1
|
Rangone H, Bond L, Weil TT, Glover DM. Greatwall-Endos-PP2A/B55 Twins network regulates translation and stability of maternal transcripts in the Drosophila oocyte-to-embryo transition. Open Biol 2024; 14:240065. [PMID: 38896085 DOI: 10.1098/rsob.240065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The transition from oocyte to embryo requires translation of maternally provided transcripts that in Drosophila is activated by Pan Gu kinase to release a rapid succession of 13 mitotic cycles. Mitotic entry is promoted by several protein kinases that include Greatwall/Mastl, whose Endosulfine substrates antagonize Protein Phosphatase 2A (PP2A), facilitating mitotic Cyclin-dependent kinase 1/Cyclin B kinase activity. Here we show that hyperactive greatwallScant can not only be suppressed by mutants in its Endos substrate but also by mutants in Pan Gu kinase subunits. Conversely, mutants in me31B or trailer hitch, which encode a complex that represses hundreds of maternal mRNAs, enhance greatwallScant . Me31B and Trailer Hitch proteins, known substrates of Pan Gu kinase, copurify with Endos. This echoes findings that budding yeast Dhh1, orthologue of Me31B, associates with Igo1/2, orthologues of Endos and substrates of the Rim15, orthologue of Greatwall. endos-derived mutant embryos show reduced Me31B and elevated transcripts for the mitotic activators Cyclin B, Polo and Twine/Cdc25. Together, our findings demonstrate a previously unappreciated conservation of the Greatwall-Endosulfine pathway in regulating translational repressors and its interactions with the Pan Gu kinase pathway to regulate translation and/or stability of maternal mRNAs upon egg activation.
Collapse
Affiliation(s)
- Hélène Rangone
- Department of Genetics, University of Cambridge, Downing Street , Cambridge, UK
| | - Laura Bond
- Department of Genetics, University of Cambridge, Downing Street , Cambridge, UK
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street , Cambridge, UK
| | - David M Glover
- Department of Genetics, University of Cambridge, Downing Street , Cambridge, UK
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd , Pasadena, CA 91125, USA
| |
Collapse
|
2
|
Chia KH, Takaki H, Fujimitsu K, Darling S, Zou J, Rappsilber J, Yamano H. CDK1-PP2A-B55 interplay ensures cell cycle oscillation via Apc1-loop 300. Cell Rep 2024; 43:114155. [PMID: 38678563 DOI: 10.1016/j.celrep.2024.114155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
Cell cycle control relies on a delicate balance of phosphorylation with CDK1 and phosphatases like PP1 and PP2A-B55. Yet, identifying the primary substrate responsible for cell cycle oscillations remains a challenge. We uncover the pivotal role of phospho-regulation in the anaphase-promoting complex/cyclosome (APC/C), particularly through the Apc1-loop300 domain (Apc1-300L), orchestrated by CDK1 and PP2A-B55. Premature activation of PP2A-B55 during mitosis, induced by Greatwall kinase depletion, leads to Apc1-300L dephosphorylation, stalling APC/C activity and delaying Cyclin B degradation. This effect can be counteracted using the B55-specific inhibitor pEnsa or by removing Apc1-300L. We also show Cdc20's dynamic APC/C interaction across cell cycle stages, but dephosphorylation of Apc1-300L specifically inhibits further Cdc20 recruitment. Our study underscores APC/C's central role in cell cycle oscillation, identifying it as a primary substrate regulated by the CDK-PP2A partnership.
Collapse
Affiliation(s)
- Kim Hou Chia
- Cell Cycle Control Group, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
| | - Hiroko Takaki
- Cell Cycle Control Group, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
| | - Kazuyuki Fujimitsu
- Cell Cycle Control Group, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
| | - Sarah Darling
- Cell Cycle Control Group, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
| | - Juan Zou
- University of Edinburgh, Wellcome Centre for Cell Biology, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- University of Edinburgh, Wellcome Centre for Cell Biology, Edinburgh EH9 3BF, UK; Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany
| | - Hiroyuki Yamano
- Cell Cycle Control Group, University College London (UCL) Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
3
|
Santoni M, Meneau F, Sekhsoukh N, Castella S, Le T, Miot M, Daldello EM. Unraveling the interplay between PKA inhibition and Cdk1 activation during oocyte meiotic maturation. Cell Rep 2024; 43:113782. [PMID: 38358892 DOI: 10.1016/j.celrep.2024.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Oocytes are arrested in prophase I. In vertebrates, meiotic resumption is triggered by hormonal stimulation that results in cAMP-dependent protein kinase (PKA) downregulation leading to Cdk1 activation. Yet the pathways connecting PKA to Cdk1 remain unclear. Here, we identify molecular events triggered by PKA downregulation occurring upstream of Cdk1 activation. We describe a two-step regulation controlling cyclin B1 and Mos accumulation, which depends on both translation and stabilization. Cyclin B1 accumulation is triggered by PKA inhibition upstream of Cdk1 activation, while its translation requires Cdk1 activity. Conversely, Mos translation initiates in response to the hormone, but the protein accumulates only downstream of Cdk1. Furthermore, two successive translation waves take place, the first controlled by PKA inhibition and the second by Cdk1 activation. Notably, Arpp19, an essential PKA effector, does not regulate the early PKA-dependent events. This study elucidates how PKA downregulation orchestrates multiple pathways that converge toward Cdk1 activation and induce the oocyte G2/M transition.
Collapse
Affiliation(s)
- Martina Santoni
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Ferdinand Meneau
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Nabil Sekhsoukh
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Sandrine Castella
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Tran Le
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Marika Miot
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Enrico Maria Daldello
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France.
| |
Collapse
|
4
|
Li Y, Wang F, Li X, Wang L, Yang Z, You Z, Peng A. The ATM-E6AP-MASTL axis mediates DNA damage checkpoint recovery. eLife 2023; 12:RP86976. [PMID: 37672026 PMCID: PMC10482428 DOI: 10.7554/elife.86976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Checkpoint activation after DNA damage causes a transient cell cycle arrest by suppressing cyclin-dependent kinases (CDKs). However, it remains largely elusive how cell cycle recovery is initiated after DNA damage. In this study, we discovered the upregulated protein level of MASTL kinase hours after DNA damage. MASTL promotes cell cycle progression by preventing PP2A/B55-catalyzed dephosphorylation of CDK substrates. DNA damage-induced MASTL upregulation was caused by decreased protein degradation, and was unique among mitotic kinases. We identified E6AP as the E3 ubiquitin ligase that mediated MASTL degradation. MASTL degradation was inhibited upon DNA damage as a result of the dissociation of E6AP from MASTL. E6AP depletion reduced DNA damage signaling, and promoted cell cycle recovery from the DNA damage checkpoint, in a MASTL-dependent manner. Furthermore, we found that E6AP was phosphorylated at Ser-218 by ATM after DNA damage and that this phosphorylation was required for its dissociation from MASTL, the stabilization of MASTL, and the timely recovery of cell cycle progression. Together, our data revealed that ATM/ATR-dependent signaling, while activating the DNA damage checkpoint, also initiates cell cycle recovery from the arrest. Consequently, this results in a timer-like mechanism that ensures the transient nature of the DNA damage checkpoint.
Collapse
Affiliation(s)
- Yanqiu Li
- Department of Oral Biology, University of Nebraska Medical CenterLincolnUnited States
| | - Feifei Wang
- Department of Oral Biology, University of Nebraska Medical CenterLincolnUnited States
| | - Xin Li
- Department of Oral Biology, University of Nebraska Medical CenterLincolnUnited States
| | - Ling Wang
- Department of Oral Biology, University of Nebraska Medical CenterLincolnUnited States
| | - Zheng Yang
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Zhongsheng You
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. LouisSt. LouisUnited States
| | - Aimin Peng
- Department of Oral Biology, University of Nebraska Medical CenterLincolnUnited States
| |
Collapse
|
5
|
Emond-Fraser V, Larouche M, Kubiniok P, Bonneil É, Li J, Bourouh M, Frizzi L, Thibault P, Archambault V. Identification of PP2A-B55 targets uncovers regulation of emerin during nuclear envelope reassembly in Drosophila. Open Biol 2023; 13:230104. [PMID: 37463656 PMCID: PMC10353892 DOI: 10.1098/rsob.230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Mitotic exit requires the dephosphorylation of many proteins whose phosphorylation was needed for mitosis. Protein phosphatase 2A with its B55 regulatory subunit (PP2A-B55) promotes this transition. However, the events and substrates that it regulates are incompletely understood. We used proteomic approaches in Drosophila to identify proteins that interact with and are dephosphorylated by PP2A-B55. Among several candidates, we identified emerin (otefin in Drosophila). Emerin resides in the inner nuclear membrane and interacts with the DNA-binding protein barrier-to-autointegration factor (BAF) via a LEM domain. We found that the phosphorylation of emerin at Ser50 and Ser54 near its LEM domain negatively regulates its association with BAF, lamin and additional emerin in mitosis. We show that dephosphorylation of emerin at these sites by PP2A-B55 determines the timing of nuclear envelope reformation. Genetic experiments indicate that this regulation is required during embryonic development. Phosphoregulation of the emerin-BAF complex formation by PP2A-B55 appears as a key event of mitotic exit that is likely conserved across species.
