invasive capacity of BC cells. Mechanistically, we find that HIF1α transcriptionally upregulates fucosyltransferase 11, which fucosylates PVR, triggering its secretion from bmCAFs. Global phosphoproteomic analysis of BC cells followed by functional verification identifies cell-cell junction and actin cytoskeletal signaling as modulated by bmCAF-secreted, -fucosylated PVR. Our findings delineate a hypoxia- and fucosylation-regulated mechanism by which bmCAFs contribute to the invasiveness of BCBM in the brain.
Collapse
Affiliation(s)
- Emma Adhikari
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Qian Liu
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Joseph Johnson
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paul Stewart
- Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Viktoriya Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kiah Bowers
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kelly M Guzman
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Andriy Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric K Lau
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
4
|
Karolczak S, Deshwar AR, Aristegui E, Kamath BM, Lawlor MW, Andreoletti G, Volpatti J, Ellis JL, Yin C, Dowling JJ. Loss of Mtm1 causes cholestatic liver disease in a model of X-linked myotubular myopathy. J Clin Invest 2023; 133:e166275. [PMID: 37490339 PMCID: PMC10503795 DOI: 10.1172/jci166275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a fatal congenital disorder caused by mutations in the MTM1 gene. Currently, there are no approved treatments, although AAV8-mediated gene transfer therapy has shown promise in animal models and preliminarily in patients. However, 4 patients with XLMTM treated with gene therapy have died from progressive liver failure, and hepatobiliary disease has now been recognized more broadly in association with XLMTM. In an attempt to understand whether loss of MTM1 itself is associated with liver pathology, we have characterized what we believe to be a novel liver phenotype in a zebrafish model of this disease. Specifically, we found that loss-of-function mutations in mtm1 led to severe liver abnormalities including impaired bile flux, structural abnormalities of the bile canaliculus, and improper endosome-mediated trafficking of canalicular transporters. Using a reporter-tagged Mtm1 zebrafish line, we established localization of Mtm1 in the liver in association with Rab11, a marker of recycling endosomes, and canalicular transport proteins and demonstrated that hepatocyte-specific reexpression of Mtm1 could rescue the cholestatic phenotype. Last, we completed a targeted chemical screen and found that Dynasore, a dynamin-2 inhibitor, was able to partially restore bile flow and transporter localization to the canalicular membrane. In summary, we demonstrate, for the first time to our knowledge, liver abnormalities that were directly caused by MTM1 mutation in a preclinical model, thus establishing the critical framework for better understanding and comprehensive treatment of the human disease.
Collapse
Affiliation(s)
- Sophie Karolczak
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Ashish R. Deshwar
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics and
| | - Evangelina Aristegui
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Binita M. Kamath
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael W. Lawlor
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Translational Science Laboratory, Milwaukee, Wisconsin, USA
| | | | - Jonathan Volpatti
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jillian L. Ellis
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology and
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology and
- Center for Undiagnosed and Rare Liver Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James J. Dowling
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Liu L, Liang L, Yang C, Chen Y. Machine learning-based solution reveals cuproptosis features in inflammatory bowel disease. Front Immunol 2023; 14:1136991. [PMID: 37275904 PMCID: PMC10233155 DOI: 10.3389/fimmu.2023.1136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/23/2023] [Indexed: 06/07/2023] Open
Abstract
Background Cuproptosis, a new cell death mode, is majorly modulated by mitochondrial metabolism and protein lipoylation. Nonetheless, cuproptosis-related genes (CRGs) have not yet been thoroughly studied for their clinical significance and relationship with the immune microenvironment in inflammatory bowel disease (IBD). Methods We screened CRGs that had a significant correlation with immune status, which was determined utilizing single-sample GSEA (ssGSEA) and Gene Expression Omnibus datasets (GSE75214). Furthermore, utilizing the R package "CensusClusterPlus", these CRGs' expression was used to obtain different patient clusters. Subsequently, gene-set enrichment analysis (GSEA), gene set variation analysis (GSVA), and CIBERSORT assessed the variations in the enrichment of gene function and the abundance of immune cell infiltration and immune functions across these clusters. Additionally, weighted gene co-expression network analysis (WGCNA) and analysis of differentially expressed genes (DEGs) were executed, and for the purpose of identifying hub genes between these clusters, the construction of protein-protein interaction (PPI) network was done. Lastly, we used the GSE36807 and GSE10616 datasets as external validation cohorts to validate the immune profiles linked to the expression of CRG. ScRNA-seq profiling was then carried out using the publicly available dataset to examine the CRGs expression in various cell clusters and under various conditions. Results Three CRGs, PDHA1, DLD, and FDX1, had a significant association with different immune profiles in IBD. Patients were subsequently classified into two clusters: low expression levels of DLD and PDHA1, and high expression levels of FDX1 were observed in Cluster 1 compared to Cluster 2. According to GSEA, Cluster 2 had a close association with the RNA processes and protein synthesis whereas Cluster 1 was substantially linked to environmental stress response and metabolism regulations. Furthermore, Cluster 2 had more immune cell types, which were characterized by abundant memory B cells, CD4+ T memory activated cells, and follicular helper T cells, and higher levels of immune-related molecules (CD44, CD276,CTLA4 and ICOS) than Cluster 1. During the analysis, the PPI network was divided into three significant MCODEs using the Molecular Complex Detection (MCODE) algorithm. The three MCODEs containing four genes respectively were linked to mitochondrial metabolism, cell development, ion and amino acid transport. Finally, external validation cohorts validated these findings, and scRNA-seq profiling demonstrated diverse intestinal cellular compositions with a wide variation in CRGs expression in the gut of IBD patients. Conclusions Cuproptosis has been implicated in IBD, with PDHA1, DLD, and FDX1 having the potential as immune biomarkers and therapeutic targets. These results offer a better understanding of the development of precise, dependable, and cutting-edge diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Liping Liang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenghai Yang
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ye Chen
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Jang W, Puchkov D, Samsó P, Liang Y, Nadler-Holly M, Sigrist SJ, Kintscher U, Liu F, Mamchaoui K, Mouly V, Haucke V. Endosomal lipid signaling reshapes the endoplasmic reticulum to control mitochondrial function. Science 2022; 378:eabq5209. [PMID: 36520888 DOI: 10.1126/science.abq5209] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cells respond to fluctuating nutrient supply by adaptive changes in organelle dynamics and in metabolism. How such changes are orchestrated on a cell-wide scale is unknown. We show that endosomal signaling lipid turnover by MTM1, a phosphatidylinositol 3-phosphate [PI(3)P] 3-phosphatase mutated in X-linked centronuclear myopathy in humans, controls mitochondrial morphology and function by reshaping the endoplasmic reticulum (ER). Starvation-induced endosomal recruitment of MTM1 impairs PI(3)P-dependent contact formation between tubular ER membranes and early endosomes, resulting in the conversion of ER tubules into sheets, the inhibition of mitochondrial fission, and sustained oxidative metabolism. Our results unravel an important role for early endosomal lipid signaling in controlling ER shape and, thereby, mitochondrial form and function to enable cells to adapt to fluctuating nutrient environments.
Collapse
Affiliation(s)
- Wonyul Jang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Paula Samsó
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - YongTian Liang
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Stephan J Sigrist
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Kamel Mamchaoui
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France
| | - Vincent Mouly
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
7
|
Paclet MH, Laurans S, Dupré-Crochet S. Regulation of Neutrophil NADPH Oxidase, NOX2: A Crucial Effector in Neutrophil Phenotype and Function. Front Cell Dev Biol 2022; 10:945749. [PMID: 35912108 PMCID: PMC9329797 DOI: 10.3389/fcell.2022.945749] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS), produced by the phagocyte NADPH oxidase, NOX2, are involved in many leukocyte functions. An excessive or inappropriate ROS production can lead to oxidative stress and tissue damage. On the other hand, an absence of ROS production due to a lack of a functional NADPH oxidase is associated with recurrent infections as well as inflammation disorders. Thus, it is clear that the enzyme NADPH oxidase must be tightly regulated. The NOX2 complex bears both membrane and cytosolic subunits. The membrane subunits constitute the flavocytochrome b558, consisting of gp91phox (Nox2) and p22phox subunits. The cytosolic subunits form a complex in resting cells and are made of three subunits (p47phox, p40phox, p67phox). Upon leukocyte stimulation, the cytosolic subunits and the small GTPase Rac assemble with the flavocytochrome b558 in order to make a functional complex. Depending on the stimulus, the NADPH oxidase can assemble either at the phagosomal membrane or at the plasma membrane. Many studies have explored NOX2 activation; however, how this activation is sustained and regulated is still not completely clear. Here we review the multiple roles of NOX2 in neutrophil functions, with a focus on description of its components and their assembly mechanisms. We then explain the role of energy metabolism and phosphoinositides in regulating NADPH oxidase activity. In particular, we discuss: 1) the link between metabolic pathways and NOX2 activity regulation through neutrophil activation and the level of released ROS, and 2) the role of membrane phosphoinositides in controlling the duration of NOX2 activity.
