1
|
Romeiro Motta M, Biswas S, Schaedel L. Beyond uniformity: Exploring the heterogeneous and dynamic nature of the microtubule lattice. Eur J Cell Biol 2023; 102:151370. [PMID: 37922811 DOI: 10.1016/j.ejcb.2023.151370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
A fair amount of research on microtubules since their discovery in 1963 has focused on their dynamic tips. In contrast, the microtubule lattice was long believed to be highly regular and static, and consequently received far less attention. Yet, as it turned out, the microtubule lattice is neither as regular, nor as static as previously believed: structural studies uncovered the remarkable wealth of different conformations the lattice can accommodate. In the last decade, the microtubule lattice was shown to be labile and to spontaneously undergo renovation, a phenomenon that is intimately linked to structural defects and was called "microtubule self-repair". Following this breakthrough discovery, further recent research provided a deeper understanding of the lattice self-repair mechanism, which we review here. Instrumental to these discoveries were in vitro microtubule reconstitution assays, in which microtubules are grown from the minimal components required for their dynamics. In this review, we propose a shift from the term "lattice self-repair" to "lattice dynamics", since this phenomenon is an inherent property of microtubules and can happen without microtubule damage. We focus on how in vitro microtubule reconstitution assays helped us learn (1) which types of structural variations microtubules display, (2) how these structural variations influence lattice dynamics and microtubule damage caused by mechanical stress, (3) how lattice dynamics impact tip dynamics, and (4) how microtubule-associated proteins (MAPs) can play a role in structuring the lattice. Finally, we discuss the unanswered questions about lattice dynamics and how technical advances will help us tackle these questions.
Collapse
Affiliation(s)
- Mariana Romeiro Motta
- Department of Physics, Center for Biophysics, Campus A2 4, Saarland University, 66123 Saarbrücken, Germany; Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École normale supérieure de Lyon, Lyon 69364, France
| | - Subham Biswas
- Department of Physics, Center for Biophysics, Campus A2 4, Saarland University, 66123 Saarbrücken, Germany
| | - Laura Schaedel
- Department of Physics, Center for Biophysics, Campus A2 4, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
2
|
Sasaki T, Saito K, Inoue D, Serk H, Sugiyama Y, Pesquet E, Shimamoto Y, Oda Y. Confined-microtubule assembly shapes three-dimensional cell wall structures in xylem vessels. Nat Commun 2023; 14:6987. [PMID: 37957173 PMCID: PMC10643555 DOI: 10.1038/s41467-023-42487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Properly patterned deposition of cell wall polymers is prerequisite for the morphogenesis of plant cells. A cortical microtubule array guides the two-dimensional pattern of cell wall deposition. Yet, the mechanism underlying the three-dimensional patterning of cell wall deposition is poorly understood. In metaxylem vessels, cell wall arches are formed over numerous pit membranes, forming highly organized three-dimensional cell wall structures. Here, we show that the microtubule-associated proteins, MAP70-5 and MAP70-1, regulate arch development. The map70-1 map70-5 plants formed oblique arches in an abnormal orientation in pits. Microtubules fit the aperture of developing arches in wild-type cells, whereas microtubules in map70-1 map70-5 cells extended over the boundaries of pit arches. MAP70 caused the bending and bundling of microtubules. These results suggest that MAP70 confines microtubules within the pit apertures by altering the physical properties of microtubules, thereby directing the growth of pit arches in the proper orientation. This study provides clues to understanding how plants develop three-dimensional structure of cell walls.
Collapse
Affiliation(s)
- Takema Sasaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Kei Saito
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI University, Mishima, Shizuoka, Japan
| | - Daisuke Inoue
- Factuly of Design, Kyusyu University, Fukuoka, Japan
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Yuki Sugiyama
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Edouard Pesquet
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden
- Arrhenius laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Yuta Shimamoto
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI University, Mishima, Shizuoka, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan.
