1
|
Nguyen DTM, Koppers M, Farías GG. Endoplasmic reticulum - condensate interactions in protein synthesis and secretion. Curr Opin Cell Biol 2024; 88:102357. [PMID: 38626704 DOI: 10.1016/j.ceb.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024]
Abstract
In the past decade, a growing amount of evidence has demonstrated that organelles do not act autonomously and independently but rather communicate with each other to coordinate different processes for proper cellular function. With a highly extended network throughout the cell, the endoplasmic reticulum (ER) plays a central role in interorganelle communication through membrane contact sites. Here, we highlight recent evidence indicating that the ER also forms contacts with membrane-less organelles. These interactions contribute to the dynamic assembly and disassembly of condensates and controlled protein secretion. Additionally, emerging evidence suggests their involvement in mRNA localization and localized translation. We further explore exciting future directions of this emerging theme in the organelle contact site field.
Collapse
Affiliation(s)
- Dan T M Nguyen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Max Koppers
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Ginny G Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Ma C, Lv Q, Ma L, Xing B, Li Y, Li Z. CoCl 2-mimicked Hypoxia Induces the Assembly of Stress Granules in Trophoblast Cells Via eIF2α Phosphorylation-dependent and - Independent Pathways. Curr Mol Med 2024; 24:1291-1300. [PMID: 37711098 DOI: 10.2174/1566524023666230913111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Hypoxia has been implicated in preeclampsia (PE) pathophysiology. Stress granules (SGs) are present in the placenta of patients with PE. However, the pathways that contribute to SG aggregation in PE remain poorly understood. OBJECTIVE The objective of the current study is to investigate this issue. METHODS We first established an in vitro hypoxia model using human trophoblast cell line HTR-8/SVneo treated with cobalt chloride (CoCl2). CCK8 assay and wound healing assay were conducted to assess the viability and migration of HTR-8/SVneo cells after exposure to CoCl2-mimicked hypoxia. SG component expression in HTR-8/SVneo cells treated with CoCl2 alone, or in combination with indicated siRNAs was evaluated by reverse transcription quantitative PCR (RT-qPCR), western blot and immunofluorescence staining. RESULTS Our results found CoCl2-mimicked hypoxia inhibits the proliferation and migration of HTR-8/SVneo cells. The treatment of CoCl2 can induce SG assembly in HTR-8/Svneo cells. Mechanistically, both heme-regulated inhibitors (HRI) mediated eukaryotic translation initiation factor (eIF)2α phosphorylation pathway and 4E binding protein 1 (4EBP1) pathway are involved in SG formation under the stress of CoCl2- mimicked hypoxia. CONCLUSION Hypoxia-induced SGs in trophoblast cells might contribute to the etiology of PE.
Collapse
Affiliation(s)
- Chunling Ma
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qiulan Lv
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Liang Ma
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Baoxiang Xing
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhiyuan Li
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
3
|
Lu D, Liu Y, Huang H, Hu M, Li T, Wang S, Shen S, Wu R, Cai W, Lu T, Lu Z. Melatonin Offers Dual-Phase Protection to Brain Vessel Endothelial Cells in Prolonged Cerebral Ischemia-Recanalization Through Ameliorating ER Stress and Resolving Refractory Stress Granule. Transl Stroke Res 2023; 14:910-928. [PMID: 36181629 DOI: 10.1007/s12975-022-01084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 10/07/2022]
Abstract
Ischemic-reperfusion injury limits the time window of recanalization therapy in cerebral acute ischemic stroke (AIS). Brain vessel endothelial cells (BVECs) form the first layer of the blood-brain barrier (BBB) and are thus the first sufferer of ischemic-reperfusion disorder. The current study demonstrates that melatonin can reduce infarct volume, alleviate brain edema, ameliorate neurological deficits, and protect BBB integrity in prolonged-stroke mice. Here, we demonstrate that endoplasmic reticulum (ER)-associated injury contributes to BVEC death in the dural phase of reperfusion after prolonged ischemia. When encountering ischemia, ER stress arises, specifically activating PERK-EIF2α signaling and the subsequent programmed cell death. Prolonged ischemia leads stress granules (SGs) to be refractory, which remain unresolved and accumulate in ER during recanalization. During reperfusion, refractory SGs activate PKR-EIF2α and further exacerbate BVEC injury. We report that melatonin treatment downregulates ER stress in the ischemic period and enhances dissociation of the refractory SGs during reperfusion, thus offering dual-phase protection to BVECs in prolonged cerebral stroke. Mechanistically, melatonin enhances autophagy in BVECs, which preserves ER function and resolves refractory SGs. We, therefore, propose that melatonin is a potential treatment to extend the time window of delayed recanalization therapy in AIS.
Collapse
Affiliation(s)
- Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Ruizhen Wu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
4
|
Yang T, Wang G, Zhang M, Hu X, Li Q, Yun F, Xing Y, Song X, Zhang H, Hu G, Qian Y. Triggering endogenous Z-RNA sensing for anti-tumor therapy through ZBP1-dependent necroptosis. Cell Rep 2023; 42:113377. [PMID: 37922310 DOI: 10.1016/j.celrep.2023.113377] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/15/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023] Open
Abstract
ZBP1 senses viral Z-RNAs to induce necroptotic cell death to restrain viral infection. ZBP1 is also thought to recognize host cell-derived Z-RNAs to regulate organ development and tissue inflammation in mice. However, it remains unknown how the host-derived Z-RNAs are formed and how these endogenous Z-RNAs are sensed by ZBP1. Here, we report that oxidative stress strongly induces host cell endogenous Z-RNAs, and the Z-RNAs then localize to stress granules for direct sensing by ZBP1 to trigger necroptosis. Oxidative stress triggers dramatically increase Z-RNA levels in tumor cells, and the Z-RNAs then directly trigger tumor cell necroptosis through ZBP1. Localization of the induced Z-RNAs to stress granules is essential for ZBP1 sensing. Oxidative stress-induced Z-RNAs significantly promote tumor chemotherapy via ZBP1-driven necroptosis. Thus, our study identifies oxidative stress as a critical trigger for Z-RNA formation and demonstrates how Z-RNAs are directly sensed by ZBP1 to trigger anti-tumor necroptotic cell death.
Collapse
Affiliation(s)
- Tao Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guodong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingxiang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Xiaohu Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fenglin Yun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingying Xing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyang Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Haibing Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.
| |
Collapse
|
5
|
Fedorovskiy AG, Burakov AV, Terenin IM, Bykov DA, Lashkevich KA, Popenko VI, Makarova NE, Sorokin II, Sukhinina AP, Prassolov VS, Ivanov PV, Dmitriev SE. A Solitary Stalled 80S Ribosome Prevents mRNA Recruitment to Stress Granules. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1786-1799. [PMID: 38105199 DOI: 10.1134/s000629792311010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023]
Abstract
In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.
Collapse
Affiliation(s)
- Artem G Fedorovskiy
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anton V Burakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Sirius University of Science and Technology, Sirius, Krasnodar Region, 354340, Russia
| | - Dmitry A Bykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir I Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Nadezhda E Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia P Sukhinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir S Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel V Ivanov
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
6
|
Mukhopadhyay C, Zhou P. Role(s) of G3BPs in Human Pathogenesis. J Pharmacol Exp Ther 2023; 387:100-110. [PMID: 37468286 PMCID: PMC10519580 DOI: 10.1124/jpet.122.001538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Ras-GTPase-activating protein (SH3 domain)-binding proteins (G3BP) are RNA binding proteins that play a critical role in stress granule (SG) formation. SGs protect critical mRNAs from various environmental stress conditions by regulating mRNA stability and translation to maintain regulated gene expression. Recent evidence suggests that G3BPs can also regulate mRNA expression through interactions with RNA outside of SGs. G3BPs have been associated with a number of disease states, including cancer progression, invasion, metastasis, and viral infections, and may be useful as a cancer therapeutic target. This review summarizes the biology of G3BP including their structure, function, localization, role in cancer progression, virus replication, mRNA stability, and SG formation. We will also discuss the potential of G3BPs as a therapeutic target. SIGNIFICANCE STATEMENT: This review will discuss the molecular mechanism(s) and functional role(s) of Ras-GTPase-activating protein (SH3 domain)-binding proteins in the context of stress granule formation, interaction with viruses, stability of RNA, and tumorigenesis.
Collapse
Affiliation(s)
- Chandrani Mukhopadhyay
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York
| |
Collapse
|
7
|
Xie Z, Zhao S, Li Y, Deng Y, Shi Y, Chen X, Li Y, Li H, Chen C, Wang X, Liu E, Tu Y, Shi P, Tong J, Gutierrez-Beltran E, Li J, Bozhkov PV, Qian W, Zhou M, Wang W. Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition. NATURE PLANTS 2023; 9:1481-1499. [PMID: 37640933 DOI: 10.1038/s41477-023-01499-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Phenolic acids (PAs) secreted by donor plants suppress the growth of their susceptible plant neighbours. However, how structurally diverse ensembles of PAs are perceived by plants to mediate interspecific competition remains a mystery. Here we show that a plant stress granule (SG) marker, RNA-BINDING PROTEIN 47B (RBP47B), is a sensor of PAs in Arabidopsis. PAs, including salicylic acid, 4-hydroxybenzoic acid, protocatechuic acid and so on, directly bind RBP47B, promote its phase separation and trigger SG formation accompanied by global translation inhibition. Salicylic acid-induced global translation inhibition depends on RBP47 family members. RBP47s regulate the proteome rather than the absolute quantity of SG. The rbp47 quadruple mutant shows a reduced sensitivity to the inhibitory effect of the PA mixture as well as to that of PA-rich rice when tested in a co-culturing ecosystem. In this Article, we identified the long sought-after PA sensor as RBP47B and illustrated that PA-induced SG-mediated translational inhibition was one of the PA perception mechanisms.