Collapse
Affiliation(s)
- Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Peter Kubiniok
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Laura Frizzi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de chimie, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| |
Collapse
|
6
|
El Dika M, Dudka D, Kloc M, Kubiak JZ. CDC6 as a Key Inhibitory Regulator of CDK1 Activation Dynamics and the Timing of Mitotic Entry and Progression. BIOLOGY 2023; 12:855. [PMID: 37372141 DOI: 10.3390/biology12060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Timely mitosis is critically important for early embryo development. It is regulated by the activity of the conserved protein kinase CDK1. The dynamics of CDK1 activation must be precisely controlled to assure physiologic and timely entry into mitosis. Recently, a known S-phase regulator CDC6 emerged as a key player in mitotic CDK1 activation cascade in early embryonic divisions, operating together with Xic1 as a CDK1 inhibitor upstream of the Aurora A and PLK1, both CDK1 activators. Herein, we review the molecular mechanisms that underlie the control of mitotic timing, with special emphasis on how CDC6/Xic1 function impacts CDK1 regulatory network in the Xenopus system. We focus on the presence of two independent mechanisms inhibiting the dynamics of CDK1 activation, namely Wee1/Myt1- and CDC6/Xic1-dependent, and how they cooperate with CDK1-activating mechanisms. As a result, we propose a comprehensive model integrating CDC6/Xic1-dependent inhibition into the CDK1-activation cascade. The physiological dynamics of CDK1 activation appear to be controlled by the system of multiple inhibitors and activators, and their integrated modulation ensures concomitantly both the robustness and certain flexibility of the control of this process. Identification of multiple activators and inhibitors of CDK1 upon M-phase entry allows for a better understanding of why cells divide at a specific time and how the pathways involved in the timely regulation of cell division are all integrated to precisely tune the control of mitotic events.
Collapse
Affiliation(s)
- Mohammed El Dika
- Department of Biochemistry, Larner College of Medicine, UVM Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Jacek Z Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| |
Collapse
|
7
|
Li Y, Wang F, Li X, Wang L, Yang Z, You Z, Peng A. The ATM-E6AP-MASTL axis mediates DNA damage checkpoint recovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529521. [PMID: 36865136 PMCID: PMC9980089 DOI: 10.1101/2023.02.22.529521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Checkpoint activation after DNA damage causes a transient cell cycle arrest by suppressing CDKs. However, it remains largely elusive how cell cycle recovery is initiated after DNA damage. In this study, we discovered the upregulated protein level of MASTL kinase hours after DNA damage. MASTL promotes cell cycle progression by preventing PP2A/B55-catalyzed dephosphorylation of CDK substrates. DNA damage-induced MASTL upregulation was caused by decreased protein degradation, and was unique among mitotic kinases. We identified E6AP as the E3 ubiquitin ligase that mediated MASTL degradation. MASTL degradation was inhibited upon DNA damage as a result of the dissociation of E6AP from MASTL. E6AP depletion reduced DNA damage signaling, and promoted cell cycle recovery from the DNA damage checkpoint, in a MASTL-dependent manner. Furthermore, we found that E6AP was phosphorylated at Ser-218 by ATM after DNA damage and that this phosphorylation was required for its dissociation from MASTL, the stabilization of MASTL, and the timely recovery of cell cycle progression. Together, our data revealed that ATM/ATR-dependent signaling, while activating the DNA damage checkpoint, also initiates cell cycle recovery from the arrest. Consequently, this results in a timer-like mechanism that ensures the transient nature of the DNA damage checkpoint.
Collapse
Affiliation(s)
- Yanqiu Li
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | - Feifei Wang
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | - Xin Li
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | - Ling Wang
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | - Zheng Yang
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Aimin Peng
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| |
Collapse
|
8
|
Al-Rawi A, Kaye E, Korolchuk S, Endicott JA, Ly T. Cyclin A and Cks1 promote kinase consensus switching to non-proline-directed CDK1 phosphorylation. Cell Rep 2023; 42:112139. [PMID: 36840943 DOI: 10.1016/j.celrep.2023.112139] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/17/2022] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Ordered protein phosphorylation by CDKs is a key mechanism for regulating the cell cycle. How temporal order is enforced in mammalian cells remains unclear. Using a fixed cell kinase assay and phosphoproteomics, we show how CDK1 activity and non-catalytic CDK1 subunits contribute to the choice of substrate and site of phosphorylation. Increases in CDK1 activity alter substrate choice, with intermediate- and low-sensitivity CDK1 substrates enriched in DNA replication and mitotic functions, respectively. This activity dependence is shared between Cyclin A- and Cyclin B-CDK1. Cks1 has a proteome-wide role as an enhancer of multisite CDK1 phosphorylation. Contrary to the model of CDK1 as an exclusively proline-directed kinase, we show that Cyclin A and Cks1 enhance non-proline-directed phosphorylation, preferably on sites with a +3 lysine residue. Indeed, 70% of cell-cycle-regulated phosphorylations, where the kinase carrying out this modification has not been identified, are non-proline-directed CDK1 sites.
Collapse
Affiliation(s)
- Aymen Al-Rawi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Edward Kaye
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | - Jane A Endicott
- Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tony Ly
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
9
|
Sanz‐Castillo B, Hurtado B, Vara‐Ciruelos D, El Bakkali A, Hermida D, Salvador‐Barbero B, Martínez‐Alonso D, González‐Martínez J, Santiveri C, Campos‐Olivas R, Ximénez‐Embún P, Muñoz J, Álvarez‐Fernández M, Malumbres M. The MASTL/PP2A cell cycle kinase-phosphatase module restrains PI3K-Akt activity in an mTORC1-dependent manner. EMBO J 2023; 42:e110833. [PMID: 36354735 PMCID: PMC9841333 DOI: 10.15252/embj.2022110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The AKT-mTOR pathway is a central regulator of cell growth and metabolism. Upon sustained mTOR activity, AKT activity is attenuated by a feedback loop that restrains upstream signaling. However, how cells control the signals that limit AKT activity is not fully understood. Here, we show that MASTL/Greatwall, a cell cycle kinase that supports mitosis by phosphorylating the PP2A/B55 inhibitors ENSA/ARPP19, inhibits PI3K-AKT activity by sustaining mTORC1- and S6K1-dependent phosphorylation of IRS1 and GRB10. Genetic depletion of MASTL results in an inefficient feedback loop and AKT hyperactivity. These defects are rescued by the expression of phosphomimetic ENSA/ARPP19 or inhibition of PP2A/B55 phosphatases. MASTL is directly phosphorylated by mTORC1, thereby limiting the PP2A/B55-dependent dephosphorylation of IRS1 and GRB10 downstream of mTORC1. Downregulation of MASTL results in increased glucose uptake in vitro and increased glucose tolerance in adult mice, suggesting the relevance of the MASTL-PP2A/B55 kinase-phosphatase module in controlling AKT and maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Belén Sanz‐Castillo
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Begoña Hurtado
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Diana Vara‐Ciruelos
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Aicha El Bakkali
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Dario Hermida
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Diego Martínez‐Alonso
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Clara Santiveri
- Spectroscopy and Nuclear Magnetic Resonance UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Ramón Campos‐Olivas
- Spectroscopy and Nuclear Magnetic Resonance UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Javier Muñoz
- Proteomics UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Mónica Álvarez‐Fernández
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)Instituto Universitario de Oncología del Principado de Asturias (IUOPA)OviedoSpain
| | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| |
Collapse
|
10
|
Regulation of the mitotic chromosome folding machines. Biochem J 2022; 479:2153-2173. [PMID: 36268993 DOI: 10.1042/bcj20210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
Over the last several years enormous progress has been made in identifying the molecular machines, including condensins and topoisomerases that fold mitotic chromosomes. The discovery that condensins generate chromatin loops through loop extrusion has revolutionized, and energized, the field of chromosome folding. To understand how these machines fold chromosomes with the appropriate dimensions, while disentangling sister chromatids, it needs to be determined how they are regulated and deployed. Here, we outline the current understanding of how these machines and factors are regulated through cell cycle dependent expression, chromatin localization, activation and inactivation through post-translational modifications, and through associations with each other, with other factors and with the chromatin template itself. There are still many open questions about how condensins and topoisomerases are regulated but given the pace of progress in the chromosome folding field, it seems likely that many of these will be answered in the years ahead.
Collapse
|
11
|
Archambault V, Li J, Emond-Fraser V, Larouche M. Dephosphorylation in nuclear reassembly after mitosis. Front Cell Dev Biol 2022; 10:1012768. [PMID: 36268509 PMCID: PMC9576876 DOI: 10.3389/fcell.2022.1012768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In most animal cell types, the interphase nucleus is largely disassembled during mitotic entry. The nuclear envelope breaks down and chromosomes are compacted into separated masses. Chromatin organization is also mostly lost and kinetochores assemble on centromeres. Mitotic protein kinases play several roles in inducing these transformations by phosphorylating multiple effector proteins. In many of these events, the mechanistic consequences of phosphorylation have been characterized. In comparison, how the nucleus reassembles at the end of mitosis is less well understood in mechanistic terms. In recent years, much progress has been made in deciphering how dephosphorylation of several effector proteins promotes nuclear envelope reassembly, chromosome decondensation, kinetochore disassembly and interphase chromatin organization. The precise roles of protein phosphatases in this process, in particular of the PP1 and PP2A groups, are emerging. Moreover, how these enzymes are temporally and spatially regulated to ensure that nuclear reassembly progresses in a coordinated manner has been partly uncovered. This review provides a global view of nuclear reassembly with a focus on the roles of dephosphorylation events. It also identifies important open questions and proposes hypotheses.
