1
|
Kazansky Y, Cameron D, Mueller HS, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Kuwahara Y, Somwar R, Ladanyi M, Qu R, de Stanchina E, Dela Cruz FS, Kung AL, Gounder MM, Kentsis A. Overcoming Clinical Resistance to EZH2 Inhibition Using Rational Epigenetic Combination Therapy. Cancer Discov 2024; 14:965-981. [PMID: 38315003 PMCID: PMC11147720 DOI: 10.1158/2159-8290.cd-23-0110] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
Epigenetic dependencies have become evident in many cancers. On the basis of antagonism between BAF/SWI-SNF and PRC2 in SMARCB1-deficient sarcomas, we recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics and diverse experimental models, we define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient tumors. We found distinct acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell-cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest, suggests a general mechanism for effective therapy, and provides prospective biomarkers for therapy stratification, including PRICKLE1. On the basis of this, we develop a combination strategy to circumvent tazemetostat resistance using bypass targeting of AURKB. This offers a paradigm for rational epigenetic combination therapy suitable for translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers. SIGNIFICANCE Genomic studies of patient epithelioid sarcomas and rhabdoid tumors identify mutations converging on a common pathway for response to EZH2 inhibition. Resistance mutations decouple drug-induced differentiation from cell-cycle control. We identify an epigenetic combination strategy to overcome resistance and improve durability of response, supporting its investigation in clinical trials. See related commentary by Paolini and Souroullas, p. 903. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Yaniv Kazansky
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen S. Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
2
|
Yang G, Lin Y, Sun X, Cheng D, Li H, Hu S, Chen M, Wang Y, Wang Y. Preclinical Evaluation of JAB-2485, a Potent AURKA Inhibitor with High Selectivity and Favorable Pharmacokinetic Properties. ACS OMEGA 2024; 9:21416-21425. [PMID: 38764682 PMCID: PMC11097369 DOI: 10.1021/acsomega.4c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
As a critical mitotic regulator, Aurora kinase A (AURKA) is aberrantly activated in a wide range of cancers. Therapeutic targeting of AUKRA is a promising strategy for the treatment of solid tumors. In this study, we evaluated the preclinical characteristics of JAB-2485, a small-molecule inhibitor of AURKA currently in Phase I/IIa clinical trial in the US (NCT05490472). Biochemical studies demonstrated that JAB-2485 is potent and highly selective on AURKA, with subnanomolar IC50 and around 1500-fold selectivity over AURKB or AURKC. In addition, JAB-2485 exhibited favorable pharmacokinetic properties featured by low clearance and good bioavailability, strong dose-response relationship, as well as low risk for hematotoxicity and off-target liability. As a single agent, JAB-2485 effectively induced G2/M cell cycle arrest and apoptosis and inhibited the proliferation of small cell lung cancer, triple-negative breast cancer, and neuroblastoma cells. Furthermore, JAB-2485 exhibited robust in vivo antitumor activity both as monotherapy and in combination with chemotherapies or the bromodomain inhibitor JAB-8263 in xenograft models of various cancer types. Together, these encouraging preclinical data provide a strong basis for safety and efficacy evaluations of JAB-2485 in the clinical setting.
Collapse
Affiliation(s)
- Guiqun Yang
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Yiwei Lin
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Xin Sun
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Dai Cheng
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Haijun Li
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Shizong Hu
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Mingming Chen
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Yinxiang Wang
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Yanping Wang
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| |
Collapse
|
3
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
4
|
El Baba R, Herbein G. EZH2-Myc Hallmark in Oncovirus/Cytomegalovirus Infections and Cytomegalovirus' Resemblance to Oncoviruses. Cells 2024; 13:541. [PMID: 38534385 DOI: 10.3390/cells13060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Approximately 15-20% of global cancer cases are attributed to virus infections. Oncoviruses employ various molecular strategies to enhance replication and persistence. Human cytomegalovirus (HCMV), acting as an initiator or promoter, enables immune evasion, supporting tumor growth. HCMV activates pro-oncogenic pathways within infected cells and direct cellular transformation. Thus, HCMV demonstrates characteristics reminiscent of oncoviruses. Cumulative evidence emphasizes the crucial roles of EZH2 and Myc in oncogenesis and stemness. EZH2 and Myc, pivotal regulators of cellular processes, gain significance in the context of oncoviruses and HCMV infections. This axis becomes a central focus for comprehending the mechanisms driving virus-induced oncogenesis. Elevated EZH2 expression is evident in various cancers, making it a prospective target for cancer therapy. On the other hand, Myc, deregulated in over 50% of human cancers, serves as a potent transcription factor governing cellular processes and contributing to tumorigenesis; Myc activates EZH2 expression and induces global gene expression. The Myc/EZH2 axis plays a critical role in promoting tumor growth in oncoviruses. Considering that HCMV has been shown to manipulate the Myc/EZH2 axis, there is emerging evidence suggesting that HCMV could be regarded as a potential oncovirus due to its ability to exploit this critical pathway implicated in tumorigenesis.
Collapse
Affiliation(s)
- Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besançon, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besançon, France
- Department of Virology, CHU Besançon, 25030 Besançon, France
| |
Collapse
|
5
|
Zhou M, Tang J, Fan J, Wen X, Shen J, Jia R, Chai P, Fan X. Recent progress in retinoblastoma: Pathogenesis, presentation, diagnosis and management. Asia Pac J Ophthalmol (Phila) 2024; 13:100058. [PMID: 38615905 DOI: 10.1016/j.apjo.2024.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024] Open
Abstract
Retinoblastoma, the primary ocular malignancy in pediatric patients, poses a substantial threat to mortality without prompt and effective management. The prognosis for survival and preservation of visual acuity hinges upon the disease severity at the time of initial diagnosis. Notably, retinoblastoma has played a crucial role in unraveling the genetic foundations of oncogenesis. The process of tumorigenesis commonly begins with the occurrence of biallelic mutation in the RB1 tumor suppressor gene, which is then followed by a cascade of genetic and epigenetic alterations that correspond to the clinical stage and pathological features of the tumor. The RB1 gene, recognized as a tumor suppressor, encodes the retinoblastoma protein, which plays a vital role in governing cellular replication through interactions with E2F transcription factors and chromatin remodeling proteins. The diagnosis and treatment of retinoblastoma necessitate consideration of numerous factors, including disease staging, germline mutation status, family psychosocial factors, and the resources available within the institution. This review has systematically compiled and categorized the latest developments in the diagnosis and treatment of retinoblastoma which enhanced the quality of care for this pediatric malignancy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jieling Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jiayan Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Xuyang Wen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jianfeng Shen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China.
| |
Collapse
|
6
|
Titova E, Shagieva G, Dugina V, Kopnin P. The Role of Aurora B Kinase in Normal and Cancer Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2054-2062. [PMID: 38462449 DOI: 10.1134/s0006297923120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 03/12/2024]
Abstract
Aurora kinases are essential players in mammalian cell division. These kinases are involved in the regulation of spindle dynamics, microtubule-kinetochore interactions, and chromosome condensation and orientation during mitosis. At least three members of the Aurora family - Aurora kinases A, B, and C - have been identified in mammals. Aurora B is essential for maintaining genomic stability and normal cell division. Mutations and dysregulation of this kinase are implicated in tumor initiation and progression. In this review, we discuss the functions of Aurora B, the relationship between increased Aurora B activity and carcinogenesis, and the prospects for the use of Aurora B kinase inhibitors in antitumor therapy.
Collapse
Affiliation(s)
- Ekaterina Titova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Galina Shagieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vera Dugina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Pavel Kopnin
- Institute of Carcinogenesis, Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
7
|
Bertran-Alamillo J, Giménez-Capitán A, Román R, Talbot S, Whiteley R, Floc'h N, Martínez-Pérez E, Martin MJ, Smith PD, Sullivan I, Terp MG, Saeh J, Marino-Buslje C, Fabbri G, Guo G, Xu M, Tornador C, Aguilar-Hernández A, Reguart N, Ditzel HJ, Martínez-Bueno A, Nabau-Moretó N, Gascó A, Rosell R, Pease JE, Polanska UM, Travers J, Urosevic J, Molina-Vila MA. BID expression determines the apoptotic fate of cancer cells after abrogation of the spindle assembly checkpoint by AURKB or TTK inhibitors. Mol Cancer 2023; 22:110. [PMID: 37443114 PMCID: PMC10339641 DOI: 10.1186/s12943-023-01815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Drugs targeting the spindle assembly checkpoint (SAC), such as inhibitors of Aurora kinase B (AURKB) and dual specific protein kinase TTK, are in different stages of clinical development. However, cell response to SAC abrogation is poorly understood and there are no markers for patient selection. METHODS A panel of 53 tumor cell lines of different origins was used. The effects of drugs were analyzed by MTT and flow cytometry. Copy number status was determined by FISH and Q-PCR; mRNA expression by nCounter and RT-Q-PCR and protein expression by Western blotting. CRISPR-Cas9 technology was used for gene knock-out (KO) and a doxycycline-inducible pTRIPZ vector for ectopic expression. Finally, in vivo experiments were performed by implanting cultured cells or fragments of tumors into immunodeficient mice. RESULTS Tumor cells and patient-derived xenografts (PDXs) sensitive to AURKB and TTK inhibitors consistently showed high expression levels of BH3-interacting domain death agonist (BID), while cell lines and PDXs with low BID were uniformly resistant. Gene silencing rendered BID-overexpressing cells insensitive to SAC abrogation while ectopic BID expression in BID-low cells significantly increased sensitivity. SAC abrogation induced activation of CASP-2, leading to cleavage of CASP-3 and extensive cell death only in presence of high levels of BID. Finally, a prevalence study revealed high BID mRNA in 6% of human solid tumors. CONCLUSIONS The fate of tumor cells after SAC abrogation is driven by an AURKB/ CASP-2 signaling mechanism, regulated by BID levels. Our results pave the way to clinically explore SAC-targeting drugs in tumors with high BID expression.