| |
Collapse
|
3
|
Liang M, Ji T, Wang X, Wang X, Li S, Gao L, Ma S, Tian Y. Comprehensive analyses of microtubule-associated protein MAP65 family genes in Cucurbitaceae and CsaMAP65s expression profiles in cucumber. J Appl Genet 2023; 64:393-408. [PMID: 37219731 DOI: 10.1007/s13353-023-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
MAP65 is a microtubule-binding protein family in plants and plays crucial roles in regulating cell growth and development, intercellular communication, and plant responses to various environmental stresses. However, MAP65s in Cucurbitaceae are still less understood. In this study, a total of 40 MAP65s were identified from six Cucurbitaceae species (Cucumis sativus L., Citrullus lanatus, Cucumis melo L., Cucurbita moschata, Lagenaria siceraria, and Benincasa hispida) and classified into five groups by phylogenetic analysis according to gene structures and conserved domains. A conserved domain (MAP65_ASE1) was found in all MAP65 proteins. In cucumber, we isolated six CsaMAP65s with different expression patterns in tissues including root, stem, leaf, female flower, male flower, and fruit. Subcellular localizations of CsaMAP65s verified that all CsaMAP65s were localized in microtubule and microfilament. Analyses of the promoter regions of CsaMAP65s have screened different cis-acting regulatory elements involved in growth and development and responses to hormone and stresses. In addition, CsaMAP65-5 in leaves was significantly upregulated by salt stress, and this promotion effect was higher in cucumber cultivars with salt tolerant than that without salt tolerant. CsaMAP65-1 in leaves was significantly upregulated by cold stress, and this promotion was higher in cold-tolerant cultivar than intolerant cultivar. With the genome-wide characterization and phylogenetic analysis of Cucurbitaceae MAP65s, and the expression profile of CsaMAP65s in cucumber, this study laid a foundation for further study on MAP65 functions in developmental processes and responses to abiotic stress in Cucurbitaceae species.
Collapse
Affiliation(s)
- Meiting Liang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tingting Ji
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xueyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xingyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Suresh P, Galstyan V, Phillips R, Dumont S. Modeling and mechanical perturbations reveal how spatially regulated anchorage gives rise to spatially distinct mechanics across the mammalian spindle. eLife 2022; 11:e79558. [PMID: 36346735 PMCID: PMC9642996 DOI: 10.7554/elife.79558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
During cell division, the spindle generates force to move chromosomes. In mammals, microtubule bundles called kinetochore-fibers (k-fibers) attach to and segregate chromosomes. To do so, k-fibers must be robustly anchored to the dynamic spindle. We previously developed microneedle manipulation to mechanically challenge k-fiber anchorage, and observed spatially distinct response features revealing the presence of heterogeneous anchorage (Suresh et al., 2020). How anchorage is precisely spatially regulated, and what forces are necessary and sufficient to recapitulate the k-fiber's response to force remain unclear. Here, we develop a coarse-grained k-fiber model and combine with manipulation experiments to infer underlying anchorage using shape analysis. By systematically testing different anchorage schemes, we find that forces solely at k-fiber ends are sufficient to recapitulate unmanipulated k-fiber shapes, but not manipulated ones for which lateral anchorage over a 3 μm length scale near chromosomes is also essential. Such anchorage robustly preserves k-fiber orientation near chromosomes while allowing pivoting around poles. Anchorage over a shorter length scale cannot robustly restrict pivoting near chromosomes, while anchorage throughout the spindle obstructs pivoting at poles. Together, this work reveals how spatially regulated anchorage gives rise to spatially distinct mechanics in the mammalian spindle, which we propose are key for function.
Collapse
Affiliation(s)
- Pooja Suresh
- Biophysics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Vahe Galstyan
- Biochemistry and Molecular Biophysics Option, California Institute of TechnologyPasadenaUnited States
- A. Alikhanyan National Laboratory (Yerevan Physics Institute)YerevanArmenia
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Department of Physics, California Institute of TechnologyPasadenaUnited States
- Chan Zuckerberg Biohub, San FranciscoSan FranciscoUnited States
| | - Sophie Dumont
- Biophysics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg Biohub, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
5
|
Budaitis BG, Badieyan S, Yue Y, Blasius TL, Reinemann DN, Lang MJ, Cianfrocco MA, Verhey KJ. A kinesin-1 variant reveals motor-induced microtubule damage in cells. Curr Biol 2022; 32:2416-2429.e6. [PMID: 35504282 PMCID: PMC9993403 DOI: 10.1016/j.cub.2022.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Kinesins drive the transport of cellular cargoes as they walk along microtubule tracks; however, recent work has suggested that the physical act of kinesins walking along microtubules can stress the microtubule lattice. Here, we describe a kinesin-1 KIF5C mutant with an increased ability to generate damage sites in the microtubule lattice as compared with the wild-type motor. The expression of the mutant motor in cultured cells resulted in microtubule breakage and fragmentation, suggesting that kinesin-1 variants with increased damage activity would have been selected against during evolution. The increased ability to damage microtubules is not due to the enhanced motility properties of the mutant motor, as the expression of the kinesin-3 motor KIF1A, which has similar single-motor motility properties, also caused increased microtubule pausing, bending, and buckling but not breakage. In cells, motor-induced microtubule breakage could not be prevented by increased α-tubulin K40 acetylation, a post-translational modification known to increase microtubule flexibility. In vitro, lattice damage induced by wild-type KIF5C was repaired by soluble tubulin and resulted in increased rescues and overall microtubule growth, whereas lattice damage induced by the KIF5C mutant resulted in larger repair sites that made the microtubule vulnerable to breakage and fragmentation when under mechanical stress. These results demonstrate that kinesin-1 motility causes defects in and damage to the microtubule lattice in cells. While cells have the capacity to repair lattice damage, conditions that exceed this capacity result in microtubule breakage and fragmentation and may contribute to human disease.
