1
|
Tokarz VL, Mylvaganam S, Klip A. Palmitate-induced insulin resistance causes actin filament stiffness and GLUT4 mis-sorting without altered Akt signalling. J Cell Sci 2023; 136:jcs261300. [PMID: 37815440 DOI: 10.1242/jcs.261300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Skeletal muscle insulin resistance, a major contributor to type 2 diabetes, is linked to the consumption of saturated fats. This insulin resistance arises from failure of insulin-induced translocation of glucose transporter type 4 (GLUT4; also known as SLC2A4) to the plasma membrane to facilitate glucose uptake into muscle. The mechanisms of defective GLUT4 translocation are poorly understood, limiting development of insulin-sensitizing therapies targeting muscle glucose uptake. Although many studies have identified early insulin signalling defects and suggest that they are responsible for insulin resistance, their cause-effect has been debated. Here, we find that the saturated fat palmitate (PA) causes insulin resistance owing to failure of GLUT4 translocation in skeletal muscle myoblasts and myotubes without impairing signalling to Akt2 or AS160 (also known as TBC1D4). Instead, PA altered two basal-state events: (1) the intracellular localization of GLUT4 and its sorting towards a perinuclear storage compartment, and (2) actin filament stiffness, which prevents Rac1-dependent actin remodelling. These defects were triggered by distinct mechanisms, respectively protein palmitoylation and endoplasmic reticulum (ER) stress. Our findings highlight that saturated fats elicit muscle cell-autonomous dysregulation of the basal-state machinery required for GLUT4 translocation, which 'primes' cells for insulin resistance.
Collapse
Affiliation(s)
- Victoria L Tokarz
- Department of Physiology, University of Toronto, Ontario, M5S 1A8, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Sivakami Mylvaganam
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Ontario, M5S 1A8, Canada
| | - Amira Klip
- Department of Physiology, University of Toronto, Ontario, M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
2
|
Fryklund C, Neuhaus M, Morén B, Borreguero-Muñoz A, Lundmark R, Stenkula KG. Expansion of the Inguinal Adipose Tissue Depot Correlates With Systemic Insulin Resistance in C57BL/6J Mice. Front Cell Dev Biol 2022; 10:942374. [PMID: 36158197 PMCID: PMC9489915 DOI: 10.3389/fcell.2022.942374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
To accommodate surplus energy, the adipose tissue expands by increasing adipocyte size (hypertrophy) and number (hyperplasia). The presence of hypertrophic adipocytes is a key characteristic of adipose tissue dysfunction. High-fat diet (HFD) fed C57BL/6J mice are a commonly used model to study obesity and obesity-related complications. In the present study, we have characterized adipose plasticity, at both the cellular and tissue level, by examining the temporal development of systemic insulin resistance and adiposity in response to HFD-feeding for 4, 8, and 12 weeks (4w, 8w, and 12w). Within the same time frame, we examined systemic metabolic flexibility and adipose plasticity when switching from HFD- to chow-diet during the last 2 weeks of diet intervention (referred to as the reverse (REV) group: 4wREV (2w HFD+2w chow), 8wREV (6w HFD+2w chow), 12wREV (10w HFD+2w chow)). In response to HFD-feeding over time, the 12w group had impaired systemic insulin sensitivity compared to both the 4w and 8w groups, accompanied by an increase in hypertrophic inguinal adipocytes and liver triglycerides. After reversing from HFD- to chow-feeding, most parameters were completely restored to chow control levels for 4wREV and 8wREV groups. In contrast, the 12wREV group had a significantly increased number of hypertrophic adipocytes, liver triglycerides accumulation, and impaired systemic insulin sensitivity compared to chow-fed mice. Further, image analysis at the single-cell level revealed a cell-size dependent organization of actin filaments for all feeding conditions. Indeed, the impaired adipocyte size plasticity in the 12wREV group was accompanied by increased actin filamentation and reduced insulin-stimulated glucose uptake compared with chow-fed mice. In summary, these results demonstrate that the C57BL/6J HFD-feeding model has a large capacity to restore adipocyte cell size and systemic insulin sensitivity, and that a metabolic tipping point occurs between 8 and 12w of HFD-feeding where this plasticity deteriorates. We believe these findings provide substantial understanding of C57BL/6J mice as an obesity model, and that an increased pool of hypertrophic ING adipocytes could contribute to aggravated insulin resistance.
Collapse
Affiliation(s)
- Claes Fryklund
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Claes Fryklund,
| | - Mathis Neuhaus
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Björn Morén
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | | | - Karin G. Stenkula
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Dissanayake WC, Shepherd PR. β-cells retain a pool of insulin-containing secretory vesicles regulated by adherens junctions and the cadherin binding protein p120 catenin. J Biol Chem 2022; 298:102240. [PMID: 35809641 PMCID: PMC9358467 DOI: 10.1016/j.jbc.2022.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022] Open
Abstract
The β-cells of the islets of Langerhans are the sole producers of insulin in the human body. In response to rising glucose levels, insulin-containing vesicles inside β-cells fuse with the plasma membrane and release their cargo. However, the mechanisms regulating this process are only partly understood. Previous evidence indicated reductions in α-catenin elevate insulin release, while reductions in β-catenin decrease insulin release. α- and β-catenin contribute to cellular regulation in a range of ways but one is as members of the adherens junction complex and these contribute to the development of cell polarity in b-cells. Therefore, we investigated the effects of adherens junctions on insulin release. We show in INS-1E β-cells knockdown of either E- or N-cadherin had only small effects on insulin secretion, but simultaneous knockout of both cadherins resulted in a significant increase in basal insulin release to the same level as glucose-stimulated release. This double knockdown also significantly attenuated levels of p120 catenin, a cadherin binding partner involved in regulating cadherin turnover. Conversely, reducing p120 catenin levels with siRNA destabilized both E- and N-cadherin, and this was also associated with an increase in levels of insulin secreted from INS-1E cells. Furthermore, there were also changes in these cells consistent with higher insulin release, namely reductions in levels of F-actin and increased intracellular free Ca2+ levels in response to KCl-induced membrane depolarization. Taken together, these data provide evidence that adherens junctions play important roles in retaining a pool of insulin secretory vesicles within the cell and establish a role for p120 catenin in regulating this process.
Collapse
Affiliation(s)
- Waruni C Dissanayake
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Fryklund C, Morén B, Neuhaus M, Periwal V, Stenkula KG. Rosiglitazone treatment enhances intracellular actin dynamics and glucose transport in hypertrophic adipocytes. Life Sci 2022; 299:120537. [PMID: 35398016 DOI: 10.1016/j.lfs.2022.120537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
AIMS To accommodate surplus energy, adipose tissue expands by increasing both adipose cell size (hypertrophy) and cell number (hyperplasia). Enlarged, hypertrophic adipocytes are known to have reduced insulin response and impaired glucose transport, which negatively influence whole-body glucose homeostasis. Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, known to stimulate hyperplasia and to efficiently improve insulin sensitivity. Still, a limited amount of research has investigated the effects of rosiglitazone in mature, hypertrophic adipocytes. Therefore, the objective of this study was to examine rosiglitazone's effect on insulin-stimulated glucose uptake in hypertrophic adipocytes. MAIN METHODS C57BL/6J male mice were subjected to 2 weeks of high-fat diet (HFD) followed by 1 week of HFD combined with daily administration of rosiglitazone (10 mg/kg). Adipose cell-size distribution and gene expression were analysed in intact adipose tissue, and glucose uptake, insulin response, and protein expression were examined using primary adipocytes isolated from epididymal and inguinal adipose tissue. KEY FINDINGS HFD-feeding induced an accumulation of hypertrophic adipocytes, which was not affected by rosiglitazone-treatment. Still, rosiglitazone efficiently improved insulin-stimulated glucose transport without restoring insulin signaling or GLUT4 expression in similar-sized adipocytes. This improvement occurred concurrently with extracellular matrix remodelling and restored intracellular levels of targets involved in actin turnover. SIGNIFICANCE These results demonstrate that rosiglitazone improves glucose transport in hypertrophic adipocytes, and highlights the importance of the cytoskeleton and extracellular matrix as potential therapeutic targets.