Collapse
Affiliation(s)
- Jordi Bertran-Alamillo
- Laboratory of Oncology, Pangaea Oncology, Quiron Dexeus University Hospital, C/ Sabino Arana 5-19, 08913, Barcelona, Spain
| | - Ana Giménez-Capitán
- Laboratory of Oncology, Pangaea Oncology, Quiron Dexeus University Hospital, C/ Sabino Arana 5-19, 08913, Barcelona, Spain
| | - Ruth Román
- Laboratory of Oncology, Pangaea Oncology, Quiron Dexeus University Hospital, C/ Sabino Arana 5-19, 08913, Barcelona, Spain
| | - Sara Talbot
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Rebecca Whiteley
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Nicolas Floc'h
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | | | - Matthew J Martin
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Paul D Smith
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Ivana Sullivan
- Servicio de Oncología Médica, Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
- Instituto Oncológico Dr. Rosell, Hospital Universitario Dexeus, Barcelona, 08028, Spain
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, 5000, Denmark
| | - Jamal Saeh
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, 02451, USA
| | | | - Giulia Fabbri
- Translational Medicine, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, 02451, USA
| | - Grace Guo
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, 02451, USA
| | - Man Xu
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, 02451, USA
| | | | | | - Noemí Reguart
- Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, 08036, Spain
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, 5000, Denmark
- Department of Oncology, Odense University Hospital, Odense, 5000, Denmark
| | | | | | - Amaya Gascó
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Rafael Rosell
- Instituto Oncológico Dr. Rosell, Hospital Universitario Dexeus, Barcelona, 08028, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, 08916, Spain
| | - J Elizabeth Pease
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Urszula M Polanska
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Jon Travers
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Jelena Urosevic
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK.
| | - Miguel A Molina-Vila
- Laboratory of Oncology, Pangaea Oncology, Quiron Dexeus University Hospital, C/ Sabino Arana 5-19, 08913, Barcelona, Spain.
| |
Collapse
|
8
|
Kovacs AH, Zhao D, Hou J. Aurora B Inhibitors as Cancer Therapeutics. Molecules 2023; 28:3385. [PMID: 37110619 PMCID: PMC10144992 DOI: 10.3390/molecules28083385] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The Aurora kinases (A, B, and C) are a family of three isoform serine/threonine kinases that regulate mitosis and meiosis. The Chromosomal Passenger Complex (CPC), which contains Aurora B as an enzymatic component, plays a critical role in cell division. Aurora B in the CPC ensures faithful chromosome segregation and promotes the correct biorientation of chromosomes on the mitotic spindle. Aurora B overexpression has been observed in several human cancers and has been associated with a poor prognosis for cancer patients. Targeting Aurora B with inhibitors is a promising therapeutic strategy for cancer treatment. In the past decade, Aurora B inhibitors have been extensively pursued in both academia and industry. This paper presents a comprehensive review of the preclinical and clinical candidates of Aurora B inhibitors as potential anticancer drugs. The recent advances in the field of Aurora B inhibitor development will be highlighted, and the binding interactions between Aurora B and inhibitors based on crystal structures will be presented and discussed to provide insights for the future design of more selective Aurora B inhibitors.
Collapse
Affiliation(s)
- Antal H. Kovacs
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Dong Zhao
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
9
|
Aurora B Kinase Inhibition by AZD1152 Concomitant with Tumor Treating Fields Is Effective in the Treatment of Cultures from Primary and Recurrent Glioblastomas. Int J Mol Sci 2023; 24:ijms24055016. [PMID: 36902447 PMCID: PMC10003311 DOI: 10.3390/ijms24055016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Tumor Treating Fields (TTFields) were incorporated into the treatment of glioblastoma, the most malignant brain tumor, after showing an effect on progression-free and overall survival in a phase III clinical trial. The combination of TTFields and an antimitotic drug might further improve this approach. Here, we tested the combination of TTFields with AZD1152, an Aurora B kinase inhibitor, in primary cultures of newly diagnosed (ndGBM) and recurrent glioblastoma (rGBM). AZD1152 concentration was titrated for each cell line and 5-30 nM were used alone or in addition to TTFields (1.6 V/cm RMS; 200 kHz) applied for 72 h using the inovitro™ system. Cell morphological changes were visualized by conventional and confocal laser microscopy. The cytotoxic effects were determined by cell viability assays. Primary cultures of ndGBM and rGBM varied in p53 mutational status; ploidy; EGFR expression and MGMT-promoter methylation status. Nevertheless; in all primary cultures; a significant cytotoxic effect was found following TTFields treatment alone and in all but one, a significant effect after treatment with AZD1152 alone was also observed. Moreover, in all primary cultures the combined treatment had the most pronounced cytotoxic effect in parallel with morphological changes. The combined treatment of TTFields and AZD1152 led to a significant reduction in the number of ndGBM and rGBM cells compared to each treatment alone. Further evaluation of this approach, which has to be considered as a proof of concept, is warranted, before entering into early clinical trials.
Collapse
|
10
|
Sung K, Kurowski A, Lansiquot C, Wan KK, Patnaik S, Walsh MJ, Lazarus MB. Selective Inhibitors of Autophagy Reveal New Link between the Cell Cycle and Autophagy and Lead to Discovery of Novel Synergistic Drug Combinations. ACS Chem Biol 2022; 17:3290-3297. [PMID: 36469692 PMCID: PMC9879295 DOI: 10.1021/acschembio.2c00710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a conserved metabolic pathway that is central to many diseases. Recently, there has been a lot of interest in targeting autophagy with small molecule inhibitors as a possible therapeutic strategy. However, many of the compounds used for autophagy are nonselective. Here, we explored the inhibition of autophagy in pancreatic cancer cells using established selective small molecule inhibitors and discovered an unexpected link between the autophagy pathway and progression through the cell cycle. Our findings revealed that treatments with inhibitors that have different autophagy pathway targets block cell replication and activate other metabolic pathways to compensate for the blockade in autophagy. An unbiased screen looking for known drugs that might synergize with autophagy inhibition revealed new combination treatments that might provide a blueprint for therapeutic approaches to pancreatic cancer. The drugs quizartinib and THZ1 showed a strong synergistic effect in pancreatic cells with autophagy inhibition.
Collapse
Affiliation(s)
- Kisa Sung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Agata Kurowski
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Carisse Lansiquot
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Kanny K. Wan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Martin J. Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Michael B. Lazarus
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA,Correspondence to:
| |
Collapse
|
11
|
The Effect of Circumscribed Exposure to the Pan-Aurora Kinase Inhibitor VX-680 on Proliferating Euploid Cells. Int J Mol Sci 2022; 23:ijms232012104. [PMID: 36292957 PMCID: PMC9603438 DOI: 10.3390/ijms232012104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
Small molecule inhibitors of aurora kinases are currently being investigated in oncology clinical trials. The long-term effects of these inhibitors on proliferating euploid cells have not been adequately studied. We examined the effect of the reversible pan-aurora kinase inhibitor VX-680 on p53-competent human euploid cells. Circumscribed treatment with VX-680 blocked cytokinesis and arrested cells in G1 or a G1-like status. Approximately 70% of proliferatively arrested cells had 4N DNA content and abnormal nuclei. The remaining 30% of cells possessed 2N DNA content and normal nuclei. The proliferative arrest was not due to the activation of the tumor suppressor Rb and was instead associated with rapid induction of the p53–p21 pathway and p16. The induction was particularly evident in cells with nuclear abnormalities but was independent of activation of the DNA damage response. All of these effects were correlated with the potent inhibition of aurora kinase B. After release from VX-680, the cells with normal nuclei robustly resumed proliferation whereas the cells with abnormal nuclei underwent senescence. Irrespective of their nuclear morphology or DNA content, cells pre-treated with VX-680 failed to grow in soft agar or form tumors in mice. Our findings indicate that an intermittent treatment strategy might minimize the on-target side effects of Aurora Kinase B (AURKB) inhibitory therapies. The strategy allows a significant fraction of dividing normal cells to resume proliferation.
Collapse
|
12
|
Sood P, Lin A, Yan C, McGillivary R, Diaz U, Makushok T, Nadkarni AV, Tang SKY, Marshall WF. Modular, cascade-like transcriptional program of regeneration in Stentor. eLife 2022; 11:e80778. [PMID: 35924891 PMCID: PMC9371601 DOI: 10.7554/elife.80778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
The giant ciliate Stentor coeruleus is a classical model system for studying regeneration and morphogenesis in a single cell. The anterior of the cell is marked by an array of cilia, known as the oral apparatus, which can be induced to shed and regenerate in a series of reproducible morphological steps, previously shown to require transcription. If a cell is cut in half, each half regenerates an intact cell. We used RNA sequencing (RNAseq) to assay the dynamic changes in Stentor's transcriptome during regeneration, after both oral apparatus shedding and bisection, allowing us to identify distinct temporal waves of gene expression including kinases, RNA -binding proteins, centriole biogenesis factors, and orthologs of human ciliopathy genes. By comparing transcriptional profiles of different regeneration events, we identified distinct modules of gene expression corresponding to oral apparatus regeneration, posterior holdfast regeneration, and recovery after wounding. By measuring gene expression after blocking translation, we show that the sequential waves of gene expression involve a cascade mechanism in which later waves of expression are triggered by translation products of early-expressed genes. Among the early-expressed genes, we identified an E2F transcription factor and the RNA-binding protein Pumilio as potential regulators of regeneration based on the expression pattern of their predicted target genes. RNAi-mediated knockdown experiments indicate that Pumilio is required for regenerating oral structures of the correct size. E2F is involved in the completion of regeneration but is dispensable for earlier steps. This work allows us to classify regeneration genes into groups based on their potential role for regeneration in distinct cell regeneration paradigms, and provides insight into how a single cell can coordinate complex morphogenetic pathways to regenerate missing structures.
Collapse
Affiliation(s)
- Pranidhi Sood
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Athena Lin
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Connie Yan
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Rebecca McGillivary
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Ulises Diaz
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Tatyana Makushok
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Ambika V Nadkarni
- Department of Mechanical Engineering, Stanford UniversityPalo AltoUnited States
| | - Sindy KY Tang
- Department of Mechanical Engineering, Stanford UniversityPalo AltoUnited States
| | - Wallace F Marshall
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
13
|
Furqan M, Fayyaz A, Firdous F, Raza H, Bilal A, Saleem RSZ, Shahzad-Ul-Hussan S, Wang D, Youssef FS, Al Musayeib NM, Ashour ML, Hussain H, Faisal A. Identification and Characterization of Natural and Semisynthetic Quinones as Aurora Kinase Inhibitors. JOURNAL OF NATURAL PRODUCTS 2022; 85:1503-1513. [PMID: 35687347 DOI: 10.1021/acs.jnatprod.1c01222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aurora kinases (Aurora A, B, and C) are a family of serine/threonine kinases that play critical roles during mitotic initiation and progression. Aurora A and B kinases are ubiquitously expressed, and their overexpression and/or amplification in many cancers have been associated with poor prognosis. Several inhibitors that target Aurora kinases A, B, or both have been developed during the past decade with efficacy in different in vitro and in vivo models for a variety of cancers. Recent studies have also identified Aurora A as a synthetic lethal target for different tumor suppressors, including RB1, SMARCA4, and ARID1A, which signifies the need for Aurora-A-selective inhibitors. Here, we report the screening of a small library of quinones (nine naphthoquinones, one orthoquinone, and one anthraquinone) in a biochemical assay for Aurora A kinase that resulted in the identification of several quinones as inhibitors. IC50 determination against Aurora A and B kinases revealed the inhibition of both kinases with selectivity toward Aurora A. Two of the compounds, natural quinone naphthazarin (1) and a pseudo anthraquinone, 2-(chloromethyl)quinizarin (11), potently inhibited the proliferation of various cancer cell lines with IC50 values ranging from 0.16 ± 0.15 to 1.7 ± 0.06 and 0.15 ± 0.04 to 6.3 ± 1.8 μM, respectively. Treatment of cancer cells with these compounds for 24 h resulted in abrogated mitosis and apoptotic cell death. Direct binding of both the compounds with Aurora A kinase was also confirmed through STD NMR analysis. Docking studies predicted the binding of both compounds to the ATP binding pocket of Aurora A kinase. We have, therefore, identified quinones as Aurora kinase inhibitors that can serve as a lead for future drug discovery endeavors.