Collapse
Affiliation(s)
- Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Vincent Archambault,
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Gouttia OG, Zhao J, Li Y, Zwiener MJ, Wang L, Oakley GG, Peng A. The MASTL-ENSA-PP2A/B55 axis modulates cisplatin resistance in oral squamous cell carcinoma. Front Cell Dev Biol 2022; 10:904719. [PMID: 36247015 PMCID: PMC9554306 DOI: 10.3389/fcell.2022.904719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023] Open
Abstract
Platinum-based chemotherapy is the standard first-line treatment for oral squamous cell carcinoma (OSCC) that is inoperable, recurrent, or metastatic. Platinum sensitivity is a major determinant of patient survival in advanced OSCC. Here, we investigated the involvement of MASTL, a cell cycle kinase that mediates ENSA/ARPP19 phosphorylation and PP2A/B55 inhibition, in OSCC therapy. Interestingly, upregulation of MASTL and ENSA/ARPP19, and downregulation of PP2A/B55, were common in OSCC. MASTL expression was in association with poor patient survival. In established OSCC cell lines, upregulation of MASTL and ENSA, and downregulation of B55 genes, correlated with cisplatin resistance. We further confirmed that stable expression of MASTL in OSCC cells promoted cell survival and proliferation under cisplatin treatment, in an ENSA-dependent manner. Conversely, deletion of MASTL or ENSA, or overexpression of B55α, sensitized cisplatin response, consistent with increased DNA damage accumulation, signaling, and caspase activation. Moreover, GKI-1, the first-in-class small molecule inhibitor of MASTL kinase, phenocopied MASTL depletion in enhancing the outcome of cisplatin treatment in OSCC cells, at a dose substantially lower than that needed to disrupt mitotic entry. Finally, GKI-1 exhibited promising efficacy in a mouse tumor xenograft model, in conjunction with cisplatin therapy.
Collapse
|
13
|
Lacroix B, Lorca T, Castro A. Structural, enzymatic and spatiotemporal regulation of PP2A-B55 phosphatase in the control of mitosis. Front Cell Dev Biol 2022; 10:967909. [PMID: 36105360 PMCID: PMC9465306 DOI: 10.3389/fcell.2022.967909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Cells require major physical changes to induce a proper repartition of the DNA. Nuclear envelope breakdown, DNA condensation and spindle formation are promoted at mitotic entry by massive protein phosphorylation and reversed at mitotic exit by the timely and ordered dephosphorylation of mitotic substrates. This phosphorylation results from the balance between the activity of kinases and phosphatases. The role of kinases in the control of mitosis has been largely studied, however, the impact of phosphatases has long been underestimated. Recent data have now established that the regulation of phosphatases is crucial to confer timely and ordered cellular events required for cell division. One major phosphatase involved in this process is the phosphatase holoenzyme PP2A-B55. This review will be focused in the latest structural, biochemical and enzymatic insights provided for PP2A-B55 phosphatase as well as its regulators and mechanisms of action.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
| | - Thierry Lorca
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
| | - Anna Castro
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
- *Correspondence: Anna Castro,
| |
Collapse
|
14
|
PP2A-B55: substrates and regulators in the control of cellular functions. Oncogene 2022; 41:1-14. [PMID: 34686773 DOI: 10.1038/s41388-021-02068-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022]
Abstract
PP2A is a major serine/threonine phosphatase class involved in the regulation of cell signaling through the removal of protein phosphorylation. This class of phosphatases is comprised of different heterotrimeric complexes displaying distinct substrate specificities. The present review will focus on one specific heterocomplex, the phosphatase PP2A-B55. Herein, we will report the direct substrates of this phosphatase identified to date, and its impact on different cell signaling cascades. We will additionally describe its negative regulation by its inhibitors Arpp19 and ENSA and their upstream kinase Greatwall. Finally, we will describe the essential molecular features defining PP2A-B55 substrate specificity that confer the correct temporal pattern of substrate dephosphorylation. The main objective of this review is to provide the reader with a unique source compiling all the knowledge of this particular holoenzyme that has evolved as a key enzyme for cell homeostasis and cancer development.
Collapse
|
15
|
Fatima I, Barman S, Uppada J, Chauhan S, Rauth S, Rachagani S, Ponnusamy MP, Smith L, Talmon G, Singh AB, Batra SK, Dhawan P. MASTL regulates EGFR signaling to impact pancreatic cancer progression. Oncogene 2021; 40:5691-5704. [PMID: 34331012 PMCID: PMC8817225 DOI: 10.1038/s41388-021-01951-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022]
Abstract
Pancreatic cancer (PC) remains a major cause of cancer-related deaths primarily due to its inherent potential of therapy resistance. Checkpoint inhibitors have emerged as promising anti-cancer agents when used in combination with conventional anti-cancer therapies. Recent studies have highlighted a critical role of the Greatwall kinase (microtubule-associated serine/threonine-protein kinase-like (MASTL)) in promoting oncogenic malignancy and resistance to anti-cancer therapies; however, its role in PC remains unknown. Based on a comprehensive investigation involving PC patient samples, murine models of PC progression (Kras;PdxCre-KC and Kras;p53;PdxCre-KPC), and loss and gain of function studies, we report a previously undescribed critical role of MASTL in promoting cancer malignancy and therapy resistance. Mechanistically, MASTL promotes PC by modulating the epidermal growth factor receptor protein stability and, thereupon, kinase signaling. We further demonstrate that combinatorial therapy targeting MASTL promotes the efficacy of the cell-killing effects of Gemcitabine using both genetic and pharmacological inhibitions. Taken together, this study identifies a key role of MASTL in promoting PC progression and its utility as a novel target in promoting sensitivity to the anti-PC therapies.
Collapse
Affiliation(s)
- Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Barman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - JayaPrakash Uppada
- College of Community Health Sciences, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA
| | - Shailender Chauhan
- Cellular and Molecular Medicine, University of Arizona Cancer Center - UAHS, Tucson, AZ, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Lynette Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey Talmon
- Department of Pathlogy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
- Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
16
|
The study of the determinants controlling Arpp19 phosphatase-inhibitory activity reveals an Arpp19/PP2A-B55 feedback loop. Nat Commun 2021; 12:3565. [PMID: 34117214 PMCID: PMC8196004 DOI: 10.1038/s41467-021-23657-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Arpp19 is a potent PP2A-B55 inhibitor that regulates this phosphatase to ensure the stable phosphorylation of mitotic/meiotic substrates. At G2-M, Arpp19 is phosphorylated by the Greatwall kinase on S67. This phosphorylated Arpp19 form displays a high affinity to PP2A-B55 and a slow dephosphorylation rate, acting as a competitor of PP2A-B55 substrates. The molecular determinants conferring slow dephosphorylation kinetics to S67 are unknown. PKA also phosphorylates Arpp19. This phosphorylation performed on S109 is essential to maintain prophase I-arrest in Xenopus oocytes although the underlying signalling mechanism is elusive. Here, we characterize the molecular determinants conferring high affinity and slow dephosphorylation to S67 and controlling PP2A-B55 inhibitory activity of Arpp19. Moreover, we show that phospho-S109 restricts S67 phosphorylation by increasing its catalysis by PP2A-B55. Finally, we discover a double feed-back loop between these two phospho-sites essential to coordinate the temporal pattern of Arpp19-dependent PP2A-B55 inhibition and Cyclin B/Cdk1 activation during cell division. Progression of the cell division cycle requires feedback loops including those of phosphorylation and dephosphorylation; however the precise regulation of phosphorylation kinetics of Arpp19, an inhibitor of protein phosphatase 2A, is unclear. Here, the authors report that feedback between phosphorylation states of Ser67 and Ser109 of Arpp19 coordinates Arpp19-dependent inhibition of PP2A-B55 and Cyclin B activation during cell cycle progression.
Collapse
|
17
|
Larouche M, Kachaner D, Wang P, Normandin K, Garrido D, Yao C, Cormier M, Johansen KM, Johansen J, Archambault V. Spatiotemporal coordination of Greatwall-Endos-PP2A promotes mitotic progression. J Cell Biol 2021; 220:211965. [PMID: 33836042 PMCID: PMC8042607 DOI: 10.1083/jcb.202008145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Mitotic entry involves inhibition of protein phosphatase 2A bound to its B55/Tws regulatory subunit (PP2A-B55/Tws), which dephosphorylates substrates of mitotic kinases. This inhibition is induced when Greatwall phosphorylates Endos, turning it into an inhibitor of PP2A-Tws. How this mechanism operates spatiotemporally in the cell is incompletely understood. We previously reported that the nuclear export of Greatwall in prophase promotes mitotic progression. Here, we examine the importance of the localized activities of PP2A-Tws and Endos for mitotic regulation. We find that Tws shuttles through the nucleus via a conserved nuclear localization signal (NLS), but expression of Tws in the cytoplasm and not in the nucleus rescues the development of tws mutants. Moreover, we show that Endos must be in the cytoplasm before nuclear envelope breakdown (NEBD) to be efficiently phosphorylated by Greatwall and to bind and inhibit PP2A-Tws. Disrupting the cytoplasmic function of Endos before NEBD results in subsequent mitotic defects. Evidence suggests that this spatiotemporal regulation is conserved in humans.
Collapse
Affiliation(s)
- Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - David Kachaner
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Peng Wang
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Maxime Cormier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Kristen M Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Vagnarelli P. Back to the new beginning: Mitotic exit in space and time. Semin Cell Dev Biol 2021; 117:140-148. [PMID: 33810980 DOI: 10.1016/j.semcdb.2021.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
The ultimate goal of cell division is to generate two identical daughter cells that resemble the mother cell from which they derived. Once all the proper attachments to the spindle have occurred, the chromosomes have aligned at the metaphase plate and the spindle assembly checkpoint (a surveillance mechanism that halts cells form progressing in the cell cycle in case of spindle - microtubule attachment errors) has been satisfied, mitotic exit will occur. Mitotic exit has the purpose of completing the separation of the genomic material but also to rebuild the cellular structures necessary for the new cell cycle. This stage of mitosis received little attention until a decade ago, therefore our knowledge is much patchier than the molecular details we now have for the early stages of mitosis. However, it is emerging that mitotic exit is not just the simple reverse of mitotic entry and it is highly regulated in space and time. In this review I will discuss the main advances in the field that provided us with a better understanding on the key role of protein phosphorylation/de-phosphorylation in this transition together with the concept of their spatial regulation. As this field is much younger, I will highlight general consensus, contrasting views together with the outstanding questions awaiting for answers.