Collapse
Affiliation(s)
- Claes Fryklund
- Department of Experimental Medical Science, Lund University, Sweden.
| | - Björn Morén
- Department of Experimental Medical Science, Lund University, Sweden
| | | | - Vipul Periwal
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, USA
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
5
|
Fazakerley DJ, Koumanov F, Holman GD. GLUT4 On the move. Biochem J 2022; 479:445-462. [PMID: 35147164 PMCID: PMC8883492 DOI: 10.1042/bcj20210073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
Insulin rapidly stimulates GLUT4 translocation and glucose transport in fat and muscle cells. Signals from the occupied insulin receptor are translated into downstream signalling changes in serine/threonine kinases within timescales of seconds, and this is followed by delivery and accumulation of the glucose transporter GLUT4 at the plasma membrane. Kinetic studies have led to realisation that there are distinct phases of this stimulation by insulin. There is a rapid initial burst of GLUT4 delivered to the cell surface from a subcellular reservoir compartment and this is followed by a steady-state level of continuing stimulation in which GLUT4 recycles through a large itinerary of subcellular locations. Here, we provide an overview of the phases of insulin stimulation of GLUT4 translocation and the molecules that are currently considered to activate these trafficking steps. Furthermore, we suggest how use of new experimental approaches together with phospho-proteomic data may help to further identify mechanisms for activation of these trafficking processes.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Francoise Koumanov
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset BA2 7AY, U.K
| | - Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset BA2 7AY, U.K
| |
Collapse
|
6
|
Martins VF, LaBarge SA, Stanley A, Svensson K, Hung CW, Keinan O, Ciaraldi TP, Banoian D, Park JE, Ha C, Hetrick B, Meyer GA, Philp A, David LL, Henry RR, Aslan JE, Saltiel AR, McCurdy CE, Schenk S. p300 or CBP is required for insulin-stimulated glucose uptake in skeletal muscle and adipocytes. JCI Insight 2021; 7:141344. [PMID: 34813504 PMCID: PMC8765050 DOI: 10.1172/jci.insight.141344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
While current thinking posits that insulin signaling to GLUT4 exocytic translocation and glucose uptake in skeletal muscle and adipocytes is controlled by phosphorylation-based signaling, many proteins in this pathway are acetylated on lysine residues. However, the importance of acetylation and lysine acetyltransferases to insulin-stimulated glucose uptake is incompletely defined. Here, we demonstrate that combined loss of the acetyltransferases E1A binding protein p300 (p300) and cAMP response element binding protein binding protein (CBP) in mouse skeletal muscle causes a complete loss of insulin-stimulated glucose uptake. Similarly, brief (i.e. 1 h) pharmacological inhibition of p300/CBP acetyltransferase activity recapitulates this phenotype in human and rodent myotubes, 3T3-L1 adipocytes, and mouse muscle. Mechanistically, these effects are due to p300/CBP-mediated regulation of GLUT4 exocytic translocation and occurs downstream of Akt signaling. Taken together, we highlight a fundamental role for acetylation and p300/CBP in the direct regulation of insulin-stimulated glucose transport in skeletal muscle and adipocytes.
Collapse
Affiliation(s)
- Vitor F Martins
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Samuel A LaBarge
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Alexandra Stanley
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Kristoffer Svensson
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Chao-Wei Hung
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Omer Keinan
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Theodore P Ciaraldi
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Dion Banoian
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Ji E Park
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Christina Ha
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, United States of America
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, United States of America
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States of America
| | - Robert R Henry
- Division of Endocrinology & Metabolism, VA San Diego Healthcare System, San Diego, United States of America
| | - Joseph E Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, United States of America
| | - Alan R Saltiel
- University of California, San Diego, La Jolla, United States of America
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, United States of America
| | - Simon Schenk
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| |
Collapse
|
7
|
Batty SR, Langlais PR. Microtubules in insulin action: what's on the tube? Trends Endocrinol Metab 2021; 32:776-789. [PMID: 34462181 PMCID: PMC8446328 DOI: 10.1016/j.tem.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Microtubules (MT) have a role in the intracellular response to insulin stimulation and subsequent glucose transport by glucose transporter 4 (GLUT4), which resides in specialized storage vesicles that travel through the cell. Before GLUT4 is inserted into the plasma membrane for glucose transport, it undergoes complex trafficking through the cell via the integration of cytoskeletal networks. In this review, we highlight the importance of MT elements in insulin action in adipocytes through a summary of MT depolymerization studies, MT-based GLUT4 movement, molecular motor proteins involved in GLUT4 trafficking, as well as MT-related phenomena in response to insulin and links between insulin action and MT-associated proteins.
Collapse
Affiliation(s)
- Skylar R Batty
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
8
|
Rogacka D. Insulin resistance in glomerular podocytes: Potential mechanisms of induction. Arch Biochem Biophys 2021; 710:109005. [PMID: 34371008 DOI: 10.1016/j.abb.2021.109005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023]
Abstract
Glomerular podocytes are a target for the actions of insulin. Accumulating evidence indicates that exposure to nutrient overload induces insulin resistance in these cells, manifested by abolition of the stimulatory effect of insulin on glucose uptake. Numerous recent studies have investigated potential mechanisms of the induction of insulin resistance in podocytes. High glucose concentrations stimulated reactive oxygen species production through NADPH oxidase activation, decreased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and reduced deacetylase sirtuin 1 (SIRT1) protein levels and activity. Calcium signaling involving transient receptor potential cation channel C, member 6 (TRPC6) also was demonstrated to play an essential role in the regulation of insulin-dependent signaling and glucose uptake in podocytes. Furthermore, podocytes exposed to diabetic environment, with elevated insulin levels become insulin resistant as a result of degradation of insulin receptor (IR), resulting in attenuation of insulin signaling responsiveness. Also elevated levels of palmitic acid appear to be an important factor and contributor to podocytes insulin resistance. This review summarizes cellular and molecular alterations that contribute to the development of insulin resistance in glomerular podocytes.
Collapse
Affiliation(s)
- Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
9
|
Abstract
As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.
Collapse
|
10
|
Wang T, Wang J, Hu X, Huang XJ, Chen GX. Current understanding of glucose transporter 4 expression and functional mechanisms. World J Biol Chem 2020; 11:76-98. [PMID: 33274014 PMCID: PMC7672939 DOI: 10.4331/wjbc.v11.i3.76] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/22/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose transporters (GLUTs) are transmembrane proteins that transport glucose across the cell membrane. Insulin promotes glucose utilization in part through promoting glucose entry into the skeletal and adipose tissues. This has been thought to be achieved through insulin-induced GLUT4 translocation from intracellular compartments to the cell membrane, which increases the overall rate of glucose flux into a cell. The insulin-induced GLUT4 translocation has been investigated extensively. Recently, significant progress has been made in our understanding of GLUT4 expression and translocation. Here, we summarized the methods and reagents used to determine the expression levels of Slc2a4 mRNA and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose tissues, heart and brain. Overall, a variety of methods such real-time polymerase chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, stable cell line and transgenic animals have been used to answer particular questions related to GLUT4 system and insulin action. It seems that insulin-induced GLUT4 translocation can be observed in the heart and brain in addition to the skeletal muscle and adipocytes. Hormones other than insulin can induce GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future to advance of our understanding of glucose homeostasis.
Collapse
Affiliation(s)
- Tiannan Wang
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| | - Jing Wang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Xinge Hu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| | - Xian-Ju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
11
|
Chang YH, Tsai JN, Chang SW, Hsu WT, Yang CP, Hsiao CW, Shiau MY. Regulation of Adipogenesis and Lipid Deposits by Collapsin Response Mediator Protein 2. Int J Mol Sci 2020; 21:ijms21062172. [PMID: 32245267 PMCID: PMC7139951 DOI: 10.3390/ijms21062172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
As emerging evidence suggesting neurodegenerative diseases and metabolic diseases have common pathogenesis, we hypothesized that the neurite outgrowth-controlling collapsin response mediator protein 2 (CRMP2) was involved in energy homeostasis. Therefore, putative roles of CRMP2 in adipocyte differentiation (adipogenesis) and lipid metabolism were explored and addressed in this study. CRMP2 expression profiles were in vitro and in vivo characterized during adipogenic process of 3T3-L1 pre-adipocytes and diet-induced obese (DIO) mice, respectively. Effects of CRMP2 on lipid metabolism and deposits were also analyzed. Our data revealed that CRMP2 expression pattern was coupled with adipogenic stages. CRMP2 overexpression inhibited cell proliferation at MCE phase, and significantly reduced lipid contents by down-regulating adipogenesis-driving transcription factors and lipid-synthesizing enzymes. Interestingly, GLUT4 translocation and the lipid droplets fusion were disturbed in CRMP2-silencing cells by affecting actin polymerization. Moreover, adipose CRMP2 was significantly increased in DIO mice, indicating CRMP2 is associated with obesity. Accordingly, CRMP2 exerts multiple functions in adipogenesis and lipid deposits through mediating cell proliferation, glucose/lipid metabolism and cytoskeleton dynamics. The present study identifies novel roles of CRMP2 in mediating adipogenesis and possible implication in metabolic disorders, as well as provides molecular evidence supporting the link of pathogenesis between neurodegenerative diseases and metabolic abnormalities.