Collapse
Affiliation(s)
- Muhammad Furqan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Alishba Fayyaz
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Farhat Firdous
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Hadeeqa Raza
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Aishah Bilal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| | - Nawal M Al Musayeib
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| | - Hidayat Hussain
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| |
Collapse
|
14
|
Zhou L, Ng DSC, Yam JC, Chen LJ, Tham CC, Pang CP, Chu WK. Post-translational modifications on the retinoblastoma protein. J Biomed Sci 2022; 29:33. [PMID: 35650644 PMCID: PMC9161509 DOI: 10.1186/s12929-022-00818-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
The retinoblastoma protein (pRb) functions as a cell cycle regulator controlling G1 to S phase transition and plays critical roles in tumour suppression. It is frequently inactivated in various tumours. The functions of pRb are tightly regulated, where post-translational modifications (PTMs) play crucial roles, including phosphorylation, ubiquitination, SUMOylation, acetylation and methylation. Most PTMs on pRb are reversible and can be detected in non-cancerous cells, playing an important role in cell cycle regulation, cell survival and differentiation. Conversely, altered PTMs on pRb can give rise to anomalies in cell proliferation and tumourigenesis. In this review, we first summarize recent findings pertinent to how individual PTMs impinge on pRb functions. As many of these PTMs on pRb were published as individual articles, we also provide insights on the coordination, either collaborations and/or competitions, of the same or different types of PTMs on pRb. Having a better understanding of how pRb is post-translationally modulated should pave the way for developing novel and specific therapeutic strategies to treat various human diseases.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Danny Siu-Chun Ng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong, China.
| |
Collapse
|
15
|
Flores M, Goodrich DW. Retinoblastoma Protein Paralogs and Tumor Suppression. Front Genet 2022; 13:818719. [PMID: 35368709 PMCID: PMC8971665 DOI: 10.3389/fgene.2022.818719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
The retinoblastoma susceptibility gene (RB1) is the first tumor suppressor gene discovered and a prototype for understanding regulatory networks that function in opposition to oncogenic stimuli. More than 3 decades of research has firmly established a widespread and prominent role for RB1 in human cancer. Yet, this gene encodes but one of three structurally and functionally related proteins that comprise the pocket protein family. A central question in the field is whether the additional genes in this family, RBL1 and RBL2, are important tumor suppressor genes. If so, how does their tumor suppressor activity overlap or differ from RB1. Here we revisit these questions by reviewing relevant data from human cancer genome sequencing studies that have been rapidly accumulating in recent years as well as pertinent functional studies in genetically engineered mice. We conclude that RBL1 and RBL2 do have important tumor suppressor activity in some contexts, but RB1 remains the dominant tumor suppressor in the family. Given their similarities, we speculate on why RB1 tumor suppressor activity is unique.
Collapse
Affiliation(s)
| | - David W. Goodrich
- Roswell Park Comprehensive Cancer Center, Department of Pharmacology and Therapeutics, Buffalo, NY, United States
| |
Collapse
|
16
|
Janostiak R, Torres-Sanchez A, Posas F, de Nadal E. Understanding Retinoblastoma Post-Translational Regulation for the Design of Targeted Cancer Therapies. Cancers (Basel) 2022; 14:cancers14051265. [PMID: 35267571 PMCID: PMC8909233 DOI: 10.3390/cancers14051265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Rb1 is a regulator of cell cycle progression and genomic stability. This review focuses on post-translational modifications, their effect on Rb1 interactors, and their role in intracellular signaling in the context of cancer development. Finally, we highlight potential approaches to harness these post-translational modifications to design novel effective anticancer therapies. Abstract The retinoblastoma protein (Rb1) is a prototypical tumor suppressor protein whose role was described more than 40 years ago. Together with p107 (also known as RBL1) and p130 (also known as RBL2), the Rb1 belongs to a family of structurally and functionally similar proteins that inhibits cell cycle progression. Given the central role of Rb1 in regulating proliferation, its expression or function is altered in most types of cancer. One of the mechanisms underlying Rb-mediated cell cycle inhibition is the binding and repression of E2F transcription factors, and these processes are dependent on Rb1 phosphorylation status. However, recent work shows that Rb1 is a convergent point of many pathways and thus the regulation of its function through post-translational modifications is more complex than initially expected. Moreover, depending on the context, downstream signaling can be both E2F-dependent and -independent. This review seeks to summarize the most recent research on Rb1 function and regulation and discuss potential avenues for the design of novel cancer therapies.
Collapse
Affiliation(s)
- Radoslav Janostiak
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ariadna Torres-Sanchez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| | - Eulàlia de Nadal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| |
Collapse
|
17
|
Record J, Saeed MB, Venit T, Percipalle P, Westerberg LS. Journey to the Center of the Cell: Cytoplasmic and Nuclear Actin in Immune Cell Functions. Front Cell Dev Biol 2021; 9:682294. [PMID: 34422807 PMCID: PMC8375500 DOI: 10.3389/fcell.2021.682294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Actin cytoskeletal dynamics drive cellular shape changes, linking numerous cell functions to physiological and pathological cues. Mutations in actin regulators that are differentially expressed or enriched in immune cells cause severe human diseases known as primary immunodeficiencies underscoring the importance of efficienct actin remodeling in immune cell homeostasis. Here we discuss recent findings on how immune cells sense the mechanical properties of their environement. Moreover, while the organization and biochemical regulation of cytoplasmic actin have been extensively studied, nuclear actin reorganization is a rapidly emerging field that has only begun to be explored in immune cells. Based on the critical and multifaceted contributions of cytoplasmic actin in immune cell functionality, nuclear actin regulation is anticipated to have a large impact on our understanding of immune cell development and functionality.
Collapse
Affiliation(s)
- Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Mezida B. Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Tomas Venit
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
18
|
Das BK, Kannan A, Nguyen Q, Gogoi J, Zhao H, Gao L. Selective Inhibition of Aurora Kinase A by AK-01/LY3295668 Attenuates MCC Tumor Growth by Inducing MCC Cell Cycle Arrest and Apoptosis. Cancers (Basel) 2021; 13:cancers13153708. [PMID: 34359608 PMCID: PMC8345130 DOI: 10.3390/cancers13153708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
Merkel cell carcinoma (MCC) is an often-lethal skin cancer with increasing incidence and limited treatment options. Although immune checkpoint inhibitors (ICI) have become the standard of care in advanced MCC, 50% of all MCC patients are ineligible for ICIs, and amongst those treated, many patients develop resistance. There is no therapeutic alternative for these patients, highlighting the urgent clinical need for alternative therapeutic strategies. Using patient-derived genetic insights and data generated in our lab, we identified aurora kinase as a promising therapeutic target for MCC. In this study, we examined the efficacy of the recently developed and highly selective AURKA inhibitor, AK-01 (LY3295668), in six patient-derived MCC cell lines and two MCC cell-line-derived xenograft mouse models. We found that AK-01 potently suppresses MCC survival through apoptosis and cell cycle arrest, particularly in MCPyV-negative MCC cells without RB expression. Despite the challenge posed by its short in vivo durability upon discontinuation, the swift and substantial tumor suppression with low toxicity makes AK-01 a strong potential candidate for MCC management, particularly in combination with existing regimens.
Collapse
Affiliation(s)
- Bhaba K. Das
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA; (B.K.D.); (J.G.); (H.Z.)
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA;
| | - Aarthi Kannan
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA;
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Quy Nguyen
- Genomics High Throughput Sequencing Facility, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA;
| | - Jyoti Gogoi
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA; (B.K.D.); (J.G.); (H.Z.)
| | - Haibo Zhao
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA; (B.K.D.); (J.G.); (H.Z.)
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA;
| | - Ling Gao
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA; (B.K.D.); (J.G.); (H.Z.)
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA;
- Department of Dermatology, University of California, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|
19
|
Inchanalkar S, Balasubramanian N. Adhesion-growth factor crosstalk regulates AURKB activation and ERK signalling in re-adherent fibroblasts. J Biosci 2021. [DOI: 10.1007/s12038-021-00164-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Marima R, Hull R, Penny C, Dlamini Z. Mitotic syndicates Aurora Kinase B (AURKB) and mitotic arrest deficient 2 like 2 (MAD2L2) in cohorts of DNA damage response (DDR) and tumorigenesis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108376. [PMID: 34083040 DOI: 10.1016/j.mrrev.2021.108376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Aurora Kinase B (AURKB) and Mitotic Arrest Deficient 2 Like 2 (MAD2L2) are emerging anticancer therapeutic targets. AURKB and MAD2L2 are the least well studied members of their protein families, compared to AURKA and MAD2L1. Both AURKB and MAD2L2 play a critical role in mitosis, cell cycle checkpoint, DNA damage response (DDR) and normal physiological processes. However, the oncogenic roles of AURKB and MAD2L2 in tumorigenesis and genomic instability have also been reported. DDR acts as an arbitrator for cell fate by either repairing the damage or directing the cell to self-destruction. While there is strong evidence of interphase DDR, evidence of mitotic DDR is just emerging and remains largely unelucidated. To date, inhibitors of the DDR components show effective anti-cancer roles. Contrarily, long-term resistance towards drugs that target only one DDR target is becoming a challenge. Targeting interactions between protein-protein or protein-DNA holds prominent therapeutic potential. Both AURKB and MAD2L2 play critical roles in the success of mitosis and their emerging roles in mitotic DDR cannot be ignored. Small molecule inhibitors for AURKB are in clinical trials. A few lead compounds towards MAD2L2 inhibition have been discovered. Targeting mitotic DDR components and their interaction is emerging as a potent next generation anti-cancer therapeutic target. This can be done by developing small molecule inhibitors for AURKB and MAD2L2, thereby targeting DDR components as anti-cancer therapeutic targets and/or targeting mitotic DDR. This review focuses on AURKB and MAD2L2 prospective synergy to deregulate the p53 DDR pathway and promote favourable conditions for uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Rahaba Marima
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa.
| | - Rodney Hull
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa
| |
Collapse
|
21
|
Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Front Immunol 2020; 11:581119. [PMID: 33240268 PMCID: PMC7680899 DOI: 10.3389/fimmu.2020.581119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.