Collapse
Affiliation(s)
- Breane G Budaitis
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Somayesadat Badieyan
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Yue
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - T Lynne Blasius
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana N Reinemann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - Michael A Cianfrocco
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Lu W, Gelfand VI. Tissue architecture: Two kinesins collaborate in building basement membrane. Curr Biol 2022; 32:R162-R165. [PMID: 35231409 PMCID: PMC10132488 DOI: 10.1016/j.cub.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Basement membranes are essential for tissue architecture and development. A new study reveals that two microtubule motors, kinesin-3 and kinesin-1, work collaboratively to direct basement membrane protein secretion in the Drosophila follicular epithelium for correct tissue movement.
Collapse
|
7
|
Roeder AHK, Otegui MS, Dixit R, Anderson CT, Faulkner C, Zhang Y, Harrison MJ, Kirchhelle C, Goshima G, Coate JE, Doyle JJ, Hamant O, Sugimoto K, Dolan L, Meyer H, Ehrhardt DW, Boudaoud A, Messina C. Fifteen compelling open questions in plant cell biology. THE PLANT CELL 2022; 34:72-102. [PMID: 34529074 PMCID: PMC8774073 DOI: 10.1093/plcell/koab225] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 05/02/2023]
Abstract
As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, Missouri 63130, USA
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christine Faulkner
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | | | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202, USA
| | - Jeff J Doyle
- School of Integrative Plant Science, Section of Plant Biology and Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Keiko Sugimoto
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna 1030, Austria
| | - Heather Meyer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau Cedex 91128 France
| | | |
Collapse
|
8
|
Halat LS, Bali B, Wasteneys G. Cytoplasmic Linker Protein-Associating Protein at the Nexus of Hormone Signaling, Microtubule Organization, and the Transition From Division to Differentiation in Primary Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:883363. [PMID: 35574108 PMCID: PMC9096829 DOI: 10.3389/fpls.2022.883363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 05/13/2023]
Abstract
The transition from cell division to differentiation in primary roots is dependent on precise gradients of phytohormones, including auxin, cytokinins and brassinosteroids. The reorganization of microtubules also plays a key role in determining whether a cell will enter another round of mitosis or begin to rapidly elongate as the first step in terminal differentiation. In the last few years, progress has been made to establish connections between signaling pathways at distinct locations within the root. This review focuses on the different factors that influence whether a root cell remains in the division zone or transitions to elongation and differentiation using Arabidopsis thaliana as a model system. We highlight the role of the microtubule-associated protein CLASP as an intermediary between sustaining hormone signaling and controlling microtubule organization. We discuss new, innovative tools and methods, such as hormone sensors and computer modeling, that are allowing researchers to more accurately visualize the belowground growth dynamics of plants.