Collapse
Affiliation(s)
- Marie-Hélène Paclet
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, T-RAIG, Grenoble, France
| | - Salomé Laurans
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, Orsay, France
| | - Sophie Dupré-Crochet
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, Orsay, France
- *Correspondence: Sophie Dupré-Crochet,
| |
Collapse
|
8
|
Dowling JJ, Müller-Felber W, Smith BK, Bönnemann CG, Kuntz NL, Muntoni F, Servais L, Alfano LN, Beggs AH, Bilder DA, Blaschek A, Duong T, Graham RJ, Jain M, Lawlor MW, Lee J, Coats J, Lilien C, Lowes LP, MacBean V, Neuhaus S, Noursalehi M, Pitts T, Finlay C, Christensen S, Rafferty G, Seferian AM, Tsuchiya E, James ES, Miller W, Sepulveda B, Vila MC, Prasad S, Rico S, Shieh PB. INCEPTUS Natural History, Run-in Study for Gene Replacement Clinical Trial in X-Linked Myotubular Myopathy. J Neuromuscul Dis 2022; 9:503-516. [PMID: 35694931 PMCID: PMC9398079 DOI: 10.3233/jnd-210781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND X-linked myotubular myopathy (XLMTM) is a life-threatening congenital myopathy that, in most cases, is characterized by profound muscle weakness, respiratory failure, need for mechanical ventilation and gastrostomy feeding, and early death. OBJECTIVE We aimed to characterize the neuromuscular, respiratory, and extramuscular burden of XLMTM in a prospective, longitudinal study. METHODS Thirty-four participants < 4 years old with XLMTM and receiving ventilator support enrolled in INCEPTUS, a prospective, multicenter, non-interventional study. Disease-related adverse events, respiratory and motor function, feeding, secretions, and quality of life were assessed. RESULTS During median (range) follow-up of 13.0 (0.5, 32.9) months, there were 3 deaths (aspiration pneumonia; cardiopulmonary failure; hepatic hemorrhage with peliosis) and 61 serious disease-related events in 20 (59%) participants, mostly respiratory (52 events, 18 participants). Most participants (80%) required permanent invasive ventilation (>16 hours/day); 20% required non-invasive support (6-16 hours/day). Median age at tracheostomy was 3.5 months (95% CI: 2.5, 9.0). Thirty-three participants (97%) required gastrostomy. Thirty-one (91%) participants had histories of hepatic disease and/or prospectively experienced related adverse events or laboratory or imaging abnormalities. CHOP INTEND scores ranged from 19-52 (mean: 35.1). Seven participants (21%) could sit unsupported for≥30 seconds (one later lost this ability); none could pull to stand or walk with or without support. These parameters remained static over time across the INCEPTUS cohort. CONCLUSIONS INCEPTUS confirmed high medical impact, static respiratory, motor and feeding difficulties, and early death in boys with XLMTM. Hepatobiliary disease was identified as an under-recognized comorbidity. There are currently no approved disease-modifying treatments.
Collapse
Affiliation(s)
| | | | | | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Nancy L Kuntz
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Francesco Muntoni
- National Institute for Health Research (NIHR) Great Ormond Street (GOS) Hospital Biomedical Research Centre, University College London Institute of Child Health, London, UK
| | - Laurent Servais
- I-Motion, Hôpital Armand Trousseau, Paris, France.,Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
| | | | - Alan H Beggs
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Astrid Blaschek
- Dr. v. Haunersches Kinderspital, Klinikum der Universität München, Munich, Germany
| | | | - Robert J Graham
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Minal Jain
- NIH Hatfield Clinical Research Center, Bethesda, MD, USA
| | | | - Jun Lee
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Julie Coats
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA
| | | | | | - Victoria MacBean
- Brunel University London, London, UK and King's College 32 London, London, UK
| | - Sarah Neuhaus
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Mojtaba Noursalehi
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | | | - Caroline Finlay
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA.,University of Louisville, Louisville, KY, USA
| | - Sarah Christensen
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA.,University of Louisville, Louisville, KY, USA
| | | | | | | | - Emma S James
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA.,University of Louisville, Louisville, KY, USA
| | - Weston Miller
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA
| | - Bryan Sepulveda
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Maria Candida Vila
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Suyash Prasad
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Salvador Rico
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | | | | |
Collapse
|
9
|
Molera C, Sarishvili T, Nascimento A, Rtskhiladze I, Muñoz Bartolo G, Fernández Cebrián S, Valverde Fernández J, Muñoz Cabello B, Graham RJ, Miller W, Sepulveda B, Kamath BM, Meng H, Lawlor MW. Intrahepatic Cholestasis Is a Clinically Significant Feature Associated with Natural History of X-Linked Myotubular Myopathy (XLMTM): A Case Series and Biopsy Report. J Neuromuscul Dis 2022; 9:73-82. [PMID: 34366366 DOI: 10.3233/jnd-217012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital myopathy characterized by profound skeletal muscle weakness, respiratory distress, and motor dysfunction. However, pathology is not limited to muscle and can be associated with life-threatening hepatic peliosis. Hepatobiliary disease has been reported in up to 17% of XLMTM patients but has not been extensively characterized. We report on five XLMTM patients who experienced intrahepatic cholestasis in their disease natural history, illustrating the need to further investigate these manifestations. These patients shared presentations that included pruritus, hypertransaminemia, and hyperbilirubinemia with normal gamma-glutamyl transferase, following infection or vaccination. Three patients who had genetic testing showed no evidence of genetic mutations associated with familial cholestasis. In one patient, progression to cirrhotic, decompensated liver disease occurred. Further investigations into the molecular pathomechanism underpinning these clinical observations in XLMTM patients will be important for informing patient care.
Collapse
Affiliation(s)
- Cristina Molera
- Pediatric Gastroenterology, Hepatology and Nutrition Department, Hospital Sant Joan de Déu, Universidad de Barcelona, España
| | | | - Andrés Nascimento
- Unidadde Patología Neuromuscular, Servicio de Neurología Pediátrica, Hospital Sant Joan de Déu, Universidad de Barcelona, CIBERER, España
| | | | - Gema Muñoz Bartolo
- Department of Pediatric Hepatology, Hospital Universitario La Paz, Madrid, España
| | - Santiago Fernández Cebrián
- Sección de Gastroenterología, Hepatología y Nutrición Pediátrica. Departamento de Pediatría. Complexo Hospitalario Universitario de Ourense, España
| | - Justo Valverde Fernández
- Sección de Gastroenterología, Hepatología y Nutrición Pediátrica UGC Pediatría. Hospital Infantil Virgen del Rocio, Sevilla, España
| | | | - Robert J Graham
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Binita M Kamath
- The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Hui Meng
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
10
|
Lawlor MW, Dowling JJ. X-linked myotubular myopathy. Neuromuscul Disord 2021; 31:1004-1012. [PMID: 34736623 DOI: 10.1016/j.nmd.2021.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a severe congenital muscle disease caused by mutation in the MTM1 gene. MTM1 encodes myotubularin (MTM1), an endosomal phosphatase that acts to dephosphorylate key second messenger lipids PI3P and PI3,5P2. XLMTM is clinically characterized by profound muscle weakness and associated with multiple disabilities (including ventilator and wheelchair dependence) and early death in most affected individuals. The disease is classically defined by characteristic changes observed on muscle biopsy, including centrally located nuclei, myofiber hypotrophy, and organelle disorganization. In this review, we highlight the clinical and pathologic features of the disease, present concepts related to disease pathomechanisms, and present recent advances in therapy development.
Collapse
Affiliation(s)
- Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James J Dowling
- Division of Neurology and Program for Genetics and Genome Biology, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Departments of Paediatrics and Molecular Genetics, University of Toronto, Canada.
| |
Collapse
|
11
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
12
|
Markworth R, Bähr M, Burk K. Held Up in Traffic-Defects in the Trafficking Machinery in Charcot-Marie-Tooth Disease. Front Mol Neurosci 2021; 14:695294. [PMID: 34483837 PMCID: PMC8415527 DOI: 10.3389/fnmol.2021.695294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT), also known as motor and sensory neuropathy, describes a clinically and genetically heterogenous group of disorders affecting the peripheral nervous system. CMT typically arises in early adulthood and is manifested by progressive loss of motor and sensory functions; however, the mechanisms leading to the pathogenesis are not fully understood. In this review, we discuss disrupted intracellular transport as a common denominator in the pathogenesis of different CMT subtypes. Intracellular transport via the endosomal system is essential for the delivery of lipids, proteins, and organelles bidirectionally to synapses and the soma. As neurons of the peripheral nervous system are amongst the longest neurons in the human body, they are particularly susceptible to damage of the intracellular transport system, leading to a loss in axonal integrity and neuronal death. Interestingly, defects in intracellular transport, both in neurons and Schwann cells, have been found to provoke disease. This review explains the mechanisms of trafficking and subsequently summarizes and discusses the latest findings on how defects in trafficking lead to CMT. A deeper understanding of intracellular trafficking defects in CMT will expand our understanding of CMT pathogenesis and will provide novel approaches for therapeutic treatments.
Collapse
Affiliation(s)
- Ronja Markworth
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Burk
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
13
|
Molera C, Sarishvili T, Nascimento A, Rtskhiladze I, Muñoz Bartolo G, Fernández Cebrián S, Valverde Fernández J, Muñoz Cabello B, Graham RJ, Miller W, Sepulveda B, Kamath BM, Meng H, Lawlor MW. Intrahepatic Cholestasis Is a Clinically Significant Feature Associated with Natural History of X-Linked Myotubular Myopathy (XLMTM): A Case Series and Biopsy Report. J Neuromuscul Dis 2021; 9:73-82. [PMID: 34366366 PMCID: PMC8842755 DOI: 10.3233/jnd-210712] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital myopathy characterized by profound skeletal muscle weakness, respiratory distress, and motor dysfunction. However, pathology is not limited to muscle and can be associated with life-threatening hepatic peliosis. Hepatobiliary disease has been reported in up to 17% of XLMTM patients but has not been extensively characterized. We report on five XLMTM patients who experienced intrahepatic cholestasis in their disease natural history, illustrating the need to further investigate these manifestations. These patients shared presentations that included pruritus, hypertransaminemia, and hyperbilirubinemia with normal gamma-glutamyl transferase, following infection or vaccination. Three patients who had genetic testing showed no evidence of genetic mutations associated with familial cholestasis. In one patient, progression to cirrhotic, decompensated liver disease occurred. Further investigations into the molecular pathomechanism underpinning these clinical observations in XLMTM patients will be important for informing patient care.