Collapse
Affiliation(s)
- Jérôme Mastio
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clément Thomas
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
22
|
Willoughby JLS, George K, Roberto MP, Chin HG, Stoiber P, Shin H, Pedamallu CS, Schaus SE, Fitzgerald K, Shah J, Hansen U. Targeting the oncogene LSF with either the small molecule inhibitor FQI1 or siRNA causes mitotic delays with unaligned chromosomes, resulting in cell death or senescence. BMC Cancer 2020; 20:552. [PMID: 32539694 PMCID: PMC7296649 DOI: 10.1186/s12885-020-07039-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The oncogene LSF (encoded by TFCP2) has been proposed as a novel therapeutic target for multiple cancers. LSF overexpression in patient tumors correlates with poor prognosis in particular for both hepatocellular carcinoma and colorectal cancer. The limited treatment outcomes for these diseases and disappointing clinical results, in particular, for hepatocellular carcinoma in molecularly targeted therapies targeting cellular receptors and kinases, underscore the need for molecularly targeting novel mechanisms. LSF small molecule inhibitors, Factor Quinolinone Inhibitors (FQIs), have exhibited robust anti-tumor activity in multiple pre-clinical models, with no observable toxicity. METHODS To understand how the LSF inhibitors impact cancer cell proliferation, we characterized the cellular phenotypes that result from loss of LSF activity. Cell proliferation and cell cycle progression were analyzed, using HeLa cells as a model cancer cell line responsive to FQI1. Cell cycle progression was studied either by time lapse microscopy or by bulk synchronization of cell populations to ensure accuracy in interpretation of the outcomes. In order to test for biological specificity of targeting LSF by FQI1, results were compared after treatment with either FQI1 or siRNA targeting LSF. RESULTS Highly similar cellular phenotypes are observed upon treatments with FQI1 and siRNA targeting LSF. Along with similar effects on two cellular biomarkers, inhibition of LSF activity by either mechanism induced a strong delay or arrest prior to metaphase as cells progressed through mitosis, with condensed, but unaligned, chromosomes. This mitotic disruption in both cases resulted in improper cellular division leading to multiple outcomes: multi-nucleation, apoptosis, and cellular senescence. CONCLUSIONS These data strongly support that cellular phenotypes observed upon FQI1 treatment are due specifically to the loss of LSF activity. Specific inhibition of LSF by either small molecules or siRNA results in severe mitotic defects, leading to cell death or senescence - consequences that are desirable in combating cancer. Taken together, these findings confirm that LSF is a promising target for cancer treatment. Furthermore, this study provides further support for developing FQIs or other LSF inhibitory strategies as treatment for LSF-related cancers with high unmet medical needs.
Collapse
Affiliation(s)
- Jennifer L S Willoughby
- Alnylam Pharmaceuticals, Inc., Cambridge, MA, 02142, USA.,Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Kelly George
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark P Roberto
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Hang Gyeong Chin
- MCBB Graduate Program, Boston University, Boston, MA, 02215, USA.,New England BioLabs, Ipswich, MA, 01938, USA
| | - Patrick Stoiber
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.,MCBB Graduate Program, Boston University, Boston, MA, 02215, USA
| | - Hyunjin Shin
- Data Science Institute, Takeda Pharmaceuticals International, Inc., Cambridge, MA, 02139, USA
| | - Chandra Sekhar Pedamallu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115, USA
| | - Scott E Schaus
- Center for Molecular Discovery, Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | | | - Jagesh Shah
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ulla Hansen
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA. .,MCBB Graduate Program, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
23
|
Mattei JC, Bouvier-Labit C, Barets D, Macagno N, Chocry M, Chibon F, Morando P, Rochwerger RA, Duffaud F, Olschwang S, Salas S, Jiguet-Jiglaire C. Pan Aurora Kinase Inhibitor: A Promising Targeted-Therapy in Dedifferentiated Liposarcomas With Differential Efficiency Depending on Sarcoma Molecular Profile. Cancers (Basel) 2020; 12:E583. [PMID: 32138169 PMCID: PMC7139289 DOI: 10.3390/cancers12030583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
Soft tissue sarcoma (STS) are rare and aggressive tumours. Their classification includes numerous histological subtypes of frequent poor prognosis. Liposarcomas (LPS) are the most frequent type among them, and the aggressiveness and deep localization of dedifferentiated LPS are linked to high levels of recurrence. Current treatments available today lead to five-year overall survival has remained stuck around 60%-70% for the past three decades. Here, we highlight a correlation between Aurora kinasa A (AURKA) and AURKB mRNA overexpression and a low metastasis - free survival. AURKA and AURKB expression analysis at genomic and protein level on a 9-STS cell lines panel highlighted STS heterogeneity, especially in LPS subtype. AURKA and AURKB inhibition by RNAi and drug targeting with AMG 900, a pan Aurora Kinase inhibitor, in four LPS cell lines reduces cell survival and clonogenic proliferation, inducing apoptosis and polyploidy. When combined with doxorubicin, the standard treatment in STS, aurora kinases inhibitor can be considered as an enhancer of standard treatment or as an independent drug. Kinome analysis suggested its effect was linked to the inhibition of the MAP-kinase pathway, with differential drug resistance profiles depending on molecular characteristics of the tumor. Aurora Kinase inhibition by AMG 900 could be a promising therapy in STS.
Collapse
Affiliation(s)
- Jean Camille Mattei
- Aix-Marseille University, Inserm, MMG, 13005 Marseille, France; (J.C.M.); (C.B.-L.); (R.A.R.); (F.D.); (S.O.); (S.S.)
- APHM, Hôpital Nord, Service d'Orthopédie et traumatologie, 13015 Marseille, France
| | - Corinne Bouvier-Labit
- Aix-Marseille University, Inserm, MMG, 13005 Marseille, France; (J.C.M.); (C.B.-L.); (R.A.R.); (F.D.); (S.O.); (S.S.)
- APHM, Hôpital de la Timone, Service d’Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France; (D.B.); (N.M.)
| | - Doriane Barets
- APHM, Hôpital de la Timone, Service d’Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France; (D.B.); (N.M.)
| | - Nicolas Macagno
- APHM, Hôpital de la Timone, Service d’Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France; (D.B.); (N.M.)
| | - Mathieu Chocry
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France; (M.C.); (P.M.)
| | | | - Philippe Morando
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France; (M.C.); (P.M.)
| | - Richard Alexandre Rochwerger
- Aix-Marseille University, Inserm, MMG, 13005 Marseille, France; (J.C.M.); (C.B.-L.); (R.A.R.); (F.D.); (S.O.); (S.S.)
- APHM, Hôpital Nord, Service d'Orthopédie et traumatologie, 13015 Marseille, France
| | - Florence Duffaud
- Aix-Marseille University, Inserm, MMG, 13005 Marseille, France; (J.C.M.); (C.B.-L.); (R.A.R.); (F.D.); (S.O.); (S.S.)
- APHM, Hôpital de la Timone, Service d’Oncologie adulte, 13005 Marseille, France
| | - Sylviane Olschwang
- Aix-Marseille University, Inserm, MMG, 13005 Marseille, France; (J.C.M.); (C.B.-L.); (R.A.R.); (F.D.); (S.O.); (S.S.)
- APHM, Hôpital de la Timone, Département de Génétique Médicale, 13005 Marseille, France
- Ramsay Générale de Santé, Hôpital Clairval, Institut de Cancérologie, 13005 Marseille, France
| | - Sébastien Salas
- Aix-Marseille University, Inserm, MMG, 13005 Marseille, France; (J.C.M.); (C.B.-L.); (R.A.R.); (F.D.); (S.O.); (S.S.)
- APHM, Hôpital de la Timone, Service d’Oncologie adulte, 13005 Marseille, France
| | - Carine Jiguet-Jiglaire
- APHM, Hôpital de la Timone, Service d’Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France; (D.B.); (N.M.)
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France; (M.C.); (P.M.)
- APHM, Centre de Ressources Biologiques, 13005 Marseille, France
| |
Collapse
|
24
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Sasaki JC, Allemang A, Bryce SM, Custer L, Dearfield KL, Dietz Y, Elhajouji A, Escobar PA, Fornace AJ, Froetschl R, Galloway S, Hemmann U, Hendriks G, Li HH, Luijten M, Ouedraogo G, Peel L, Pfuhler S, Roberts DJ, Thybaud V, van Benthem J, Yauk CL, Schuler M. Application of the adverse outcome pathway framework to genotoxic modes of action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:114-134. [PMID: 31603995 DOI: 10.1002/em.22339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
In May 2017, the Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee hosted a workshop to discuss whether mode of action (MOA) investigation is enhanced through the application of the adverse outcome pathway (AOP) framework. As AOPs are a relatively new approach in genetic toxicology, this report describes how AOPs could be harnessed to advance MOA analysis of genotoxicity pathways using five example case studies. Each of these genetic toxicology AOPs proposed for further development includes the relevant molecular initiating events, key events, and adverse outcomes (AOs), identification and/or further development of the appropriate assays to link an agent to these events, and discussion regarding the biological plausibility of the proposed AOP. A key difference between these proposed genetic toxicology AOPs versus traditional AOPs is that the AO is a genetic toxicology endpoint of potential significance in risk characterization, in contrast to an adverse state of an organism or a population. The first two detailed case studies describe provisional AOPs for aurora kinase inhibition and tubulin binding, leading to the common AO of aneuploidy. The remaining three case studies highlight provisional AOPs that lead to chromosome breakage or mutation via indirect DNA interaction (inhibition of topoisomerase II, production of cellular reactive oxygen species, and inhibition of DNA synthesis). These case studies serve as starting points for genotoxicity AOPs that could ultimately be published and utilized by the broader toxicology community and illustrate the practical considerations and evidence required to formalize such AOPs so that they may be applied to genetic toxicity evaluation schemes. Environ. Mol. Mutagen. 61:114-134, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Laura Custer
- Bristol-Myers Squibb Company, Drug Safety Evaluation, New Brunswick, New Jersey
| | | | - Yasmin Dietz
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | | | | | | | | | | | | | - Heng-Hong Li
- Georgetown University, Washington, District of Columbia
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, District of Columbia
| | | | | | - Véronique Thybaud
- Sanofi, Research and Development, Preclinical Safety, Vitry-sur-Seine, France
| | - Jan van Benthem
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Maik Schuler
- Pfizer Inc, World Wide Research and Development, Groton, Connecticut
| |
Collapse
|
26
|
Du J, Yan L, Torres R, Gong X, Bian H, Marugán C, Boehnke K, Baquero C, Hui YH, Chapman SC, Yang Y, Zeng Y, Bogner SM, Foreman RT, Capen A, Donoho GP, Van Horn RD, Barnard DS, Dempsey JA, Beckmann RP, Marshall MS, Chio LC, Qian Y, Webster YW, Aggarwal A, Chu S, Bhattachar S, Stancato LF, Dowless MS, Iversen PW, Manro JR, Walgren JL, Halstead BW, Dieter MZ, Martinez R, Bhagwat SV, Kreklau EL, Lallena MJ, Ye XS, Patel BKR, Reinhard C, Plowman GD, Barda DA, Henry JR, Buchanan SG, Campbell RM. Aurora A-Selective Inhibitor LY3295668 Leads to Dominant Mitotic Arrest, Apoptosis in Cancer Cells, and Shows Potent Preclinical Antitumor Efficacy. Mol Cancer Ther 2019; 18:2207-2219. [PMID: 31530649 DOI: 10.1158/1535-7163.mct-18-0529] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 04/29/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
Although Aurora A, B, and C kinases share high sequence similarity, especially within the kinase domain, they function distinctly in cell-cycle progression. Aurora A depletion primarily leads to mitotic spindle formation defects and consequently prometaphase arrest, whereas Aurora B/C inactivation primarily induces polyploidy from cytokinesis failure. Aurora B/C inactivation phenotypes are also epistatic to those of Aurora A, such that the concomitant inactivation of Aurora A and B, or all Aurora isoforms by nonisoform-selective Aurora inhibitors, demonstrates the Aurora B/C-dominant cytokinesis failure and polyploidy phenotypes. Several Aurora inhibitors are in clinical trials for T/B-cell lymphoma, multiple myeloma, leukemia, lung, and breast cancers. Here, we describe an Aurora A-selective inhibitor, LY3295668, which potently inhibits Aurora autophosphorylation and its kinase activity in vitro and in vivo, persistently arrests cancer cells in mitosis, and induces more profound apoptosis than Aurora B or Aurora A/B dual inhibitors without Aurora B inhibition-associated cytokinesis failure and aneuploidy. LY3295668 inhibits the growth of a broad panel of cancer cell lines, including small-cell lung and breast cancer cells. It demonstrates significant efficacy in small-cell lung cancer xenograft and patient-derived tumor preclinical models as a single agent and in combination with standard-of-care agents. LY3295668, as a highly Aurora A-selective inhibitor, may represent a preferred approach to the current pan-Aurora inhibitors as a cancer therapeutic agent.