Collapse
Affiliation(s)
- Zhouli Xie
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Shuai Zhao
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Yuhua Deng
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yabo Shi
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaoyuan Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yue Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Haiwei Li
- College of Life Sciences, Capital Normal University, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Changtian Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Enhui Liu
- College of Life Sciences, Capital Normal University, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Yuchen Tu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Peng Shi
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Jinjin Tong
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Emilio Gutierrez-Beltran
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, University of Sevilla, Sevilla, Spain
| | - Jiayu Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Weiqiang Qian
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China.
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Beijing, China.
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
8
|
Jung DM, Kim KK, Kim EM. Chloromethylisothiazolinone induces ER stress-induced stress granule formation in human keratinocytes. Anim Cells Syst (Seoul) 2023; 27:171-179. [PMID: 37636324 PMCID: PMC10448836 DOI: 10.1080/19768354.2023.2250852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023] Open
Abstract
Chloromethylisothiazolinone (CMIT), a humidifier disinfectant, is known to be toxic to the respiratory system. While the toxic effect of CMIT on the lungs has been widely investigated, its effect on the skin is well unknown. In this study, we examined stress granule (SG) formation to investigate the cytotoxic effects of CMIT on human keratinocytes. We assessed the viability of the cells following CMIT exposure and performed immunofluorescence microscopy and immunoblot analyses to determine SG formation and downstream pathways. The IC50 values in human keratinocyte HaCaT cells after CMIT exposure for 1 and 24 h were 11 and 8 μg/mL, respectively, showing no significant difference. As determined using immunofluorescence microscopy, SG formation was effectively induced after CMIT exposure. Moreover, the phosphorylation of eukaryotic initiation factor-2α (eIF2α), a translation initiation factor, and protein kinase R-like endoplasmic reticulum (ER) kinase, which plays a role in the ER stress-mediated eIF2α phosphorylation, was confirmed by CMIT exposure. These results suggest that exposure to CMIT can have detrimental effects on the skin, even briefly, by inducing SG formation through ER stress in keratinocytes.
Collapse
Affiliation(s)
- Da-Min Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Kee K. Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Baymiller M, Moon SL. Stress Granules as Causes and Consequences of Translation Suppression. Antioxid Redox Signal 2023; 39:390-409. [PMID: 37183403 PMCID: PMC10443205 DOI: 10.1089/ars.2022.0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
Significance: Stress granules (SGs) are biomolecular condensates that form upon global translation suppression during stress. SGs are enriched in translation factors and messenger RNAs (mRNAs), which they may sequester away from the protein synthesis machinery. While this is hypothesized to remodel the functional transcriptome during stress, it remains unclear whether SGs are a cause, or simply a consequence, of translation repression. Understanding the function of SGs is particularly important because they are implicated in numerous diseases including viral infections, cancer, and neurodegeneration. Recent Advances: We synthesize recent SG research spanning biological scales, from observing single proteins and mRNAs within one cell to measurements of the entire transcriptome or proteome of SGs in a cell population. We use the emerging understanding from these studies to suggest that SGs likely have less impact on global translation, but instead may strongly influence the translation of individual mRNAs localized to them. Critical Issues: Development of a unified model that links stress-induced RNA-protein condensation to regulation of downstream gene expression holds promise for understanding the mechanisms of cellular resilience. Future Directions: Therefore, upcoming research should clarify what influence SGs exert on translation at all scales as well as the molecular mechanisms that enable this. The resulting knowledge will be required to drive discovery in how SGs allow organisms to adapt to challenges and support health or go awry and lead to disease. Antioxid. Redox Signal. 39, 390-409.
Collapse
Affiliation(s)
- Max Baymiller
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L. Moon
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Zhou H, Luo J, Mou K, Peng L, Li X, Lei Y, Wang J, Lin S, Luo Y, Xiang L. Stress granules: functions and mechanisms in cancer. Cell Biosci 2023; 13:86. [PMID: 37179344 PMCID: PMC10182661 DOI: 10.1186/s13578-023-01030-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Stress granules (SGs) are non-enveloped structures formed primarily via protein and RNA aggregation under various stress conditions, including hypoxia and viral infection, as well as oxidative, osmotic, and heat-shock stress. SGs assembly is a highly conserved cellular strategy to reduce stress-related damage and promote cell survival. At present, the composition and dynamics of SGs are well understood; however, data on the functions and related mechanisms of SGs are limited. In recent years, SGs have continued to attract attention as emerging players in cancer research. Intriguingly, SGs regulate the biological behavior of tumors by participating in various tumor-associated signaling pathways, including cell proliferation, apoptosis, invasion and metastasis, chemotherapy resistance, radiotherapy resistance, and immune escape. This review discusses the roles and mechanisms of SGs in tumors and suggests novel directions for cancer treatment.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| |
Collapse
|
11
|
Asano-Inami E, Yokoi A, Sugiyama M, Hyodo T, Hamaguchi T, Kajiyama H. The association of UBAP2L and G3BP1 mediated by small nucleolar RNA is essential for stress granule formation. Commun Biol 2023; 6:415. [PMID: 37059803 PMCID: PMC10104854 DOI: 10.1038/s42003-023-04754-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/24/2023] [Indexed: 04/16/2023] Open
Abstract
Stress granules (SGs) are dynamic, non-membranous structures composed of non-translating mRNAs and various proteins and play critical roles in cell survival under stressed conditions. Extensive proteomics analyses have been performed to identify proteins in SGs; however, the molecular functions of these components in SG formation remain unclear. In this report, we show that ubiquitin-associated protein 2-like (UBAP2L) is a crucial component of SGs. UBAP2L localized to SGs in response to various stresses, and its depletion significantly suppressed SG organization. Proteomics and RNA sequencing analyses found that UBAP2L formed a protein-RNA complex with Ras-GTP-activating protein SH3 domain binding protein 1 (G3BP1) and small nucleolar RNAs (snoRNAs). In vitro binding analysis demonstrated that snoRNAs were required for UBAP2L association with G3BP1. In addition, decreased expression of snoRNAs reduced the interaction between UBAP2L and G3BP1 and suppressed SG formation. Our results reveal a critical role of SG component, the UBAP2L/snoRNA/G3BP1 protein-RNA complex, and provide new insights into the regulation of SG assembly.
Collapse
Affiliation(s)
- Eri Asano-Inami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan.
- Bell Research Center for Reproductive Health and Cancer, Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan.
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan.
- Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Mai Sugiyama
- Bell Research Center for Reproductive Health and Cancer, Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku Nagoya, 466-8550, Japan
| |
Collapse
|
12
|
Makeeva DS, Riggs CL, Burakov AV, Ivanov PA, Kushchenko AS, Bykov DA, Popenko VI, Prassolov VS, Ivanov PV, Dmitriev SE. Relocalization of Translation Termination and Ribosome Recycling Factors to Stress Granules Coincides with Elevated Stop-Codon Readthrough and Reinitiation Rates upon Oxidative Stress. Cells 2023; 12:259. [PMID: 36672194 PMCID: PMC9856671 DOI: 10.3390/cells12020259] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Upon oxidative stress, mammalian cells rapidly reprogram their translation. This is accompanied by the formation of stress granules (SGs), cytoplasmic ribonucleoprotein condensates containing untranslated mRNA molecules, RNA-binding proteins, 40S ribosomal subunits, and a set of translation initiation factors. Here we show that arsenite-induced stress causes a dramatic increase in the stop-codon readthrough rate and significantly elevates translation reinitiation levels on uORF-containing and bicistronic mRNAs. We also report the recruitment of translation termination factors eRF1 and eRF3, as well as ribosome recycling and translation reinitiation factors ABCE1, eIF2D, MCT-1, and DENR to SGs upon arsenite treatment. Localization of these factors to SGs may contribute to a rapid resumption of mRNA translation after stress relief and SG disassembly. It may also suggest the presence of post-termination, recycling, or reinitiation complexes in SGs. This new layer of translational control under stress conditions, relying on the altered spatial distribution of translation factors between cellular compartments, is discussed.
Collapse
Affiliation(s)
- Desislava S. Makeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Claire L. Riggs
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anton V. Burakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Pavel A. Ivanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artem S. Kushchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitri A. Bykov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir I. Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel V. Ivanov
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
13
|
Wang L, Guzmán M, Sola I, Enjuanes L, Zuñiga S. Cytoplasmic ribonucleoprotein complexes, RNA helicases and coronavirus infection. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1078454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA metabolism in the eukaryotic cell includes the formation of ribonucleoprotein complexes (RNPs) that, depending on their protein components, have a different function. Cytoplasmic RNPs, such as stress granules (SGs) or P-bodies (PBs) are quite relevant during infections modulating viral and cellular RNA expression and as key players in the host cell antiviral response. RNA helicases are abundant components of RNPs and could have a significant effect on viral infection. This review focuses in the role that RNPs and RNA helicases have during coronavirus (CoVs) infection. CoVs are emerging highly pathogenic viruses with a large single-stranded RNA genome. During CoV infection, a complex network of RNA-protein interactions in different RNP structures is established. In general, RNA helicases and RNPs have an antiviral function, but there is limited knowledge on whether the viral protein interactions with cell components are mediators of this antiviral effect or are part of the CoV antiviral counteraction mechanism. Additional data is needed to elucidate the role of these RNA-protein interactions during CoV infection and their potential contribution to viral replication or pathogenesis.