Collapse
Affiliation(s)
- Cristina Molera
- Pediatric Gastroenterology, Hepatology and Nutrition Department, Hospital Sant Joan de Déu, Universidad de Barcelona, España
| | | | - Andrés Nascimento
- Unidadde Patología Neuromuscular, Servicio de Neurología Pediátrica, Hospital Sant Joan de Déu, Universidad de Barcelona, CIBERER, España
| | | | - Gema Muñoz Bartolo
- Department ofPediatric Hepatology, Hospital Universitario La Paz, Madrid, España
| | - Santiago Fernández Cebrián
- Sección de Gastroenterología, Hepatología y Nutrición Pediátrica. Departamento de Pediatría. Complexo Hospitalario Universitario de Ourense, España
| | - Justo Valverde Fernández
- Sección de Gastroenterología, Hepatología y Nutrición Pediátrica UGC Pediatría. Hospital Infantil Virgen del Rocio, Sevilla, España
| | | | - Robert J Graham
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Binita M Kamath
- The Hospital for SickChildren and University of Toronto, Toronto, Canada
| | - Hui Meng
- Department of Pathology and Laboratory Medicineand Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicineand Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
14
|
Rapid removal of phagosomal ferroportin in macrophages contributes to nutritional immunity. Blood Adv 2021; 5:459-474. [PMID: 33496744 DOI: 10.1182/bloodadvances.2020002833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nutrient sequestration is an essential facet of host innate immunity. Macrophages play a critical role in controlling iron availability through expression of the iron transport protein ferroportin (FPN), which extrudes iron from the cytoplasm to the extracellular milieu. During phagocytosis, the limiting phagosomal membrane, which derives from the plasmalemma, can be decorated with FPN and, if functional, will move iron from the cytosol into the phagosome lumen. This serves to feed iron to phagocytosed microbes and would be counterproductive to the many other known host mechanisms working to starve microbes of this essential metal. To understand how FPN is regulated during phagocytosis, we expressed FPN as a green fluorescent protein-fusion protein in macrophages and monitored its localization during uptake of various phagocytic targets, including Staphylococcus aureus, Salmonella enterica serovar Typhimurium, human erythrocytes, and immunoglobulin G opsonized latex beads. We find that FPN is rapidly removed, independently of Vps34 and PI(3)P, from early phagosomes and does not follow recycling pathways that regulate transferrin receptor recycling. Live-cell video microscopy showed that FPN movement on the phagosome is dynamic, with punctate and tubular structures forming before FPN is trafficked back to the plasmalemma. N-ethylmaleimide-sensitive factor, which disrupts soluble NSF attachment protein receptor (SNARE)-mediated membrane fusion and trafficking, prevented FPN removal from the phagosome. Our data support the hypothesis that removal of FPN from the limiting phagosomal membrane will, at the cellular level, ensure that iron cannot be pumped into phagosomes. We propose this as yet another mechanism of host nutritional immunity to subvert microbial growth.
Collapse
|
15
|
Manzéger A, Tagscherer K, Lőrincz P, Szaker H, Lukácsovich T, Pilz P, Kméczik R, Csikós G, Erdélyi M, Sass M, Kovács T, Vellai T, Billes VA. Condition-dependent functional shift of two Drosophila Mtmr lipid phosphatases in autophagy control. Autophagy 2021; 17:4010-4028. [PMID: 33779490 PMCID: PMC8726729 DOI: 10.1080/15548627.2021.1899681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myotubularin (MTM) and myotubularin-related (MTMR) lipid phosphatases catalyze the removal of a phosphate group from certain phosphatidylinositol derivatives. Because some of these substrates are required for macroautophagy/autophagy, during which unwanted cytoplasmic constituents are delivered into lysosomes for degradation, MTM and MTMRs function as important regulators of the autophagic process. Despite its physiological and medical significance, the specific role of individual MTMR paralogs in autophagy control remains largely unexplored. Here we examined two Drosophila MTMRs, EDTP and Mtmr6, the fly orthologs of mammalian MTMR14 and MTMR6 to MTMR8, respectively, and found that these enzymes affect the autophagic process in a complex, condition-dependent way. EDTP inhibited basal autophagy, but did not influence stress-induced autophagy. In contrast, Mtmr6 promoted the process under nutrient-rich settings, but effectively blocked its hyperactivation in response to stress. Thus, Mtmr6 is the first identified MTMR phosphatase with dual, antagonistic roles in the regulation of autophagy, and shows conditional antagonism/synergism with EDTP in modulating autophagic breakdown. These results provide a deeper insight into the adjustment of autophagy. Abbreviations: Atg, autophagy-related; BDSC, Bloomington Drosophila Stock Center; DGRC, Drosophila Genetic Resource Center; EDTP, Egg-derived tyrosine phosphatase; FYVE, zinc finger domain from Fab1 (yeast ortholog of PIKfyve), YOTB, Vac1 (vesicle transport protein) and EEA1 cysteine-rich proteins; LTR, LysoTracker Red; MTM, myotubularin; MTMR, myotubularin-related; PI, phosphatidylinositol; Pi3K59F, Phosphotidylinositol 3 kinase 59F; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns(3,5)P2, phosphatidylinositol-3,5-bisphosphate; PtdIns5P, phosphatidylinositol-5-phosphate; ref(2)P, refractory to sigma P; Syx17, Syntaxin 17; TEM, transmission electron microscopy; UAS, upstream activating sequence; Uvrag, UV-resistance associated gene; VDRC, Vienna Drosophila RNAi Center; Vps34, Vacuolar protein sorting 34.
Collapse
Affiliation(s)
- Anna Manzéger
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Genetics Research Group, Budapest, Hungary
| | - Kinga Tagscherer
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Hungarian Academy of Sciences, Premium Postdoctoral Research Program, Budapest, Hungary
| | - Henrik Szaker
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tamás Lukácsovich
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Petra Pilz
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Regina Kméczik
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - George Csikós
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Miklós Erdélyi
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Miklós Sass
- Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Genetics Research Group, Budapest, Hungary
| | - Viktor A Billes
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Genetics Research Group, Budapest, Hungary
| |
Collapse
|
16
|
Li G, Liu H, Luo ZQ, Qiu J. Modulation of phagosome phosphoinositide dynamics by a Legionella phosphoinositide 3-kinase. EMBO Rep 2021; 22:e51163. [PMID: 33492731 DOI: 10.15252/embr.202051163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The phagosome harboring the bacterial pathogen Legionella pneumophila is known to be enriched with phosphatidylinositol 4-phosphate (PtdIns4P), which is important for anchoring a subset of its virulence factors and potentially for signaling events implicated in the biogenesis of the Legionella-containing vacuole (LCV) that supports intracellular bacterial growth. Here we demonstrate that the effector MavQ is a phosphoinositide 3-kinase that specifically catalyzes the conversion of phosphatidylinositol (PtdIns) into PtdIns3P. The product of MavQ is subsequently phosphorylated by the effector LepB to yield PtdIns(3,4)P2, whose 3-phosphate is then removed by another effector SidF to generate PtdIns4P. We also show that MavQ is associated with the LCV and the ∆mavQ mutant displays phenotypes in the anchoring of a PtdIns4P-binding effector similar to those of ∆lepB or ∆sidF mutants. Our results establish a mechanism of de novo PtdIns4P biosynthesis by L. pneumophila via a catalysis axis comprised of MavQ, LepB, and SidF on the surface of its phagosome.
Collapse
Affiliation(s)
- Gen Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
17
|
Sztretye M, Szabó L, Dobrosi N, Fodor J, Szentesi P, Almássy J, Magyar ZÉ, Dienes B, Csernoch L. From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. Int J Mol Sci 2020; 21:ijms21238935. [PMID: 33255644 PMCID: PMC7728138 DOI: 10.3390/ijms21238935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Muscular dystrophies are a group of more than 160 different human neuromuscular disorders characterized by a progressive deterioration of muscle mass and strength. The causes, symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from genetic defects. There are no known cures for congenital myopathies; however, recent advances in gene therapy are promising tools in providing treatment. This review gives an overview of the mouse models used to investigate the most common muscular dystrophies and congenital myopathies with emphasis on their potentials and limitations in respect to human applications.
Collapse
|
18
|
Bertović I, Kurelić R, Milošević I, Bender M, Krauss M, Haucke V, Jurak Begonja A. Vps34 derived phosphatidylinositol 3-monophosphate modulates megakaryocyte maturation and proplatelet production through late endosomes/lysosomes. J Thromb Haemost 2020; 18:1756-1772. [PMID: 32056354 DOI: 10.1111/jth.14764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Development of platelet precursor cells, megakaryocytes (MKs), implies an increase in their size; formation of the elaborate demarcation membrane system (DMS); and extension of branched cytoplasmic structures, proplatelets, that will release platelets. The membrane source(s) for MK expansion and proplatelet formation have remained elusive. OBJECTIVE We hypothesized that traffic of membranes regulated by phosphatidylinositol 3-monophosphate (PI3P) contributes to MK maturation and proplatelet formation. RESULTS In immature MKs, PI3P produced by the lipid kinase Vps34 is confined to perinuclear early endosomes (EE), while in mature MKs PI3P shifts to late endosomes and lysosomes (LE/Lys). PI3P partially colocalized with the plasma membrane marker phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) and with LE/Lys in mature MKs, suggests that PI3P-containing LE/Lys membranes contribute to MK expansion and proplatelet formation. Consistently, we found that sequestration of PI3P, specific pharmacological inhibition of Vps34-mediated PI3P production, or depletion of PI3P by PI3-phosphatase (MTM1)-mediated hydrolysis potently blocked proplatelet formation. Moreover, Vps34 inhibition led to the intracellular accumulation of enlarged LE/Lys, and decreased expression of surface LE/Lys markers. Inhibiting Vps34 at earlier MK stages caused aberrant DMS development. Finally, inhibition of LE/Lys membrane fusion by a dominant negative mutant of the small GTPase Rab7 or pharmacological inhibition of PI3P conversion into PI(3,5)P2 led to enlarged LE/Lys, reduced surface levels of LE/Lys markers, and decreased proplatelet formation. CONCLUSION Our results suggest that PI3P-positive LE/Lys contribute to the membrane growth and proplatelet formation in MKs by their translocation to the cell periphery and fusion with the plasma membrane.