Collapse
Affiliation(s)
- Paola Vagnarelli
- College of Medicine, Health and Life Science, Centre for Genomic Engineering and Maintenance (CenGEM), Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
19
|
Lemonnier T, Daldello EM, Poulhe R, Le T, Miot M, Lignières L, Jessus C, Dupré A. The M-phase regulatory phosphatase PP2A-B55δ opposes protein kinase A on Arpp19 to initiate meiotic division. Nat Commun 2021; 12:1837. [PMID: 33758202 PMCID: PMC7988065 DOI: 10.1038/s41467-021-22124-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Oocytes are held in meiotic prophase for prolonged periods until hormonal signals trigger meiotic divisions. Key players of M-phase entry are the opposing Cdk1 kinase and PP2A-B55δ phosphatase. In Xenopus, the protein Arpp19, phosphorylated at serine 67 by Greatwall, plays an essential role in inhibiting PP2A-B55δ, promoting Cdk1 activation. Furthermore, Arpp19 has an earlier role in maintaining the prophase arrest through a second serine (S109) phosphorylated by PKA. Prophase release, induced by progesterone, relies on Arpp19 dephosphorylation at S109, owing to an unknown phosphatase. Here, we identified this phosphatase as PP2A-B55δ. In prophase, PKA and PP2A-B55δ are simultaneously active, suggesting the presence of other important targets for both enzymes. The drop in PKA activity induced by progesterone enables PP2A-B55δ to dephosphorylate S109, unlocking the prophase block. Hence, PP2A-B55δ acts critically on Arpp19 on two distinct sites, opposing PKA and Greatwall to orchestrate the prophase release and M-phase entry.
Collapse
Affiliation(s)
- Tom Lemonnier
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Robert Poulhe
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Tran Le
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Marika Miot
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | | | - Catherine Jessus
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Aude Dupré
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France.
| |
Collapse
|
20
|
Tokmakov AA, Stefanov VE, Sato KI. Dissection of the Ovulatory Process Using ex vivo Approaches. Front Cell Dev Biol 2020; 8:605379. [PMID: 33363163 PMCID: PMC7755606 DOI: 10.3389/fcell.2020.605379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Ovulation is a unique physiological phenomenon that is essential for sexual reproduction. It refers to the entire process of ovarian follicle responses to hormonal stimulation resulting in the release of mature fertilization-competent oocytes from the follicles and ovaries. Remarkably, ovulation in different species can be reproduced out-of-body with high fidelity. Moreover, most of the molecular mechanisms and signaling pathways engaged in this process have been delineated using in vitro ovulation models. Here, we provide an overview of the major molecular and cytological events of ovulation observed in frogs, primarily in the African clawed frog Xenopus laevis, using mainly ex vivo approaches, with the focus on meiotic oocyte maturation and follicle rupture. For the purpose of comparison and generalization, we also refer extensively to ovulation in other biological species, most notoriously, in mammals.
Collapse
Affiliation(s)
| | - Vasily E Stefanov
- Department of Biochemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Ken-Ichi Sato
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
21
|
The Greatwall kinase safeguards the genome integrity by affecting the kinome activity in mitosis. Oncogene 2020; 39:6816-6840. [PMID: 32978522 PMCID: PMC7605441 DOI: 10.1038/s41388-020-01470-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
Abstract
Progression through mitosis is balanced by the timely regulation of phosphorylation and dephosphorylation events ensuring the correct segregation of chromosomes before cytokinesis. This balance is regulated by the opposing actions of CDK1 and PP2A, as well as the Greatwall kinase/MASTL. MASTL is commonly overexpressed in cancer, which makes it a potential therapeutic anticancer target. Loss of Mastl induces multiple chromosomal errors that lead to the accumulation of micronuclei and multilobulated cells in mitosis. Our analyses revealed that loss of Mastl leads to chromosome breaks and abnormalities impairing correct segregation. Phospho-proteomic data for Mastl knockout cells revealed alterations in proteins implicated in multiple processes during mitosis including double-strand DNA damage repair. In silico prediction of the kinases with affected activity unveiled NEK2 to be regulated in the absence of Mastl. We uncovered that, RAD51AP1, involved in regulation of homologous recombination, is phosphorylated by NEK2 and CDK1 but also efficiently dephosphorylated by PP2A/B55. Our results suggest that MastlKO disturbs the equilibrium of the mitotic phosphoproteome that leads to the disruption of DNA damage repair and triggers an accumulation of chromosome breaks even in noncancerous cells.
Collapse
|
22
|
Holder J, Mohammed S, Barr FA. Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit. eLife 2020; 9:e59885. [PMID: 32869743 PMCID: PMC7529458 DOI: 10.7554/elife.59885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
APC/C-mediated proteolysis of cyclin B and securin promotes anaphase entry, inactivating CDK1 and permitting chromosome segregation, respectively. Reduction of CDK1 activity relieves inhibition of the CDK1-counteracting phosphatases PP1 and PP2A-B55, allowing wide-spread dephosphorylation of substrates. Meanwhile, continued APC/C activity promotes proteolysis of other mitotic regulators. Together, these activities orchestrate a complex series of events during mitotic exit. However, the relative importance of regulated proteolysis and dephosphorylation in dictating the order and timing of these events remains unclear. Using high temporal-resolution proteomics, we compare the relative extent of proteolysis and protein dephosphorylation. This reveals highly-selective rapid proteolysis of cyclin B, securin and geminin at the metaphase-anaphase transition, followed by slow proteolysis of other substrates. Dephosphorylation requires APC/C-dependent destruction of cyclin B and was resolved into PP1-dependent categories with unique sequence motifs. We conclude that dephosphorylation initiated by selective proteolysis of cyclin B drives the bulk of changes observed during mitotic exit.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Francis A Barr
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
23
|
Fatima I, Singh AB, Dhawan P. MASTL: A novel therapeutic target for Cancer Malignancy. Cancer Med 2020; 9:6322-6329. [PMID: 32692487 PMCID: PMC7476815 DOI: 10.1002/cam4.3141] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting mitotic kinases is an emerging anticancer approach with promising preclinical outcomes. Microtubule‐associated serine/threonine kinase like (MASTL), also known as Greatwall (Gwl), is an important mitotic kinase that regulates mitotic progression of normal or transformed cells by blocking the activity of tumor suppressor protein phosphatase 2A (PP2A). MASTL upregulation has now been detected in multiple cancer types and associated with aggressive clinicopathological features. Apart, an aberrant MASTL activity has been implicated in oncogenic transformation through the development of chromosomal instability and alteration of key oncogenic signaling pathways. In this regard, recent publications have revealed potential role of MASTL in the regulation of AKT/mTOR and Wnt/β‐catenin signaling pathways, which may be independent of its regulation of PP2A‐B55 (PP2A holoenzyme containing a B55‐family regulatory subunit). Taken together, MASTL kinase has emerged as a novel target for cancer therapeutics, and hence development of small molecule inhibitors of MASTL may significantly improve the clinical outcomes of cancer patients. In this article, we review the role of MASTL in cancer progression and the current gaps in this knowledge. We also discuss potential efficacy of MASTL expression for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Iram Fatima
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Amar B Singh
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
24
|
Hégarat N, Crncec A, Suarez Peredo Rodriguez MF, Echegaray Iturra F, Gu Y, Busby O, Lang PF, Barr AR, Bakal C, Kanemaki MT, Lamond AI, Novak B, Ly T, Hochegger H. Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B. EMBO J 2020; 39:e104419. [PMID: 32350921 PMCID: PMC7265243 DOI: 10.15252/embj.2020104419] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 01/23/2023] Open
Abstract
Two mitotic cyclin types, cyclin A and B, exist in higher eukaryotes, but their specialised functions in mitosis are incompletely understood. Using degron tags for rapid inducible protein removal, we analyse how acute depletion of these proteins affects mitosis. Loss of cyclin A in G2-phase prevents mitotic entry. Cells lacking cyclin B can enter mitosis and phosphorylate most mitotic proteins, because of parallel PP2A:B55 phosphatase inactivation by Greatwall kinase. The final barrier to mitotic establishment corresponds to nuclear envelope breakdown, which requires a decisive shift in the balance of cyclin-dependent kinase Cdk1 and PP2A:B55 activity. Beyond this point, cyclin B/Cdk1 is essential for phosphorylation of a distinct subset of mitotic Cdk1 substrates that are essential to complete cell division. Our results identify how cyclin A, cyclin B and Greatwall kinase coordinate mitotic progression by increasing levels of Cdk1-dependent substrate phosphorylation.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Adrijana Crncec
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | | | | | - Yan Gu
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Oliver Busby
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Paul F Lang
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Alexis R Barr
- MRC London Institute of Medical ScienceImperial CollegeLondonUK
- Institute of Clinical SciencesFaculty of MedicineImperial CollegeLondonUK
| | - Chris Bakal
- Institute for Cancer ResearchChester Beatty LaboratoriesLondonUK
| | - Masato T Kanemaki
- National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
- Department of GeneticsSOKENDAI (The Graduate University of Advanced Studies)MishimaJapan
| | - Angus I Lamond
- Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Bela Novak
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Tony Ly
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Helfrid Hochegger
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
25
|
Jackman M, Marcozzi C, Barbiero M, Pardo M, Yu L, Tyson AL, Choudhary JS, Pines J. Cyclin B1-Cdk1 facilitates MAD1 release from the nuclear pore to ensure a robust spindle checkpoint. J Cell Biol 2020; 219:e201907082. [PMID: 32236513 PMCID: PMC7265330 DOI: 10.1083/jcb.201907082] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/05/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022] Open
Abstract
How the cell rapidly and completely reorganizes its architecture when it divides is a problem that has fascinated researchers for almost 150 yr. We now know that the core regulatory machinery is highly conserved in eukaryotes, but how these multiple protein kinases, protein phosphatases, and ubiquitin ligases are coordinated in space and time to remodel the cell in a matter of minutes remains a major question. Cyclin B1-Cdk is the primary kinase that drives mitotic remodeling; here we show that it is targeted to the nuclear pore complex (NPC) by binding an acidic face of the kinetochore checkpoint protein, MAD1, where it coordinates NPC disassembly with kinetochore assembly. Localized cyclin B1-Cdk1 is needed for the proper release of MAD1 from the embrace of TPR at the nuclear pore so that it can be recruited to kinetochores before nuclear envelope breakdown to maintain genomic stability.