Collapse
Affiliation(s)
- Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Jen-Ning Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan;
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shu-Wen Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Wei-Ting Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Ching-Ping Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Chiao-Wan Hsiao
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 112, Taiwan
| | - Ming-Yuh Shiau
- Department of Nursing, College of Nursing, Hungkuang University, Taichung 433, Taiwan
- Correspondence: or ; Tel.: +886-4-26318652 (ext. 7090); Fax: +886-4-26331198
| |
Collapse
|
12
|
Hansson B, Morén B, Fryklund C, Vliex L, Wasserstrom S, Albinsson S, Berger K, Stenkula KG. Adipose cell size changes are associated with a drastic actin remodeling. Sci Rep 2019; 9:12941. [PMID: 31506540 PMCID: PMC6736966 DOI: 10.1038/s41598-019-49418-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Adipose tissue plays a major role in regulating whole-body insulin sensitivity and energy metabolism. To accommodate surplus energy, the tissue rapidly expands by increasing adipose cell size (hypertrophy) and cell number (hyperplasia). Previous studies have shown that enlarged, hypertrophic adipocytes are less responsive to insulin, and that adipocyte size could serve as a predictor for the development of type 2 diabetes. In the present study, we demonstrate that changes in adipocyte size correlate with a drastic remodeling of the actin cytoskeleton. Expansion of primary adipocytes following 2 weeks of high-fat diet (HFD)-feeding in C57BL6/J mice was associated with a drastic increase in filamentous (F)-actin as assessed by fluorescence microscopy, increased Rho-kinase activity, and changed expression of actin-regulating proteins, favoring actin polymerization. At the same time, increased cell size was associated with impaired insulin response, while the interaction between the cytoskeletal scaffolding protein IQGAP1 and insulin receptor substrate (IRS)-1 remained intact. Reversed feeding from HFD to chow restored cell size, insulin response, expression of actin-regulatory proteins and decreased the amount of F-actin filaments. Together, we report a drastic cytoskeletal remodeling during adipocyte expansion, a process which could contribute to deteriorating adipocyte function.
Collapse
Affiliation(s)
- Björn Hansson
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| | - Björn Morén
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| | - Claes Fryklund
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| | - Lars Vliex
- Lund University, Department of Experimental Medical Science, Lund, Sweden.,Maastricht University, Faculty of Health, Medicine and Life Sciences, Maastricht, The Netherlands
| | | | | | - Karin Berger
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| | - Karin G Stenkula
- Lund University, Department of Experimental Medical Science, Lund, Sweden.
| |
Collapse
|
13
|
Abstract
A pivotal metabolic function of insulin is the stimulation of glucose uptake into muscle and adipose tissues. The discovery of the insulin-responsive glucose transporter type 4 (GLUT4) protein in 1988 inspired its molecular cloning in the following year. It also spurred numerous cellular mechanistic studies laying the foundations for how insulin regulates glucose uptake by muscle and fat cells. Here, we reflect on the importance of the GLUT4 discovery and chronicle additional key findings made in the past 30 years. That exocytosis of a multispanning membrane protein regulates cellular glucose transport illuminated a novel adaptation of the secretory pathway, which is to transiently modulate the protein composition of the cellular plasma membrane. GLUT4 controls glucose transport into fat and muscle tissues in response to insulin and also into muscle during exercise. Thus, investigation of regulated GLUT4 trafficking provides a major means by which to map the essential signaling components that transmit the effects of insulin and exercise. Manipulation of the expression of GLUT4 or GLUT4-regulating molecules in mice has revealed the impact of glucose uptake on whole-body metabolism. Remaining gaps in our understanding of GLUT4 function and regulation are highlighted here, along with opportunities for future discoveries and for the development of therapeutic approaches to manage metabolic disease.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
14
|
Wang H, Pilch PF, Liu L. Cavin-1/PTRF mediates insulin-dependent focal adhesion remodeling and ameliorates high-fat diet-induced inflammatory responses in mice. J Biol Chem 2019; 294:10544-10552. [PMID: 31126986 DOI: 10.1074/jbc.ra119.008824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/20/2019] [Indexed: 11/06/2022] Open
Abstract
Cavin-1/polymerase I and transcript release factor (PTRF) is a requisite component of caveolae, small plasma membrane invaginations that are highly abundant in adipocytes. Cavin-1 is a dynamic molecule whose dissociation from caveolae plays an important role in mechanoprotection and rRNA synthesis. In the former situation, the acute dissociation of cavin-1 from caveolae allows cell membrane expansion that occurs upon insulin-aided lipid uptake into the fat cells. Cavin-1 dissociation from caveolae and membrane flattening alters the cytoskeleton and the interaction of plasma membrane proteins with the extracellular matrix through interactions with focal adhesion structures. Here, using cavin-1 knockout mice, subcellular fractionation, and immunoblotting methods, we addressed the relationship of cavin-1 with focal adhesion complexes following nutritional stimulation. We found that cavin-1 is acutely translocated to focal complex compartments upon insulin stimulation, where it regulates focal complex formation through an interaction with paxillin. We found that loss of cavin-1 impairs focal complex remodeling and focal adhesion formation and causes a mechanical stress response, concomitant with activation of proinflammatory and senescence/apoptosis pathways. We conclude that cavin-1 plays key roles in dynamic remodeling of focal complexes upon metabolic stimulation. This mechanism also underlies the crucial role of caveolae in the long-term healthy expansion of the adipocyte.
Collapse
Affiliation(s)
- Hong Wang
- From the Departments of Biochemistry
| | - Paul F Pilch
- From the Departments of Biochemistry.,Medicine, and
| | - Libin Liu
- From the Departments of Biochemistry, .,Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
15
|
Møller LLV, Klip A, Sylow L. Rho GTPases-Emerging Regulators of Glucose Homeostasis and Metabolic Health. Cells 2019; 8:E434. [PMID: 31075957 PMCID: PMC6562660 DOI: 10.3390/cells8050434] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Rho guanosine triphosphatases (GTPases) are key regulators in a number of cellular functions, including actin cytoskeleton remodeling and vesicle traffic. Traditionally, Rho GTPases are studied because of their function in cell migration and cancer, while their roles in metabolism are less documented. However, emerging evidence implicates Rho GTPases as regulators of processes of crucial importance for maintaining metabolic homeostasis. Thus, the time is now ripe for reviewing Rho GTPases in the context of metabolic health. Rho GTPase-mediated key processes include the release of insulin from pancreatic β cells, glucose uptake into skeletal muscle and adipose tissue, and muscle mass regulation. Through the current review, we cast light on the important roles of Rho GTPases in skeletal muscle, adipose tissue, and the pancreas and discuss the proposed mechanisms by which Rho GTPases act to regulate glucose metabolism in health and disease. We also describe challenges and goals for future research.
Collapse
Affiliation(s)
- Lisbeth Liliendal Valbjørn Møller
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark.
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark.
| |
Collapse
|
16
|
Brewer PD, Romenskaia I, Mastick CC. A high-throughput chemical-genetics screen in murine adipocytes identifies insulin-regulatory pathways. J Biol Chem 2018; 294:4103-4118. [PMID: 30591588 DOI: 10.1074/jbc.ra118.006986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Pathways linking activation of the insulin receptor to downstream targets of insulin have traditionally been studied using a candidate gene approach. To elucidate additional pathways regulating insulin activity, we performed a forward chemical-genetics screen based on translocation of a glucose transporter 4 (Glut4) reporter expressed in murine 3T3-L1 adipocytes. To identify compounds with known targets, we screened drug-repurposing and natural product libraries. We identified, confirmed, and validated 64 activators and 65 inhibitors that acutely increase or rapidly decrease cell-surface Glut4 in adipocytes stimulated with submaximal insulin concentrations. These agents were grouped by target, chemical class, and mechanism of action. All groups contained multiple hits from a single drug class, and several comprised multiple structurally unrelated hits for a single target. Targets include the β-adrenergic and adenosine receptors. Agonists of these receptors increased and inverse agonists/antagonists decreased cell-surface Glut4 independently of insulin. Additional activators include insulin sensitizers (thiazolidinediones), insulin mimetics, dis-inhibitors (the mTORC1 inhibitor rapamycin), cardiotonic steroids (the Na+/K+-ATPase inhibitor ouabain), and corticosteroids (dexamethasone). Inhibitors include heterocyclic amines (tricyclic antidepressants) and 21 natural product supplements and herbal extracts. Mechanisms of action include effects on Glut4 trafficking, signal transduction, inhibition of protein synthesis, and dissipation of proton gradients. Two pathways that acutely regulate Glut4 translocation were discovered: de novo protein synthesis and endocytic acidification. The mechanism of action of additional classes of activators (tanshinones, dalbergiones, and coumarins) and inhibitors (flavonoids and resveratrol) remains to be determined. These tools are among the most sensitive, responsive, and reproducible insulin-activity assays described to date.