Collapse
Affiliation(s)
- Ivana Bertović
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Roberta Kurelić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ira Milošević
- European Neuroscience Institute (ENI), University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Markus Bender
- Institute of Experimental Biomedicine, University Hospital, and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | |
Collapse
|
19
|
Severe Consequences of SAC3/FIG4 Phosphatase Deficiency to Phosphoinositides in Patients with Charcot-Marie-Tooth Disease Type-4J. Mol Neurobiol 2019; 56:8656-8667. [PMID: 31313076 DOI: 10.1007/s12035-019-01693-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/01/2019] [Indexed: 01/26/2023]
Abstract
Charcot-Marie-Tooth disease type-4J (CMT4J), an autosomal recessively inherited peripheral neuropathy characterized by neuronal degeneration, segmental demyelination, and limb muscle weakness, is caused by compound heterozygous mutations in the SAC3/FIG4 gene, resulting in SAC3/FIG4 protein deficiency. SAC3/FIG4 is a phosphatase that not only turns over PtdIns(3,5)P2 to PtdIns3P but also promotes PtdIns(3,5)P2 synthesis by activating the PIKFYVE kinase that also makes PtdIns5P. Whether CMT4J patients have alterations in PtdIns(3,5)P2, PtdIns5P or in other phosphoinositides (PIs), and if yes, in what direction these changes might be, has never been examined. We performed PI profiling in primary fibroblasts from a cohort of CMT4J patients. Subsequent to myo-[2-3H]inositol cell labeling to equilibrium, steady-state levels of PIs were quantified by HPLC under conditions concurrently detecting PtdIns5P, PtdIns(3,5)P2, and the other PIs. Immunoblotting verified SAC3/FIG4 depletion in CMT4J fibroblasts. Compared to normal human controls (n = 9), both PtdIns(3,5)P2 and PtdIns5P levels were significantly decreased in CMT4J fibroblasts (n = 13) by 36.4 ± 3.6% and 43.1 ± 4.4%, respectively (p < 0.0001). These reductions were independent of patients' gender or disease onset. Although mean values for PtdIns3P in the CMT4J cohort remained unchanged, there were high variations in PtdIns3P among individual patients. Aberrant endolysosomal vacuoles, typically seen under PtdIns(3,5)P2 reduction, were apparent but not in fibroblasts from all patients. The subset of patients without aberrant vacuoles exhibited especially low PtdIns3P levels. Concomitant decreases in PtdIns5P and PtdIns(3,5)P2 and the link between PtdIns3P levels and cellular vacuolization are novel insights shedding further light into the molecular determinants in CMT4J polyneuropathy.
Collapse
|
20
|
Volpatti JR, Al-Maawali A, Smith L, Al-Hashim A, Brill JA, Dowling JJ. The expanding spectrum of neurological disorders of phosphoinositide metabolism. Dis Model Mech 2019; 12:12/8/dmm038174. [PMID: 31413155 PMCID: PMC6737944 DOI: 10.1242/dmm.038174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositides (PIPs) are a ubiquitous group of seven low-abundance phospholipids that play a crucial role in defining localized membrane properties and that regulate myriad cellular processes, including cytoskeletal remodeling, cell signaling cascades, ion channel activity and membrane traffic. PIP homeostasis is tightly regulated by numerous inositol kinases and phosphatases, which phosphorylate and dephosphorylate distinct PIP species. The importance of these phospholipids, and of the enzymes that regulate them, is increasingly being recognized, with the identification of human neurological disorders that are caused by mutations in PIP-modulating enzymes. Genetic disorders of PIP metabolism include forms of epilepsy, neurodegenerative disease, brain malformation syndromes, peripheral neuropathy and congenital myopathy. In this Review, we provide an overview of PIP function and regulation, delineate the disorders associated with mutations in genes that modulate or utilize PIPs, and discuss what is understood about gene function and disease pathogenesis as established through animal models of these diseases. Summary: This Review highlights the intersection between phosphoinositides and the enzymes that regulate their metabolism, which together are crucial regulators of myriad cellular processes and neurological disorders.
Collapse
Affiliation(s)
- Jonathan R Volpatti
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Almundher Al-Maawali
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Lindsay Smith
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aqeela Al-Hashim
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Neuroscience, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Julie A Brill
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James J Dowling
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
21
|
Wang S, Zhao Z, Rodal AA. Higher-order assembly of Sorting Nexin 16 controls tubulation and distribution of neuronal endosomes. J Cell Biol 2019; 218:2600-2618. [PMID: 31253649 PMCID: PMC6683739 DOI: 10.1083/jcb.201811074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/25/2019] [Accepted: 06/05/2019] [Indexed: 01/01/2023] Open
Abstract
Endosomal maturation and distribution, driven by membrane remodeling, are critical for receptor traffic and signaling. Using both in vitro and in vivo approaches, Wang et al. reveal an unexpected coiled-coil–mediated membrane remodeling activity of SNX16 that controls neuronal endosomal tubulation, distribution, and receptor traffic. The activities of neuronal signaling receptors depend heavily on the maturation state of the endosomal compartments in which they reside. However, it remains unclear how the distribution of these compartments within the uniquely complex morphology of neurons is regulated and how this distribution itself affects signaling. Here, we identified mechanisms by which Sorting Nexin 16 (SNX16) controls neuronal endosomal maturation and distribution. We found that higher-order assembly of SNX16 via its coiled-coil (CC) domain drives membrane tubulation in vitro and endosome association in cells. In Drosophila melanogaster motor neurons, activation of Rab5 and CC-dependent self-association of SNX16 lead to its endosomal enrichment, accumulation in Rab5- and Rab7-positive tubulated compartments in the cell body, and concomitant depletion of SNX16-positive endosomes from the synapse. This results in accumulation of synaptic growth–promoting bone morphogenetic protein receptors in the cell body and correlates with increased synaptic growth. Our results indicate that Rab regulation of SNX16 assembly controls the endosomal distribution and signaling activities of receptors in neurons.
Collapse
Affiliation(s)
- ShiYu Wang
- Department of Biology, Brandeis University, Waltham, MA
| | - Zechuan Zhao
- Department of Biology, Brandeis University, Waltham, MA
| | | |
Collapse
|
22
|
Sbrissa D, Naisan G, Ikonomov OC, Shisheva A. Apilimod, a candidate anticancer therapeutic, arrests not only PtdIns(3,5)P2 but also PtdIns5P synthesis by PIKfyve and induces bafilomycin A1-reversible aberrant endomembrane dilation. PLoS One 2018; 13:e0204532. [PMID: 30240452 PMCID: PMC6150535 DOI: 10.1371/journal.pone.0204532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
PIKfyve, an evolutionarily conserved kinase synthesizing PtdIns5P and PtdIns(3,5)P2, is crucial for mammalian cell proliferation and viability. Accordingly, PIKfyve inhibitors are now in clinical trials as anti-cancer drugs. Among those, apilimod is the most promising, yet its potency to inhibit PIKfyve and affect endomembrane homeostasis is only partially characterized. We demonstrate here for the first time that apilimod powerfully inhibited in vitro synthesis of PtdIns5P along with that of PtdIns(3,5)P2. HPLC-based resolution of intracellular phosphoinositides (PIs) revealed that apilimod triggered a marked reduction of both lipids in the context of intact cells. Notably, there was also a profound rise in PtdIns3P resulting from arrested PtdIns3P consumption for PtdIns(3,5)P2 synthesis. As typical for PIKfyve inhibition and the concomitant PtdIns(3,5)P2 reduction, apilimod induced the appearance of dilated endomembrane structures in the form of large translucent cytoplasmic vacuoles. Remarkably, bafilomycin A1 (BafA1) fully reversed the aberrant cell phenotype back to normal and completely precluded the appearance of cytoplasmic vacuoles when added prior to apilimod. Inspection of the PI profiles ruled out restoration of the reduced PtdIns(3,5)P2 pool as a molecular mechanism underlying BafA1 rescue. Rather, we found that BafA1 markedly attenuated the PtdIns3P elevation under PIKfyve inhibition. This was accompanied by profoundly decreased endosomal recruitment of fusogenic EEA1. Together, our data demonstrate that apilimod inhibits not only PtdIns(3,5)P2 but also PtdIns5P synthesis and that the cytoplasmic vacuolization triggered by the inhibitor is precluded or reversed by BafA1 through a mechanism associated, in part, with reduction in both PtdIns3P levels and EEA1 membrane recruitment.
Collapse
Affiliation(s)
- Diego Sbrissa
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ghassan Naisan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ognian C. Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
23
|
Vps34/PI3KC3 deletion in kidney proximal tubules impairs apical trafficking and blocks autophagic flux, causing a Fanconi-like syndrome and renal insufficiency. Sci Rep 2018; 8:14133. [PMID: 30237523 PMCID: PMC6148293 DOI: 10.1038/s41598-018-32389-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
Kidney proximal tubular cells (PTCs) are highly specialized for ultrafiltrate reabsorption and serve as paradigm of apical epithelial differentiation. Vps34/PI3-kinase type III (PI3KC3) regulates endosomal dynamics, macroautophagy and lysosomal function. However, its in vivo role in PTCs has not been evaluated. Conditional deletion of Vps34/PI3KC3 in PTCs by Pax8-Cre resulted in early (P7) PTC dysfunction, manifested by Fanconi-like syndrome, followed by kidney failure (P14) and death. By confocal microscopy, Vps34∆/∆ PTCs showed preserved apico-basal specification (brush border, NHERF-1 versus Na+/K+-ATPase, ankyrin-G) but basal redistribution of late-endosomes/lysosomes (LAMP-1) and mis-localization to lysosomes of apical recycling endocytic receptors (megalin, cubilin) and apical non-recycling solute carriers (NaPi-IIa, SGLT-2). Defective endocytosis was confirmed by Texas-red-ovalbumin tracing and reduced albumin content. Disruption of Rab-11 and perinuclear galectin-3 compartments suggested mechanistic clues for defective receptor recycling and apical biosynthetic trafficking. p62-dependent autophagy was triggered yet abortive (p62 co-localization with LC3 but not LAMP-1) and PTCs became vacuolated. Impaired lysosomal positioning and blocked autophagy are known causes of cell stress. Thus, early trafficking defects show that Vps34 is a key in vivo component of molecular machineries governing apical vesicular trafficking, thus absorptive function in PTCs. Functional defects underline the essential role of Vps34 for PTC homeostasis and kidney survival.