Collapse
|
26
|
Crncec A, Hochegger H. Triggering mitosis. FEBS Lett 2019; 593:2868-2888. [PMID: 31602636 DOI: 10.1002/1873-3468.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Entry into mitosis is triggered by the activation of cyclin-dependent kinase 1 (Cdk1). This simple reaction rapidly and irreversibly sets the cell up for division. Even though the core step in triggering mitosis is so simple, the regulation of this cellular switch is highly complex, involving a large number of interconnected signalling cascades. We do have a detailed knowledge of most of the components of this network, but only a poor understanding of how they work together to create a precise and robust system that ensures that mitosis is triggered at the right time and in an orderly fashion. In this review, we will give an overview of the literature that describes the Cdk1 activation network and then address questions relating to the systems biology of this switch. How is the timing of the trigger controlled? How is mitosis insulated from interphase? What determines the sequence of events, following the initial trigger of Cdk1 activation? Which elements ensure robustness in the timing and execution of the switch? How has this system been adapted to the high levels of replication stress in cancer cells?
Collapse
Affiliation(s)
- Adrijana Crncec
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
27
|
Holder J, Poser E, Barr FA. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett 2019; 593:2908-2924. [PMID: 31494926 DOI: 10.1002/1873-3468.13595] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Here, we will review the evidence showing that mitotic exit is initiated by regulated proteolysis and then driven by the PPP family of phosphoserine/threonine phosphatases. Rapid APC/CCDC20 and ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid separation, the first step of mitotic exit. Because proteolysis of Aurora and Polo family kinases dependent on APC/CCDH1 is relatively slow, this creates a new regulatory state, anaphase, different to G2 and M-phase. We will discuss how the CDK1-counteracting phosphatases PP1 and PP2A-B55, together with Aurora and Polo kinases, contribute to the temporal regulation and order of events in the different stages of mitotic exit from anaphase to cytokinesis. For PP2A-B55, these timing properties are created by the ENSA-dependent inhibitory pathway and differential recognition of phosphoserine and phosphothreonine. Finally, we will discuss how Aurora B and PP2A-B56 are needed for the spatial regulation of anaphase spindle formation and how APC/C-dependent destruction of PLK1 acts as a timer for abscission, the final event of cytokinesis.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, UK
| | - Elena Poser
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
28
|
Huguet F, Flynn S, Vagnarelli P. The Role of Phosphatases in Nuclear Envelope Disassembly and Reassembly and Their Relevance to Pathologies. Cells 2019; 8:cells8070687. [PMID: 31284660 PMCID: PMC6678589 DOI: 10.3390/cells8070687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022] Open
Abstract
The role of kinases in the regulation of cell cycle transitions is very well established, however, over the past decade, studies have identified the ever-growing importance of phosphatases in these processes. It is well-known that an intact or otherwise non-deformed nuclear envelope (NE) is essential for maintaining healthy cells and any deviation from this can result in pathological conditions. This review aims at assessing the current understanding of how phosphatases contribute to the remodelling of the nuclear envelope during its disassembling and reformation after cell division and how errors in this process may lead to the development of diseases.
Collapse
Affiliation(s)
- Florentin Huguet
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Shane Flynn
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK.
| |
Collapse
|
29
|
Hayward D, Alfonso-Pérez T, Cundell MJ, Hopkins M, Holder J, Bancroft J, Hutter LH, Novak B, Barr FA, Gruneberg U. CDK1-CCNB1 creates a spindle checkpoint-permissive state by enabling MPS1 kinetochore localization. J Cell Biol 2019; 218:1182-1199. [PMID: 30674582 PMCID: PMC6446832 DOI: 10.1083/jcb.201808014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/19/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
Spindle checkpoint signaling is initiated by recruitment of the kinase MPS1 to unattached kinetochores during mitosis. We show that CDK1-CCNB1 and a counteracting phosphatase PP2A-B55 regulate the engagement of human MPS1 with unattached kinetochores by controlling the phosphorylation status of S281 in the kinetochore-binding domain. This regulation is essential for checkpoint signaling, since MPS1S281A is not recruited to unattached kinetochores and fails to support the recruitment of other checkpoint proteins. Directly tethering MPS1S281A to the kinetochore protein Mis12 bypasses this regulation and hence the requirement for S281 phosphorylation in checkpoint signaling. At the metaphase-anaphase transition, MPS1 S281 dephosphorylation is delayed because PP2A-B55 is negatively regulated by CDK1-CCNB1 and only becomes fully active once CCNB1 concentration falls below a characteristic threshold. This mechanism prolongs the checkpoint-responsive period when MPS1 can localize to kinetochores and enables a response to late-stage spindle defects. By acting together, CDK1-CCNB1 and PP2A-B55 thus create a spindle checkpoint-permissive state and ensure the fidelity of mitosis.
Collapse
Affiliation(s)
- Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, England, UK
| | - Tatiana Alfonso-Pérez
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - Michael J Cundell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - Michael Hopkins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - James Holder
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - James Bancroft
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, England, UK
| | - Lukas H Hutter
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - Bela Novak
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, England, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, England, UK
| |
Collapse
|
30
|
Boudreau V, Chen R, Edwards A, Sulaimain M, Maddox PS. PP2A-B55/SUR-6 collaborates with the nuclear lamina for centrosome separation during mitotic entry. Mol Biol Cell 2019; 30:876-886. [PMID: 30840554 PMCID: PMC6589783 DOI: 10.1091/mbc.e18-10-0631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Across most sexually reproducing animals, centrosomes are provided to the oocyte through fertilization and must be positioned properly to establish the zygotic mitotic spindle. How centrosomes are positioned in space and time through the concerted action of key mitotic entry biochemical regulators, including protein phosphatase 2A (PP2A-B55/SUR-6), biophysical regulators, including dynein, and the nuclear lamina is unclear. Here, we uncover a role for PP2A-B55/SUR-6 in regulating centrosome separation. Mechanistically, PP2A-B55/SUR-6 regulates nuclear size before mitotic entry, in turn affecting nuclear envelope–based dynein density and motor capacity. Computational simulations predicted the requirement of PP2A-B55/SUR-6 regulation of nuclear size and nuclear-envelope dynein density for proper centrosome separation. Conversely, compromising nuclear lamina integrity led to centrosome detachment from the nuclear envelope and migration defects. Removal of PP2A-B55/SUR-6 and the nuclear lamina simultaneously further disrupted centrosome separation, leading to unseparated centrosome pairs dissociated from the nuclear envelope. Taking these combined results into consideration, we propose a model in which centrosomes migrate and are positioned through the concerted action of PP2A-B55/SUR-6–regulated nuclear envelope–based dynein pulling forces and centrosome–nuclear envelope tethering. Our results add critical precision to models of centrosome separation relative to the nucleus during spindle formation in cell division.
Collapse
Affiliation(s)
- Vincent Boudreau
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Richard Chen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Alan Edwards
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Muhammad Sulaimain
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| |
Collapse
|
31
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
32
|
Hached K, Goguet P, Charrasse S, Vigneron S, Sacristan MP, Lorca T, Castro A. ENSA and ARPP19 differentially control cell cycle progression and development. J Cell Biol 2019; 218:541-558. [PMID: 30626720 PMCID: PMC6363464 DOI: 10.1083/jcb.201708105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/05/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022] Open
Abstract
The Greatwall kinase substrates ARPP19 and ENSA have been shown to inhibit PP2A-B55 by an identical mechanism. Hached et al. show that, surprisingly, the ARPP19 and ENSA paralogs display specific functions during mouse embryogenesis and differentially control cell cycle progression. Greatwall (GWL) is an essential kinase that indirectly controls PP2A-B55, the phosphatase counterbalancing cyclin B/CDK1 activity during mitosis. In Xenopus laevis egg extracts, GWL-mediated phosphorylation of overexpressed ARPP19 and ENSA turns them into potent PP2A-B55 inhibitors. It has been shown that the GWL/ENSA/PP2A-B55 axis contributes to the control of DNA replication, but little is known about the role of ARPP19 in cell division. By using conditional knockout mouse models, we investigated the specific roles of ARPP19 and ENSA in cell division. We found that Arpp19, but not Ensa, is essential for mouse embryogenesis. Moreover, Arpp19 ablation dramatically decreased mouse embryonic fibroblast (MEF) viability by perturbing the temporal pattern of protein dephosphorylation during mitotic progression, possibly by a drop of PP2A-B55 activity inhibition. We show that these alterations are not prevented by ENSA, which is still expressed in Arpp19Δ/Δ MEFs, suggesting that ARPP19 is essential for mitotic division. Strikingly, we demonstrate that unlike ARPP19, ENSA is not required for early embryonic development. Arpp19 knockout did not perturb the S phase, unlike Ensa gene ablation. We conclude that, during mouse embryogenesis, the Arpp19 and Ensa paralog genes display specific functions by differentially controlling cell cycle progression.