Collapse
|
14
|
Sadasivan J, Vlok M, Wang X, Nayak A, Andino R, Jan E. Targeting Nup358/RanBP2 by a viral protein disrupts stress granule formation. PLoS Pathog 2022; 18:e1010598. [PMID: 36455064 PMCID: PMC9746944 DOI: 10.1371/journal.ppat.1010598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/13/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Viruses have evolved mechanisms to modulate cellular pathways to facilitate infection. One such pathway is the formation of stress granules (SG), which are ribonucleoprotein complexes that assemble during translation inhibition following cellular stress. Inhibition of SG assembly has been observed under numerous virus infections across species, suggesting a conserved fundamental viral strategy. However, the significance of SG modulation during virus infection is not fully understood. The 1A protein encoded by the model dicistrovirus, Cricket paralysis virus (CrPV), is a multifunctional protein that can bind to and degrade Ago-2 in an E3 ubiquitin ligase-dependent manner to block the antiviral RNA interference pathway and inhibit SG formation. Moreover, the R146 residue of 1A is necessary for SG inhibition and CrPV infection in both Drosophila S2 cells and adult flies. Here, we uncoupled CrPV-1A's functions and provide insight into its underlying mechanism for SG inhibition. CrPV-1A mediated inhibition of SGs requires the E3 ubiquitin-ligase binding domain and the R146 residue, but not the Ago-2 binding domain. Wild-type but not mutant CrPV-1A R146A localizes to the nuclear membrane which correlates with nuclear enrichment of poly(A)+ RNA. Transcriptome changes in CrPV-infected cells are dependent on the R146 residue. Finally, Nup358/RanBP2 is targeted and degraded in CrPV-infected cells in an R146-dependent manner and the depletion of Nup358 blocks SG formation. We propose that CrPV utilizes a multiprong strategy whereby the CrPV-1A protein interferes with a nuclear event that contributes to SG inhibition in order to promote infection.
Collapse
Affiliation(s)
- Jibin Sadasivan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marli Vlok
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xinying Wang
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arabinda Nayak
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
15
|
The Amino Acid at Position 95 in the Matrix Protein of Rabies Virus Is Involved in Antiviral Stress Granule Formation in Infected Cells. J Virol 2022; 96:e0081022. [PMID: 36069552 PMCID: PMC9517722 DOI: 10.1128/jvi.00810-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stress granules (SGs) are dynamic structures that store cytosolic messenger ribonucleoproteins. SGs have recently been shown to serve as a platform for activating antiviral innate immunity; however, several pathogenic viruses suppress SG formation to evade innate immunity. In this study, we investigated the relationship between rabies virus (RABV) virulence and SG formation, using viral strains with different levels of virulence. We found that the virulent Nishigahara strain did not induce SG formation, but its avirulent offshoot, the Ni-CE strain, strongly induced SG formation. Furthermore, we demonstrated that the amino acid at position 95 in the RABV matrix protein (M95), a pathogenic determinant for the Nishigahara strain, plays a key role in inhibiting SG formation, followed by protein kinase R (PKR)-dependent phosphorylation of the α subunit of eukaryotic initiation factor 2α (eIF2α). M95 was also implicated in the accumulation of RIG-I, a viral RNA sensor protein, in SGs and in the subsequent acceleration of interferon induction. Taken together, our findings strongly suggest that M95-related inhibition of SG formation contributes to the pathogenesis of RABV by allowing the virus to evade the innate immune responses of the host. IMPORTANCE Rabies virus (RABV) is a neglected zoonotic pathogen that causes lethal infections in almost all mammalian hosts, including humans. Recently, RABV has been reported to induce intracellular formation of stress granules (SGs), also known as platforms that activate innate immune responses. However, the relationship between SG formation capacity and pathogenicity of RABV has remained unclear. In this study, by comparing two RABV strains with completely different levels of virulence, we found that the amino acid mutation from valine to alanine at position 95 of matrix protein (M95), which is known to be one of the amino acid mutations that determine the difference in virulence between the strains, plays a major role in SG formation. Importantly, M95 was involved in the accumulation of RIG-I in SGs and in promoting interferon induction. These findings are the first report of the effect of a single amino acid substitution associated with SGs on viral virulence.
Collapse
|
16
|
Abstract
Protein kinase R (PKR) is a critical host restriction factor against invading viral pathogens. However, this molecule is inactivated in the cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), an economically devastating pathogen to the world swine industry. Here, we report that this event is to suppress cellular inflammation and is mediated by the viral replicase protein nsp1β. We show that nsp1β is a stress-responsive protein, enters virus-induced stress granules (SGs) during infection, and repurposes SGs into a proviral platform, where it co-opts the SG core component G3BP1 to interact with PKR in a regulated manner. RNA interference silencing of G3BP1 or mutation of specific nsp1β residues (VS19GG) can abolish the antagonization of PKR activation. The viral mutant carrying the corresponding mutations induces elevated level of PKR phosphorylation and pronounced production of inflammatory cytokines (e.g., tumor necrosis factor-α, interleukin [IL]-6, and IL-8), whereas small-interfering RNA knockdown of PKR or treatment with C16, a PKR inhibitor, blocks this effect. Thus, PRRSV has evolved a unique strategy to evade PKR restriction to suppress host inflammatory responses.
Collapse
|
17
|
Yang X, Aloise C, van Vliet ALW, Zwaagstra M, Lyoo H, Cheng A, van Kuppeveld FJM. Proteolytic Activities of Enterovirus 2A Do Not Depend on Its Interaction with SETD3. Viruses 2022; 14:v14071360. [PMID: 35891342 PMCID: PMC9318592 DOI: 10.3390/v14071360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Enterovirus 2Apro is a protease that proteolytically processes the viral polyprotein and cleaves several host proteins to antagonize host responses during enteroviral infection. Recently, the host protein actin histidine methyltransferase SET domain containing 3 (SETD3) was identified to interact with 2Apro and to be essential for virus replication. The role of SETD3 and its interaction with 2Apro remain unclear. In this study, we investigated the potential involvement of SETD3 in several functions of 2Apro. For this, we introduced the 2Apro from coxsackievirus B3 (CVB3) in a mutant of encephalomyocarditis virus (EMCV) containing an inactivated Leader protein (EMCV-Lzn) that is unable to shut down host mRNA translation, to trigger nucleocytoplasmic transport disorder (NCTD), and to suppress stress granule (SG) formation and type I interferon (IFN) induction. Both in wt HeLa cells and in HeLa SETD3 knockout (SETD3KO) cells, the virus containing active 2Apro (EMCV-2Apro) efficiently cleaved eukaryotic translation initiation factor 4 gamma (eIF4G) to shut off host mRNA translation, cleaved nucleoporins to trigger NCTD, and actively suppressed SG formation and IFN gene transcription, arguing against a role of SETD3 in these 2Apro-mediated functions. Surprisingly, we observed that the catalytic activity of enteroviral 2A is not crucial for triggering NCTD, as a virus containing an inactive 2Apro (EMCV-2Am) induced NCTD in both wt and SETD3KO cells, albeit delayed, challenging the idea that the NCTD critically depends on nucleoporin cleavage by this protease. Taken together, our results do not support a role of SETD3 in the proteolytic activities of enterovirus 2Apro.
Collapse
Affiliation(s)
- Xiaoyao Yang
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (X.Y.); (C.A.); (A.L.W.v.V.); (M.Z.); (H.L.)
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chiara Aloise
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (X.Y.); (C.A.); (A.L.W.v.V.); (M.Z.); (H.L.)
| | - Arno L. W. van Vliet
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (X.Y.); (C.A.); (A.L.W.v.V.); (M.Z.); (H.L.)
| | - Marleen Zwaagstra
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (X.Y.); (C.A.); (A.L.W.v.V.); (M.Z.); (H.L.)
| | - Heyrhyoung Lyoo
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (X.Y.); (C.A.); (A.L.W.v.V.); (M.Z.); (H.L.)
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (A.C.); (F.J.M.v.K.)
| | - Frank J. M. van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (X.Y.); (C.A.); (A.L.W.v.V.); (M.Z.); (H.L.)
- Correspondence: (A.C.); (F.J.M.v.K.)
| |
Collapse
|
18
|
Wang Y, Li W, Zhang C, Peng W, Xu Z. RBM24 is localized to stress granules in cells under various stress conditions. Biochem Biophys Res Commun 2022; 608:96-101. [PMID: 35395551 DOI: 10.1016/j.bbrc.2022.03.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 11/02/2022]
Abstract
Stress granules (SGs) are formed when untranslated messenger ribonucleoproteins (mRNPs) accumulate in cells under stress, and are thought to minimize stress-induced damage and promote cell survival. RBM24 (RNA-binding motif protein 24) is an RNA-binding protein that plays pivotal roles in regulating the stability or translation initiation of target mRNAs as well as alternative splicing of target pre-mRNAs. Its important physiological functions are highlighted by the fact that Rbm24 knockout mice or zebrafish suffer from dysfunction of heart, eye, and inner ear. Here we show that RBM24 is recruited into SGs under various stress conditions, suggesting that it might protect its target RNAs in cells under stress. However, SG formation is unaffected when Rbm24 expression is down-regulated. Nevertheless, RBM24 overexpression in cultured cells is sufficient to induce SG formation, suggesting that RBM24 might play an important role in SG formation. In conclusion, our present work reveals that RBM24 is a SG component, which implies that RBM24 could protect its target mRNAs in stressed cells.