Collapse
|
24
|
A novel cross-talk between CXCR4 and PI4KIIIα in prostate cancer cells. Oncogene 2018; 38:332-344. [PMID: 30111818 PMCID: PMC6336684 DOI: 10.1038/s41388-018-0448-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/03/2018] [Accepted: 07/14/2018] [Indexed: 12/20/2022]
Abstract
Chemokine signaling regulates cell migration and tumor metastasis. CXCL12, a member of the chemokine family, and its receptor, CXCR4, a G protein coupled receptor (GPCR), are key mediators of prostate-cancer (PC) bone metastasis. In PC cells androgens activate CXCR4 gene expression and receptor signaling on lipid rafts, which induces protease expression and cancer cell invasion. To identify novel lipid-raft-associated CXCR4 regulators supporting invasion/metastasis, we performed a SILAC-based quantitative proteomic analysis of lipid-rafts derived from PC3 stable cell lines with overexpression or knockdown of CXCR4. This analysis identified the evolutionarily conserved phosphatidylinositol 4-kinase IIIα (PI4KIIIα), and SAC1 phosphatase that dephosphorylates phosphatidylinositol-4-phosphate as potential candidate CXCR4 regulators. CXCR4 interacted with PI4KIIIα membrane targeting machinery recruiting them to the plasma membrane for PI4P production. Consistent with this interaction, PI4KIIIα was found tightly linked to the CXCR4 induced PC cell invasion. Thus, ablation of PI4KIIIα in CXCR4-expressing PC3 cells reduced cellular invasion in response to a variety of chemokines. Immunofluorescence microscopy in CXCR4 expressing cells revealed localized production of PI4P on the invasive projections. Human tumor studies documented increased PI4KIIIα expression in metastatic tumors vs. the primary tumor counterparts, further supporting the PI4KIIIα role in tumor metastasis. Furthermore, we also identified an unexpected function of PI4KIIIα in GPCR signaling where CXCR4 regulates PI4KIIIα activity and mediate tumor metastasis. Together, our study identifies a novel cross-talk between PI4KIIIα and CXCR4 in promoting tumor metastasis and suggests that PI4KIIIα pharmacological targeting may have therapeutic benefit for advanced prostate cancer patients.
Collapse
|
25
|
Rab11 activity and PtdIns(3)P turnover removes recycling cargo from endosomes. Nat Chem Biol 2018; 14:801-810. [DOI: 10.1038/s41589-018-0086-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
|
26
|
Narayanan P, Hütte M, Kudryasheva G, Taberner FJ, Lechner SG, Rehfeldt F, Gomez-Varela D, Schmidt M. Myotubularin related protein-2 and its phospholipid substrate PIP 2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons. eLife 2018. [PMID: 29521261 PMCID: PMC5898911 DOI: 10.7554/elife.32346] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Piezo2 ion channels are critical determinants of the sense of light touch in vertebrates. Yet, their regulation is only incompletely understood. We recently identified myotubularin related protein-2 (Mtmr2), a phosphoinositide (PI) phosphatase, in the native Piezo2 interactome of murine dorsal root ganglia (DRG). Here, we demonstrate that Mtmr2 attenuates Piezo2-mediated rapidly adapting mechanically activated (RA-MA) currents. Interestingly, heterologous Piezo1 and other known MA current subtypes in DRG appeared largely unaffected by Mtmr2. Experiments with catalytically inactive Mtmr2, pharmacological blockers of PI(3,5)P2 synthesis, and osmotic stress suggest that Mtmr2-dependent Piezo2 inhibition involves depletion of PI(3,5)P2. Further, we identified a PI(3,5)P2 binding region in Piezo2, but not Piezo1, that confers sensitivity to Mtmr2 as indicated by functional analysis of a domain-swapped Piezo2 mutant. Altogether, our results propose local PI(3,5)P2 modulation via Mtmr2 in the vicinity of Piezo2 as a novel mechanism to dynamically control Piezo2-dependent mechanotransduction in peripheral sensory neurons. We often take our sense of touch for granted. Yet, our every-day life greatly depends on the ability to perceive our environment to alert us of danger or to further social interactions, such as mother-child bonding. Our sense of touch relies on the conversion of mechanical stimuli to electrical signals (this is known as mechanotransduction), which then travel to brain to be processed. This task is fulfilled by specific ion channels called Piezo2, which are activated when cells are exposed to pressure and other mechanical forces. These channels can be found in sensory nerves and specialized structures in the skin, where they help to detect physical contact, roughness of surfaces and the position of our body parts. It is still not clear how Piezo2 channels are regulated but previous research by several laboratories suggests that they work in conjunction with other proteins. One of these proteins is the myotubularin related protein-2, or Mtmr2 for short. Now, Narayanan et al. – including some of the researchers involved in the previous research – set out to advance our understanding of the molecular basis of touch and looked more closely at Mtmr2. To test if Mtmr2 played a role in mechanotransduction, Narayanan et al. both increased and reduced the levels of this protein in sensory neurons of mice grown in the laboratory. When Mtmr2 levels were low, the activity of Piezo2 channels increased. However, when the protein levels were high, Piezo2 channels were inhibited. These results suggest that Mtmr2 can control the activity of Piezo2. Further experiments, in which Mtmr2 was genetically modified or sensory neurons were treated with chemicals, revealed that Mtmr2 reduces a specific fatty acid in the membrane of nerve cells, which in turn attenuates the activity of Piezo2. This study identified Mtmr2 and distinct fatty acids in the cell membrane as new components of the complex setup required for the sense of touch. A next step will be to test if these molecules also influence the activity of Piezo2 when the skin has become injured or upon inflammation.
Collapse
Affiliation(s)
- Pratibha Narayanan
- Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| | - Meike Hütte
- Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| | - Galina Kudryasheva
- Third Institute of Physics - Biophysics, University of Goettingen, Goettingen, Germany
| | | | | | - Florian Rehfeldt
- Third Institute of Physics - Biophysics, University of Goettingen, Goettingen, Germany
| | - David Gomez-Varela
- Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| | - Manuela Schmidt
- Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| |
Collapse
|
27
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
28
|
Weidner P, Söhn M, Gutting T, Friedrich T, Gaiser T, Magdeburg J, Kienle P, Ruh H, Hopf C, Behrens HM, Röcken C, Hanoch T, Seger R, Ebert MPA, Burgermeister E. Myotubularin-related protein 7 inhibits insulin signaling in colorectal cancer. Oncotarget 2018; 7:50490-50506. [PMID: 27409167 PMCID: PMC5226598 DOI: 10.18632/oncotarget.10466] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/16/2016] [Indexed: 12/23/2022] Open
Abstract
Phosphoinositide (PIP) phosphatases such as myotubularins (MTMs) inhibit growth factor receptor signaling. However, the function of myotubularin-related protein 7 (MTMR7) in cancer is unknown. We show that MTMR7 protein was down-regulated with increasing tumor grade (G), size (T) and stage (UICC) in patients with colorectal cancer (CRC) (n=1786). The presence of MTMR7 in the stroma correlated with poor prognosis, whereas MTMR7 expression in the tumor was not predictive for patients' survival. Insulin reduced MTMR7 protein levels in human CRC cell lines, and CRC patients with type 2 diabetes mellitus (T2DM) or loss of imprinting (LOI) of insulin-like growth factor 2 (IGF2) had an increased risk for MTMR7 loss. Mechanistically, MTMR7 lowered PIPs and inhibited insulin-mediated AKT-ERK1/2 signaling and proliferation in human CRC cell lines. MTMR7 provides a novel link between growth factor signaling and cancer, and may thus constitute a potential marker or drug target for human CRC.
Collapse
Affiliation(s)
- Philip Weidner
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Michaela Söhn
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Tobias Gutting
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Teresa Friedrich
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Julia Magdeburg
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Peter Kienle
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Hermelindis Ruh
- ABIMAS Research Center, Mannheim University of Applied Sciences, D-68163 Mannheim, Germany
| | - Carsten Hopf
- ABIMAS Research Center, Mannheim University of Applied Sciences, D-68163 Mannheim, Germany
| | | | - Christoph Röcken
- Institute of Pathology, Christian Albrecht University, D-24105 Kiel, Germany
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, I-7610001 Rehovot, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, I-7610001 Rehovot, Israel
| | - Matthias P A Ebert
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| |
Collapse
|
29
|
Robinson DC, Mammel AE, Logan AM, Larson AA, Schmidt EJ, Condon AF, Robinson FL. An In Vitro Model of Charcot-Marie-Tooth Disease Type 4B2 Provides Insight Into the Roles of MTMR13 and MTMR2 in Schwann Cell Myelination. ASN Neuro 2018; 10:1759091418803282. [PMID: 30419760 PMCID: PMC6236487 DOI: 10.1177/1759091418803282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/16/2023] Open
Abstract
Charcot-Marie-Tooth Disorder Type 4B (CMT4B) is a demyelinating peripheral neuropathy caused by mutations in myotubularin-related (MTMR) proteins 2, 13, or 5 (CMT4B1/2/3), which regulate phosphoinositide turnover and endosomal trafficking. Although mouse models of CMT4B2 exist, an in vitro model would make possible pharmacological and reverse genetic experiments needed to clarify the role of MTMR13 in myelination. We have generated such a model using Schwann cell-dorsal root ganglion (SC-DRG) explants from Mtmr13-/- mice. Myelin sheaths in mutant cultures contain outfoldings highly reminiscent of those observed in the nerves of Mtmr13-/- mice and CMT4B2 patients. Mtmr13-/- SC-DRG explants also contain reduced Mtmr2, further supporting a role of Mtmr13 in stabilizing Mtmr2. Elevated PI(3,5)P2 has been implicated as a cause of myelin outfoldings in Mtmr2-/- models. In contrast, the role of elevated PI3P or PI(3,5)P2 in promoting outfoldings in Mtmr13-/- models is unclear. We found that over-expression of MTMR2 in Mtmr13-/- SC-DRGs moderately reduced the prevalence of myelin outfoldings. Thus, a manipulation predicted to lower PI3P and PI(3,5)P2 partially suppressed the phenotype caused by Mtmr13 deficiency. We also explored the relationship between CMT4B2-like myelin outfoldings and kinases that produce PI3P and PI(3,5)P2 by analyzing nerve pathology in mice lacking both Mtmr13 and one of two specific PI 3-kinases. Intriguingly, the loss of vacuolar protein sorting 34 or PI3K-C2β in Mtmr13-/- mice had no impact on the prevalence of myelin outfoldings. In aggregate, our findings suggest that the MTMR13 scaffold protein likely has critical functions other than stabilizing MTMR2 to achieve an adequate level of PI 3-phosphatase activity.