Collapse
Affiliation(s)
- Paul Duffield Brewer
- From the Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557
| | - Irina Romenskaia
- From the Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557
| | - Cynthia Corley Mastick
- From the Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557
| |
Collapse
|
17
|
Parreno J, Fowler VM. Multifunctional roles of tropomodulin-3 in regulating actin dynamics. Biophys Rev 2018; 10:1605-1615. [PMID: 30430457 DOI: 10.1007/s12551-018-0481-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Tropomodulins (Tmods) are proteins that cap the slow-growing (pointed) ends of actin filaments (F-actin). The basis for our current understanding of Tmod function comes from studies in cells with relatively stable and highly organized F-actin networks, leading to the view that Tmod capping functions principally to preserve F-actin stability. However, not only is Tmod capping dynamic, but it also can play major roles in regulating diverse cellular processes involving F-actin remodeling. Here, we highlight the multifunctional roles of Tmod with a focus on Tmod3. Like other Tmods, Tmod3 binds tropomyosin (Tpm) and actin, capping pure F-actin at submicromolar and Tpm-coated F-actin at nanomolar concentrations. Unlike other Tmods, Tmod3 can also bind actin monomers and its ability to bind actin is inhibited by phosphorylation of Tmod3 by Akt2. Tmod3 is ubiquitously expressed and is present in a diverse array of cytoskeletal structures, including contractile structures such as sarcomere-like units of actomyosin stress fibers and in the F-actin network encompassing adherens junctions. Tmod3 participates in F-actin network remodeling in lamellipodia during cell migration and in the assembly of specialized F-actin networks during exocytosis. Furthermore, Tmod3 is required for development, regulating F-actin mesh formation during meiosis I of mouse oocytes, erythroblast enucleation in definitive erythropoiesis, and megakaryocyte morphogenesis in the mouse fetal liver. Thus, Tmod3 plays vital roles in dynamic and stable F-actin networks in cell physiology and development, with further research required to delineate the mechanistic details of Tmod3 regulation in the aforementioned processes, or in other yet to be discovered processes.
Collapse
Affiliation(s)
- Justin Parreno
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function. J Cell Biol 2018; 217:2273-2289. [PMID: 29622564 PMCID: PMC6028526 DOI: 10.1083/jcb.201802095] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022] Open
Abstract
Insulin is the paramount anabolic hormone, promoting carbon energy deposition in the body. Its synthesis, quality control, delivery, and action are exquisitely regulated by highly orchestrated intracellular mechanisms in different organs or "stations" of its bodily journey. In this Beyond the Cell review, we focus on these five stages of the journey of insulin through the body and the captivating cell biology that underlies the interaction of insulin with each organ. We first analyze insulin's biosynthesis in and export from the β-cells of the pancreas. Next, we focus on its first pass and partial clearance in the liver with its temporality and periodicity linked to secretion. Continuing the journey, we briefly describe insulin's action on the blood vasculature and its still-debated mechanisms of exit from the capillary beds. Once in the parenchymal interstitium of muscle and adipose tissue, insulin promotes glucose uptake into myofibers and adipocytes, and we elaborate on the intricate signaling and vesicle traffic mechanisms that underlie this fundamental function. Finally, we touch upon the renal degradation of insulin to end its action. Cellular discernment of insulin's availability and action should prove critical to understanding its pivotal physiological functions and how their failure leads to diabetes.
Collapse
Affiliation(s)
- Victoria L Tokarz
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Dissanayake WC, Sorrenson B, Cognard E, Hughes WE, Shepherd PR. β-catenin is important for the development of an insulin responsive pool of GLUT4 glucose transporters in 3T3-L1 adipocytes. Exp Cell Res 2018. [PMID: 29540328 DOI: 10.1016/j.yexcr.2018.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GLUT4 is unique among specialized glucose transporters in being exclusively expressed in muscle and adipocytes. In the absence of insulin the distribution of GLUT4 is preferentially intracellular and insulin stimulation results in the movement of GLUT4 containing vesicles to the plasma membrane. This process is responsible for the insulin stimulation of glucose uptake in muscle and fat. While signalling pathways triggering the translocation of GLUT4 are well understood, the mechanisms regulating the intracellular retention of GLUT4 are less well understood. Here we report a role for β-catenin in this process. In 3T3-L1 adipocytes in which β-catenin is depleted, the levels of GLUT4 at and near the plasma membrane rise in unstimulated cells while the subsequent increase in GLUT4 at the plasma membrane upon insulin stimulation is reduced. Small molecule approaches to acutely activate or inhibit β-catenin give results that support the results obtained with siRNA and these changes are accompanied by matching changes in glucose transport into these cells. Together these results indicate that β-catenin is a previously unrecognized regulator of the mechanisms that control the insulin sensitive pool of GLUT4 transporters inside these adipocyte cells.
Collapse
Affiliation(s)
- Waruni C Dissanayake
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Brie Sorrenson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Emmanuelle Cognard
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William E Hughes
- Department of Medicine, St. Vincent's Hospital, Victoria Street, Sydney 2010, Australia; The Garvan Institute of Medical Research, 384 Victoria Street, Sydney 2010, Australia
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
20
|
Jaldin-Fincati JR, Pavarotti M, Frendo-Cumbo S, Bilan PJ, Klip A. Update on GLUT4 Vesicle Traffic: A Cornerstone of Insulin Action. Trends Endocrinol Metab 2017; 28:597-611. [PMID: 28602209 DOI: 10.1016/j.tem.2017.05.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Glucose transport is rate limiting for dietary glucose utilization by muscle and fat. The glucose transporter GLUT4 is dynamically sorted and retained intracellularly and redistributes to the plasma membrane (PM) by insulin-regulated vesicular traffic, or 'GLUT4 translocation'. Here we emphasize recent findings in GLUT4 translocation research. The application of total internal reflection fluorescence microscopy (TIRFM) has increased our understanding of insulin-regulated events beneath the PM, such as vesicle tethering and membrane fusion. We describe recent findings on Akt-targeted Rab GTPase-activating proteins (GAPs) (TBC1D1, TBC1D4, TBC1D13) and downstream Rab GTPases (Rab8a, Rab10, Rab13, Rab14, and their effectors) along with the input of Rac1 and actin filaments, molecular motors [myosinVa (MyoVa), myosin1c (Myo1c), myosinIIA (MyoIIA)], and membrane fusion regulators (syntaxin4, munc18c, Doc2b). Collectively these findings reveal novel events in insulin-regulated GLUT4 traffic.
Collapse
Affiliation(s)
| | - Martin Pavarotti
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza 5500, Argentina
| | - Scott Frendo-Cumbo
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
21
|
Sorrenson B, Cognard E, Lee KL, Dissanayake WC, Fu Y, Han W, Hughes WE, Shepherd PR. A Critical Role for β-Catenin in Modulating Levels of Insulin Secretion from β-Cells by Regulating Actin Cytoskeleton and Insulin Vesicle Localization. J Biol Chem 2016; 291:25888-25900. [PMID: 27777306 DOI: 10.1074/jbc.m116.758516] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/20/2016] [Indexed: 12/19/2022] Open
Abstract
The processes regulating glucose-stimulated insulin secretion (GSIS) and its modulation by incretins in pancreatic β-cells are only partly understood. Here we investigate the involvement of β-catenin in these processes. Reducing β-catenin levels using siRNA knockdown attenuated GSIS in a range of β-cell models and blocked the ability of GLP-1 agonists and the depolarizing agent KCl to potentiate this. This could be mimicked in both β-cell models and isolated islets by short-term exposure to the β-catenin inhibitory drug pyrvinium. In addition, short-term treatment with a drug that increases β-catenin levels results in an increase in insulin secretion. The timing of these effects suggests that β-catenin is required for the processes regulating trafficking and/or release of pre-existing insulin granules rather than for those regulated by gene expression. This was supported by the finding that the overexpression of the transcriptional co-activator of β-catenin, transcription factor 7-like 2 (TCF7L2), attenuated insulin secretion, consistent with the extra TCF7L2 translocating β-catenin from the plasma membrane pool to the nucleus. We show that β-catenin depletion disrupts the intracellular actin cytoskeleton, and by using total internal reflectance fluorescence (TIRF) microscopy, we found that β-catenin is required for the glucose- and incretin-induced depletion of insulin vesicles from near the plasma membrane. In conclusion, we find that β-catenin levels modulate Ca2+-dependent insulin exocytosis under conditions of glucose, GLP-1, or KCl stimulation through a role in modulating insulin secretory vesicle localization and/or fusion via actin remodeling. These findings also provide insights as to how the overexpression of TCF7L2 may attenuate insulin secretion.