Collapse
|
9
|
Zhou H, Isozaki N, Fujimoto K, Yokokawa R. Growth rate-dependent flexural rigidity of microtubules influences pattern formation in collective motion. J Nanobiotechnology 2021; 19:218. [PMID: 34281555 PMCID: PMC8287809 DOI: 10.1186/s12951-021-00960-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Microtubules (MTs) are highly dynamic tubular cytoskeleton filaments that are essential for cellular morphology and intracellular transport. In vivo, the flexural rigidity of MTs can be dynamically regulated depending on their intracellular function. In the in vitro reconstructed MT-motor system, flexural rigidity affects MT gliding behaviors and trajectories. Despite the importance of flexural rigidity for both biological functions and in vitro applications, there is no clear interpretation of the regulation of MT flexural rigidity, and the results of many studies are contradictory. These discrepancies impede our understanding of the regulation of MT flexural rigidity, thereby challenging its precise manipulation. Results Here, plausible explanations for these discrepancies are provided and a new method to evaluate the MT rigidity is developed. Moreover, a new relationship of the dynamic and mechanic of MTs is revealed that MT flexural rigidity decreases through three phases with the growth rate increases, which offers a method of designing MT flexural rigidity by regulating its growth rate. To test the validity of this method, the gliding performances of MTs with different flexural rigidities polymerized at different growth rates are examined. The growth rate-dependent flexural rigidity of MTs is experimentally found to influence the pattern formation in collective motion using gliding motility assay, which is further validated using machine learning. Conclusion Our study establishes a robust quantitative method for measurement and design of MT flexural rigidity to study its influences on MT gliding assays, collective motion, and other biological activities in vitro. The new relationship about the growth rate and rigidity of MTs updates current concepts on the dynamics and mechanics of MTs and provides comparable data for investigating the regulation mechanism of MT rigidity in vivo in the future. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00960-y.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Naoto Isozaki
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| |
Collapse
|
10
|
Kundu T, Dutta P, Nagar D, Maiti S, Ghose A. Coupling of dynamic microtubules to F-actin by Fmn2 regulates chemotaxis of neuronal growth cones. J Cell Sci 2021; 134:jcs252916. [PMID: 34313311 DOI: 10.1242/jcs.252916] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Dynamic co-regulation of the actin and microtubule subsystems enables the highly precise and adaptive remodelling of the cytoskeleton necessary for critical cellular processes, such as axonal pathfinding. The modes and mediators of this interpolymer crosstalk, however, are inadequately understood. We identify Fmn2, a non-diaphanous-related formin associated with cognitive disabilities, as a novel regulator of cooperative actin-microtubule remodelling in growth cones of both chick and zebrafish neurons. We show that Fmn2 stabilizes microtubules in the growth cones of cultured spinal neurons and in vivo. Super-resolution imaging revealed that Fmn2 facilitates guidance of exploratory microtubules along actin bundles into the chemosensory filopodia. Using live imaging, biochemistry and single-molecule assays, we show that a C-terminal domain in Fmn2 is necessary for the dynamic association between microtubules and actin filaments. In the absence of the cross-bridging function of Fmn2, filopodial capture of microtubules is compromised, resulting in destabilized filopodial protrusions and deficits in growth cone chemotaxis. Our results uncover a critical function for Fmn2 in actin-microtubule crosstalk in neurons and demonstrate that the modulation of microtubule dynamics via associations with F-actin is central to directional motility.
Collapse
Affiliation(s)
- Tanushree Kundu
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Priyanka Dutta
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Dhriti Nagar
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Aurnab Ghose
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
11
|
Sinclair AN, Huynh CT, Sladewski TE, Zuromski JL, Ruiz AE, de Graffenried CL. The Trypanosoma brucei subpellicular microtubule array is organized into functionally discrete subdomains defined by microtubule associated proteins. PLoS Pathog 2021; 17:e1009588. [PMID: 34010336 PMCID: PMC8168904 DOI: 10.1371/journal.ppat.1009588] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/01/2021] [Accepted: 04/25/2021] [Indexed: 11/19/2022] Open
Abstract
Microtubules are inherently dynamic cytoskeletal polymers whose length and organization can be altered to perform essential functions in eukaryotic cells, such as providing tracks for intracellular trafficking and forming the mitotic spindle. Microtubules can be bundled to create more stable structures that collectively propagate force, such as in the flagellar axoneme, which provides motility. The subpellicular microtubule array of the protist parasite Trypanosoma brucei, the causative agent of African sleeping sickness, is a remarkable example of a highly specialized microtubule bundle. It is comprised of a single layer of microtubules that are crosslinked to each other and to the overlying plasma membrane. The array microtubules appear to be highly stable and remain intact throughout the cell cycle, but very little is known about the pathways that tune microtubule properties in trypanosomatids. Here, we show that the subpellicular microtubule array is organized into subdomains that consist of differentially localized array-associated proteins at the array posterior, middle, and anterior. The array-associated protein PAVE1 stabilizes array microtubules at the cell posterior and is essential for maintaining its tapered shape. PAVE1 and the newly identified protein PAVE2 form a complex that binds directly to the microtubule lattice, demonstrating that they are a true kinetoplastid-specific MAP. TbAIR9, which localizes to the entirety of the subpellicular array, is necessary for maintaining the localization of array-associated proteins within their respective subdomains of the array. The arrangement of proteins within the array likely tunes the local properties of array microtubules and creates the asymmetric shape of the cell, which is essential for parasite viability.