Collapse
Affiliation(s)
- Danielle C. Robinson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Anna E. Mammel
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Cell, Developmental & Cancer Biology Graduate
Program, Oregon Health & Science University, Portland, OR,
USA
| | - Anne M. Logan
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Aubree A. Larson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
| | - Eric J. Schmidt
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
| | - Alec F. Condon
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Neuroscience Graduate Program, Oregon Health &
Science University, Portland, OR, USA
| | - Fred L. Robinson
- Department of Neurology, Jungers Center for
Neurosciences Research, Oregon Health & Science University,
Portland, OR, USA
- Vollum Institute, Oregon Health & Science
University, Portland, OR, USA
| |
Collapse
|
30
|
Wallroth A, Haucke V. Phosphoinositide conversion in endocytosis and the endolysosomal system. J Biol Chem 2017; 293:1526-1535. [PMID: 29282290 DOI: 10.1074/jbc.r117.000629] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositides (PIs) are phospholipids that perform crucial cell functions, ranging from cell migration and signaling to membrane trafficking, by serving as signposts of compartmental membrane identity. Although phosphatidylinositol 4,5-bisphosphate, 3-phosphate, and 3,5-bisphosphate are commonly considered as hallmarks of the plasma membrane, endosomes, and lysosomes, these compartments contain other functionally important PIs. Here, we review the roles of PIs in different compartments of the endolysosomal system in mammalian cells and discuss the mechanisms that spatiotemporally control PI conversion in endocytosis and endolysosomal membrane dynamics during endosome maturation and sorting. As defective PI conversion underlies human genetic diseases, including inherited myopathies, neurological disorders, and cancer, PI-converting enzymes represent potential targets for drug-based therapies.
Collapse
Affiliation(s)
- Alexander Wallroth
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin and
| | - Volker Haucke
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin and .,the Faculty of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
31
|
Naufer A, Hipolito VEB, Ganesan S, Prashar A, Zaremberg V, Botelho RJ, Terebiznik MR. pH of endophagosomes controls association of their membranes with Vps34 and PtdIns(3)P levels. J Cell Biol 2017; 217:329-346. [PMID: 29089378 PMCID: PMC5748975 DOI: 10.1083/jcb.201702179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/03/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
Specific changes in phospholipid content are a hallmark of the membranes of maturing endosomes and phagosomes, but is it unclear how this is controlled. Naufer et al. now show that acidification of the lumen of endosomes and phagosomes triggers dissociation of the Vps34 lipid kinase from these organelles, which terminates PtdIns(3)P synthesis and signaling. Phagocytosis of filamentous bacteria occurs through tubular phagocytic cups (tPCs) and takes many minutes to engulf these filaments into phagosomes. Contravening the canonical phagocytic pathway, tPCs mature by fusing with endosomes. Using this model, we observed the sequential recruitment of early and late endolysosomal markers to the elongating tPCs. Surprisingly, the regulatory early endosomal lipid phosphatidylinositol-3-phosphate (PtdIns(3)P) persists on tPCs as long as their luminal pH remains neutral. Interestingly, by manipulating cellular pH, we determined that PtdIns(3)P behaves similarly in canonical phagosomes as well as endosomes. We found that this is the product of a pH-based mechanism that induces the dissociation of the Vps34 class III phosphatidylinositol-3-kinase from these organelles as they acidify. The detachment of Vps34 stops the production of PtdIns(3)P, allowing for the turnover of this lipid by PIKfyve. Given that PtdIns(3)P-dependent signaling is important for multiple cellular pathways, this mechanism for pH-dependent regulation of Vps34 could be at the center of many PtdIns(3)P-dependent cellular processes.
Collapse
Affiliation(s)
- Amriya Naufer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Canada
| | - Victoria E B Hipolito
- Molecular Science Graduate Program, Ryerson University, Toronto, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | | | - Akriti Prashar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Roberto J Botelho
- Molecular Science Graduate Program, Ryerson University, Toronto, Canada .,Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada .,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Canada
| |
Collapse
|
32
|
Choy CH, Han BK, Botelho RJ. Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box. Bioessays 2017; 39. [PMID: 28977683 DOI: 10.1002/bies.201700121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/31/2017] [Indexed: 12/26/2022]
Abstract
Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.
Collapse
Affiliation(s)
- Christopher H Choy
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| | - Bong-Kwan Han
- The Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Roberto J Botelho
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| |
Collapse
|
33
|
Casanova JE, Winckler B. A new Rab7 effector controls phosphoinositide conversion in endosome maturation. J Cell Biol 2017; 216:2995-2997. [PMID: 28928133 PMCID: PMC5626559 DOI: 10.1083/jcb.201709034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Casanova and Winckler discuss Liu et al.’s recent finding that WDR91 coordinates Rab and phosphoinositide conversion during endosome maturation in neurons. Endosome maturation requires a coordinated change in the Rab GTPase and phosphoinositide composition of the endosomal membrane. In this issue, Liu et al. (2017. J. Cell Biol.https://doi.org/10.1083/jcb.201705151) identify WDR91 as a ubiquitous Rab7 effector that inhibits phosphatidylinositol 3-kinase activity on endosomes and is critical for endosome maturation, viability, and dendrite growth of neurons in vivo.
Collapse
Affiliation(s)
- James E Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| |
Collapse
|
34
|
Jaber N, Mohd-Naim N, Wang Z, DeLeon JL, Kim S, Zhong H, Sheshadri N, Dou Z, Edinger AL, Du G, Braga VMM, Zong WX. Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase-activating protein Armus. J Cell Sci 2016; 129:4424-4435. [PMID: 27793976 DOI: 10.1242/jcs.192260] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/21/2016] [Indexed: 01/03/2023] Open
Abstract
The class III phosphoinositide 3-kinase (PI3K) Vps34 (also known as PIK3C3 in mammals) produces phosphatidylinositol 3-phosphate [PI(3)P] on both early and late endosome membranes to control membrane dynamics. We used Vps34-deficient cells to delineate whether Vps34 has additional roles in endocytic trafficking. In Vps34-/- mouse embryonic fibroblasts (MEFs), transferrin recycling and EEA1 membrane localization were unaffected despite elevated Rab5-GTP levels. Strikingly, a large increase in Rab7-GTP levels, an accumulation of enlarged late endosomes, and decreased EGFR degradation were observed in Vps34-deficient cells. The hyperactivation of Rab7 in Vps34-deficient cells stemmed from the failure to recruit the Rab7 GTPase-activating protein (GAP) Armus (also known as TBC1D2), which binds to PI(3)P, to late endosomes. Protein-lipid overlay and liposome-binding assays reveal that the putative pleckstrin homology (PH) domain in Armus can directly bind to PI(3)P. Elevated Rab7-GTP led to the failure of intraluminal vesicle (ILV) formation and lysosomal maturation. Rab7 silencing and Armus overexpression alleviated the vacuolization seen in Vps34-deficient cells. Taken together, these results demonstrate that Vps34 has a previously unknown role in regulating Rab7 activity and late endosomal trafficking.
Collapse
Affiliation(s)
- Nadia Jaber
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Noor Mohd-Naim
- Molecular Medicine, NHLI, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer L DeLeon
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Seong Kim
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Hua Zhong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway NJ08854, USA
| | - Namratha Sheshadri
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Zhixun Dou
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Vania M M Braga
- Molecular Medicine, NHLI, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA .,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway NJ08854, USA.,Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick NJ08903, USA
| |
Collapse
|
35
|
Nagpal A, Ndamukong I, Hassan A, Avramova Z, Baluška F. Subcellular localizations of Arabidopsis myotubularins MTM1 and MTM2 suggest possible functions in vesicular trafficking between ER and cis-Golgi. JOURNAL OF PLANT PHYSIOLOGY 2016; 200:45-52. [PMID: 27340857 DOI: 10.1016/j.jplph.2016.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
The two Arabidopsis genes AtMTM1 and AtMTM2 encode highly similar phosphoinositide 3-phosphatases from the myotubularin family. Despite the high-level conservation of structure and biochemical activities, their physiological roles have significantly diverged. The nature of a membrane and the concentrations of their membrane-anchored substrates (PtdIns3P or PtdIns3,5P2) and/or products (PtdIns5P and PtdIns) are considered critical for determining the functional specificity of myotubularins. We have performed comprehensive analyses of the subcellular localization of AtMTM1 and AtMTM2 using a variety of specific constructs transiently expressed in Nicotiana benthamiana leaf epidermal cells under the control of 35S promoter. AtMTM1 co-localized preferentially with cis-Golgi membranes, while AtMTM2 associated predominantly with ER membranes. In a stark contrast with animal/human MTMs, neither AtMTM1 nor AtMTM2 co-localizes with early or late endosomes or with TGN/EE compartments, making them unlikely participants in the endosomal trafficking system. Localization of the AtMTM2 is sensitive to cold and osmotic stress challenges. In contrast to animal myotubularins, Arabidopsis myotubularins do not associate with endosomes. Our results suggest that Arabidopsis myotubularins play a role in the vesicular trafficking between ER exit sites and cis-Golgi elements. The significance of these results is discussed also in the context of stress biology and plant autophagy.
Collapse
Affiliation(s)
| | - Ivan Ndamukong
- School of Biological Sciences, UNL, Lincoln NE, 68588, United States
| | - Ammar Hassan
- IZMB, University of Bonn, Kirschalle 1, 53115 Bonn, Germany
| | - Zoya Avramova
- School of Biological Sciences, UNL, Lincoln NE, 68588, United States.
| | | |
Collapse
|
36
|
Marat AL, Haucke V. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic. EMBO J 2016; 35:561-79. [PMID: 26888746 DOI: 10.15252/embj.201593564] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network.