Collapse
Affiliation(s)
- Brie Sorrenson
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,the Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Emmanuelle Cognard
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kathryn L Lee
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Waruni C Dissanayake
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yanyun Fu
- the Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore 138667
| | - Weiping Han
- the Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore 138667
| | - William E Hughes
- the Department of Medicine, St. Vincent's Hospital, Victoria Street, Sydney, New South Wales 2010, Australia, and.,the Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Peter R Shepherd
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, .,the Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
22
|
Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion. Biochem J 2016; 473:1791-803. [PMID: 27095850 PMCID: PMC4901359 DOI: 10.1042/bcj20160137] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/18/2016] [Indexed: 01/03/2023]
Abstract
Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes.
Collapse
|
23
|
Biomolecular Characterization of Putative Antidiabetic Herbal Extracts. PLoS One 2016; 11:e0148109. [PMID: 26820984 PMCID: PMC4731058 DOI: 10.1371/journal.pone.0148109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023] Open
Abstract
Induction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (Portulaca oleracea) and tindora (Coccinia grandis) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, in-ovo experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner.
Collapse
|
24
|
Kee AJ, Yang L, Lucas CA, Greenberg MJ, Martel N, Leong GM, Hughes WE, Cooney GJ, James DE, Ostap EM, Han W, Gunning PW, Hardeman EC. An actin filament population defined by the tropomyosin Tpm3.1 regulates glucose uptake. Traffic 2015; 16:691-711. [PMID: 25783006 PMCID: PMC4945106 DOI: 10.1111/tra.12282] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
Abstract
Actin has an ill-defined role in the trafficking of GLUT4 glucose transporter vesicles to the plasma membrane (PM). We have identified novel actin filaments defined by the tropomyosin Tpm3.1 at glucose uptake sites in white adipose tissue (WAT) and skeletal muscle. In Tpm 3.1-overexpressing mice, insulin-stimulated glucose uptake was increased; while Tpm3.1-null mice they were more sensitive to the impact of high-fat diet on glucose uptake. Inhibition of Tpm3.1 function in 3T3-L1 adipocytes abrogates insulin-stimulated GLUT4 translocation and glucose uptake. In WAT, the amount of filamentous actin is determined by Tpm3.1 levels and is paralleled by changes in exocyst component (sec8) and Myo1c levels. In adipocytes, Tpm3.1 localizes with MyoIIA, but not Myo1c, and it inhibits Myo1c binding to actin. We propose that Tpm3.1 determines the amount of cortical actin that can engage MyoIIA and generate contractile force, and in parallel limits the interaction of Myo1c with actin filaments. The balance between these actin filament populations may determine the efficiency of movement and/or fusion of GLUT4 vesicles with the PM.
Collapse
Affiliation(s)
- Anthony J. Kee
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Lingyan Yang
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Christine A. Lucas
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Michael J. Greenberg
- The Pennsylvania Muscle Institute and Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104‐6085USA
| | - Nick Martel
- Obesity Research Centre, Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLD4072Australia
| | - Gary M. Leong
- Obesity Research Centre, Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLD4072Australia
- Department of Paediatric Endocrinology and DiabetesMater Children's HospitalSouth BrisbaneQLD4010Australia
| | - William E. Hughes
- Diabetes and Obesity ProgramGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Gregory J. Cooney
- Diabetes and Obesity ProgramGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - David E. James
- Charles Perkins Centre, School of Molecular BioscienceUniversity of SydneySydneyNSW2006Australia
| | - E. Michael Ostap
- The Pennsylvania Muscle Institute and Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104‐6085USA
| | - Weiping Han
- Singapore Bioimaging ConsortiumAgency for Science, Technology and Research (A*STAR)Singapore138667Singapore
| | - Peter W. Gunning
- Oncology Research UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Edna C. Hardeman
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| |
Collapse
|
25
|
Tropomodulin3 is a novel Akt2 effector regulating insulin-stimulated GLUT4 exocytosis through cortical actin remodeling. Nat Commun 2015; 6:5951. [PMID: 25575350 PMCID: PMC4354152 DOI: 10.1038/ncomms6951] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022] Open
Abstract
Akt2 and its downstream effectors mediate insulin-stimulated GLUT4-storage vesicle (GSV) translocation and fusion with the plasma membrane (PM). Using mass spectrometry, we identify actin-capping protein Tropomodulin 3 (Tmod3) as an Akt2-interacting partner in 3T3-L1 adipocytes. We demonstrate that Tmod3 is phosphorylated at Ser71 on insulin-stimulated Akt2 activation, and Ser71 phosphorylation is required for insulin-stimulated GLUT4 PM insertion and glucose uptake. Phosphorylated Tmod3 regulates insulin-induced actin remodelling, an essential step for GSV fusion with the PM. Furthermore, the interaction of Tmod3 with its cognate tropomyosin partner, Tm5NM1 is necessary for GSV exocytosis and glucose uptake. Together these results establish Tmod3 as a novel Akt2 effector that mediates insulin-induced cortical actin remodelling and subsequent GLUT4 membrane insertion. Our findings suggest that defects in cytoskeletal remodelling may contribute to impaired GLUT4 exocytosis and glucose uptake.
Collapse
|
26
|
Bodman JAR, Yang Y, Logan MR, Eitzen G. Yeast translation elongation factor-1A binds vacuole-localized Rho1p to facilitate membrane integrity through F-actin remodeling. J Biol Chem 2015; 290:4705-4716. [PMID: 25561732 DOI: 10.1074/jbc.m114.630764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are molecular switches that modulate a variety of cellular processes, most notably those involving actin dynamics. We have previously shown that yeast vacuolar membrane fusion requires re-organization of actin filaments mediated by two Rho GTPases, Rho1p and Cdc42p. Cdc42p initiates actin polymerization to facilitate membrane tethering; Rho1p has a role in the late stages of vacuolar fusion, but its mode of action is unknown. Here, we identified eEF1A as a vacuolar Rho1p-interacting protein. eEF1A (encoded by the TEF1 and TEF2 genes in yeast) is an aminoacyl-tRNA transferase needed during protein translation. eEF1A also has a second function that is independent of translation; it binds and organizes actin filaments into ordered cable structures. Here, we report that eEF1A interacts with Rho1p via a C-terminal subdomain. This interaction occurs predominantly when both proteins are in the GDP-bound state. Therefore, eEF1A is an atypical downstream effector of Rho1p. eEF1A does not promote vacuolar fusion; however, overexpression of the Rho1p-interacting subdomain affects vacuolar morphology. Vacuoles were destabilized and prone to leakage when treated with the eEF1A inhibitor narciclasine. We propose a model whereby eEF1A binds to Rho1p-GDP on the vacuolar membrane; it is released upon Rho1p activation and then bundles actin filaments to stabilize fused vacuoles. Therefore, the Rho1p-eEF1A complex acts to spatially localize a pool of eEF1A to vacuoles where it can readily organize F-actin.
Collapse
Affiliation(s)
- James A R Bodman
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Yang Yang
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Michael R Logan
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Gary Eitzen
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
27
|
Yang W, Thein S, Lim CY, Ericksen RE, Sugii S, Xu F, Robinson RC, Kim JB, Han W. Arp2/3 complex regulates adipogenesis by controlling cortical actin remodelling. Biochem J 2014; 464:179-192. [PMID: 25220164 DOI: 10.1042/bj20140805] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extensive actin cytoskeleton remodelling occurs during adipocyte development. We have previously shown that disruption of stress fibres by the actin-severing protein cofilin is a requisite step in adipogenesis. However, it remains unclear whether actin nucleation and assembly into the cortical structure are essential for adipocyte development. In the present study we investigated the role of cortical actin assembly and of actin nucleation by the actin-related protein 2/3 (Arp2/3) complex in adipogenesis. Cortical actin structure formation started with accumulation of filamentous actin (F-actin) patches near the plasma membrane during adipogenesis. Depletion of Arp2/3 by knockdown of its subunits Arp3 or ARPC3 strongly impaired adipocyte differentiation, although adipogenesis-initiating factors were unaffected. Moreover, the assembly of F-actin-rich structures at the plasma membrane was suppressed and the cortical actin structure poorly developed after adipogenic induction in Arp2/3-deficient cells. Finally, we provide evidence that the cortical actin cytoskeleton is essential for efficient glucose transporter 4 (GLUT4) vesicle exocytosis and insulin signal transduction. These results show that the Arp2/3 complex is an essential regulator of adipocyte development through control of the formation of cortical actin structures, which may facilitate nutrient uptake and signalling events.