Collapse
Affiliation(s)
- Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Wei Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Cuiqiao Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Wu Peng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China; Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
19
|
USP10 inhibits aberrant cytoplasmic aggregation of TDP-43 by promoting stress granule clearance. Mol Cell Biol 2022; 42:e0039321. [PMID: 35007165 DOI: 10.1128/mcb.00393-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TDP-43 is a causative factor of amyotrophic lateral sclerosis (ALS). Cytoplasmic TDP-43 aggregates in neurons are a hallmark pathology of ALS. Under various stress conditions, TDP-43 localizes sequentially to two cytoplasmic protein aggregates: stress granules (SGs) first, and then aggresomes. Accumulating evidence suggests that delayed clearance of TDP-43-positive SGs is associated with pathological TDP-43 aggregates in ALS. We found that USP10 promotes the clearance of TDP-43-positive SGs in cells treated with proteasome inhibitor, thereby promoting the formation of TDP-43-positive aggresomes, and the depletion of USP10 increases the amount of insoluble TDP-35, a cleaved product of TDP-43, in the cytoplasm. TDP-35 interacted with USP10 in an RNA-binding dependent manner; however, impaired RNA-binding of TDP-35 reduced the localization in SGs and aggresomes and induced USP10-negative TDP-35 aggregates. Immunohistochemistry showed that most of the cytoplasmic TDP-43/TDP-35-aggregates in the neurons of ALS patients were USP10-negative. Our findings suggest that USP10 inhibits aberrant aggregation of TDP-43/TDP-35 in the cytoplasm of neuronal cells by promoting the clearance of TDP-43/TDP-35-positive SGs and facilitating the formation of TDP-43/TDP-35-positive aggresomes.
Collapse
|
20
|
Shao W, Zeng ST, Yu ZY, Tang GX, Chen SB, Huang ZS, Chen XC, Tan JH. Tracking Stress Granule Dynamics in Live Cells and In Vivo with a Small Molecule. Anal Chem 2021; 93:16297-16301. [PMID: 34843219 DOI: 10.1021/acs.analchem.1c03577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Because of the lack of facile and accurate methods to track stress granule (SG) dynamics in live cells and in vivo, in-depth studies of the biological roles of this attractive membraneless organelle have been limited. Herein, we report the first small-molecule probe, TASG, for the selective, convenient and real-time monitoring of SGs. This novel molecule can simultaneously bind to SG RNAs, the core SG protein G3BP1, and their complexes, triggering a significant enhancement in fluorescence intensity, making TASG broadly applicable to SG imaging under various stress conditions in fixed and live cells, ex vivo and in vivo. Using TASG, the complicated endogenous SG dynamics were revealed in both live cells and C. elegans. Collectively, our work provides an ideal probe that has thus far been absent in the field of SG investigations. We anticipate that this powerful tool may create exciting opportunities to investigate the underlying roles of SGs in different organisms.
Collapse
Affiliation(s)
- Wen Shao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shu-Tang Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ze-Yi Yu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiu-Cai Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
21
|
Kang W, Wang Y, Yang W, Zhang J, Zheng H, Li D. Research Progress on the Structure and Function of G3BP. Front Immunol 2021; 12:718548. [PMID: 34526993 PMCID: PMC8435845 DOI: 10.3389/fimmu.2021.718548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023] Open
Abstract
Ras-GTPase-activating protein (SH3 domain)-binding protein (G3BP) is an RNA binding protein. G3BP is a key component of stress granules (SGs) and can interact with many host proteins to regulate the expression of SGs. As an antiviral factor, G3BP can interact with viral proteins to regulate the assembly of SGs and thus exert antiviral effects. However, many viruses can also use G3BP as a proximal factor and recruit translation initiation factors to promote viral proliferation. G3BP regulates mRNA translation and attenuation to regulate gene expression; therefore, it is closely related to diseases, such as cancer, embryonic death, arteriosclerosis, and neurodevelopmental disorders. This review discusses the important discoveries and developments related G3BP in the biological field over the past 20 years, which includes the formation of SGs, interaction with viruses, stability of RNA, and disease progression.
Collapse
Affiliation(s)
- Weifang Kang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yue Wang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
22
|
Corbet GA, Burke JM, Parker R. ADAR1 limits stress granule formation through both translation-dependent and translation-independent mechanisms. J Cell Sci 2021; 134:272063. [PMID: 34397095 DOI: 10.1242/jcs.258783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic assemblies of RNA and protein that form when translation is repressed during the integrated stress response. SGs assemble from the combination of RNA-RNA, RNA-protein and protein-protein interactions between messenger ribonucleoprotein complexes (mRNPs). The protein adenosine deaminase acting on RNA 1 (ADAR1, also known as ADAR) recognizes and modifies double-stranded RNAs (dsRNAs) within cells to prevent an aberrant innate immune response. ADAR1 localizes to SGs, and since RNA-RNA interactions contribute to SG assembly and dsRNA induces SGs, we examined how ADAR1 affects SG formation. First, we demonstrate that ADAR1 depletion triggers SGs by allowing endogenous dsRNA to activate the integrated stress response through activation of PKR (also known as EIF2AK2) and translation repression. However, we also show that ADAR1 limits SG formation independently of translation inhibition. ADAR1 repression of SGs is independent of deaminase activity but is dependent on dsRNA-binding activity, suggesting a model where ADAR1 binding limits RNA-RNA and/or RNA-protein interactions necessary for recruitment to SGs. Given that ADAR1 expression is induced during viral infection, these findings have implications for the role of ADAR1 in the antiviral response. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Giulia A Corbet
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - James M Burke
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
23
|
Almutairy BK, Alshetaili A, Anwer MK, Ali N. In silico identification of MicroRNAs targeting the key nucleator of stress granules, G3BP: Promising therapeutics for SARS-CoV-2 infection. Saudi J Biol Sci 2021; 28:7499-7504. [PMID: 34456603 PMCID: PMC8381622 DOI: 10.1016/j.sjbs.2021.08.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/05/2022] Open
Abstract
Stress granules (SGs) are non-membrane ribonucleoprotein condensates formed in response to environmental stress conditions via liquid–liquid phase separation (LLPS). SGs are involved in the pathogenesis of aging and aging-associated diseases, cancers, viral infection, and several other diseases. GTPase-activating protein (SH3 domain)-binding protein 1 and 2 (G3BP1/2) is a key component and commonly used marker of SGs. Recent studies have shown that SARS-CoV-2 nucleocapsid protein via sequestration of G3BPs inhibits SGs formation in the host cells. In this study, we have identified putative miRNAs targeting G3BP in search of modulators of the G3BP expression. These miRNAs could be considered as new therapeutic targets against COVID-19 infection via the regulation of SG assembly and dynamics.
Collapse
Affiliation(s)
- Bjad K Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
SILAC-based quantitative MS approach reveals Withaferin A regulated proteins in prostate cancer. J Proteomics 2021; 247:104334. [PMID: 34298187 DOI: 10.1016/j.jprot.2021.104334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 01/06/2023]
Abstract
Withaferin A (WA) is a steroidal lactone extracted from Withania somnifera, commonly known as Ashwagandha. WA has several therapeutic benefits. The current study aims to identify proteins that are potentially regulated by WA in prostate cancer (PCA) cells. We used a SILAC-based proteomic approach to analyze the expression of proteins in response to WA treatment at 4 h and 24 h time points in three PCA cell lines: 22Rv1, DU-145, and LNCaP. Ontology analysis suggested that prolonged treatment with WA upregulated the expression of proteins involved in stress-response pathways. Treatment with WA increased oxidative stress, reduced global mRNA translation, and elevated the expression of cytoprotective stress granule (SG) protein G3BP1. WA treatment also enhanced the formation of SGs. The elevated expression of G3BP1 and the formation of SGs might constitute a mechanism of cytoprotection in PCA cells. Knockdown of G3BP1 blocked SG formation and enhanced the efficacy of WA to reduce PCA cell survival. SIGNIFICANCE: Withaferin A, a steroidal lactone, extracted from Withania somnifera is a promising anti-cancer drug. Using a SILAC-based quantitative proteomic approach, we identified proteins changed by WA-treatment at 4 h and 24 h in three prostate cancer (PCA) cell lines. WA-treatment induced the expression of proteins involved in apoptosis and reduced the expression of proteins involved in cell growth at 4 h. WA-treatment for 24 h enhanced the expression of proteins involved in stress response pathways. WA-treated cells exhibited increased oxidative stress, reduced mRNA translation and enhanced SG formation. PCA is characterized by higher metabolic rate and increased oxidative stress. PCA with a higher stress tolerance can effectively adapt to anti-cancer treatment stress, leading to drug resistance and cellular protection. Enhancing the level of oxidative stress along with inhibition of corresponding cytoprotective stress response pathways is a feasible option to prevent PCA from getting adapted to treatment stress. WA-treatment induced oxidative stress, in combination with blocking SGs by G3BP1 targeting, offers a therapeutic strategy to reduce PCA cell survival.
Collapse
|
25
|
Guo Y, Hinchman MM, Lewandrowski M, Cross ST, Sutherland DM, Welsh OL, Dermody TS, Parker JSL. The multi-functional reovirus σ3 protein is a virulence factor that suppresses stress granule formation and is associated with myocardial injury. PLoS Pathog 2021; 17:e1009494. [PMID: 34237110 PMCID: PMC8291629 DOI: 10.1371/journal.ppat.1009494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/20/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian orthoreovirus double-stranded (ds) RNA-binding protein σ3 is a multifunctional protein that promotes viral protein synthesis and facilitates viral entry and assembly. The dsRNA-binding capacity of σ3 correlates with its capacity to prevent dsRNA-mediated activation of protein kinase R (PKR). However, the effect of σ3 binding to dsRNA during viral infection is largely unknown. To identify functions of σ3 dsRNA-binding activity during reovirus infection, we engineered a panel of thirteen σ3 mutants and screened them for the capacity to bind dsRNA. Six mutants were defective in dsRNA binding, and mutations in these constructs cluster in a putative dsRNA-binding region on the surface of σ3. Two recombinant viruses expressing these σ3 dsRNA-binding mutants, K287T and R296T, display strikingly different phenotypes. In a cell-type dependent manner, K287T, but not R296T, replicates less efficiently than wild-type (WT) virus. In cells in which K287T virus demonstrates a replication deficit, PKR activation occurs and abundant stress granules (SGs) are formed at late times post-infection. In contrast, the R296T virus retains the capacity to suppress activation of PKR and does not mediate formation of SGs at late times post-infection. These findings indicate that σ3 inhibits PKR independently of its capacity to bind dsRNA. In infected mice, K287T produces lower viral titers in the spleen, liver, lungs, and heart relative to WT or R296T. Moreover, mice inoculated with WT or R296T viruses develop myocarditis, whereas those inoculated with K287T do not. Overall, our results indicate that σ3 functions to suppress PKR activation and subsequent SG formation during viral infection and that these functions correlate with virulence in mice. The σ3 protein of mammalian orthoreoviruses is a double-stranded RNA binding protein that has classically been thought to function by scavenging dsRNA within infected cells and thus prevents activation of cellular sensors of dsRNA such as the kinase PKR. Here we used mutagenesis to identify the region of σ3 responsible for binding dsRNA. Characterization of mutant viruses expressing σ3 proteins incapable of binding dsRNA show that contrary to expectation, dsRNA binding is not required for σ3-mediated inhibition of PKR. We show that one mutant virus (R296T) despite being deficient in dsRNA-binding can inhibit PKR and replicates similar to WT virus. In contrast, another mutant virus (K287T) that bears a σ3 protein that cannot prevent dsRNA-mediated activation of PKR induces stress granules in infected cells and replicates less efficiently than WT virus. In vivo, the K287T mutant is attenuated in its replication and unlike WT virus and the R296T mutant virus does not cause heart disease (myocarditis).