Collapse
Affiliation(s)
- Jian Du
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana.
| | - Lei Yan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | - Xueqian Gong
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Huimin Bian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | - Yu-Hua Hui
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | - Yanzhu Yang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Yi Zeng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Sarah M Bogner
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Robert T Foreman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Andrew Capen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Gregory P Donoho
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Robert D Van Horn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Darlene S Barnard
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Jack A Dempsey
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Richard P Beckmann
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Mark S Marshall
- Ped-Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Li-Chun Chio
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Yue W Webster
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Amit Aggarwal
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Shaoyou Chu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Shobha Bhattachar
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Louis F Stancato
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Michele S Dowless
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Phillip W Iversen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Jason R Manro
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Jennie L Walgren
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Bartley W Halstead
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Matthew Z Dieter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Ricardo Martinez
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Shripad V Bhagwat
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Emiko L Kreklau
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | - Xiang S Ye
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Bharvin K R Patel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Christoph Reinhard
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Gregory D Plowman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - David A Barda
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - James R Henry
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Sean G Buchanan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Robert M Campbell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
27
|
Wan B, Huang Y, Liu B, Lu L, Lv C. AURKB: a promising biomarker in clear cell renal cell carcinoma. PeerJ 2019; 7:e7718. [PMID: 31576249 PMCID: PMC6752188 DOI: 10.7717/peerj.7718] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022] Open
Abstract
Background Aurora kinase B (AURKB) is an important carcinogenic factor in various tumors, while its role in clear cell renal cell carcinoma (ccRCC) still remains unclear. This study aimed to investigate its prognostic value and mechanism of action in ccRCC. Methods Gene expression profiles and clinical data of ccRCC patients were downloaded from The Cancer Genome Atlas database. R software was utilized to analyze the expression and prognostic role of AURKB in ccRCC. Gene set enrichment analysis (GSEA) was used to analyze AURKB related signaling pathways in ccRCC. Results AURKB was expressed at higher levels in ccRCC tissues than normal kidney tissues. Increased AURKB expression in ccRCC correlated with high histological grade, pathological stage, T stage, N stage and distant metastasis (M stage). Kaplan-Meier survival analysis suggested that high AURKB expression patients had a worse prognosis than patients with low AURKB expression levels. Multivariate Cox analysis showed that AURKB expression is a prognostic factor of ccRCC. GSEA indicated that genes involved in autoimmune thyroid disease, intestinal immune network for IgA production, antigen processing and presentation, cytokine-cytokine receptor interaction, asthma, etc., were differentially enriched in the AURKB high expression phenotype. Conclusions AURKB is a promising biomarker for predicting prognosis of ccRCC patients and a potential therapeutic target. In addition, AURKB might regulate progression of ccRCC through modulating intestinal immune network for IgA production and cytokine-cytokine receptor interaction, etc. signaling pathways. However, more research is necessary to validate the findings.
Collapse
Affiliation(s)
- Bangbei Wan
- Urology, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| | - Yuan Huang
- Neurology, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| | - Bo Liu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou, China
| | - Likui Lu
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cai Lv
- Urology, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| |
Collapse
|
28
|
Cilibrasi C, Guzzi A, Bazzoni R, Riva G, Cadamuro M, Hochegger H, Bentivegna A. A Ploidy Increase Promotes Sensitivity of Glioma Stem Cells to Aurora Kinases Inhibition. JOURNAL OF ONCOLOGY 2019; 2019:9014045. [PMID: 31531022 PMCID: PMC6720056 DOI: 10.1155/2019/9014045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 12/02/2022]
Abstract
Glioma stem cells account for glioblastoma relapse and resistance to conventional therapies, and protein kinases, involved in the regulation of the mitotic machinery (i.e., Aurora kinases), have recently emerged as attractive therapeutic targets. In this study, we investigated the effect of Aurora kinases inhibition in five glioma stem cell lines isolated from glioblastoma patients. As expected, cell lines responded to the loss of Aurora kinases with cytokinesis failure and mitotic exit without cell division. Surprisingly, this resulted in a proliferative arrest in only two of the five cell lines. These sensitive cell lines entered a senescent/autophagic state following aberrant mitotic exit, while the non-sensitive cell lines continued to proliferate. This senescence response did not correlate with TP53 mutation status but only occurred in the cell lines with the highest chromosome content. Repeated rounds of Aurora kinases inhibition caused a gradual increase in chromosome content in the resistant cell lines and eventually caused a similar senescence response and proliferative arrest. Our results suggest that a ploidy threshold is the main determinant of Aurora kinases sensitivity in TP53 mutant glioma stem cells. Thus, ploidy could be used as a biomarker for treating glioma patients with Aurora kinases inhibitors.
Collapse
Affiliation(s)
- Chiara Cilibrasi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Ph.D. Program in Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
- NeuroMI, Milan Center of Neuroscience, University of Milano-Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, 20900 Monza, Italy
| | - Andrèe Guzzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Riccardo Bazzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- NeuroMI, Milan Center of Neuroscience, University of Milano-Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, 20900 Monza, Italy
| | - Gabriele Riva
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- NeuroMI, Milan Center of Neuroscience, University of Milano-Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, 20900 Monza, Italy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Massimiliano Cadamuro
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- International Center for Digestive Health (ICDH), University of Milano-Bicocca, 20900 Monza, Italy
| | - Helfrid Hochegger
- Genome Damage and Stability Center, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- NeuroMI, Milan Center of Neuroscience, University of Milano-Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, 20900 Monza, Italy
| |
Collapse
|
29
|
Butler MB, Short NE, Maniou E, Alexandre P, Greene NDE, Copp AJ, Galea GL. Rho kinase-dependent apical constriction counteracts M-phase apical expansion to enable mouse neural tube closure. J Cell Sci 2019; 132:jcs.230300. [PMID: 31182644 PMCID: PMC6633395 DOI: 10.1242/jcs.230300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular generation of mechanical forces required to close the presumptive spinal neural tube, the 'posterior neuropore' (PNP), involves interkinetic nuclear migration (INM) and apical constriction. Both processes change the apical surface area of neuroepithelial cells, but how they are biomechanically integrated is unknown. Rho kinase (Rock; herein referring to both ROCK1 and ROCK2) inhibition in mouse whole embryo culture progressively widens the PNP. PNP widening is not caused by increased mechanical tension opposing closure, as evidenced by diminished recoil following laser ablation. Rather, Rock inhibition diminishes neuroepithelial apical constriction, producing increased apical areas in neuroepithelial cells despite diminished tension. Neuroepithelial apices are also dynamically related to INM progression, with the smallest dimensions achieved in cells positive for the pan-M phase marker Rb phosphorylated at S780 (pRB-S780). A brief (2 h) Rock inhibition selectively increases the apical area of pRB-S780-positive cells, but not pre-anaphase cells positive for phosphorylated histone 3 (pHH3+). Longer inhibition (8 h, more than one cell cycle) increases apical areas in pHH3+ cells, suggesting cell cycle-dependent accumulation of cells with larger apical surfaces during PNP widening. Consequently, arresting cell cycle progression with hydroxyurea prevents PNP widening following Rock inhibition. Thus, Rock-dependent apical constriction compensates for the PNP-widening effects of INM to enable progression of closure.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Max B Butler
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Nina E Short
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Paula Alexandre
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK .,Comparative Bioveterinary Sciences, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
30
|
Sanidas I, Morris R, Fella KA, Rumde PH, Boukhali M, Tai EC, Ting DT, Lawrence MS, Haas W, Dyson NJ. A Code of Mono-phosphorylation Modulates the Function of RB. Mol Cell 2019; 73:985-1000.e6. [PMID: 30711375 DOI: 10.1016/j.molcel.2019.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Hyper-phosphorylation of RB controls its interaction with E2F and inhibits its tumor suppressor properties. However, during G1 active RB can be mono-phosphorylated on any one of 14 CDK phosphorylation sites. Here, we used quantitative proteomics to profile protein complexes formed by each mono-phosphorylated RB isoform (mP-RB) and identified the associated transcriptional outputs. The results show that the 14 sites of mono-phosphorylation co-ordinate RB's interactions and confer functional specificity. All 14 mP-RBs interact with E2F/DP proteins, but they provide different shades of E2F regulation. RB mono-phosphorylation at S811, for example, alters RB transcriptional activity by promoting its association with NuRD complexes. The greatest functional differences between mP-RBs are evident beyond the cell cycle machinery. RB mono-phosphorylation at S811 or T826 stimulates the expression of oxidative phosphorylation genes, increasing cellular oxygen consumption. These results indicate that RB activation signals are integrated in a phosphorylation code that determines the diversity of RB activity.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Katerina A Fella
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Purva H Rumde
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Eric C Tai
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
31
|
Mitotic slippage and the subsequent cell fates after inhibition of Aurora B during tubulin-binding agent-induced mitotic arrest. Sci Rep 2017; 7:16762. [PMID: 29196757 PMCID: PMC5711930 DOI: 10.1038/s41598-017-17002-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022] Open
Abstract
Tubulin-binding agents (TBAs) are designed to target microtubule (MT) dynamics, resulting in compromised mitotic spindles and an unsatisfied spindle assembly checkpoint. The activity of Aurora B kinase is indispensable for TBA-induced mitotic arrest, and its inhibition causes mitotic slippage and postmitotic endoreduplication. However, the precise phenomenon underlying mitotic slippage, which is caused by treatment with both Aurora B inhibitors and TBAs, and the cell fate after postmitotic slippage are not completely understood. Here, we found that HeLa and breast cancer cells treated with the different types of TBAs, such as paclitaxel and eribulin (MT-stabilizing and MT-destabilizing agents, respectively), exhibited distinct behaviors of mitotic slippage on inhibition of Aurora B. In such conditions, the cell fates after postmitotic slippage vastly differed with respect to cell morphology, cell proliferation, and cytotoxicity in short-term culture; that is, the effects of inhibition of Aurora B were beneficial for cytotoxicity enhancement in eribulin treatment but not in paclitaxel. However, in long-term culture, the cells that survived after mitotic slippage underwent endoreduplication and became giant cells in both cases, resulting in cellular senescence. We propose that MT-destabilizing agents may be more appropriate than MT-stabilizing agents for treating cancer cells with a weakened Aurora B kinase activity.