Collapse
Affiliation(s)
- Wulin Yang
- *Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, #02-02 Helios, 11 Biopolis Way, 138667 Singapore
| | - Shermaine Thein
- *Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, #02-02 Helios, 11 Biopolis Way, 138667 Singapore
| | | | - Russell E Ericksen
- *Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, #02-02 Helios, 11 Biopolis Way, 138667 Singapore
| | - Shigeki Sugii
- *Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, #02-02 Helios, 11 Biopolis Way, 138667 Singapore
| | - Feng Xu
- ‡Singapore Institute for Clinical Sciences, 30 Medical Drive, 117609 Singapore
| | | | - Jae Bum Kim
- ║National Creative Research Initiatives Center for Adipose Tissue Remodeling, Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Republic of Korea
| | | |
Collapse
|
28
|
Zingiber officinale (Ginger): A Future Outlook on Its Potential in Prevention and Treatment of Diabetes and Prediabetic States. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/674684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes is reaching pandemic levels in both developing and developed countries and requires safe, affordable, and effective therapies. This report summarises work in our laboratory on the effects of Zingiber officinale (ginger) and its components in diabetes models and provides a future outlook on the potential for their use in type 2 diabetes. A high fat diet rat model showed modulation of body weight gain and normalisation of glucose and lipid metabolic disturbances, with reduction of insulin resistance in a high fat-high carbohydrate diet model. Ginger extract inhibits enhanced NF-κB in liver of high fat-fed rats through inhibition of the IKK/IκBα/NF-κB classical pathway. The major active component (S)-[6]-gingerol inhibited elevated cytokines in inflamed HuH7 cells through suppression of COX2 expression and protection against the ROS pathway. Ginger extract and gingerols enhanced glucose uptake in L6 myotubes, by enhancing translocation of GLUT4 to the surface membrane and activation of AMPKα1 through a Ca2+/calmodulin-dependent protein kinase kinase pathway. (S)-[6]-Gingerol also enhanced energy metabolism through marked increment of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) gene expression and mitochondrial content in L6 skeletal muscle cells. Future studies will require well designed clinical trials on ginger preparations of defined chemical composition.
Collapse
|
29
|
Abstract
Insulin stimulates leptin secretion through the PI3K/Akt, but not the MAPK, pathway. Although Ca2+ alone does not trigger leptin secretion, it is required for robust Akt phosphorylation and leptin secretion.
Collapse
|
30
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
31
|
Stall R, Ramos J, Kent Fulcher F, Patel YM. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Exp Cell Res 2013; 322:81-8. [PMID: 24374234 DOI: 10.1016/j.yexcr.2013.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/04/2013] [Accepted: 12/08/2013] [Indexed: 11/18/2022]
Abstract
Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane.
Collapse
Affiliation(s)
- Richard Stall
- Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, Greensboro, NC 27412, USA
| | - Joseph Ramos
- Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, Greensboro, NC 27412, USA
| | - F Kent Fulcher
- Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, Greensboro, NC 27412, USA
| | - Yashomati M Patel
- Department of Biology, University of North Carolina at Greensboro, 312 Eberhart Building, Greensboro, NC 27412, USA.
| |
Collapse
|
32
|
Yang W, Thein S, Wang X, Bi X, Ericksen RE, Xu F, Han W. BSCL2/seipin regulates adipogenesis through actin cytoskeleton remodelling. Hum Mol Genet 2013; 23:502-13. [PMID: 24026679 DOI: 10.1093/hmg/ddt444] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Seipin regulates lipid homeostasis by preventing lipid droplet (LD) formation in non-adipocytes but promoting it in developing adipocytes. Here, we report that seipin interacts with 14-3-3β through its N- and C-termini. Expression of 14-3-3β is upregulated during adipogenesis, and its deletion results in defective adipogenesis without affecting key adipogenic transcription factors. We further identified the actin-severing protein cofilin-1 as an interacting partner to 14-3-3β. Cofilin-1 was spatiotemporally recruited by 14-3-3β in the cytoplasm during adipocyte differentiation. Extensive actin cytoskeleton remodelling, from stress fibres to cortical structures, was apparent during adipogenesis, but not under lipogenic conditions, indicating that actin cytoskeleton remodelling is only required for adipocyte development. Similar to seipin and 14-3-3β, cofilin-1 knockdown led to impaired adipocyte development. At the cellular level, differentiated cells with knockdown of cofilin-1, 14-3-3β or seipin continued to maintain relatively intact stress fibres, in contrast to cortical actin structure in control cells. Finally, 3T3-L1 cells expressing a severing-resistant actin mutant exhibited impaired adipogenesis. We propose that seipin regulates adipogenesis by recruiting cofilin-1 to remodel actin cytoskeleton through the 14-3-3β protein.
Collapse
|
33
|
Uenishi E, Shibasaki T, Takahashi H, Seki C, Hamaguchi H, Yasuda T, Tatebe M, Oiso Y, Takenawa T, Seino S. Actin dynamics regulated by the balance of neuronal Wiskott-Aldrich syndrome protein (N-WASP) and cofilin activities determines the biphasic response of glucose-induced insulin secretion. J Biol Chem 2013; 288:25851-25864. [PMID: 23867458 DOI: 10.1074/jbc.m113.464420] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin dynamics in pancreatic β-cells is involved in insulin secretion. However, the molecular mechanisms of the regulation of actin dynamics by intracellular signals in pancreatic β-cells and its role in phasic insulin secretion are largely unknown. In this study, we elucidate the regulation of actin dynamics by neuronal Wiskott-Aldrich syndrome protein (N-WASP) and cofilin in pancreatic β-cells and demonstrate its role in glucose-induced insulin secretion (GIIS). N-WASP, which promotes actin polymerization through activation of the actin nucleation factor Arp2/3 complex, was found to be activated by glucose stimulation in insulin-secreting clonal pancreatic β-cells (MIN6-K8 β-cells). Introduction of a dominant-negative mutant of N-WASP, which lacks G-actin and Arp2/3 complex-binding region VCA, into MIN6-K8 β-cells or knockdown of N-WASP suppressed GIIS, especially the second phase. We also found that cofilin, which severs F-actin in its dephosphorylated (active) form, is converted to the phosphorylated (inactive) form by glucose stimulation in MIN6-K8 β-cells, thereby promoting F-actin remodeling. In addition, the dominant-negative mutant of cofilin, which inhibits activation of endogenous cofilin, or knockdown of cofilin reduced the second phase of GIIS. However, the first phase of GIIS occurs in the G-actin predominant state, in which cofilin activity predominates over N-WASP activity. Thus, actin dynamics regulated by the balance of N-WASP and cofilin activities determines the biphasic response of GIIS.
Collapse
Affiliation(s)
- Eita Uenishi
- From the Division of Cellular and Molecular Medicine,; the Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, and
| | | | | | - Chihiro Seki
- From the Division of Cellular and Molecular Medicine
| | | | - Takao Yasuda
- From the Division of Cellular and Molecular Medicine
| | - Masao Tatebe
- From the Division of Cellular and Molecular Medicine
| | - Yutaka Oiso
- the Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, and
| | - Tadaomi Takenawa
- Division of Lipid Biochemistry, and; the Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe 650-0017
| | - Susumu Seino
- From the Division of Cellular and Molecular Medicine,; the Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe 650-0017,; Division of Molecular and Metabolic Medicine,; the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corp., Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
34
|
Chen Y, Lippincott-Schwartz J. Rab10 delivers GLUT4 storage vesicles to the plasma membrane. Commun Integr Biol 2013; 6:e23779. [PMID: 23713133 PMCID: PMC3656013 DOI: 10.4161/cib.23779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 12/25/2022] Open
Abstract
The glucose transporter, GLUT4, redistributes to the plasma membrane (PM) upon insulin stimulation, but also recycles through endosomal compartments. Different Rab proteins control these transport itineraries of GLUT4. However, the specific roles played by different Rab proteins in GLUT4 trafficking has been difficult to assess, primarily due to the complexity of endomembrane organization and trafficking. To address this problem, we recently performed advanced live cell imaging using total internal reflection fluorescence (TIRF) microscopy, which images objects ~150 nm from the PM, directly visualizing GLUT4 trafficking in response to insulin stimulation. Using IRAP-pHluorin to selectively label GSVs undergoing PM fusion in response to insulin, we identified Rab10 as the only Rab protein that binds this compartment. Rab14 was found to label transferrin-positive, endosomal compartments containing GLUT4. These also could fuse with the PM in response to insulin, albeit more slowly. Several other Rab proteins, including Rab4A, 4B and 8A, were found to mediate GLUT4 intra-endosomal recycling, serving to internalize surface-bound GLUT4 into endosomal compartments for ultimate delivery to GSVs. Thus, multiple Rab proteins regulate the circulation of GLUT4 molecules within the endomembrane system, maintaining optimal insulin responsiveness within cells.