Collapse
Affiliation(s)
- Yingying Guo
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Meleana M. Hinchman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Mercedes Lewandrowski
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Shaun T. Cross
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Danica M. Sutherland
- Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Olivia L. Welsh
- Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Terence S. Dermody
- Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Departments of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pennsylvania, United States of America
| | - John S. L. Parker
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Amen T, Kaganovich D. Small Molecule Screen Reveals Joint Regulation of Stress Granule Formation and Lipid Droplet Biogenesis. Front Cell Dev Biol 2021; 8:606111. [PMID: 33972926 PMCID: PMC8105174 DOI: 10.3389/fcell.2020.606111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/21/2020] [Indexed: 01/22/2023] Open
Abstract
Metabolic regulation is a necessary component of all stress response pathways, because all different mechanisms of stress-adaptation place high-energy demands on the cell. Mechanisms that integrate diverse stress response pathways with their metabolic components are therefore of great interest, but few are known. We show that stress granule (SG) formation, a common adaptive response to a variety of stresses, is reciprocally regulated by the pathways inducing lipid droplet accumulation. Inability to upregulate lipid droplets reduces stress granule formation. Stress granule formation in turn drives lipid droplet clustering and fatty acid accumulation. Our findings reveal a novel connection between stress response pathways and new modifiers of stress granule formation.
Collapse
Affiliation(s)
- Triana Amen
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Kaganovich
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,1Base Pharmaceuticals, Boston, MA, United States
| |
Collapse
|
27
|
Multiple Sclerosis-Associated hnRNPA1 Mutations Alter hnRNPA1 Dynamics and Influence Stress Granule Formation. Int J Mol Sci 2021; 22:ijms22062909. [PMID: 33809384 PMCID: PMC7998649 DOI: 10.3390/ijms22062909] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Evidence indicates that dysfunctional heterogeneous ribonucleoprotein A1 (hnRNPA1; A1) contributes to the pathogenesis of neurodegeneration in multiple sclerosis. Understanding molecular mechanisms of neurodegeneration in multiple sclerosis may result in novel therapies that attenuate neurodegeneration, thereby improving the lives of MS patients with multiple sclerosis. Using an in vitro, blue light induced, optogenetic protein expression system containing the optogene Cryptochrome 2 and a fluorescent mCherry reporter, we examined the effects of multiple sclerosis-associated somatic A1 mutations (P275S and F281L) in A1 localization, cluster kinetics and stress granule formation in real-time. We show that A1 mutations caused cytoplasmic mislocalization, and significantly altered the kinetics of A1 cluster formation/dissociation, and the quantity and size of clusters. A1 mutations also caused stress granule formation to occur more quickly and frequently in response to blue light stimulation. This study establishes a live cell optogenetics imaging system to probe localization and association characteristics of A1. It also demonstrates that somatic mutations in A1 alter its function and promote stress granule formation, which supports the hypothesis that A1 dysfunction may exacerbate neurodegeneration in multiple sclerosis.
Collapse
|
28
|
Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis 2020; 11:1013. [PMID: 33243969 PMCID: PMC7691519 DOI: 10.1038/s41419-020-03221-2] [Citation(s) in RCA: 508] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Chemotherapy, radiation therapy, as well as targeted anticancer agents can induce clinically relevant tumor-targeting immune responses, which critically rely on the antigenicity of malignant cells and their capacity to generate adjuvant signals. In particular, immunogenic cell death (ICD) is accompanied by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which altogether confer a robust adjuvanticity to dying cancer cells, as they favor the recruitment and activation of antigen-presenting cells. ICD-associated DAMPs include surface-exposed calreticulin (CALR) as well as secreted ATP, annexin A1 (ANXA1), type I interferon, and high-mobility group box 1 (HMGB1). Additional hallmarks of ICD encompass the phosphorylation of eukaryotic translation initiation factor 2 subunit-α (EIF2S1, better known as eIF2α), the activation of autophagy, and a global arrest in transcription and translation. Here, we outline methodological approaches for measuring ICD markers in vitro and ex vivo for the discovery of next-generation antineoplastic agents, the development of personalized anticancer regimens, and the identification of optimal therapeutic combinations for the clinical management of cancer.
Collapse
|
29
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
30
|
Chen Y, Shen J. Mucosal immunity and tRNA, tRF, and tiRNA. J Mol Med (Berl) 2020; 99:47-56. [PMID: 33200232 DOI: 10.1007/s00109-020-02008-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Mucosal immunity has crucial roles in human diseases such as respiratory tract infection, inflammatory bowel diseases (IBD), and colorectal cancer (CRC). Recent studies suggest that the mononuclear phagocyte system, cancer cells, bacteria, and viruses induce the mucosal immune reaction by various pathways, and can be major factors in the pathogenesis of these diseases. Transfer RNA (tRNA) and its fragments, including tRNA-derived RNA fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs), have emerged as a hot topic in recent years. They not only are verified as essential for transcription and translation but also play roles in cellular homeostasis and functions, such as cell metastasis, proliferation, and apoptosis. However, the specific relationship between their biological regulation and mucosal immunity remains unclear to date. In the present review, we carry out a comprehensive discussion on the specific roles of tRNA, tRFs, and tiRNAs relevant to mucosal immunity and related diseases.
Collapse
Affiliation(s)
- Yueying Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, 160# Pu Jian Ave, Shanghai, 200127, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai, 200127, China
- Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, 160# Pu Jian Ave, Shanghai, 200127, China.
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai, 200127, China.
- Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China.
| |
Collapse
|
31
|
Tauber D, Tauber G, Parker R. Mechanisms and Regulation of RNA Condensation in RNP Granule Formation. Trends Biochem Sci 2020; 45:764-778. [PMID: 32475683 PMCID: PMC7211619 DOI: 10.1016/j.tibs.2020.05.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023]
Abstract
Ribonucleoprotein (RNP) granules are RNA-protein assemblies that are involved in multiple aspects of RNA metabolism and are linked to memory, development, and disease. Some RNP granules form, in part, through the formation of intermolecular RNA-RNA interactions. In vitro, such trans RNA condensation occurs readily, suggesting that cells require mechanisms to modulate RNA-based condensation. We assess the mechanisms of RNA condensation and how cells modulate this phenomenon. We propose that cells control RNA condensation through ATP-dependent processes, static RNA buffering, and dynamic post-translational mechanisms. Moreover, perturbations in these mechanisms can be involved in disease. This reveals multiple cellular mechanisms of kinetic and thermodynamic control that maintain the proper distribution of RNA molecules between dispersed and condensed forms.
Collapse
Affiliation(s)
- Devin Tauber
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80308, USA
| | - Gabriel Tauber
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80308, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80308, USA.
| |
Collapse
|
32
|
Lee AK, Klein J, Fon Tacer K, Lord T, Oatley MJ, Oatley JM, Porter SN, Pruett-Miller SM, Tikhonova EB, Karamyshev AL, Wang YD, Yang P, Korff A, Kim HJ, Taylor JP, Potts PR. Translational Repression of G3BP in Cancer and Germ Cells Suppresses Stress Granules and Enhances Stress Tolerance. Mol Cell 2020; 79:645-659.e9. [PMID: 32692974 DOI: 10.1016/j.molcel.2020.06.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/10/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
Stress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP. MAGE-B2 reduces G3BP protein levels below the critical concentration for phase separation and suppresses SG initiation. Knockout of the MAGE-B2 mouse ortholog or overexpression of G3BP1 confers hypersensitivity of the male germline to heat stress in vivo. Thus, MAGE-B2 provides cytoprotection to maintain mammalian spermatogenesis, a highly thermosensitive process that must be preserved throughout reproductive life. These results demonstrate a mechanism that allows for tissue-specific resistance against stress and could aid in the development of male fertility therapies.