Collapse
|
32
|
Nair JS, Schwartz GK. MLN-8237: A dual inhibitor of aurora A and B in soft tissue sarcomas. Oncotarget 2017; 7:12893-903. [PMID: 26887042 PMCID: PMC4914329 DOI: 10.18632/oncotarget.7335] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
Aurora kinases have become an attractive target in cancer therapy due to their deregulated expression in human tumors. Liposarcoma, a type of soft tissue sarcoma in adults, account for approximately 20% of all adult soft tissue sarcomas. There are no effective chemotherapies for majority of these tumors. Efforts made to define the molecular basis of liposarcomas lead to the finding that besides the amplifications of CDK4 and MDM2, Aurora Kinase A, also was shown to be overexpressed. Based on these as well as mathematic modeling, we have carried out a successful preclinical study using CDK4 and IGF1R inhibitors in liposarcoma. MLN8237 has been shown to be a potent and selective inhibitor of Aurora A. MLN-8237, as per our results, induces a differential inhibition of Aurora A and B in a dose dependent manner. At a low nanomolar dose, cellular effects such as induction of phospho-Histone H3 (Ser10) mimicked as that of the inhibition of Aurora kinase A followed by apoptosis. However, micromolar dose of MLN-8237 induced polyploidy, a hallmark effect of Aurora B inhibition. The dose dependent selectivity of inhibition was further confirmed by using siRNA specific inhibition of Aurora A and B. This was further tested by time lapse microscopy of GFP-H2B labelled cells treated with MLN-8237. LS141 xenograft model at a dose of 30 mg/kg also showed efficient growth suppression by selective inhibition of Aurora Kinase A. Based on our data, a dose that can target only Aurora A will be more beneficial in tumor suppression.
Collapse
Affiliation(s)
- Jayasree S Nair
- Jennifer Goodman Linn Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Gary K Schwartz
- Jennifer Goodman Linn Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
33
|
Kollareddy M, Sherrard A, Park JH, Szemes M, Gallacher K, Melegh Z, Oltean S, Michaelis M, Cinatl J, Kaidi A, Malik K. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis. Cancer Lett 2017; 403:74-85. [PMID: 28602975 PMCID: PMC5542135 DOI: 10.1016/j.canlet.2017.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 11/30/2022]
Abstract
Neuroblastoma is a biologically and clinically heterogeneous pediatric malignancy that includes a high-risk subset for which new therapeutic agents are urgently required. As well as MYCN amplification, activating point mutations of ALK and NRAS are associated with high-risk and relapsing neuroblastoma. As both ALK and RAS signal through the MEK/ERK pathway, we sought to evaluate two previously reported inhibitors of ETS-related transcription factors, which are transcriptional mediators of the Ras-MEK/ERK pathway in other cancers. Here we show that YK-4-279 suppressed growth and triggered apoptosis in nine neuroblastoma cell lines, while BRD32048, another ETV1 inhibitor, was ineffective. These results suggest that YK-4-279 acts independently of ETS-related transcription factors. Further analysis reveals that YK-4-279 induces mitotic arrest in prometaphase, resulting in subsequent cell death. Mechanistically, we show that YK-4-279 inhibits the formation of kinetochore microtubules, with treated cells showing a broad range of abnormalities including multipolar, fragmented and unseparated spindles, together leading to disrupted progression through mitosis. Notably, YK-4-279 does not affect microtubule acetylation, unlike the conventional mitotic poisons paclitaxel and vincristine. Consistent with this, we demonstrate that YK-4-279 overcomes vincristine-induced resistance in two neuroblastoma cell-line models. Furthermore, combinations of YK-4-279 with vincristine, paclitaxel or the Aurora kinase A inhibitor MLN8237/Alisertib show strong synergy, particularly at low doses. Thus, YK-4-279 could potentially be used as a single-agent or in combination therapies for the treatment of high-risk and relapsing neuroblastoma, as well as other cancers.
Collapse
Affiliation(s)
- Madhu Kollareddy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Alice Sherrard
- Nuclear Dynamics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ji Hyun Park
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Kelli Gallacher
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Zsombor Melegh
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Sebastian Oltean
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Martin Michaelis
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, UK
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Abderrahmane Kaidi
- Nuclear Dynamics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
34
|
Subramaniyan B, Kumar V, Mathan G. Effect of sodium salt of Butrin, a novel compound isolated from Butea monosperma flowers on suppressing the expression of SIRT1 and Aurora B kinase-mediated apoptosis in colorectal cancer cells. Biomed Pharmacother 2017; 90:402-413. [PMID: 28390310 DOI: 10.1016/j.biopha.2017.03.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 02/07/2023] Open
Abstract
The infrequent manifestation of SIRT1 and Aurora B kinase has shown to play a pivotal role in colorectal cancer (CRC) progression by regulating Wnt signaling pathway. The present study investigates the signaling events that regulate the modulation of SIRT1 and Aurora B kinase expression and it's mediated cell proliferation in SW480 human primary adenocarcinoma CRC cells using Butea monosperma floral compounds (BMFC). In this, cell viability, mitochondrial mediated apoptosis, cell cycle arrest and inhibition of Wnt pathway were examined. Interestingly, the active novel compound, sodium salt of butrin, from BMFC significantly enhances the apoptosis activity, where SIRT1 and Aurora B kinase were ectopically overexpressed in CRC cells. Moreover, mRNA and protein expressions analysis indicates that the expression of GSK-3β, β-catenin, cyclin D1, pAKT, TGF-3β, SIRT1 and Aurora B kinase were down regulated in BMFC treated cells. These findings provide valuable information that the active BMFC having great impact on SIRT1 and Aurora B kinase mediated Wnt signaling down regulation in SW480 CRC cells.
Collapse
Affiliation(s)
- Boopathi Subramaniyan
- Department of Biomedical Science, School of Basic Medical Science, Bharathidasan University, Tiruchirappalli, 620 024 Tamilnadu, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Ganeshan Mathan
- Department of Biomedical Science, School of Basic Medical Science, Bharathidasan University, Tiruchirappalli, 620 024 Tamilnadu, India.
| |
Collapse
|
35
|
Costa R, Carneiro B, Wainwright D, Santa-Maria C, Kumthekar P, Chae Y, Gradishar W, Cristofanilli M, Giles F. Developmental therapeutics for patients with breast cancer and central nervous system metastasis: current landscape and future perspectives. Ann Oncol 2017; 28:44-56. [PMID: 28177431 PMCID: PMC7360139 DOI: 10.1093/annonc/mdw532] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the second-leading cause of metastatic disease in the central nervous system (CNS). Recent advances in the biological understanding of breast cancer have facilitated an unprecedented increase of survival in a subset of patients presenting with metastatic breast cancer. Patients with HER2 positive (HER2+) or triple negative breast cancer are at highest risk of developing CNS metastasis, and typically experience a poor prognosis despite treatment with local and systemic therapies. Among the obstacles ahead in the realm of developmental therapeutics for breast cancer CNS metastasis is the improvement of our knowledge on its biological nuances and on the interaction of the blood–brain barrier with new compounds. This article reviews recent discoveries related to the underlying biology of breast cancer brain metastases, clinical progress to date and suggests rational approaches for investigational therapies.
Collapse
Affiliation(s)
- R. Costa
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - B.A. Carneiro
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - D.A. Wainwright
- Department of Pathology
- Department of Neurology
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - C.A. Santa-Maria
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | | | - Y.K. Chae
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - W.J. Gradishar
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - M. Cristofanilli
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| | - F.J. Giles
- Developmental Therapeutics Program, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago
| |
Collapse
|
36
|
Wiedemuth R, Klink B, Fujiwara M, Schröck E, Tatsuka M, Schackert G, Temme A. Janus face-like effects of Aurora B inhibition: antitumoral mode of action versus induction of aneuploid progeny. Carcinogenesis 2016; 37:993-1003. [PMID: 27515963 DOI: 10.1093/carcin/bgw083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/06/2016] [Indexed: 01/10/2023] Open
Abstract
The mitotic Aurora B kinase is overexpressed in tumors and various inhibitors for Aurora B are currently under clinical assessments. However, when considering Aurora B kinase inhibitors as anticancer drugs, their mode of action and the role of p53 status as a possible predictive factor for response still needs to be investigated. In this study, we analyzed the effects of selective Aurora B inhibition using AZD1152-HQPA/Barasertib (AZD1152) on HCT116 cells, U87-MG, corresponding isogenic p53-deficient cells and a primary glioblastoma cell line. AZD1152 treatment caused polyploidy and non-apoptotic cell death in all cell lines irrespective of p53 status and was accompanied by poly-merotelic kinetochore-microtubule attachments and DNA damage. In p53 wild-type cells a DNA damage response induced an inefficient pseudo-G1 cell cycle arrest, which was not able to halt ongoing endoreplication of cells. Of note, release of tumor cells from AZD1152 resulted in recovery of aneuploid progenies bearing numerical and structural chromosomal aberrations. Yet, AZD1152 treatment enhanced death receptor TRAIL-R2 levels in all tumor cell lines investigated. A concomitant increase of the activating natural killer (NK) cell ligand MIC A/B in p53-deficient cells and an induction of FAS/CD95 in cells containing p53 rendered AZD1152-treated cells more susceptible for NK-cell-mediated lysis. Our study mechanistically explains a p53-independent mode of action of a chemical Aurora B inhibitor and suggests a potential triggering of antitumoral immune responses, following polyploidization of tumor cells, which might constrain recovery of aneuploid tumor cells.