Collapse
Affiliation(s)
- Yu Chen
- The Eugene Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | | |
Collapse
|
35
|
Osman MA, Sarkar FH, Rodriguez-Boulan E. A molecular rheostat at the interface of cancer and diabetes. Biochim Biophys Acta Rev Cancer 2013; 1836:166-76. [PMID: 23639840 DOI: 10.1016/j.bbcan.2013.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/23/2013] [Indexed: 12/17/2022]
Abstract
Epidemiology studies revealed the connection between several types of cancer and type 2 diabetes (T2D) and suggested that T2D is both a symptom and a risk factor of pancreatic cancer. High level of circulating insulin (hyperinsulinemia) in obesity has been implicated in promoting aggressive types of cancers. Insulin resistance, a symptom of T2D, pressures pancreatic β-cells to increase insulin secretion, leading to hyperinsulinemia, which in turn leads to a gradual loss of functional β-cell mass, thus indicating a fine balance and interplay between β-cell function and mass. While the mechanisms of these connections are unclear, the mTORC1-Akt signaling pathway has been implicated in controlling β-cell function and mass, and in mediating the link of cancer and T2D. However, incomplete understating of how the pathway is regulated and how it integrates body metabolism has hindered its efficacy as a clinical target. The IQ motif containing GTPase activating protein 1 (IQGAP1)-Exocyst axis is a growth factor- and nutrient-sensor that couples cell growth and division. Here we discuss how IQGAP1-Exocyst, through differential interactions with Rho-type of small guanosine triphosphatases (GTPases), acts as a rheostat that modulates the mTORC1-Akt and MAPK signals, and integrates β-cell function and mass with insulin signaling, thus providing a molecular mechanism for cancer initiation in diabetes. Delineating this regulatory pathway may have the potential of contributing to optimizing the efficacy and selectivity of future therapies for cancer and diabetes.
Collapse
Affiliation(s)
- Mahasin A Osman
- Warren Alpert Medical School, Division of Biology and Medicine, Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
36
|
Burchfield JG, Lu J, Fazakerley DJ, Tan SX, Ng Y, Mele K, Buckley MJ, Han W, Hughes WE, James DE. Novel systems for dynamically assessing insulin action in live cells reveals heterogeneity in the insulin response. Traffic 2013; 14:259-73. [PMID: 23252720 DOI: 10.1111/tra.12035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 12/23/2022]
Abstract
Regulated GLUT4 trafficking is a key action of insulin. Quantitative stepwise analysis of this process provides a powerful tool for pinpointing regulatory nodes that contribute to insulin regulation and insulin resistance. We describe a novel GLUT4 construct and workflow for the streamlined dissection of GLUT4 trafficking; from simple high throughput screens to high resolution analyses of individual vesicles. We reveal single cell heterogeneity in insulin action highlighting the utility of this approach - each cell displayed a unique and highly reproducible insulin response, implying that each cell is hard-wired to produce a specific output in response to a given stimulus. These data highlight that the response of a cell population to insulin is underpinned by extensive heterogeneity at the single cell level. This heterogeneity is pre-programmed within each cell and is not the result of intracellular stochastic events.
Collapse
Affiliation(s)
- James G Burchfield
- Diabetes and Obesity Research Program, The Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen Y, Wang Y, Zhang J, Deng Y, Jiang L, Song E, Wu XS, Hammer JA, Xu T, Lippincott-Schwartz J. Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle translocation in adipocytes. ACTA ACUST UNITED AC 2012; 198:545-60. [PMID: 22908308 PMCID: PMC3514028 DOI: 10.1083/jcb.201111091] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rab proteins are important regulators of insulin-stimulated GLUT4 translocation to the plasma membrane (PM), but the precise steps in GLUT4 trafficking modulated by particular Rab proteins remain unclear. Here, we systematically investigate the involvement of Rab proteins in GLUT4 trafficking, focusing on Rab proteins directly mediating GLUT4 storage vesicle (GSV) delivery to the PM. Using dual-color total internal reflection fluorescence (TIRF) microscopy and an insulin-responsive aminopeptidase (IRAP)-pHluorin fusion assay, we demonstrated that Rab10 directly facilitated GSV translocation to and docking at the PM. Rab14 mediated GLUT4 delivery to the PM via endosomal compartments containing transferrin receptor (TfR), whereas Rab4A, Rab4B, and Rab8A recycled GLUT4 through the endosomal system. Myosin-Va associated with GSVs by interacting with Rab10, positioning peripherally recruited GSVs for ultimate fusion. Thus, multiple Rab proteins regulate the trafficking of GLUT4, with Rab10 coordinating with myosin-Va to mediate the final steps of insulin-stimulated GSV translocation to the PM.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The Rab GTPase-activating protein TBC1D4/AS160 contains an atypical phosphotyrosine-binding domain that interacts with plasma membrane phospholipids to facilitate GLUT4 trafficking in adipocytes. Mol Cell Biol 2012; 32:4946-59. [PMID: 23045393 DOI: 10.1128/mcb.00761-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Rab GTPase-activating protein TBC1D4/AS160 regulates GLUT4 trafficking in adipocytes. Nonphosphorylated AS160 binds to GLUT4 vesicles and inhibits GLUT4 translocation, and AS160 phosphorylation overcomes this inhibitory effect. In the present study we detected several new functional features of AS160. The second phosphotyrosine-binding domain in AS160 encodes a phospholipid-binding domain that facilitates plasma membrane (PM) targeting of AS160, and this function is conserved in other related RabGAP/Tre-2/Bub2/Cdc16 (TBC) proteins and an AS160 ortholog in Drosophila. This region also contains a nonoverlapping intracellular GLUT4-containing storage vesicle (GSV) cargo-binding site. The interaction of AS160 with GSVs and not with the PM confers the inhibitory effect of AS160 on insulin-dependent GLUT4 translocation. Constitutive targeting of AS160 to the PM increased the surface GLUT4 levels, and this was attributed to both enhanced AS160 phosphorylation and 14-3-3 binding and inhibition of AS160 GAP activity. We propose a model wherein AS160 acts as a regulatory switch in the docking and/or fusion of GSVs with the PM.
Collapse
|
39
|
Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 2012; 70:2099-121. [PMID: 22986507 DOI: 10.1007/s00018-012-1156-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/01/2023]
Abstract
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.
Collapse
|
40
|
Boguslavsky S, Chiu T, Foley KP, Osorio-Fuentealba C, Antonescu CN, Bayer KU, Bilan PJ, Klip A. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles. Mol Biol Cell 2012; 23:4065-78. [PMID: 22918957 PMCID: PMC3469521 DOI: 10.1091/mbc.e12-04-0263] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding-deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells.
Collapse
Affiliation(s)
- Shlomit Boguslavsky
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sites of glucose transporter-4 vesicle fusion with the plasma membrane correlate spatially with microtubules. PLoS One 2012; 7:e43662. [PMID: 22916292 PMCID: PMC3423385 DOI: 10.1371/journal.pone.0043662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/23/2012] [Indexed: 12/25/2022] Open
Abstract
In adipocytes, vesicles containing glucose transporter-4 (GLUT4) redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF) microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin), preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion.
Collapse
|
42
|
Role of RalA downstream of Rac1 in insulin-dependent glucose uptake in muscle cells. Cell Signal 2012; 24:2111-7. [PMID: 22820503 DOI: 10.1016/j.cellsig.2012.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/16/2012] [Indexed: 11/20/2022]
Abstract
The small GTPase RalA has been implicated in glucose uptake in insulin-stimulated adipocytes, although it remains unclear whether RalA has a similar role in insulin signaling in other types of cells. Recently, we have demonstrated that the Rho family GTPase Rac1 has a critical role in insulin-dependent glucose uptake in myoblast culture and mouse skeletal muscle. However, the mechanisms underlying Rac1-dependent glucose uptake, mostly mediated by the plasma membrane translocation of the glucose transporter GLUT4, remain largely unknown. The purpose of this study is to examine the involvement of RalA in Rac1 regulation of the translocation of GLUT4 to the plasma membrane in muscle cells. Ectopic expression of a constitutively activated RalA mutant indeed stimulated GLUT4 translocation, suggesting an important role of RalA also in muscle cells. GLUT4 translocation induced by constitutively activated mutation of Rac1 or more physiologically by upstream Rac1 regulators, such as phosphoinositide 3 kinase and the guanine nucleotide exchange factor FLJ00068, was abrogated when the expression of RalA was downregulated by RNA interference. The expression of constitutively activated Rac1, on the other hand, caused GTP loading and subcellular redistribution of RalA. Collectively, we propose a novel mechanism involving RalA for Rac1-mediated GLUT4 translocation in skeletal muscle cells.