Collapse
Affiliation(s)
- Amy N. Sinclair
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Christine T. Huynh
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Jenna L. Zuromski
- Department of Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, Rhode Island, United States of America
| | - Amanda E. Ruiz
- Department of Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, Rhode Island, United States of America
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
12
|
Martinez P, Dixit R, Balkunde RS, Zhang A, O'Leary SE, Brakke KA, Rasmussen CG. TANGLED1 mediates microtubule interactions that may promote division plane positioning in maize. J Cell Biol 2021; 219:151878. [PMID: 32568386 PMCID: PMC7401798 DOI: 10.1083/jcb.201907184] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/17/2019] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
The microtubule cytoskeleton serves as a dynamic structural framework for mitosis in eukaryotic cells. TANGLED1 (TAN1) is a microtubule-binding protein that localizes to the division site and mitotic microtubules and plays a critical role in division plane orientation in plants. Here, in vitro experiments demonstrate that TAN1 directly binds microtubules, mediating microtubule zippering or end-on microtubule interactions, depending on their contact angle. Maize tan1 mutant cells improperly position the preprophase band (PPB), which predicts the future division site. However, cell shape–based modeling indicates that PPB positioning defects are likely a consequence of abnormal cell shapes and not due to TAN1 absence. In telophase, colocalization of growing microtubules ends from the phragmoplast with TAN1 at the division site suggests that TAN1 interacts with microtubule tips end-on. Together, our results suggest that TAN1 contributes to microtubule organization to ensure proper division plane orientation.
Collapse
Affiliation(s)
- Pablo Martinez
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO
| | - Rachappa S Balkunde
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO
| | - Antonia Zhang
- Department of Biochemistry, University of California, Riverside, CA
| | - Seán E O'Leary
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA.,Department of Biochemistry, University of California, Riverside, CA
| | - Kenneth A Brakke
- Department of Mathematics, Susquehanna University, Selinsgrove, PA
| | - Carolyn G Rasmussen
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA.,Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA
| |
Collapse
|
13
|
Farhadi L, Ricketts SN, Rust MJ, Das M, Robertson-Anderson RM, Ross JL. Actin and microtubule crosslinkers tune mobility and control co-localization in a composite cytoskeletal network. SOFT MATTER 2020; 16:7191-7201. [PMID: 32207504 DOI: 10.1039/c9sm02400j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Actin and microtubule filaments, with their auxiliary proteins, enable the cytoskeleton to carry out vital processes in the cell by tuning the organizational and mechanical properties of the network. Despite their critical importance and interactions in cells, we are only beginning to uncover information about the composite network. The challenge is due to the high complexity of combining actin, microtubules, and their hundreds of known associated proteins. Here, we use fluorescence microscopy, fluctuation, and cross-correlation analysis to examine the role of actin and microtubules in the presence of an antiparallel microtubule crosslinker, MAP65, and a generic, strong actin crosslinker, biotin-NeutrAvidin. For a fixed ratio of actin and microtubule filaments, we vary the amount of each crosslinker and measure the organization and fluctuations of the filaments. We find that the microtubule crosslinker plays the principle role in the organization of the system, while, actin crosslinking dictates the mobility of the filaments. We have previously demonstrated that the fluctuations of filaments are related to the mechanics, implying that actin crosslinking controls the mechanical properties of the network, independent of the microtubule-driven re-organization.