Collapse
Affiliation(s)
- Ralf Wiedemuth
- Department of Neurosurgery, Section of Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany, German Cancer Consortium (DKTK), partner site Dresden, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany and
| | - Mamoru Fujiwara
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima 772-0023, Japan
| | - Evelin Schröck
- Institute for Clinical Genetics, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany, German Cancer Consortium (DKTK), partner site Dresden, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany and
| | - Masaaki Tatsuka
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima 772-0023, Japan
| | - Gabriele Schackert
- Department of Neurosurgery, Section of Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany, German Cancer Consortium (DKTK), partner site Dresden, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany and
| | - Achim Temme
- Department of Neurosurgery, Section of Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany, German Cancer Consortium (DKTK), partner site Dresden, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany and
| |
Collapse
|
37
|
Helfrich BA, Kim J, Gao D, Chan DC, Zhang Z, Tan AC, Bunn PA. Barasertib (AZD1152), a Small Molecule Aurora B Inhibitor, Inhibits the Growth of SCLC Cell Lines In Vitro and In Vivo. Mol Cancer Ther 2016; 15:2314-2322. [PMID: 27496133 DOI: 10.1158/1535-7163.mct-16-0298] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/22/2016] [Indexed: 11/16/2022]
Abstract
Small-cell lung cancer (SCLC) cells have rapid proliferation, universal Rb inactivation, and high rates of MYC family amplification, making aurora kinase inhibition a natural target. Preclinical studies have demonstrated activity for Aurora A and pan-Aurora inhibitors with some relationship to MYC family expression. A clinical trial showed activity for an Aurora kinase A inhibitor, but no biomarkers were evaluated. We screened a panel of 23 SCLC lines with and without MYC family gene amplification or high MYC family gene expression for growth inhibition by the highly potent, selective aurora kinase B inhibitor barasertib. Nine of the SCLC lines were very sensitive to growth inhibition by barasertib, with IC50 values of <50 nmol/L and >75% growth inhibition at 100 nmol/L. Growth inhibition correlated with cMYC amplification (P = 0.018) and cMYC gene expression (P = 0.026). Sensitive cell lines were also enriched in a published MYC gene signature (P = 0.042). In vivo, barasertib inhibited the growth of xenografts established from an SCLC line that had high cMYC gene expression, no cMYC amplification, and was positive for the core MYC gene signature. Our studies suggest that SCLC tumors with cMYC amplification/high gene expression will frequently respond to Aurora B inhibitors and that clinical studies coupled with predictive biomarkers are indicated. Mol Cancer Ther; 15(10); 2314-22. ©2016 AACR.
Collapse
Affiliation(s)
- Barbara A Helfrich
- Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado
| | - Jihye Kim
- Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado
| | - Dexiang Gao
- Department of Biostatistics & Informatics, University of Colorado Cancer Center, Aurora, Colorado. Department of Medicine-Pediatrics, University of Colorado Denver-Anschutz Medical Center, Aurora, Colorado
| | - Daniel C Chan
- Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado
| | - Zhiyong Zhang
- Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado
| | - Aik-Choon Tan
- Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado
| | - Paul A Bunn
- Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado.
| |
Collapse
|
38
|
The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression. Int J Mol Sci 2016; 17:ijms17081153. [PMID: 27490541 PMCID: PMC5000587 DOI: 10.3390/ijms17081153] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/13/2023] Open
Abstract
The exon junction complex (EJC) that is deposited onto spliced mRNAs upstream of exon–exon junctions plays important roles in multiple post-splicing gene expression events, such as mRNA export, surveillance, localization, and translation. However, a direct role for the human EJC in pre-mRNA splicing has not been fully understood. Using HeLa cells, we depleted one of the EJC core components, Y14, and the resulting transcriptome was analyzed by deep sequencing (RNA-Seq) and confirmed by RT–PCR. We found that Y14 is required for efficient and faithful splicing of a group of transcripts that is enriched in short intron-containing genes involved in mitotic cell-cycle progression. Tethering of EJC core components (Y14, eIF4AIII or MAGOH) to a model reporter pre-mRNA harboring a short intron showed that these core components are prerequisites for the splicing activation. Taken together, we conclude that the EJC core assembled on pre-mRNA is critical for efficient and faithful splicing of a specific subset of short introns in mitotic cell cycle-related genes.
Collapse
|
39
|
The aurora kinase inhibitor VX-680 shows anti-cancer effects in primary metastatic cells and the SW13 cell line. Invest New Drugs 2016; 34:531-40. [DOI: 10.1007/s10637-016-0358-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
|
40
|
Vasbinder MM, Alimzhanov M, Augustin M, Bebernitz G, Bell K, Chuaqui C, Deegan T, Ferguson AD, Goodwin K, Huszar D, Kawatkar A, Kawatkar S, Read J, Shi J, Steinbacher S, Steuber H, Su Q, Toader D, Wang H, Woessner R, Wu A, Ye M, Zinda M. Identification of azabenzimidazoles as potent JAK1 selective inhibitors. Bioorg Med Chem Lett 2015; 26:60-7. [PMID: 26614408 DOI: 10.1016/j.bmcl.2015.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
We have identified a class of azabenzimidazoles as potent and selective JAK1 inhibitors. Investigations into the SAR are presented along with the structural features required to achieve selectivity for JAK1 versus other JAK family members. An example from the series demonstrated highly selective inhibition of JAK1 versus JAK2 and JAK3, along with inhibition of pSTAT3 in vivo, enabling it to serve as a JAK1 selective tool compound to further probe the biology of JAK1 selective inhibitors.
Collapse
Affiliation(s)
- Melissa M Vasbinder
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States.
| | - Marat Alimzhanov
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | | | - Geraldine Bebernitz
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Kirsten Bell
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Claudio Chuaqui
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Tracy Deegan
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Andrew D Ferguson
- AstraZeneca R&D Boston, Discovery Sciences, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Kelly Goodwin
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Dennis Huszar
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Aarti Kawatkar
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Sameer Kawatkar
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Jon Read
- AstraZeneca R&D, Discovery Sciences, Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Jie Shi
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | | | - Holger Steuber
- Proteros Biostructures GmbH, Martinsried, D-82152, Germany
| | - Qibin Su
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Dorin Toader
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Haixia Wang
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Richard Woessner
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Allan Wu
- AstraZeneca R&D Boston, Discovery Sciences, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Minwei Ye
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Michael Zinda
- AstraZeneca R&D Boston, Oncology IMED, 35 Gatehouse Drive, Waltham, MA 02451, United States
| |
Collapse
|
41
|
Moawad EY. Optimizing and predicting the in vivo activity of AT9283 as a monotherapy and in combination with paclitaxel. J Gastrointest Cancer 2015; 46:380-9. [DOI: 10.1007/s12029-015-9761-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Hariharan N, Quijada P, Mohsin S, Joyo A, Samse K, Monsanto M, De La Torre A, Avitabile D, Ormachea L, McGregor MJ, Tsai EJ, Sussman MA. Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging. J Am Coll Cardiol 2015; 65:133-47. [PMID: 25593054 DOI: 10.1016/j.jacc.2014.09.086] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy in elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. OBJECTIVES This study sought to demonstrate that NS preserves characteristics associated with "stemness" in CPCs and antagonizes myocardial senescence and aging. METHODS CPCs isolated from human fetal (fetal human cardiac progenitor cell [FhCPC]) and adult failing (adult human cardiac progenitor cell [AhCPC]) hearts, as well as young (young cardiac progenitor cell [YCPC]) and old mice (old cardiac progenitor cell [OCPC]), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with 1 functional allele of NS (NS+/-) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. RESULTS NS expression is decreased in AhCPCs relative to FhCPCs, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble those of OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S-phase progression, diminished expression of stemness markers, and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of "stemness." Early cardiac aging with a decline in cardiac function, an increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/- mice. CONCLUSIONS Youthful properties and antagonism of senescence in CPCs and the myocardium are consistent with a role for NS downstream from Pim-1 signaling that enhances cardiac regeneration.
Collapse
Affiliation(s)
- Nirmala Hariharan
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Pearl Quijada
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Sadia Mohsin
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Anya Joyo
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Kaitlen Samse
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Megan Monsanto
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Andrea De La Torre
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Daniele Avitabile
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California; Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Lucia Ormachea
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Michael J McGregor
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Emily J Tsai
- Section in Cardiology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mark A Sussman
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California.
| |
Collapse
|
43
|
Aurora kinase A and B as new treatment targets in aromatase inhibitor-resistant breast cancer cells. Breast Cancer Res Treat 2015; 149:715-26. [PMID: 25667100 DOI: 10.1007/s10549-015-3284-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/23/2015] [Indexed: 10/23/2022]
Abstract
Aromatase inhibitors (AIs) are used for treatment of estrogen receptor α (ER)-positive breast cancer; however, resistance is a major obstacle for optimal outcome. This preclinical study aimed at identifying potential new treatment targets in AI-resistant breast cancer cells. Parental MCF-7 breast cancer cells and four newly established cell lines, resistant to the AIs exemestane or letrozole, were used for a functional kinase inhibitor screen. A library comprising 195 different compounds was tested for preferential growth inhibition of AI-resistant cell lines. Selected targets were validated by analysis of cell growth, cell cycle phase distribution, protein expression, and subcellular localization. We identified 24 compounds, including several inhibitors of Aurora kinases e.g., JNJ-7706621 and barasertib. Protein expression of Aurora kinase A and B was found upregulated in AI-resistant cells compared with MCF-7, and knockdown studies showed that Aurora kinase A was essential for AI-resistant cell growth. In AI-resistant cell lines, the clinically relevant Aurora kinase inhibitors alisertib and danusertib blocked cell cycle progression at the G2/M phase, interfered with chromosome alignment and spindle pole formation, and resulted in preferential growth inhibition compared with parental MCF-7 cells. Even further growth inhibition was obtained when combining the Aurora kinase inhibitors with the antiestrogen fulvestrant. Our study is the first to demonstrate that Aurora kinase A and B may be treatment targets in AI-resistant cells, and our data suggest that therapy targeting both ER and Aurora kinases may be a potent treatment strategy for overcoming AI resistance in breast cancer.
Collapse
|
44
|
Porcelli L, Guida G, Quatrale AE, Cocco T, Sidella L, Maida I, Iacobazzi RM, Ferretta A, Stolfa DA, Strippoli S, Guida S, Tommasi S, Guida M, Azzariti A. Aurora kinase B inhibition reduces the proliferation of metastatic melanoma cells and enhances the response to chemotherapy. J Transl Med 2015; 13:26. [PMID: 25623468 PMCID: PMC4314759 DOI: 10.1186/s12967-015-0385-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/08/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The poor response to chemotherapy and the brief response to vemurafenib in metastatic melanoma patients, make the identification of new therapeutic approaches an urgent need. Interestingly the increased expression and activity of the Aurora kinase B during melanoma progression suggests it as a promising therapeutic target. METHODS The efficacy of the Aurora B kinase inhibitor barasertib-HQPA was evaluated in BRAF mutated cells, sensitive and made resistant to vemurafenib after chronic exposure to the drug, and in BRAF wild type cells. The drug effectiveness has been evaluated as cell growth inhibition, cell cycle progression and cell migration. In addition, cellular effectors of drug resistance and response were investigated. RESULTS The characterization of the effectors responsible for the resistance to vemurafenib evidenced the increased expression of MITF or the activation of Erk1/2 and p-38 kinases in the newly established cell lines with a phenotype resistant to vemurafenib. The sensitivity of cells to barasertib-HQPA was irrespective of BRAF mutational status. Barasertib-HQPA induced the mitotic catastrophe, ultimately causing apoptosis and necrosis of cells, inhibited cell migration and strongly affected the glycolytic metabolism of cells inducing the release of lactate. In association i) with vemurafenib the gain in effectiveness was found only in BRAF(V600K) cells while ii) with nab-paclitaxel, the combination was more effective than each drug alone in all cells. CONCLUSIONS These findings suggest barasertib as a new therapeutic agent and as enhancer of chemotherapy in metastatic melanoma treatment.