Collapse
Affiliation(s)
- Khaled Hached
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Perrine Goguet
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Sophie Charrasse
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Suzanne Vigneron
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Maria P Sacristan
- Instituto de Biología Molecular y Celular del Cáncer, Universidad de Salamanca/Consejo Superior de Investigaciones Cientificas, Salamanca, Spain
| | - Thierry Lorca
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Anna Castro
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| |
Collapse
|
33
|
Fowle H, Zhao Z, Graña X. PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Adv Cancer Res 2019; 144:55-93. [PMID: 31349904 PMCID: PMC9994639 DOI: 10.1016/bs.acr.2019.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase of the PPP family of phosphatases with fundamental cellular functions. In cells, PP2A targets specific subcellular locations and substrates by forming heterotrimeric holoenzymes, where a core dimer consisting of scaffold (A) and catalytic (C) subunits complexes with one of many B regulatory subunits. PP2A plays a key role in positively and negatively regulating a myriad of cellular processes, as it targets a very sizable fraction of the cellular substrates phosphorylated on Ser/Thr residues. This review focuses on insights made toward the understanding on how the subunit composition and structure of PP2A holoenzymes mediates substrate specificity, the role of substrate modulation in the signaling of cellular division, growth, and differentiation, and its deregulation in cancer.
Collapse
Affiliation(s)
- Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
34
|
Rata S, Suarez Peredo Rodriguez MF, Joseph S, Peter N, Echegaray Iturra F, Yang F, Madzvamuse A, Ruppert JG, Samejima K, Platani M, Alvarez-Fernandez M, Malumbres M, Earnshaw WC, Novak B, Hochegger H. Two Interlinked Bistable Switches Govern Mitotic Control in Mammalian Cells. Curr Biol 2018; 28:3824-3832.e6. [PMID: 30449668 PMCID: PMC6287978 DOI: 10.1016/j.cub.2018.09.059] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/30/2022]
Abstract
Distinct protein phosphorylation levels in interphase and M phase require tight regulation of Cdk1 activity [1, 2]. A bistable switch, based on positive feedback in the Cdk1 activation loop, has been proposed to generate different thresholds for transitions between these cell-cycle states [3-5]. Recently, the activity of the major Cdk1-counteracting phosphatase, PP2A:B55, has also been found to be bistable due to Greatwall kinase-dependent regulation [6]. However, the interplay of the regulation of Cdk1 and PP2A:B55 in vivo remains unexplored. Here, we combine quantitative cell biology assays with mathematical modeling to explore the interplay of mitotic kinase activation and phosphatase inactivation in human cells. By measuring mitotic entry and exit thresholds using ATP-analog-sensitive Cdk1 mutants, we find evidence that the mitotic switch displays hysteresis and bistability, responding differentially to Cdk1 inhibition in the mitotic and interphase states. Cdk1 activation by Wee1/Cdc25 feedback loops and PP2A:B55 inactivation by Greatwall independently contributes to this hysteretic switch system. However, elimination of both Cdk1 and PP2A:B55 inactivation fully abrogates bistability, suggesting that hysteresis is an emergent property of mutual inhibition between the Cdk1 and PP2A:B55 feedback loops. Our model of the two interlinked feedback systems predicts an intermediate but hidden steady state between interphase and M phase. This could be verified experimentally by Cdk1 inhibition during mitotic entry, supporting the predictive value of our model. Furthermore, we demonstrate that dual inhibition of Wee1 and Gwl kinases causes loss of cell-cycle memory and synthetic lethality, which could be further exploited therapeutically.
Collapse
Affiliation(s)
- Scott Rata
- Department of Biochemistry, University of Oxford, South Park Road, Oxford OX1 3QU, UK
| | | | - Stephy Joseph
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Brighton BN1 9RQ, UK
| | - Nisha Peter
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Brighton BN1 9RQ, UK
| | - Fabio Echegaray Iturra
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Brighton BN1 9RQ, UK
| | - Fengwei Yang
- Department of Chemical and Process Engineering, University of Surrey, 388 Stag Hill, Guildford GU2 7JP, UK
| | - Anotida Madzvamuse
- Department of Mathematics, University of Sussex, Science Park Road, Brighton BN1 9QH, UK
| | - Jan G Ruppert
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kumiko Samejima
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Melpomeni Platani
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | | | - Marcos Malumbres
- Spanish National Cancer Research Centre, Melchor Fernandez Almagro, Madrid E28029, Spain
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Bela Novak
- Department of Biochemistry, University of Oxford, South Park Road, Oxford OX1 3QU, UK.
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Brighton BN1 9RQ, UK.
| |
Collapse
|
35
|
Nilsson J. Protein phosphatases in the regulation of mitosis. J Cell Biol 2018; 218:395-409. [PMID: 30446607 PMCID: PMC6363451 DOI: 10.1083/jcb.201809138] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
The accurate segregation of genetic material to daughter cells during mitosis depends on the precise coordination and regulation of hundreds of proteins by dynamic phosphorylation. Mitotic kinases are major regulators of protein function, but equally important are protein phosphatases that balance their actions, their coordinated activity being essential for accurate chromosome segregation. Phosphoprotein phosphatases (PPPs) that dephosphorylate phosphoserine and phosphothreonine residues are increasingly understood as essential regulators of mitosis. In contrast to kinases, the lack of a pronounced peptide-binding cleft on the catalytic subunit of PPPs suggests that these enzymes are unlikely to be specific. However, recent exciting insights into how mitotic PPPs recognize specific substrates have revealed that they are as specific as kinases. Furthermore, the activities of PPPs are tightly controlled at many levels to ensure that they are active only at the proper time and place. Here, I will discuss substrate selection and regulation of mitotic PPPs focusing mainly on animal cells and explore how these actions control mitosis, as well as important unanswered questions.
Collapse
Affiliation(s)
- Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Hurtado B, Trakala M, Ximénez-Embún P, El Bakkali A, Partida D, Sanz-Castillo B, Álvarez-Fernández M, Maroto M, Sánchez-Martínez R, Martínez L, Muñoz J, García de Frutos P, Malumbres M. Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets. J Clin Invest 2018; 128:5351-5367. [PMID: 30252678 DOI: 10.1172/jci121876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
MASTL, a Ser/Thr kinase that inhibits PP2A-B55 complexes during mitosis, is mutated in autosomal dominant thrombocytopenia. However, the connections between the cell-cycle machinery and this human disease remain unexplored. We report here that, whereas Mastl ablation in megakaryocytes prevented proper maturation of these cells, mice carrying the thrombocytopenia-associated mutation developed thrombocytopenia as a consequence of aberrant activation and survival of platelets. Activation of mutant platelets was characterized by hyperstabilized pseudopods mimicking the effect of PP2A inhibition and actin polymerization defects. These aberrations were accompanied by abnormal hyperphosphorylation of multiple components of the actin cytoskeleton and were rescued both in vitro and in vivo by inhibiting upstream kinases such as PKA, PKC, or AMPK. These data reveal an unexpected role of Mastl in actin cytoskeletal dynamics in postmitotic cells and suggest that the thrombocytopenia-associated mutation in MASTL is a pathogenic dominant mutation that mimics decreased PP2A activity resulting in altered phosphorylation of cytoskeletal regulatory pathways.
Collapse
Affiliation(s)
- Begoña Hurtado
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas- Institut d'Investigacions Biomèdiques August Pi i Sunyer- (IIBB-CSIC-IDIBAPS), Barcelona, Spain
| | - Marianna Trakala
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- ProteoRed - Instituto de Salud Carlos III (ISCIII) and Proteomics Unit, CNIO, Madrid, Spain
| | - Aicha El Bakkali
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Partida
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Belén Sanz-Castillo
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - María Maroto
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ruth Sánchez-Martínez
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Javier Muñoz
- ProteoRed - Instituto de Salud Carlos III (ISCIII) and Proteomics Unit, CNIO, Madrid, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas- Institut d'Investigacions Biomèdiques August Pi i Sunyer- (IIBB-CSIC-IDIBAPS), Barcelona, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
37
|
Abstract
Mitosis is controlled by a subtle balance between kinase and phosphatase activities that involve the master mitotic kinase cyclin-B-Cdk1 and its antagonizing protein phosphatase 2A-B55 (PP2A-B55). Importantly, the Greatwall (Gwl; known as Mastl in mammals, Rim15 in budding yeast and Ppk18 in fission yeast) kinase pathway regulates PP2A-B55 activity by phosphorylating two proteins, cAMP-regulated phosphoprotein 19 (Arpp19) and α-endosulfine (ENSA). This phosphorylation turns these proteins into potent inhibitors of PP2A-B55, thereby promoting a correct timing and progression of mitosis. In this Cell Science at a Glance article and the accompanying poster, we discuss how Gwl is regulated in space and time, and how the Gwl-Arpp19-ENSA-PP2A-B55 pathway plays an essential role in the control of M and S phases from yeast to human. We also summarize how Gwl modulates oncogenic properties of cells and how nutrient deprivation influences Gwl activity.