Collapse
Affiliation(s)
- Andrea L Marat
- Leibniz Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
37
|
Liu K, Jian Y, Sun X, Yang C, Gao Z, Zhang Z, Liu X, Li Y, Xu J, Jing Y, Mitani S, He S, Yang C. Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion. J Cell Biol 2016; 212:181-98. [PMID: 26783301 PMCID: PMC4738380 DOI: 10.1083/jcb.201506081] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Phosphatidylinositol 3-phosphate (PtdIns3P) plays a central role in endosome fusion, recycling, sorting, and early-to-late endosome conversion, but the mechanisms that determine how the correct endosomal PtdIns3P level is achieved remain largely elusive. Here we identify two new factors, SORF-1 and SORF-2, as essential PtdIns3P regulators in Caenorhabditis elegans. Loss of sorf-1 or sorf-2 leads to greatly elevated endosomal PtdIns3P, which drives excessive fusion of early endosomes. sorf-1 and sorf-2 function coordinately with Rab switching genes to inhibit synthesis of PtdIns3P, allowing its turnover for endosome conversion. SORF-1 and SORF-2 act in a complex with BEC-1/Beclin1, and their loss causes elevated activity of the phosphatidylinositol 3-kinase (PI3K) complex. In mammalian cells, inactivation of WDR91 and WDR81, the homologs of SORF-1 and SORF-2, induces Beclin1-dependent enlargement of PtdIns3P-enriched endosomes and defective degradation of epidermal growth factor receptor. WDR91 and WDR81 interact with Beclin1 and inhibit PI3K complex activity. These findings reveal a conserved mechanism that controls appropriate PtdIns3P levels in early-to-late endosome conversion.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Beijing 100101, China Graduate University of Chinese Academy of Sciences, Beijing 100109, China
| | - Youli Jian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Beijing 100101, China
| | - Xiaojuan Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Beijing 100101, China
| | - Chengkui Yang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Zhiyang Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Beijing 100101, China
| | - Zhili Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Xuezhao Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Beijing 100101, China Graduate University of Chinese Academy of Sciences, Beijing 100109, China
| | - Yang Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Beijing 100101, China
| | - Jing Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Beijing 100101, China
| | - Yudong Jing
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Beijing 100101, China
| | - Shohei Mitani
- Department of Physiology, School of Medicine and Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Sudan He
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Beijing 100101, China
| |
Collapse
|
38
|
Ketel K, Krauss M, Nicot AS, Puchkov D, Wieffer M, Müller R, Subramanian D, Schultz C, Laporte J, Haucke V. A phosphoinositide conversion mechanism for exit from endosomes. Nature 2016; 529:408-12. [DOI: 10.1038/nature16516] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022]
|
39
|
Dysregulation of ErbB Receptor Trafficking and Signaling in Demyelinating Charcot-Marie-Tooth Disease. Mol Neurobiol 2016; 54:87-100. [PMID: 26732592 DOI: 10.1007/s12035-015-9668-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy with the majority of cases involving demyelination of peripheral nerves. The pathogenic mechanisms of demyelinating CMT remain unclear, and no effective therapy currently exists for this disease. The discovery that mutations in different genes can cause a similar phenotype of demyelinating peripheral neuropathy raises the possibility that there may be convergent mechanisms leading to demyelinating CMT pathogenesis. Increasing evidence indicates that ErbB receptor-mediated signaling plays a major role in the control of Schwann cell-axon communication and myelination in the peripheral nervous system. Recent studies reveal that several demyelinating CMT-linked proteins are novel regulators of endocytic trafficking and/or phosphoinositide metabolism that may affect ErbB receptor signaling. Emerging data have begun to suggest that dysregulation of ErbB receptor trafficking and signaling in Schwann cells may represent a common pathogenic mechanism in multiple subtypes of demyelinating CMT. In this review, we focus on the roles of ErbB receptor trafficking and signaling in regulation of peripheral nerve myelination and discuss the emerging evidence supporting the potential involvement of altered ErbB receptor trafficking and signaling in demyelinating CMT pathogenesis and the possibility of modulating these trafficking and signaling processes for treating demyelinating peripheral neuropathy.
Collapse
|
40
|
Morris DH, Yip CK, Shi Y, Chait BT, Wang QJ. BECLIN 1-VPS34 COMPLEX ARCHITECTURE: UNDERSTANDING THE NUTS AND BOLTS OF THERAPEUTIC TARGETS. ACTA ACUST UNITED AC 2015; 10:398-426. [PMID: 26692106 DOI: 10.1007/s11515-015-1374-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autophagy is an important lysosomal degradation pathway that aids in the maintenance of cellular homeostasis by breaking down and recycling intracellular contents. Dysregulation of autophagy is linked to a growing number of human diseases. The Beclin 1-Vps34 protein-protein interaction network is critical for autophagy regulation and is therefore essential to cellular integrity. Manipulation of autophagy, in particular via modulation of the action of the Beclin 1-Vps34 complexes, is considered a promising route to combat autophagy-related diseases. Here we summarize recent findings on the core components and structural architecture of the Beclin 1-Vps34 complexes, and how these findings provide valuable insights into the molecular mechanisms that underlie the multiple functions of these complexes and for devising therapeutic strategies.
Collapse
Affiliation(s)
- Deanna H Morris
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada V6T1Z3
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065
| | - Qing Jun Wang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536 ; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA ; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
41
|
Rudge SA, Wakelam MJO. Phosphatidylinositolphosphate phosphatase activities and cancer. J Lipid Res 2015; 57:176-92. [PMID: 26302980 DOI: 10.1194/jlr.r059154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
Signaling through the phosphoinositide 3-kinase pathways mediates the actions of a plethora of hormones, growth factors, cytokines, and neurotransmitters upon their target cells following receptor occupation. Overactivation of these pathways has been implicated in a number of pathologies, in particular a range of malignancies. The tight regulation of signaling pathways necessitates the involvement of both stimulatory and terminating enzymes; inappropriate activation of a pathway can thus result from activation or inhibition of the two signaling arms. The focus of this review is to discuss, in detail, the activities of the identified families of phosphoinositide phosphatase expressed in humans, and how they regulate the levels of phosphoinositides implicated in promoting malignancy.
Collapse
Affiliation(s)
- Simon A Rudge
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Michael J O Wakelam
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
42
|
Hong L, Guo Y, BasuRay S, Agola JO, Romero E, Simpson DS, Schroeder CE, Simons P, Waller A, Garcia M, Carter M, Ursu O, Gouveia K, Golden JE, Aubé J, Wandinger-Ness A, Sklar LA. A Pan-GTPase Inhibitor as a Molecular Probe. PLoS One 2015; 10:e0134317. [PMID: 26247207 PMCID: PMC4527730 DOI: 10.1371/journal.pone.0134317] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/09/2015] [Indexed: 12/30/2022] Open
Abstract
Overactive GTPases have often been linked to human diseases. The available inhibitors are limited and have not progressed far in clinical trials. We report here a first-in-class small molecule pan-GTPase inhibitor discovered from a high throughput screening campaign. The compound CID1067700 inhibits multiple GTPases in biochemical, cellular protein and protein interaction, as well as cellular functional assays. In the biochemical and protein interaction assays, representative GTPases from Rho, Ras, and Rab, the three most generic subfamilies of the GTPases, were probed, while in the functional assays, physiological processes regulated by each of the three subfamilies of the GTPases were examined. The chemical functionalities essential for the activity of the compound were identified through structural derivatization. The compound is validated as a useful molecular probe upon which GTPase-targeting inhibitors with drug potentials might be developed.
Collapse
Affiliation(s)
- Lin Hong
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Yuna Guo
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Soumik BasuRay
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jacob O. Agola
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Elsa Romero
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Denise S. Simpson
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
| | - Chad E. Schroeder
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
| | - Peter Simons
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Anna Waller
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Matthew Garcia
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Mark Carter
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Oleg Ursu
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Kristine Gouveia
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Jennifer E. Golden
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
| | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Larry A. Sklar
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
43
|
Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis. Proc Natl Acad Sci U S A 2015; 112:4636-41. [PMID: 25825728 DOI: 10.1073/pnas.1423456112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Professional phagocytic cells ingest microbial intruders by engulfing them into phagosomes, which subsequently mature into microbicidal phagolysosomes. Phagosome maturation requires sequential fusion of the phagosome with early endosomes, late endosomes, and lysosomes. Although various phosphoinositides (PIPs) have been detected on phagosomes, it remained unclear which PIPs actually govern phagosome maturation. Here, we analyzed the involvement of PIPs in fusion of phagosomes with various endocytic compartments and identified phosphatidylinositol 4-phosphate [PI(4)P], phosphatidylinositol 3-phosphate [PI(3)P], and the lipid kinases that generate these PIPs, as mediators of phagosome-lysosome fusion. Phagosome-early endosome fusion required PI(3)P, yet did not depend on PI(4)P. Thus, PI(3)P regulates phagosome maturation at early and late stages, whereas PI(4)P is selectively required late in the pathway.
Collapse
|
44
|
Hatzihristidis T, Desai N, Hutchins AP, Meng TC, Tremblay ML, Miranda-Saavedra D. A Drosophila-centric view of protein tyrosine phosphatases. FEBS Lett 2015; 589:951-66. [PMID: 25771859 DOI: 10.1016/j.febslet.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/30/2022]
Abstract
Most of our knowledge on protein tyrosine phosphatases (PTPs) is derived from human pathologies and mouse knockout models. These models largely correlate well with human disease phenotypes, but can be ambiguous due to compensatory mechanisms introduced by paralogous genes. Here we present the analysis of the PTP complement of the fruit fly and the complementary view that PTP studies in Drosophila will accelerate our understanding of PTPs in physiological and pathological conditions. With only 44 PTP genes, Drosophila represents a streamlined version of the human complement. Our integrated analysis places the Drosophila PTPs into evolutionary and functional contexts, thereby providing a platform for the exploitation of the fly for PTP research and the transfer of knowledge onto other model systems.