Collapse
Affiliation(s)
- Letizia Porcelli
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Gabriella Guida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy.
| | - Anna E Quatrale
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Tiziana Cocco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy.
| | - Letizia Sidella
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Immacolata Maida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy.
| | - Rosa M Iacobazzi
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Anna Ferretta
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy.
| | - Diana A Stolfa
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Sabino Strippoli
- Medical Oncology Department, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Stefania Guida
- Unit of Dermatology and Venereology, University of Bari, P.zza Giulio Cesare, 70124, Bari, Italy.
| | - Stefania Tommasi
- Molecular Genetics Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Michele Guida
- Medical Oncology Department, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| | - Amalia Azzariti
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori Giovanni Paolo II, Viale O. Flacco,65, 70124, Bari, Italy.
| |
Collapse
|
45
|
Lindgren T, Stigbrand T, Råberg A, Riklund K, Johansson L, Eriksson D. Genome wide expression analysis of radiation-induced DNA damage responses in isogenic HCT116 p53+/+ and HCT116 p53−/− colorectal carcinoma cell lines. Int J Radiat Biol 2014; 91:99-111. [DOI: 10.3109/09553002.2015.959668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife 2014; 3. [PMID: 24876129 PMCID: PMC4076869 DOI: 10.7554/elife.02872] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022] Open
Abstract
The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, to release E2F transcription factors. However, this model remains unproven biochemically and the biologically active form(s) of Rb remains unknown. In this study, we find that Rb is exclusively mono-phosphorylated in early G1 phase by cyclin D:Cdk4/6. Mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but show preferential E2F binding patterns. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by quantum hyper-phosphorylation. Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription, whereas cells undergoing differentiation utilize un-phosphorylated Rb. These observations fundamentally change our understanding of G1 cell cycle progression and show that mono-phosphorylated Rb, generated by cyclin D:Cdk4/6, is the only Rb isoform in early G1 phase. DOI:http://dx.doi.org/10.7554/eLife.02872.001 Cells go through a tightly controlled, multi-step procedure before they divide. This cell division program—the cell cycle—is necessary for preventing unrestrained cellular growth, which may lead to cancer. Proteins called cyclins control the progression through each of the phases of the cell cycle, with different cyclins working during different phases. During the G1 phase of the cell cycle, cells grow in size and produce the proteins that are required to copy DNA. Once a cell passes a checkpoint called the 'restriction point' at the end of the G1 phase, it is committed to dividing. It is therefore particularly important to keep events during G1 phase in check. The Retinoblastoma tumor suppresor protein (Rb) is a key player in regulating the G1 phase. Rb sequesters transcription factors that are essential for the cell cycle to progress. Previously, it was thought that a complex called cyclin D added more and more phosphates to the Rb protein during the G1 phase. This process predicted a slow release of transcription factors, which attach to DNA and start the process of DNA replication. While many studies have presented data that is consistent with this model, direct biochemical evidence of these events is lacking. Narasimha, Kaulich, Shapiro et al. now present biochemical analyses of Rb proteins that show—completely unexpectedly—that the cyclin D complex adds just one phosphate group to Rb during the G1 phase, although this group can be added to one of fourteen different sites. The resulting 'mono-phosphorylated' Rb varieties can each sequester different transcription factors and stop them working. At the restriction point, many more phosphate groups are then rapidly added, and the Rb protein is inactivated by a different cyclin. This cyclin—called Cyclin E—then drives cells into the next phase of the cell cycle. Establishing how cyclin E is activated is a priority for future research. DOI:http://dx.doi.org/10.7554/eLife.02872.002
Collapse
Affiliation(s)
- Anil M Narasimha
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States
| | - Manuel Kaulich
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States
| | - Gary S Shapiro
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States
| | - Yoon J Choi
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Piotr Sicinski
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Steven F Dowdy
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States
| |
Collapse
|
47
|
Kumari G, Ulrich T, Krause M, Finkernagel F, Gaubatz S. Induction of p21CIP1 protein and cell cycle arrest after inhibition of Aurora B kinase is attributed to aneuploidy and reactive oxygen species. J Biol Chem 2014; 289:16072-84. [PMID: 24782314 DOI: 10.1074/jbc.m114.555060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell cycle progression requires a series of highly coordinated events that ultimately lead to faithful segregation of chromosomes. Aurora B is an essential mitotic kinase, which is involved in regulation of microtubule-kinetochore attachments and cytokinesis. Inhibition of Aurora B results in stabilization of p53 and induction of p53-target genes such as p21 to inhibit proliferation. We have previously demonstrated that induction of p21 by p53 after inhibition of Aurora B is dependent on the p38 MAPK, which promotes transcriptional elongation of p21 by RNA Pol II. In this study, we show that a subset of p53-target genes are induced in a p38-dependent manner upon inhibition of Aurora B. We also demonstrate that inhibition of Aurora B results in down-regulation of E2F-mediated transcription and that the cell cycle arrest after Aurora B inhibition depends on p53 and pRB tumor suppressor pathways. In addition, we report that activation of p21 after inhibition of Aurora B is correlated with increased chromosome missegregation and aneuploidy but not with binucleation or tetraploidy. We provide evidence that p21 is activated in aneuploid cells by reactive oxygen species (ROS) and p38 MAPK. Finally, we demonstrate that certain drugs that act on aneuploid cells synergize with inhibitors of Aurora B to inhibit colony formation and oncogenic transformation. These findings provide an important link between aneuploidy and the stress pathways activated by Aurora B inhibition and also support the use of Aurora B inhibitors in combination therapy for treatment of cancer.
Collapse
Affiliation(s)
- Geeta Kumari
- From the Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, 97080 Wuerzburg, Germany and
| | - Tanja Ulrich
- From the Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, 97080 Wuerzburg, Germany and
| | - Michael Krause
- the Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Emil-Mannkopffstrasse 2, 35033 Marburg, Germany
| | - Florian Finkernagel
- the Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Emil-Mannkopffstrasse 2, 35033 Marburg, Germany
| | - Stefan Gaubatz
- From the Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, 97080 Wuerzburg, Germany and
| |
Collapse
|
48
|
AMG 900, pan-Aurora kinase inhibitor, preferentially inhibits the proliferation of breast cancer cell lines with dysfunctional p53. Breast Cancer Res Treat 2013; 141:397-408. [PMID: 24091768 DOI: 10.1007/s10549-013-2702-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Aurora kinases play important roles in cell division and are frequently overexpressed in human cancer. AMG 900 is a novel pan-Aurora kinase inhibitor currently being tested in Phase I clinical trials. We aimed to evaluate the in vitro activity of AMG 900 in a panel of 44 human breast cancer and immortalized cell lines and identify predictors of response. AMG 900 inhibited proliferation at low nanomolar concentrations in all cell lines tested. Response was further classified based on the induction of lethality. 25 cell lines were classified as highly sensitive (lethality at 10 nM of AMG 900 >10 %), 19 cell lines as less sensitive to AMG 900 (lethality at 10 nM of AMG 900 <10 %). Traditional molecular subtypes of breast cancer did not predict for this differential response. There was a weak association between AURKA amplification and response to AMG 900 (response ratio = 2.53, p = 0.09). mRNA expression levels of AURKA, AURKB, and AURKC and baseline protein levels of Aurora kinases A and B did not significantly associate with response. Cell lines with TP53 loss of function mutations (RR = 1.86, p = 0.004) and low baseline p21 protein levels (RR = 2.28, p = 0.0004) were far more likely to be classified as highly sensitive to AMG 900. AMG 900 induced p53 and p21 protein expression in cell lines with wt TP53. AMG 900 caused the accumulation of cells with >4 N DNA content in a majority of cell lines independently of sensitivity and p53 status. AMG 900 induced more pronounced apoptosis in highly sensitive p53-dysfunctional cell lines. We have found that AMG 900 is highly active in breast cancer cell lines and that TP53 loss of function mutations as well as low baseline expression of p21 protein predict strongly for increased sensitivity to this compound in vitro.
Collapse
|
49
|
Salmela AL, Kallio MJ. Mitosis as an anti-cancer drug target. Chromosoma 2013; 122:431-49. [PMID: 23775312 DOI: 10.1007/s00412-013-0419-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 12/15/2022]
Abstract
Suppression of cell proliferation by targeting mitosis is one potential cancer intervention. A number of existing chemotherapy drugs disrupt mitosis by targeting microtubule dynamics. While efficacious, these drugs have limitations, i.e. neuropathy, unpredictability and development of resistance. In order to overcome these issues, a great deal of effort has been spent exploring novel mitotic targets including Polo-like kinase 1, Aurora kinases, Mps1, Cenp-E and KSP/Eg5. Here we summarize the latest developments in the discovery and clinical evaluation of new mitotic drug targets.
Collapse
Affiliation(s)
- Anna-Leena Salmela
- VTT Biotechnology for Health and Wellbeing, VTT Technical Research Centre of Finland, Itäinen Pitkäkatu 4C, Pharmacity Bldg, 4th Floor, P.O. Box 106, 20521, Turku, Finland
| | | |
Collapse
|
50
|
EBNA3C-mediated regulation of aurora kinase B contributes to Epstein-Barr virus-induced B-cell proliferation through modulation of the activities of the retinoblastoma protein and apoptotic caspases. J Virol 2013; 87:12121-38. [PMID: 23986604 DOI: 10.1128/jvi.02379-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic gammaherpesvirus that is implicated in several human malignancies, including Burkitt's lymphoma (BL), posttransplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma (NPC), and AIDS-associated lymphomas. Epstein-Barr nuclear antigen 3C (EBNA3C), one of the essential EBV latent antigens, can induce mammalian cell cycle progression through its interaction with cell cycle regulators. Aurora kinase B (AK-B) is important for cell division, and deregulation of AK-B is associated with aneuploidy, incomplete mitotic exit, and cell death. Our present study shows that EBNA3C contributes to upregulation of AK-B transcript levels by enhancing the activity of its promoter. Further, EBNA3C also increased the stability of the AK-B protein, and the presence of EBNA3C leads to reduced ubiquitination of AK-B. Importantly, EBNA3C in association with wild-type AK-B but not with its kinase-dead mutant led to enhanced cell proliferation, and AK-B knockdown can induce nuclear blebbing and cell death. This phenomenon was rescued in the presence of EBNA3C. Knockdown of AK-B resulted in activation of caspase 3 and caspase 9, along with poly(ADP-ribose) polymerase 1 (PARP1) cleavage, which is known to be an important contributor to apoptotic signaling. Importantly, EBNA3C failed to stabilize the kinase-dead mutant of AK-B compared to wild-type AK-B, which suggests a role for the kinase domain in AK-B stabilization and downstream phosphorylation of the cell cycle regulator retinoblastoma protein (Rb). This study demonstrates the functional relevance of AK-B kinase activity in EBNA3C-regulated B-cell proliferation and apoptosis.
Collapse
|