Collapse
|
43
|
Abstract
GLUT4 is an insulin-regulated glucose transporter that is responsible for insulin-regulated glucose uptake into fat and muscle cells. In the absence of insulin, GLUT4 is mainly found in intracellular vesicles referred to as GLUT4 storage vesicles (GSVs). Here, we summarise evidence for the existence of these specific vesicles, how they are sequestered inside the cell and how they undergo exocytosis in the presence of insulin. In response to insulin stimulation, GSVs fuse with the plasma membrane in a rapid burst and in the continued presence of insulin GLUT4 molecules are internalised and recycled back to the plasma membrane in vesicles that are distinct from GSVs and probably of endosomal origin. In this Commentary we discuss evidence that this delivery process is tightly regulated and involves numerous molecules. Key components include the actin cytoskeleton, myosin motors, several Rab GTPases, the exocyst, SNARE proteins and SNARE regulators. Each step in this process is carefully orchestrated in a sequential and coupled manner and we are beginning to dissect key nodes within this network that determine vesicle-membrane fusion in response to insulin. This regulatory process clearly involves the Ser/Thr kinase AKT and the exquisite manner in which this single metabolic process is regulated makes it a likely target for lesions that might contribute to metabolic disease.
Collapse
Affiliation(s)
- Jacqueline Stöckli
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | | | | |
Collapse
|
44
|
Abstract
Despite daily fasting and feeding, plasma glucose levels are normally maintained within a narrow range owing to the hormones insulin and glucagon. Insulin increases glucose uptake into fat and muscle cells through the regulated trafficking of vesicles that contain glucose transporter type 4 (GLUT4). New insights into insulin signalling reveal that phosphorylation events initiated by the insulin receptor regulate key GLUT4 trafficking proteins, including small GTPases, tethering complexes and the vesicle fusion machinery. These proteins, in turn, control GLUT4 movement through the endosomal system, formation and retention of specialized GLUT4 storage vesicles and targeted exocytosis of these vesicles. Understanding these processes may help to explain the development of insulin resistance in type 2 diabetes and provide new potential therapeutic targets.
Collapse
|
45
|
Lopez JA, Brennan AJ, Whisstock JC, Voskoboinik I, Trapani JA. Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death. Trends Immunol 2012; 33:406-12. [PMID: 22608996 DOI: 10.1016/j.it.2012.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/14/2012] [Accepted: 04/02/2012] [Indexed: 11/28/2022]
Abstract
Considerable progress has been made in understanding how cytotoxic lymphocytes use the highly toxic pore-forming protein perforin to eliminate dangerous cells, while remaining refractory to lysis. At least two mechanisms jointly preserve the killer cell: the C-terminal residues of perforin dictate its rapid export from the endoplasmic reticulum (ER), whose milieu otherwise favours pore formation; perforin is then stored in secretory granules whose acidity prevent its oligomerisation. Following exocytosis, perforin delivers the proapoptotic protease, granzyme B, into the target cell by disrupting its plasma membrane. Although the precise mechanism of perforin/granzyme synergy remains controversial, the recently defined crystal structure of the perforin monomer and cryo-electron microscopy (EM) of the entire pore suggest that passive transmembrane granzyme diffusion is the dominant proapoptotic mechanism.
Collapse
Affiliation(s)
- Jamie A Lopez
- Peter MacCallum Cancer Centre, East Melbourne, 3002, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
Smith MB, Karatekin E, Gohlke A, Mizuno H, Watanabe N, Vavylonis D. Interactive, computer-assisted tracking of speckle trajectories in fluorescence microscopy: application to actin polymerization and membrane fusion. Biophys J 2012; 101:1794-804. [PMID: 21961607 DOI: 10.1016/j.bpj.2011.09.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/25/2011] [Accepted: 09/06/2011] [Indexed: 12/11/2022] Open
Abstract
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured.
Collapse
Affiliation(s)
- Matthew B Smith
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
47
|
Using Total Internal Reflection Fluorescence Microscopy (TIRFM) to Visualise Insulin Action. VISUALIZATION TECHNIQUES 2012. [DOI: 10.1007/978-1-61779-897-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Balamatsias D, Kong AM, Waters JE, Sriratana A, Gurung R, Bailey CG, Rasko JEJ, Tiganis T, Macaulay SL, Mitchell CA. Identification of P-Rex1 as a novel Rac1-guanine nucleotide exchange factor (GEF) that promotes actin remodeling and GLUT4 protein trafficking in adipocytes. J Biol Chem 2011; 286:43229-40. [PMID: 22002247 DOI: 10.1074/jbc.m111.306621] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) signaling promotes the translocation of the glucose transporter, GLUT4, to the plasma membrane in insulin-sensitive tissues to facilitate glucose uptake. In adipocytes, insulin-stimulated reorganization of the actin cytoskeleton has been proposed to play a role in promoting GLUT4 translocation and glucose uptake, in a PI3K-dependent manner. However, the PI3K effectors that promote GLUT4 translocation via regulation of the actin cytoskeleton in adipocytes remain to be fully elucidated. Here we demonstrate that the PI3K-dependent Rac exchange factor, P-Rex1, enhances membrane ruffling in 3T3-L1 adipocytes and promotes GLUT4 trafficking to the plasma membrane at submaximal insulin concentrations. P-Rex1-facilitated GLUT4 trafficking requires a functional actin network and membrane ruffle formation and occurs in a PI3K- and Rac1-dependent manner. In contrast, expression of other Rho GTPases, such as Cdc42 or Rho, did not affect insulin-stimulated P-Rex1-mediated GLUT4 trafficking. P-Rex1 siRNA knockdown or expression of a P-Rex1 dominant negative mutant reduced but did not completely inhibit glucose uptake in response to insulin. Collectively, these studies identify a novel RacGEF in adipocytes as P-Rex1 that, at physiological insulin concentrations, functions as an insulin-dependent regulator of the actin cytoskeleton that contributes to GLUT4 trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Demis Balamatsias
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal 2011; 23:1546-54. [DOI: 10.1016/j.cellsig.2011.05.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/31/2011] [Indexed: 12/27/2022]
|
50
|
Xie X, Gong Z, Mansuy-Aubert V, Zhou QL, Tatulian SA, Sehrt D, Gnad F, Brill LM, Motamedchaboki K, Chen Y, Czech MP, Mann M, KrÜger M, Jiang ZY. C2 domain-containing phosphoprotein CDP138 regulates GLUT4 insertion into the plasma membrane. Cell Metab 2011; 14:378-89. [PMID: 21907143 PMCID: PMC3172579 DOI: 10.1016/j.cmet.2011.06.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 05/03/2011] [Accepted: 06/09/2011] [Indexed: 10/17/2022]
Abstract
The protein kinase B(β) (Akt2) pathway is known to mediate insulin-stimulated glucose transport through increasing glucose transporter GLUT4 translocation from intracellular stores to the plasma membrane (PM). Combining quantitative phosphoproteomics with RNAi-based functional analyses, we show that a previously uncharacterized 138 kDa C2 domain-containing phosphoprotein (CDP138) is a substrate for Akt2, and is required for optimal insulin-stimulated glucose transport, GLUT4 translocation, and fusion of GLUT4 vesicles with the PM in live adipocytes. The purified C2 domain is capable of binding Ca(2+) and lipid membranes. CDP138 mutants lacking the Ca(2+)-binding sites in the C2 domain or Akt2 phosphorylation site S197 inhibit insulin-stimulated GLUT4 insertion into the PM, a rate-limiting step of GLUT4 translocation. Interestingly, CDP138 is dynamically associated with the PM and GLUT4-containing vesicles in response to insulin stimulation. Together, these results suggest that CDP138 is a key molecule linking the Akt2 pathway to the regulation of GLUT4 vesicle-PM fusion.
Collapse
Affiliation(s)
- Xiangyang Xie
- Metabolic Signaling and Disease Program, Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Zhenwei Gong
- Metabolic Signaling and Disease Program, Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Virginie Mansuy-Aubert
- Metabolic Signaling and Disease Program, Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Qiong L. Zhou
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Suren A. Tatulian
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA
| | - Daniel Sehrt
- Metabolic Signaling and Disease Program, Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Florian Gnad
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laurence M. Brill
- Proteomic Core Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Khatereh Motamedchaboki
- Proteomic Core Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Yu Chen
- Cell Biology and Metabolism Program, NICHD, NIH, Bethesda, MD 20892, USA
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marcus KrÜger
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Zhen Y. Jiang
- Metabolic Signaling and Disease Program, Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| |
Collapse
|