Collapse
Affiliation(s)
- Teri Hatzihristidis
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nikita Desai
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hutchins
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tzu-Ching Meng
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Diego Miranda-Saavedra
- World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan; Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, 28049 Madrid, Spain; IE Business School, IE University, María de Molina 31 bis, 28006 Madrid, Spain.
| |
Collapse
|
45
|
Ben-Chetrit N, Chetrit D, Russell R, Körner C, Mancini M, Abdul-Hai A, Itkin T, Carvalho S, Cohen-Dvashi H, Koestler WJ, Shukla K, Lindzen M, Kedmi M, Lauriola M, Shulman Z, Barr H, Seger D, Ferraro DA, Pareja F, Gil-Henn H, Lapidot T, Alon R, Milanezi F, Symons M, Ben-Hamo R, Efroni S, Schmitt F, Wiemann S, Caldas C, Ehrlich M, Yarden Y. Synaptojanin 2 is a druggable mediator of metastasis and the gene is overexpressed and amplified in breast cancer. Sci Signal 2015; 8:ra7. [PMID: 25605973 DOI: 10.1126/scisignal.2005537] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amplified HER2, which encodes a member of the epidermal growth factor receptor (EGFR) family, is a target of effective therapies against breast cancer. In search for similarly targetable genomic aberrations, we identified copy number gains in SYNJ2, which encodes the 5'-inositol lipid phosphatase synaptojanin 2, as well as overexpression in a small fraction of human breast tumors. Copy gain and overexpression correlated with shorter patient survival and a low abundance of the tumor suppressor microRNA miR-31. SYNJ2 promoted cell migration and invasion in culture and lung metastasis of breast tumor xenografts in mice. Knocking down SYNJ2 impaired the endocytic recycling of EGFR and the formation of cellular lamellipodia and invadopodia. Screening compound libraries identified SYNJ2-specific inhibitors that prevented cell migration but did not affect the related neural protein SYNJ1, suggesting that SYNJ2 is a potentially druggable target to block cancer cell migration.
Collapse
Affiliation(s)
- Nir Ben-Chetrit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Chetrit
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roslin Russell
- Department of Oncology and Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Maicol Mancini
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Tomer Itkin
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Silvia Carvalho
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Cohen-Dvashi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Wolfgang J Koestler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kirti Shukla
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merav Kedmi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mattia Lauriola
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Haim Barr
- INCPM, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dalia Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniela A Ferraro
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fresia Pareja
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hava Gil-Henn
- Faculty of Medicine, Bar-Ilan University, Safed 13115, Israel
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Marc Symons
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Rotem Ben-Hamo
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan 52900, Israel
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan 52900, Israel
| | | | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
46
|
Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015; 15:7-24. [PMID: 25533673 PMCID: PMC4384662 DOI: 10.1038/nrc3860] [Citation(s) in RCA: 1007] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are crucial coordinators of intracellular signalling in response to extracellular stimuli. Hyperactivation of PI3K signalling cascades is one of the most common events in human cancers. In this Review, we discuss recent advances in our knowledge of the roles of specific PI3K isoforms in normal and oncogenic signalling, the different ways in which PI3K can be upregulated, and the current state and future potential of targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Lauren M. Thorpe
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Haluk Yuzugullu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Correspondence to J.J.Z. by
| |
Collapse
|
47
|
Rodríguez EG, Lefebvre R, Bodnár D, Legrand C, Szentesi P, Vincze J, Poulard K, Bertrand-Michel J, Csernoch L, Buj-Bello A, Jacquemond V. Phosphoinositide substrates of myotubularin affect voltage-activated Ca²⁺ release in skeletal muscle. Pflugers Arch 2014; 466:973-85. [PMID: 24022704 DOI: 10.1007/s00424-013-1346-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 12/19/2022]
Abstract
Skeletal muscle excitation–contraction (E–C) coupling is altered in several models of phosphatidylinositol phosphate (PtdInsP) phosphatase deficiency and ryanodine receptor activity measured in vitro was reported to be affected by certain PtdInsPs, thus prompting investigation of the physiological role of PtdInsPs in E–C coupling. We measured intracellular Ca2+ transients in voltage-clamped mouse muscle fibres microinjected with a solution containing a PtdInsP substrate (PtdIns(3,5)P2 or PtdIns(3)P) or product (PtdIns(5)P or PtdIns) of the myotubularin phosphatase MTM1. No significant change was observed in the presence of either PtdIns(5)P or PtdIns but peak SR Ca2+ release was depressed by ~30% and 50% in fibres injected with PtdIns(3,5)P2 and PtdIns(3)P, respectively, with no concurrent alteration in the membrane current signals associated with the DHPR function as well as in the voltage dependence of Ca2+ release inactivation. In permeabilized muscle fibres, the frequency of spontaneous Ca2+ release events was depressed in the presence of the three tested phosphorylated forms of PtdInsP with PtdIns(3,5)P2 being the most effective, leading to an almost complete disappearance of Ca2+ release events. Results support the possibility that pathological accumulation of MTM1 substrates may acutely depress ryanodine receptor-mediated Ca2+ release. Overexpression of a mCherry-tagged form of MTM1 in muscle fibres revealed a striated pattern consistent with the triadic area. Ca2+ release remained although unaffected by MTM1 overexpression and was also unaffected by the PtdIns-3-kinase inhibitor LY2940002, suggesting that the 3-phosphorylated PtdIns lipids active on voltage-activated Ca2+ release are inherently maintained at a low level, inefficient on Ca2+ release in normal conditions.
Collapse
|
48
|
Waugh MG. Chromosomal Instability and Phosphoinositide Pathway Gene Signatures in Glioblastoma Multiforme. Mol Neurobiol 2014; 53:621-630. [PMID: 25502460 PMCID: PMC4703635 DOI: 10.1007/s12035-014-9034-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/30/2014] [Indexed: 12/29/2022]
Abstract
Structural rearrangements of chromosome 10 are frequently observed in glioblastoma multiforme and over 80 % of tumour samples archived in the catalogue of somatic mutations in cancer database had gene copy number loss for PI4K2A which encodes phosphatidylinositol 4-kinase type IIalpha. PI4K2A loss of heterozygosity mirrored that of PTEN, another enzyme that regulates phosphoinositide levels and also PIK3AP1, MINPP1, INPP5A and INPP5F. These results indicated a reduction in copy number for a set of phosphoinositide signalling genes that co-localise to chromosome 10q. This analysis was extended to a panel of phosphoinositide pathway genes on other chromosomes and revealed a number of previously unreported associations with glioblastoma multiforme. Of particular note were highly penetrant copy number losses for a group of X-linked phosphoinositide phosphatase genes OCRL, MTM1 and MTMR8; copy number amplifications for the chromosome 19 genes PIP5K1C, AKT2 and PIK3R2, and also for the phospholipase C genes PLCB1, PLCB4 and PLCG1 on chromosome 20. These mutations are likely to affect signalling and trafficking functions dependent on the PI(4,5)P2, PI(3,4,5)P3 and PI(3,5)P2 lipids as well as the inositol phosphates IP3, IP5 and IP6. Analysis of flanking genes with functionally unrelated products indicated that chromosomal instability as opposed to a phosphoinositide-specific process underlay this pattern of copy number variation. This in silico study suggests that in glioblastoma multiforme, karyotypic changes have the potential to cause multiple abnormalities in sets of genes involved in phosphoinositide metabolism and this may be important for understanding drug resistance and phosphoinositide pathway redundancy in the advanced disease state.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
49
|
Shisheva A, Sbrissa D, Ikonomov O. Plentiful PtdIns5P from scanty PtdIns(3,5)P2 or from ample PtdIns? PIKfyve-dependent models: Evidence and speculation (response to: DOI 10.1002/bies.201300012). Bioessays 2014; 37:267-77. [PMID: 25404370 DOI: 10.1002/bies.201400129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recently, we have presented data supporting the notion that PIKfyve not only produces the majority of constitutive phosphatidylinositol 5-phosphate (PtdIns5P) in mammalian cells but that it does so through direct synthesis from PtdIns. Another group, albeit obtaining similar data, suggests an alternative pathway whereby the low-abundance PtdIns(3,5)P2 undergoes hydrolysis by unidentified 3-phosphatases, thereby serving as a precursor for most of PtdIns5P. Here, we review the experimental evidence supporting constitutive synthesis of PtdIns5P from PtdIns by PIKfyve. We further emphasize that the experiments presented in support of the alternative pathway are also compatible with a direct mechanism for PIKfyve-catalyzed synthesis of PtdIns5P. While agreeing with the authors that constitutive PtdIns5P could theoretically be produced from PtdIns(3,5)P2 by 3-dephosphorylation, we argue that until direct evidence for such an alternative pathway is obtained, we should adhere to the existing experimental evidence and quantitative considerations, which favor direct PIKfyve-catalyzed synthesis for most constitutive PtdIns5P.
Collapse
Affiliation(s)
- Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | |
Collapse
|
50
|
Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 2014; 6:a022616. [PMID: 25341920 DOI: 10.1101/cshperspect.a022616] [Citation(s) in RCA: 424] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Of the approximately 70 human Rab GTPases, nearly three-quarters are involved in endocytic trafficking. Significant plasticity in endosomal membrane transport pathways is closely coupled to receptor signaling and Rab GTPase-regulated scaffolds. Here we review current literature pertaining to endocytic Rab GTPase localizations, functions, and coordination with regulatory proteins and effectors. The roles of Rab GTPases in (1) compartmentalization of the endocytic pathway into early, recycling, late, and lysosomal routes; (2) coordination of individual transport steps from vesicle budding to fusion; (3) effector interactomes; and (4) integration of GTPase and signaling cascades are discussed.
Collapse
Affiliation(s)
- Angela Wandinger-Ness
- Department of Pathology MSC08 4640, University of New Mexico HSC, Albuquerque, New Mexico 87131
| | - Marino Zerial
- Max Planck Institute of Molecular and Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|