Collapse
Affiliation(s)
- Anna Castro
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier cedex 5, France
| | - Thierry Lorca
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier cedex 5, France
| |
Collapse
|
38
|
Mehsen H, Boudreau V, Garrido D, Bourouh M, Larouche M, Maddox PS, Swan A, Archambault V. PP2A-B55 promotes nuclear envelope reformation after mitosis in Drosophila. J Cell Biol 2018; 217:4106-4123. [PMID: 30309980 PMCID: PMC6279390 DOI: 10.1083/jcb.201804018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/17/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
As a dividing cell exits mitosis and daughter cells enter interphase, many proteins must be dephosphorylated. The protein phosphatase 2A (PP2A) with its B55 regulatory subunit plays a crucial role in this transition, but the identity of its substrates and how their dephosphorylation promotes mitotic exit are largely unknown. We conducted a maternal-effect screen in Drosophila melanogaster to identify genes that function with PP2A-B55/Tws in the cell cycle. We found that eggs that receive reduced levels of Tws and of components of the nuclear envelope (NE) often fail development, concomitant with NE defects following meiosis and in syncytial mitoses. Our mechanistic studies using Drosophila cells indicate that PP2A-Tws promotes nuclear envelope reformation (NER) during mitotic exit by dephosphorylating BAF and suggests that PP2A-Tws targets additional NE components, including Lamin and Nup107. This work establishes Drosophila as a powerful model to further dissect the molecular mechanisms of NER and suggests additional roles of PP2A-Tws in the completion of meiosis and mitosis.
Collapse
Affiliation(s)
- Haytham Mehsen
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Vincent Boudreau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Mohammed Bourouh
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Paul S Maddox
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Andrew Swan
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada .,Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
39
|
Álvarez-Fernández M, Sanz-Flores M, Sanz-Castillo B, Salazar-Roa M, Partida D, Zapatero-Solana E, Ali HR, Manchado E, Lowe S, VanArsdale T, Shields D, Caldas C, Quintela-Fandino M, Malumbres M. Therapeutic relevance of the PP2A-B55 inhibitory kinase MASTL/Greatwall in breast cancer. Cell Death Differ 2018; 25:828-840. [PMID: 29229993 PMCID: PMC5943447 DOI: 10.1038/s41418-017-0024-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/13/2017] [Accepted: 10/12/2017] [Indexed: 01/17/2023] Open
Abstract
PP2A is a major tumor suppressor whose inactivation is frequently found in a wide spectrum of human tumors. In particular, deletion or epigenetic silencing of genes encoding the B55 family of PP2A regulatory subunits is a common feature of breast cancer cells. A key player in the regulation of PP2A/B55 phosphatase complexes is the cell cycle kinase MASTL (also known as Greatwall). During cell division, inhibition of PP2A-B55 by MASTL is required to maintain the mitotic state, whereas inactivation of MASTL and PP2A reactivation is required for mitotic exit. Despite its critical role in cell cycle progression in multiple organisms, its relevance as a therapeutic target in human cancer and its dependence of PP2A activity is mostly unknown. Here we show that MASTL overexpression predicts poor survival and shows prognostic value in breast cancer patients. MASTL knockdown or knockout using RNA interference or CRISPR/Cas9 systems impairs proliferation of a subset of breast cancer cells. The proliferative function of MASTL in these tumor cells requires its kinase activity and the presence of PP2A-B55 complexes. By using a new inducible CRISPR/Cas9 system in breast cancer cells, we show that genetic ablation of MASTL displays a significant therapeutic effect in vivo. All together, these data suggest that the PP2A inhibitory kinase MASTL may have both prognostic and therapeutic value in human breast cancer.
Collapse
Affiliation(s)
| | - María Sanz-Flores
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Belén Sanz-Castillo
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María Salazar-Roa
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Partida
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - H Raza Ali
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Scott Lowe
- Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Todd VanArsdale
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., New York, USA
| | - David Shields
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., New York, USA
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Marcos Malumbres
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
40
|
Nasa I, Kettenbach AN. Coordination of Protein Kinase and Phosphoprotein Phosphatase Activities in Mitosis. Front Cell Dev Biol 2018; 6:30. [PMID: 29623276 PMCID: PMC5874294 DOI: 10.3389/fcell.2018.00030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Dynamic changes in protein phosphorylation govern the transitions between different phases of the cell division cycle. A "tug of war" between highly conserved protein kinases and the family of phosphoprotein phosphatases (PPP) establishes the phosphorylation state of proteins, which controls their function. More than three-quarters of all proteins are phosphorylated at one or more sites in human cells, with the highest occupancy of phosphorylation sites seen in mitosis. Spatial and temporal regulation of opposing kinase and PPP activities is crucial for accurate execution of the mitotic program. The role of mitotic kinases has been the focus of many studies, while the contribution of PPPs was for a long time underappreciated and is just emerging. Misconceptions regarding the specificity and activity of protein phosphatases led to the belief that protein kinases are the primary determinants of mitotic regulation, leaving PPPs out of the limelight. Recent studies have shown that protein phosphatases are specific and selective enzymes, and that their activity is tightly regulated. In this review, we discuss the emerging roles of PPPs in mitosis and their regulation of and by mitotic kinases, as well as mechanisms that determine PPP substrate recognition and specificity.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
41
|
Identification of new inhibitors against human Great wall kinase using in silico approaches. Sci Rep 2018; 8:4894. [PMID: 29559668 PMCID: PMC5861128 DOI: 10.1038/s41598-018-23246-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Microtubule associated serine/threonine kinase (MASTL) is an important Ser/Thr kinase belonging to the family of AGC kinases. It is the human orthologue of Greatwall kinase (Gwl) that plays a significant role in mitotic progression and cell cycle regulation. Upregulation of MASTL in various cancers and its association with poor patient survival establishes it as an important drug target in cancer therapy. Nevertheless, the target remains unexplored with the paucity of studies focused on identification of inhibitors against MASTL, which emphasizes the relevance of our present study. We explored various drug databases and performed virtual screening of compounds from both natural and synthetic sources. A list of promising compounds displaying high binding characteristics towards MASTL protein is reported. Among the natural compounds, we found a 6-hydroxynaphthalene derivative ZINC85597499 to display best binding energy value of −9.32 kcal/mol. While among synthetic compounds, a thieno-pyrimidinone based tricyclic derivative ZINC53845290 compound exhibited best binding affinity of value −7.85 kcal/mol. MASTL interactions with these two compounds were further explored using molecular dynamics simulations. Altogether, this study identifies potential inhibitors of human Gwl kinase from both natural and synthetic origin and calls for studying these compounds as potential drugs for cancer therapy.
Collapse
|
42
|
Strauss B, Harrison A, Coelho PA, Yata K, Zernicka-Goetz M, Pines J. Cyclin B1 is essential for mitosis in mouse embryos, and its nuclear export sets the time for mitosis. J Cell Biol 2018; 217:179-193. [PMID: 29074707 PMCID: PMC5748970 DOI: 10.1083/jcb.201612147] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/02/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022] Open
Abstract
There is remarkable redundancy between the Cyclin-Cdk complexes that comprise the cell cycle machinery. None of the mammalian A-, D-, or E-type cyclins are required in development until implantation, and only Cdk1 is essential for early cell divisions. Cyclin B1 is essential for development, but whether it is required for cell division is contentious. Here, we used a novel imaging approach to analyze Cyclin B1-null embryos from fertilization onward. We show that Cyclin B1-/- embryos arrest in G2 phase after just two divisions. This is the earliest arrest of any Cyclin known and places Cyclin B1 with cdk1 as the essential regulators of the cell cycle. We reintroduced mutant proteins into this genetically null background to determine why Cyclin B1 is constantly exported from the nucleus. We found that Cyclin B1 must be exported from the nucleus for the cell to prevent premature entry to mitosis, and retaining Cyclin B1-Cdk1 at the plasma membrane precludes entry to mitosis.
Collapse
Affiliation(s)
- Bernhard Strauss
- The Gurdon Institute, Cambridge, England, UK
- Department of Zoology, University of Cambridge, Cambridge, England, UK
| | - Andrew Harrison
- The Gurdon Institute, Cambridge, England, UK
- Department of Zoology, University of Cambridge, Cambridge, England, UK
| | | | - Keiko Yata
- The Gurdon Institute, Cambridge, England, UK
- Department of Zoology, University of Cambridge, Cambridge, England, UK
| | - Magdalena Zernicka-Goetz
- The Gurdon Institute, Cambridge, England, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, England, UK
| | - Jonathon Pines
- The Gurdon Institute, Cambridge, England, UK
- Department of Zoology, University of Cambridge, Cambridge, England, UK
- The Institute of Cancer Research, London, England, UK
| |
Collapse
|
43
|
KISHIMOTO T. MPF-based meiotic cell cycle control: Half a century of lessons from starfish oocytes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:180-203. [PMID: 29643273 PMCID: PMC5968197 DOI: 10.2183/pjab.94.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/21/2018] [Indexed: 05/23/2023]
Abstract
In metazoans that undergo sexual reproduction, genomic inheritance is ensured by two distinct types of cell cycle, mitosis and meiosis. Mitosis maintains the genomic ploidy in somatic cells reproducing within a generation, whereas meiosis reduces by half the ploidy in germ cells to prepare for successive generations. The meiotic cell cycle is believed to be a derived form of the mitotic cell cycle; however, the molecular mechanisms underlying both of these processes remain elusive. My laboratory has long studied the meiotic cell cycle in starfish oocytes, particularly the control of meiotic M-phase by maturation- or M phase-promoting factor (MPF) and the kinase cyclin B-associated Cdk1 (cyclin B-Cdk1). Using this system, we have unraveled the molecular principles conserved in metazoans that modify M-phase progression from the mitotic type to the meiotic type needed to produce a haploid genome. Furthermore, we have solved a long-standing enigma concerning the molecular identity of MPF, a universal inducer of M-phase both in mitosis and meiosis of eukaryotic cells.