Collapse
Affiliation(s)
- Anna K Lee
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Klementina Fon Tacer
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tessa Lord
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Melissa J Oatley
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Shaina N Porter
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peiguo Yang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ane Korff
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
33
|
Zhu M, Kuechler ER, Zhang J, Matalon O, Dubreuil B, Hofmann A, Loewen C, Levy ED, Gsponer J, Mayor T. Proteomic analysis reveals the direct recruitment of intrinsically disordered regions to stress granules in S. cerevisiae. J Cell Sci 2020; 133:jcs244657. [PMID: 32503941 DOI: 10.1242/jcs.244657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/15/2020] [Indexed: 01/21/2023] Open
Abstract
Stress granules (SGs) are stress-induced membraneless condensates that store non-translating mRNA and stalled translation initiation complexes. Although metazoan SGs are dynamic compartments where proteins can rapidly exchange with their surroundings, yeast SGs seem largely static. To gain a better understanding of yeast SGs, we identified proteins that sediment after heat shock using mass spectrometry. Proteins that sediment upon heat shock are biased toward a subset of abundant proteins that are significantly enriched in intrinsically disordered regions (IDRs). Heat-induced SG localization of over 80 proteins were confirmed using microscopy, including 32 proteins not previously known to localize to SGs. We found that several IDRs were sufficient to mediate SG recruitment. Moreover, the dynamic exchange of IDRs can be observed using fluorescence recovery after photobleaching, whereas other components remain immobile. Lastly, we showed that the IDR of the Ubp3 deubiquitinase was critical for yeast SG formation. This work shows that IDRs can be sufficient for SG incorporation, can remain dynamic in vitrified SGs, and can play an important role in cellular compartmentalization upon stress.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Mang Zhu
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Erich R Kuechler
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Joyce Zhang
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Or Matalon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Dubreuil
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Analise Hofmann
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Chris Loewen
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Joerg Gsponer
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Thibault Mayor
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
34
|
Post-Transcriptional Regulation of Alpha One Antitrypsin by a Proteasome Inhibitor. Int J Mol Sci 2020; 21:ijms21124318. [PMID: 32560429 PMCID: PMC7352753 DOI: 10.3390/ijms21124318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
Alpha one antitrypsin (α1AT), a serine proteinase inhibitor primarily produced by the liver, protects pulmonary tissue from neutrophil elastase digestion. Mutations of the SERPINA1 gene results in a misfolded α1AT protein which aggregates inside hepatocytes causing cellular damage. Therefore, inhibition of mutant α1AT production is one practical strategy to alleviate liver damage. Here we show that proteasome inhibitors can selectively downregulate α1AT expression in human hepatocytes by suppressing the translation of α1AT. Translational suppression of α1AT is mediated by phosphorylation of eukaryotic translation initiation factor 2α and increased association of RNA binding proteins, especially stress granule protein Ras GAP SH3 binding protein (G3BP1), with α1AT mRNA. Treatment of human-induced pluripotent stem cell-derived hepatocytes with a proteasome inhibitor also results in translational inhibition of mutant α1AT in a similar manner. Together we revealed a previously undocumented role of proteasome inhibitors in the regulation of α1AT translation.
Collapse
|
35
|
Al-Husini N, Tomares DT, Pfaffenberger ZJ, Muthunayake NS, Samad MA, Zuo T, Bitar O, Aretakis JR, Bharmal MHM, Gega A, Biteen JS, Childers WS, Schrader JM. BR-Bodies Provide Selectively Permeable Condensates that Stimulate mRNA Decay and Prevent Release of Decay Intermediates. Mol Cell 2020; 78:670-682.e8. [PMID: 32343944 PMCID: PMC7245546 DOI: 10.1016/j.molcel.2020.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/16/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Biomolecular condensates play a key role in organizing RNAs and proteins into membraneless organelles. Bacterial RNP-bodies (BR-bodies) are a biomolecular condensate containing the RNA degradosome mRNA decay machinery, but the biochemical function of such organization remains poorly defined. Here, we define the RNA substrates of BR-bodies through enrichment of the bodies followed by RNA sequencing (RNA-seq). We find that long, poorly translated mRNAs, small RNAs, and antisense RNAs are the main substrates, while rRNA, tRNA, and other conserved non-coding RNAs (ncRNAs) are excluded from these bodies. BR-bodies stimulate the mRNA decay rate of enriched mRNAs, helping to reshape the cellular mRNA pool. We also observe that BR-body formation promotes complete mRNA decay, avoiding the buildup of toxic endo-cleaved mRNA decay intermediates. The combined selective permeability of BR-bodies for both enzymes and substrates together with the stimulation of the sub-steps of mRNA decay provide an effective organization strategy for bacterial mRNA decay.
Collapse
MESH Headings
- Caulobacter crescentus/genetics
- Caulobacter crescentus/growth & development
- Caulobacter crescentus/metabolism
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Humans
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Organelles/genetics
- Organelles/metabolism
- Polyribonucleotide Nucleotidyltransferase/genetics
- Polyribonucleotide Nucleotidyltransferase/metabolism
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Stability
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
Collapse
Affiliation(s)
- Nadra Al-Husini
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | - Mohammad A Samad
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Tiancheng Zuo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Obaidah Bitar
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - James R Aretakis
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | - Alisa Gega
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
36
|
Kothandan VK, Kothandan S, Kim DH, Byun Y, Lee YK, Park IK, Hwang SR. Crosstalk between Stress Granules, Exosomes, Tumour Antigens, and Immune Cells: Significance for Cancer Immunity. Vaccines (Basel) 2020; 8:E172. [PMID: 32276342 PMCID: PMC7349635 DOI: 10.3390/vaccines8020172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
RNA granules and exosomes produced by tumour cells under various stresses in the microenvironment act as critical determinants of cell survival by promoting angiogenesis, cancer metastasis, chemoresistance, and immunosuppression. Meanwhile, developmental cancer/testis (CT) antigens that are normally sequestered in male germ cells of the testes, but which are overexpressed in malignant tumour cells, can function as tumour antigens triggering immune responses. As CT antigens are potential vaccine candidates for use in cancer immunotherapy, they could be targeted together with crosstalk between stress granules, exosomes, and immune cells for a synergistic effect. In this review, we describe the effects of exosomes and exosomal components presented to the recipient cells under different types of stresses on immune cells and cancer progression. Furthermore, we discuss their significance for cancer immunity, as well as the outlook for their future application.
Collapse
Affiliation(s)
- Vinoth Kumar Kothandan
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| | - Sangeetha Kothandan
- Department of Industrial Biotechnology, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Do Hee Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Youngro Byun
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergent Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk 27469, Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 322 Seoyang-ro, Hwasun 58128, Korea
| | - Seung Rim Hwang
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| |
Collapse
|
37
|
Burke JM, Lester ET, Tauber D, Parker R. RNase L promotes the formation of unique ribonucleoprotein granules distinct from stress granules. J Biol Chem 2020; 295:1426-1438. [PMID: 31896577 PMCID: PMC7008361 DOI: 10.1074/jbc.ra119.011638] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Indexed: 11/25/2022] Open
Abstract
Stress granules (SGs) are ribonucleoprotein (RNP) assemblies that form in eukaryotic cells as a result of limited translation in response to stress. SGs form during viral infection and are thought to promote the antiviral response because many viruses encode inhibitors of SG assembly. However, the antiviral endoribonuclease RNase L also alters SG formation, whereby only small punctate SG-like bodies that we term RNase L-dependent bodies (RLBs) form during RNase L activation. How RLBs relate to SGs and their mode of biogenesis is unknown. Herein, using immunofluorescence, live-cell imaging, and MS-based analyses, we demonstrate that RLBs represent a unique RNP granule with a protein and RNA composition distinct from that of SGs in response to dsRNA lipofection in human cells. We found that RLBs are also generated independently of SGs and the canonical dsRNA-induced SG biogenesis pathway, because RLBs did not require protein kinase R, phosphorylation of eukaryotic translation initiation factor 2 subunit 1 (eIF2α), the SG assembly G3BP paralogs, or release of mRNAs from ribosomes via translation elongation. Unlike the transient interactions between SGs and P-bodies, RLBs and P-bodies extensively and stably interacted. However, despite both RLBs and P-bodies exhibiting liquid-like properties, they remained distinct condensates. Taken together, these observations reveal that RNase L promotes the formation of a unique RNP complex that may have roles during the RNase L-mediated antiviral response.
Collapse
Affiliation(s)
- James M Burke
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303.
| | - Evan T Lester
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Devin Tauber
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303; Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80303
| |
Collapse
|
38
|
El‐Naggar AM, Somasekharan SP, Wang Y, Cheng H, Negri GL, Pan M, Wang XQ, Delaidelli A, Rafn B, Cran J, Zhang F, Zhang H, Colborne S, Gleave M, Mandinova A, Kedersha N, Hughes CS, Surdez D, Delattre O, Wang Y, Huntsman DG, Morin GB, Sorensen PH. Class I HDAC inhibitors enhance YB-1 acetylation and oxidative stress to block sarcoma metastasis. EMBO Rep 2019; 20:e48375. [PMID: 31668005 PMCID: PMC6893361 DOI: 10.15252/embr.201948375] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 12/13/2022] Open
Abstract
Outcomes for metastatic Ewing sarcoma and osteosarcoma are dismal and have not changed for decades. Oxidative stress attenuates melanoma metastasis, and melanoma cells must reduce oxidative stress to metastasize. We explored this in sarcomas by screening for oxidative stress sensitizers, which identified the class I HDAC inhibitor MS-275 as enhancing vulnerability to reactive oxygen species (ROS) in sarcoma cells. Mechanistically, MS-275 inhibits YB-1 deacetylation, decreasing its binding to 5'-UTRs of NFE2L2 encoding the antioxidant factor NRF2, thereby reducing NFE2L2 translation and synthesis of NRF2 to increase cellular ROS. By global acetylomics, MS-275 promotes rapid acetylation of the YB-1 RNA-binding protein at lysine-81, blocking binding and translational activation of NFE2L2, as well as known YB-1 mRNA targets, HIF1A, and the stress granule nucleator, G3BP1. MS-275 dramatically reduces sarcoma metastasis in vivo, but an MS-275-resistant YB-1K81-to-alanine mutant restores metastatic capacity and NRF2, HIF1α, and G3BP1 synthesis in MS-275-treated mice. These studies describe a novel function for MS-275 through enhanced YB-1 acetylation, thus inhibiting YB-1 translational control of key cytoprotective factors and its pro-metastatic activity.
Collapse
Affiliation(s)
- Amal M El‐Naggar
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
- Department of PathologyFaculty of MedicineMenoufia UniversityShibin El KomEgypt
| | | | - Yemin Wang
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | | | | | - Melvin Pan
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Xue Qi Wang
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Alberto Delaidelli
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Bo Rafn
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Jordan Cran
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Fan Zhang
- Vancouver Prostate CentreVancouverBCCanada
| | - Haifeng Zhang
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | | | | | - Anna Mandinova
- Brigham and Women's HospitalHarvard UniversityBostonMAUSA
| | - Nancy Kedersha
- Massachusetts General HospitalHarvard UniversityBostonMAUSA
| | - Christopher S Hughes
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | | | | | | | - David G Huntsman
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Gregg B Morin
- Michael Smith Genome Sciences CentreVancouverBCCanada
| | - Poul H Sorensen
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| |
Collapse
|
39
|
Belli V, Matrone N, Sagliocchi S, Incarnato R, Conte A, Pizzo E, Turano M, Angrisani A, Furia M. A dynamic link between H/ACA snoRNP components and cytoplasmic stress granules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118529. [DOI: 10.1016/j.bbamcr.2019.118529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
|
40
|
Hu S, Sun H, Yin L, Li J, Mei S, Xu F, Wu C, Liu X, Zhao F, Zhang D, Huang Y, Ren L, Cen S, Wang J, Liang C, Guo F. PKR-dependent cytosolic cGAS foci are necessary for intracellular DNA sensing. Sci Signal 2019; 12:12/609/eaav7934. [PMID: 31772125 DOI: 10.1126/scisignal.aav7934] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a major sensor of cytosolic DNA from invading pathogens and damaged cellular organelles. Activation of cGAS promotes liquid-like phase separation and formation of membraneless cytoplasmic structures. Here, we found that cGAS bound G3BP1, a double-stranded nucleic acid helicase involved in the formation of stress granules. Loss of G3BP1 blocked subcellular cGAS condensation and suppressed the interferon response to intracellular DNA and DNA virus particles in cells. Furthermore, an RNA-dependent association with PKR promoted G3BP1 foci formation and cGAS-dependent interferon responses. Together, these results indicate that PKR promotes the formation of G3BP1-dependent, membraneless cytoplasmic structures necessary for the DNA-sensing function of cGAS in human cells. These data suggest that there is a previously unappreciated link between nucleic acid sensing pathways, which requires the formation of specialized subcellular structures.
Collapse
Affiliation(s)
- Siqi Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Hong Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Lijuan Yin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Jian Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Chao Wu
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB-Fondation Mérieux, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Xiaoman Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Di Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB-Fondation Mérieux, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P. R. China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB-Fondation Mérieux, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China.
| | - Chen Liang
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal H3T 1E2, Canada.
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China.
| |
Collapse
|
41
|
RNase L Reprograms Translation by Widespread mRNA Turnover Escaped by Antiviral mRNAs. Mol Cell 2019; 75:1203-1217.e5. [PMID: 31494035 DOI: 10.1016/j.molcel.2019.07.029] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/13/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
In response to foreign and endogenous double-stranded RNA (dsRNA), protein kinase R (PKR) and ribonuclease L (RNase L) reprogram translation in mammalian cells. PKR inhibits translation initiation through eIF2α phosphorylation, which triggers stress granule (SG) formation and promotes translation of stress responsive mRNAs. The mechanisms of RNase L-driven translation repression, its contribution to SG assembly, and its regulation of dsRNA stress-induced mRNAs are unknown. We demonstrate that RNase L drives translational shut-off in response to dsRNA by promoting widespread turnover of mRNAs. This alters stress granule assembly and reprograms translation by allowing translation of mRNAs resistant to RNase L degradation, including numerous antiviral mRNAs such as interferon (IFN)-β. Individual cells differentially activate dsRNA responses revealing variation that can affect cellular outcomes. This identifies bulk mRNA degradation and the resistance of antiviral mRNAs as the mechanism by which RNase L reprograms translation in response to dsRNA.
Collapse
|
42
|
Piatnitskaia S, Takahashi M, Kitaura H, Katsuragi Y, Kakihana T, Zhang L, Kakita A, Iwakura Y, Nawa H, Miura T, Ikeuchi T, Hara T, Fujii M. USP10 is a critical factor for Tau-positive stress granule formation in neuronal cells. Sci Rep 2019; 9:10591. [PMID: 31332267 PMCID: PMC6646309 DOI: 10.1038/s41598-019-47033-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
Tau aggregates in neurons of brain lesions is a hallmark pathology of tauopathies, including Alzheimer’s disease (AD). Recent studies suggest that the RNA-binding protein TIA1 initiates Tau aggregation by inducing the formation of stress granules (SGs) containing Tau. SGs are stress-inducible cytoplasmic protein aggregates containing many RNA-binding proteins that has been implicated as an initial site of multiple pathogenic protein aggregates in several neurodegenerative diseases. In this study, we found that ubiquitin-specific protease 10 (USP10) is a critical factor for the formation of Tau/TIA1/USP10-positive SGs. Proteasome inhibition or TIA1-overexpression in HT22 neuronal cells induced the formation of TIA1/Tau-positive SGs, and the formations were severely attenuated by depletion of USP10. In addition, the overexpression of USP10 without stress stimuli in HT22 cells induced TIA1/Tau/USP10-positive SGs in a deubiquitinase-independent manner. In AD brain lesions, USP10 was colocalized with Tau aggregates in the cell body of neurons. The present findings suggest that USP10 plays a key role in the initiation of pathogenic Tau aggregation in AD through SG formation.
Collapse
Affiliation(s)
- Svetlana Piatnitskaia
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Masahiko Takahashi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Hiroki Kitaura
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Yoshinori Katsuragi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Taichi Kakihana
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Lu Zhang
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Takeshi Miura
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Toshifumi Hara
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
| |
Collapse
|
43
|
Lee YS, Kunkeaw N, Lee YS. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1558. [PMID: 31231984 DOI: 10.1002/wrna.1558] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yeon-Su Lee
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
44
|
Cui W, Liu CX, Zhang YC, Shen Q, Feng ZH, Wang J, Lu SF, Wu J, Li JX. A novel oleanolic acid derivative HA-19 ameliorates muscle atrophy via promoting protein synthesis and preventing protein degradation. Toxicol Appl Pharmacol 2019; 378:114625. [PMID: 31201822 DOI: 10.1016/j.taap.2019.114625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/18/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Muscle atrophy refers to a decrease in the size of muscles in the body, occurs in certain muscles with inactivity in many diseases and lacks effective therapies up to date. Natural products still play an important role in drug discovery. In the present study, derivatives of a natural product, oleanolic acid, were screened with myoblast differentiation and myotube atrophy assays, respectively. Results revealed that one of the derivatives, HA-19 showed the most potent anti-muscle atrophy activity, and was used for further studies. We demonstrated that HA-19 led to the increase of the protein synthesis by activating mechanistic target of rapamycin complex 1 (mTORC1)/p70 S6K pathways, and also enhanced myoblast proliferation and terminal differentiation via up-regulating of the myogenic transcription factors Pax7, MyoD and Myogenin. The interesting thing was that HA-19 also suppressed protein degradation to prevent myotube atrophy by down-regulating negative growth factors, FoxO1, MuRF1 and Atrogin-1. The results were also supported by puromycin labelling and protein ubiquitination assays. These data revealed that HA-19 possessed a "dual effect" on inhibition of muscle atrophy. In disuse-induced muscle atrophy mice model, HA-19 treatment significantly increased the weights of bilateral tibialis anterior (TA), gastrocnemius (Gastroc.), quadriceps (Quad.), suggesting the effectiveness of HA-19 to remit disuse-induced muscle atrophy. Our finding demonstrated that HA-19 has a great potential as an inhibitor or lead compound for the anti-muscle atrophy drug discovery.
Collapse
Affiliation(s)
- Wei Cui
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen-Xi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Chao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen-Hua Feng
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing 210008, China
| | - Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
45
|
Ivanov P, Kedersha N, Anderson P. Stress Granules and Processing Bodies in Translational Control. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032813. [PMID: 30082464 DOI: 10.1101/cshperspect.a032813] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress granules (SGs) and processing bodies (PBs) are non-membrane-enclosed RNA granules that dynamically sequester translationally inactive messenger ribonucleoprotein particles (mRNPs) into compartments that are distinct from the surrounding cytoplasm. mRNP remodeling, silencing, and/or storage involves the dynamic partitioning of closed-loop polyadenylated mRNPs into SGs, or the sequestration of deadenylated, linear mRNPs into PBs. SGs form when stress-activated pathways stall translation initiation but allow elongation and termination to occur normally, resulting in a sudden excess of mRNPs that are spatially condensed into discrete foci by protein:protein, protein:RNA, and RNA:RNA interactions. In contrast, PBs can exist in the absence of stress, when specific factors promote mRNA deadenylation, condensation, and sequestration from the translational machinery. The formation and dissolution of SGs and PBs reflect changes in messenger RNA (mRNA) metabolism and allow cells to modulate the proteome and/or mediate life or death decisions during changing environmental conditions.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.,The Broad Institute of Harvard and M.I.T., Cambridge, Massachusetts 02142
| | - Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
46
|
Essential Role of Enterovirus 2A Protease in Counteracting Stress Granule Formation and the Induction of Type I Interferon. J Virol 2019; 93:JVI.00222-19. [PMID: 30867299 DOI: 10.1128/jvi.00222-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Most viruses have acquired mechanisms to suppress antiviral alpha/beta interferon (IFN-α/β) and stress responses. Enteroviruses (EVs) actively counteract the induction of IFN-α/β gene transcription and stress granule (SG) formation, which are increasingly implicated as a platform for antiviral signaling, but the underlying mechanisms remain poorly understood. Both viral proteases (2Apro and 3Cpro) have been implicated in the suppression of these responses, but these conclusions predominantly rely on ectopic overexpression of viral proteases or addition of purified viral proteases to cell lysates. Here, we present a detailed and comprehensive comparison of the effect of individual enterovirus proteases on the formation of SGs and the induction of IFN-α/β gene expression in infected cells for representative members of the enterovirus species EV-A to EV-D. First, we show that SG formation and IFN-β induction are suppressed in cells infected with EV-A71, coxsackie B3 virus (CV-B3), CV-A21, and EV-D68. By introducing genes encoding CV-B3 proteases in a recombinant encephalomyocarditis virus (EMCV) that was designed to efficiently activate antiviral responses, we show that CV-B3 2Apro, but not 3Cpro, is the major antagonist that counters SG formation and IFN-β gene transcription and that 2Apro's proteolytic activity is essential for both functions. 2Apro efficiently suppressed SG formation despite protein kinase R (PKR) activation and α subunit of eukaryotic translation initiation factor 2 phosphorylation, suggesting that 2Apro antagonizes SG assembly or promotes its disassembly. Finally, we show that the ability to suppress SG formation and IFN-β gene transcription is conserved in the 2Apro of EV-A71, CV-A21, and EV-D68. Collectively, our results indicate that enterovirus 2Apro plays a key role in inhibiting innate antiviral cellular responses.IMPORTANCE Enteroviruses are important pathogens that can cause a variety of diseases in humans, including aseptic meningitis, myocarditis, hand-foot-and-mouth disease, conjunctivitis, and acute flaccid paralysis. Like many other viruses, enteroviruses must counteract antiviral cellular responses to establish an infection. It has been suggested that enterovirus proteases cleave cellular factors to perturb antiviral pathways, but the exact contribution of viral proteases 2Apro and 3Cpro remains elusive. Here, we show that 2Apro, but not 3Cpro, of all four human EV species (EV-A to EV-D) inhibits SG formation and IFN-β gene transcription. Our observations suggest that enterovirus 2Apro has a conserved function in counteracting antiviral host responses and thereby is the main enterovirus "security protein." Understanding the molecular mechanisms of enterovirus immune evasion strategies may help to develop countermeasures to control infections with these viruses.