Collapse
Affiliation(s)
- Takeo KISHIMOTO
- Professor Emeritus of Tokyo Institute of Technology
- Visiting Professor of Ochanomizu University, Japan
- Correspondence should be addressed: T. Kishimoto, Science and Education Center, Ochanomizu University, Ootsuka 2-1-1, Bunkyo-ku, Tokyo 112-8610, Japan (e-mail: ; )
| |
Collapse
|
44
|
Hopkins M, Tyson JJ, Novák B. Cell-cycle transitions: a common role for stoichiometric inhibitors. Mol Biol Cell 2017; 28:3437-3446. [PMID: 28931595 PMCID: PMC5687042 DOI: 10.1091/mbc.e17-06-0349] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022] Open
Abstract
The abrupt and irreversible transitions that drive cells through the DNA replication-division cycle are governed by molecular mechanisms that function as bistable “toggle” switches. A common theme of these switches is a network motif consisting of a “beleaguered” enzyme and its “domineering” substrate, locked in a feedback amplification loop. The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called “checkpoints”) if there have been problems in the replication of the chromosomes or their biorientation on the mitotic spindle. These checkpoints are governed by protein-interaction networks, composed of phase-specific cell-cycle activators and inhibitors. Examples include Cdk1:Clb5 and its inhibitor Sic1 at the G1/S checkpoint in budding yeast, APC:Cdc20 and its inhibitor MCC at the mitotic checkpoint, and PP2A:B55 and its inhibitor, alpha-endosulfine, at the mitotic-exit checkpoint. Each of these inhibitors is a substrate as well as a stoichiometric inhibitor of the cell-cycle activator. Because the production of each inhibitor is promoted by a regulatory protein that is itself inhibited by the cell-cycle activator, their interaction network presents a regulatory motif characteristic of a “feedback-amplified domineering substrate” (FADS). We describe how the FADS motif responds to signals in the manner of a bistable toggle switch, and then we discuss how this toggle switch accounts for the abrupt and irreversible nature of three specific cell-cycle checkpoints.
Collapse
Affiliation(s)
- Michael Hopkins
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Béla Novák
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| |
Collapse
|
45
|
Tian J, Lin Y, Yu J. E2F8 confers cisplatin resistance to ER+ breast cancer cells via transcriptionally activating MASTL. Biomed Pharmacother 2017; 92:919-926. [DOI: 10.1016/j.biopha.2017.05.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 12/01/2022] Open
|
46
|
Dupré AI, Haccard O, Jessus C. The greatwall kinase is dominant over PKA in controlling the antagonistic function of ARPP19 in Xenopus oocytes. Cell Cycle 2017; 16:1440-1452. [PMID: 28722544 DOI: 10.1080/15384101.2017.1338985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The small protein ARPP19 plays a dual role during oocyte meiosis resumption. In Xenopus, ARPP19 phosphorylation at S109 by PKA is necessary for maintaining oocytes arrested in prophase of the first meiotic division. Progesterone downregulates PKA, leading to the dephosphorylation of ARPP19 at S109. This initiates a transduction pathway ending with the activation of the universal inducer of M-phase, the kinase Cdk1. This last step depends on ARPP19 phosphorylation at S67 by the kinase Greatwall. Hence, phosphorylated by PKA at S109, ARPP19 restrains Cdk1 activation while when phosphorylated by Greatwall at S67, ARPP19 becomes an inducer of Cdk1 activation. Here, we investigate the functional interplay between S109 and S67-phosphorylations of ARPP19. We show that both PKA and Gwl phosphorylate ARPP19 independently of each other and that Cdk1 is not directly involved in regulating the biological activity of ARPP19. We also show that the phosphorylation of ARPP19 at S67 that activates Cdk1, is dominant over the inhibitory S109 phosphorylation. Therefore our results highlight the importance of timely synchronizing ARPP19 phosphorylations at S109 and S67 to fully activate Cdk1.
Collapse
Affiliation(s)
- Aude-Isabelle Dupré
- a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement - Institut de Biologie Paris Seine (LBD - IBPS) , Paris , France
| | - Olivier Haccard
- a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement - Institut de Biologie Paris Seine (LBD - IBPS) , Paris , France
| | - Catherine Jessus
- a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement - Institut de Biologie Paris Seine (LBD - IBPS) , Paris , France
| |
Collapse
|
47
|
Musante V, Li L, Kanyo J, Lam TT, Colangelo CM, Cheng SK, Brody AH, Greengard P, Le Novère N, Nairn AC. Reciprocal regulation of ARPP-16 by PKA and MAST3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition. eLife 2017; 6. [PMID: 28613156 PMCID: PMC5515580 DOI: 10.7554/elife.24998] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/13/2017] [Indexed: 12/17/2022] Open
Abstract
ARPP-16, ARPP-19, and ENSA are inhibitors of protein phosphatase PP2A. ARPP-19 and ENSA phosphorylated by Greatwall kinase inhibit PP2A during mitosis. ARPP-16 is expressed in striatal neurons where basal phosphorylation by MAST3 kinase inhibits PP2A and regulates key components of striatal signaling. The ARPP-16/19 proteins were discovered as substrates for PKA, but the function of PKA phosphorylation is unknown. We find that phosphorylation by PKA or MAST3 mutually suppresses the ability of the other kinase to act on ARPP-16. Phosphorylation by PKA also acts to prevent inhibition of PP2A by ARPP-16 phosphorylated by MAST3. Moreover, PKA phosphorylates MAST3 at multiple sites resulting in its inhibition. Mathematical modeling highlights the role of these three regulatory interactions to create a switch-like response to cAMP. Together, the results suggest a complex antagonistic interplay between the control of ARPP-16 by MAST3 and PKA that creates a mechanism whereby cAMP mediates PP2A disinhibition. DOI:http://dx.doi.org/10.7554/eLife.24998.001
Collapse
Affiliation(s)
- Veronica Musante
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
| | - Lu Li
- The Babraham Institute, Cambridge, United Kingdom
| | - Jean Kanyo
- W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, United states
| | - Tukiet T Lam
- W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, United states
| | - Christopher M Colangelo
- W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, United states
| | - Shuk Kei Cheng
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, United States
| | - A Harrison Brody
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, United States
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, United States
| | | | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
48
|
Ren D, Fisher LA, Zhao J, Wang L, Williams BC, Goldberg ML, Peng A. Cell cycle-dependent regulation of Greatwall kinase by protein phosphatase 1 and regulatory subunit 3B. J Biol Chem 2017; 292:10026-10034. [PMID: 28446604 DOI: 10.1074/jbc.m117.778233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/25/2017] [Indexed: 11/06/2022] Open
Abstract
Greatwall (Gwl) kinase plays an essential role in the regulation of mitotic entry and progression. Mitotic activation of Gwl requires both cyclin-dependent kinase 1 (CDK1)-dependent phosphorylation and its autophosphorylation at an evolutionarily conserved serine residue near the carboxyl terminus (Ser-883 in Xenopus). In this study we show that Gwl associates with protein phosphatase 1 (PP1), particularly PP1γ, which mediates the dephosphorylation of Gwl Ser-883. Consistent with the mitotic activation of Gwl, its association with PP1 is disrupted in mitotic cells and egg extracts. During mitotic exit, PP1-dependent dephosphorylation of Gwl Ser-883 occurs prior to dephosphorylation of other mitotic substrates; replacing endogenous Gwl with a phosphomimetic S883E mutant blocks mitotic exit. Moreover, we identified PP1 regulatory subunit 3B (PPP1R3B) as a targeting subunit that can direct PP1 activity toward Gwl. PPP1R3B bridges PP1 and Gwl association and promotes Gwl Ser-883 dephosphorylation. Consistent with the cell cycle-dependent association of Gwl and PP1, Gwl and PPP1R3B dissociate in M phase. Interestingly, up-regulation of PPP1R3B facilitates mitotic exit and blocks mitotic entry. Thus, our study suggests PPP1R3B as a new cell cycle regulator that functions by governing Gwl dephosphorylation.
Collapse
Affiliation(s)
- Dapeng Ren
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| | - Laura A Fisher
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| | - Jing Zhao
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| | - Ling Wang
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| | - Byron C Williams
- the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Michael L Goldberg
- the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Aimin Peng
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| |
Collapse
|
49
|
Filter JJ, Williams BC, Eto M, Shalloway D, Goldberg ML. Unfair competition governs the interaction of pCPI-17 with myosin phosphatase (PP1-MYPT1). eLife 2017; 6. [PMID: 28387646 PMCID: PMC5441869 DOI: 10.7554/elife.24665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/31/2017] [Indexed: 11/30/2022] Open
Abstract
The small phosphoprotein pCPI-17 inhibits myosin light-chain phosphatase (MLCP). Current models postulate that during muscle relaxation, phosphatases other than MLCP dephosphorylate and inactivate pCPI-17 to restore MLCP activity. We show here that such hypotheses are insufficient to account for the observed rapidity of pCPI-17 inactivation in mammalian smooth muscles. Instead, MLCP itself is the critical enzyme for pCPI-17 dephosphorylation. We call the mutual sequestration mechanism through which pCPI-17 and MLCP interact inhibition by unfair competition: MLCP protects pCPI-17 from other phosphatases, while pCPI-17 blocks other substrates from MLCP’s active site. MLCP dephosphorylates pCPI-17 at a slow rate that is, nonetheless, both sufficient and necessary to explain the speed of pCPI-17 dephosphorylation and the consequent MLCP activation during muscle relaxation. DOI:http://dx.doi.org/10.7554/eLife.24665.001
Collapse
Affiliation(s)
- Joshua J Filter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Byron C Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Masumi Eto
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, United States
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
50
|
Cellular Dynamics Controlled by Phosphatases. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|