Collapse
|
47
|
Christen KE, Davis RA, Kennedy D. Psammaplysin F increases the efficacy of bortezomib and sorafenib through regulation of stress granule formation. Int J Biochem Cell Biol 2019; 112:24-38. [PMID: 31022461 DOI: 10.1016/j.biocel.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/24/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
The past few decades have delivered significant improvements in diagnosis and treatment of cancer, however, despite these improvements cancer continues to be a major global health issue requiring the urgent development of new strategies for treatment. Stress granules are cytoplasmic structures that triage gene expression in response to environmental stresses, including chemotherapies, and have been implicated in the development of drug resistance. One novel approach to developing a new anti-cancer strategy involves inhibiting stress granules with compounds derived from natural products. In a previous rapid screen, a subset of 132 compounds from the Davis Open Access Natural Product Library was screened using a stress granule inhibition assay and provisionally one hit was identified which was the known marine sponge-derived metabolite, psammaplysin F. Using cell based assays psammaplysin F was assessed to determine whether it could inhibit the formation of stress granules after exposure to sodium arsenite in Vero, HEK293 MCF7, T47D, HeLa and MCF7MDR cells by analysing the number of stress granules using high content imaging. A significant reduction in the number of stress granules was observed and subsequent analysis by western blot revealed that treatment with psammaplysin F decreased levels of phosphorylated eIF2α. Combinational studies in MCF7, HeLa and MCF7MDR cells revealed that psammaplysin F increased the efficacy of bortezomib and sorafenib and a synergistic effect was observed in vitro. Stress granules appear to be one tool in a battery of responses that cancer cells can exploit to elicit drug resistance. Disrupting stress granule formation by use of orally available drugs presents a potential mechanism to restore drug efficacy. The work presented here provides evidence that small molecules derived from nature, such as psammaplysin F, can prevent the formation of stress granules and therefore may represent a useful strategy to improving drug efficacy.
Collapse
Affiliation(s)
- Kimberley E Christen
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia; School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia; School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Derek Kennedy
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia; School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
48
|
Meyer C, Garzia A, Mazzola M, Gerstberger S, Molina H, Tuschl T. The TIA1 RNA-Binding Protein Family Regulates EIF2AK2-Mediated Stress Response and Cell Cycle Progression. Mol Cell 2019; 69:622-635.e6. [PMID: 29429924 DOI: 10.1016/j.molcel.2018.01.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
TIA1 and TIAL1 encode a family of U-rich element mRNA-binding proteins ubiquitously expressed and conserved in metazoans. Using PAR-CLIP, we determined that both proteins bind target sites with identical specificity in 3' UTRs and introns proximal to 5' as well as 3' splice sites. Double knockout (DKO) of TIA1 and TIAL1 increased target mRNA abundance proportional to the number of binding sites and also caused accumulation of aberrantly spliced mRNAs, most of which are subject to nonsense-mediated decay. Loss of PRKRA by mis-splicing triggered the activation of the double-stranded RNA (dsRNA)-activated protein kinase EIF2AK2/PKR and stress granule formation. Ectopic expression of PRKRA cDNA or knockout of EIF2AK2 in DKO cells rescued this phenotype. Perturbation of maturation and/or stability of additional targets further compromised cell cycle progression. Our study reveals the essential contributions of the TIA1 protein family to the fidelity of mRNA maturation, translation, and RNA-stress-sensing pathways in human cells.
Collapse
Affiliation(s)
- Cindy Meyer
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Aitor Garzia
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Michael Mazzola
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Stefanie Gerstberger
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA.
| |
Collapse
|
49
|
Foot-and-Mouth Disease Virus Leader Protease Cleaves G3BP1 and G3BP2 and Inhibits Stress Granule Formation. J Virol 2019; 93:JVI.00922-18. [PMID: 30404792 DOI: 10.1128/jvi.00922-18] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
Like other viruses, the picornavirus foot-and-mouth disease virus (FMDV; genus Aphthovirus), one of the most notorious pathogens in the global livestock industry, needs to navigate antiviral host responses to establish an infection. There is substantial insight into how FMDV suppresses the type I interferon (IFN) response, but it is largely unknown whether and how FMDV modulates the integrated stress response. Here, we show that the stress response is suppressed during FMDV infection. Using a chimeric recombinant encephalomyocarditis virus (EMCV), in which we functionally replaced the endogenous stress response antagonist by FMDV leader protease (Lpro) or 3Cpro, we demonstrate an essential role for Lpro in suppressing stress granule (SG) formation. Consistently, infection with a recombinant FMDV lacking Lpro resulted in SG formation. Additionally, we show that Lpro cleaves the known SG scaffold proteins G3BP1 and G3BP2 but not TIA-1. We demonstrate that the closely related equine rhinitis A virus (ERAV) Lpro also cleaves G3BP1 and G3BP2 and also suppresses SG formation, indicating that these abilities are conserved among aphthoviruses. Neither FMDV nor ERAV Lpro interfered with phosphorylation of RNA-dependent protein kinase (PKR) or eIF2α, indicating that Lpro does not affect SG formation by inhibiting the PKR-triggered signaling cascade. Taken together, our data suggest that aphthoviruses actively target scaffolding proteins G3BP1 and G3BP2 and antagonize SG formation to modulate the integrated stress response.IMPORTANCE The picornavirus foot-and-mouth disease virus (FMDV) is a notorious animal pathogen that puts a major economic burden on the global livestock industry. Outbreaks have significant consequences for animal health and product safety. Like many other viruses, FMDV must manipulate antiviral host responses to establish infection. Upon infection, viral double-stranded RNA (dsRNA) is detected, which results in the activation of the RNA-dependent protein kinase (PKR)-mediated stress response, leading to a stop in cellular and viral translation and the formation of stress granules (SG), which are thought to have antiviral properties. Here, we show that FMDV can suppress SG formation via its leader protease (Lpro). Simultaneously, we observed that Lpro can cleave the SG scaffolding proteins G3BP1 and G3BP2. Understanding the molecular mechanisms of the antiviral host response evasion strategies of FMDV may help to develop countermeasures to control FMDV infections in the future.
Collapse
|
50
|
Shiina N. Liquid- and solid-like RNA granules form through specific scaffold proteins and combine into biphasic granules. J Biol Chem 2019; 294:3532-3548. [PMID: 30606735 DOI: 10.1074/jbc.ra118.005423] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/24/2018] [Indexed: 11/06/2022] Open
Abstract
RNA granules consist of membrane-less RNA-protein assemblies and contain dynamic liquid-like shells and stable solid-like cores, which are thought to function in numerous processes in mRNA sorting and translational regulation. However, how these distinct substructures are formed, whether they are assembled by different scaffolds, and whether different RNA granule scaffolds induce these different substructures remains unknown. Here, using fluorescence microscopy-based morphological and molecular-dynamics analyses, we demonstrate that RNA granule scaffold proteins (scaffolds) can be largely classified into two groups, liquid and solid types, which induce the formation of liquid-like and solid-like granules, respectively, when expressed separately in cultured cells. We found that when co-expressed, the liquid-type and solid-type scaffolds combine and form liquid- and solid-like substructures in the same granules, respectively. The combination of the different types of scaffolds reduced the immobile fractions of the solid-type scaffolds and their dose-dependent ability to decrease nascent polypeptides in granules, but had little effect on the dynamics of the liquid-type scaffolds or their dose-dependent ability to increase nascent polypeptides in granules. These results suggest that solid- and liquid-type scaffolds form different substructures in RNA granules and differentially affect each other. Our findings provide detailed insight into the assembly mechanism and distinct dynamics and functions of core and shell substructures in RNA granules.
Collapse
Affiliation(s)
- Nobuyuki Shiina
- From the Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, .,the Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi 444-8585, and.,the Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|