Collapse
Affiliation(s)
- Leila Farhadi
- Department of Physics, University of Massachusetts, Amherst, 666 N. Pleasant St., Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Chakraborty S, Mahamid J, Baumeister W. Cryoelectron Tomography Reveals Nanoscale Organization of the Cytoskeleton and Its Relation to Microtubule Curvature Inside Cells. Structure 2020; 28:991-1003.e4. [PMID: 32579947 DOI: 10.1016/j.str.2020.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 11/19/2022]
Abstract
Microtubules (MTs) are the most rigid elements of the cytoskeleton with in vitro persistence lengths (Lp) in the range of 1-6 mm. In cellular environments, however, MTs often appear strongly curved. This has been attributed to the forces acting upon them in situ where they are embedded in composite networks of different cytoskeletal elements. Hitherto, the nanoscale organization of these networks has remained largely uncharacterized. Cryo-electron tomography (cryo-ET) allowed to visualize and analyze the in situ structure of cytoskeletal networks in pristinely preserved cellular environments and at high resolution. Here, we studied the molecular organization of MTs and their interactions with the composite cytoskeleton in frozen-hydrated HeLa and P19 cells at different cell-cycle stages. We describe modulation of MT curvature correlated with the surrounding molecular architecture, and show that nanoscale defects occur in curved MTs. The data presented here contribute to constructing realistic models of cytoskeletal biomechanics.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Julia Mahamid
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
15
|
Matis M. The Mechanical Role of Microtubules in Tissue Remodeling. Bioessays 2020; 42:e1900244. [PMID: 32249455 DOI: 10.1002/bies.201900244] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Indexed: 12/31/2022]
Abstract
During morphogenesis, tissues undergo extensive remodeling to get their final shape. Such precise sculpting requires the application of forces generated within cells by the cytoskeleton and transmission of these forces through adhesion molecules within and between neighboring cells. Within individual cells, microtubules together with actomyosin filaments and intermediate filaments form the composite cytoskeleton that controls cell mechanics during tissue rearrangements. While studies have established the importance of actin-based mechanical forces that are coupled via intercellular junctions, relatively little is known about the contribution of other cytoskeletal components such as microtubules to cell mechanics during morphogenesis. In this review the focus is on recent findings, highlighting the direct mechanical role of microtubules beyond its well-established role in trafficking and signaling during tissue formation.
Collapse
Affiliation(s)
- Maja Matis
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, 48149, Germany.,'Cells in Motion' Interfaculty Centre, University of Münster, Münster, 48149, Germany
| |
Collapse
|
16
|
Cui YJ, Ma CC, Zhang CM, Tang LQ, Liu ZP. The discovery of novel indazole derivatives as tubulin colchicine site binding agents that displayed potent antitumor activity both in vitro and in vivo. Eur J Med Chem 2020; 187:111968. [DOI: 10.1016/j.ejmech.2019.111968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
|
17
|
Wang L, Sadeghnezhad E, Nick P. Upstream of gene expression: what is the role of microtubules in cold signalling? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:36-48. [PMID: 31560041 DOI: 10.1093/jxb/erz419] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Cold stress is a major abiotic stress, restricting plant growth and development. Therefore, gene expression in response to cold stress and during cold acclimation has been studied intensively, including the ICE-CBF-COR pathway, as well as the modulation of this cascade by secondary messengers, for instance mitogen-activated protein kinase (MAPK) cascades. In contrast, the early events of cold perception and cold adaption have received far less attention. This is partially due to the fact that cold is a physical signal, which requires the conceptual framework to be adjusted. In this review, we address the role of microtubules in cold sensing, and propose a model whereby microtubules, while not being part of signalling itself, act as modulators of cold sensitivity. The purpose of this model is to derive implications for future experiments that will help to provide a more complete understanding of cold adaptation.
Collapse
Affiliation(s)
- Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ehsan Sadeghnezhad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
18
|
EZH2 cooperates with E2F1 to stimulate expression of genes involved in adrenocortical carcinoma aggressiveness. Br J Cancer 2019; 121:384-394. [PMID: 31363169 PMCID: PMC6738105 DOI: 10.1038/s41416-019-0538-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/08/2022] Open
Abstract
Background EZH2 is overexpressed and associated with poor prognosis in adrenocortical carcinoma (ACC) and its inhibition reduces growth and aggressiveness of ACC cells in culture. Although EZH2 was identified as the methyltransferase that deposits the repressive H3K27me3 histone mark, it can cooperate with transcription factors to stimulate gene transcription. Methods We used bioinformatics approaches on gene expression data from three cohorts of patients and a mouse model of EZH2 ablation, to identify targets and mode of action of EZH2 in ACC. This was followed by ChIP and functional assays to evaluate contribution of identified targets to ACC pathogenesis. Results We show that EZH2 mostly works as a transcriptional inducer in ACC, through cooperation with the transcription factor E2F1 and identify three positive targets involved in cell cycle regulation and mitosis i.e., RRM2, PTTG1 and ASE1/PRC1. Overexpression of these genes is associated with poor prognosis, suggesting a potential role in acquisition of aggressive ACC features. Pharmacological and siRNA-mediated inhibition of RRM2 blocks cell proliferation, induces apoptosis and inhibits cell migration, suggesting that it may be an interesting target in ACC. Conclusions Altogether, these data show an unexpected role of EZH2 and E2F1 in stimulating expression of genes associated with ACC aggressiveness.
Collapse
|
19
|
She ZY, Wei YL, Lin Y, Li YL, Lu MH. Mechanisms of the Ase1/PRC1/MAP65 family in central spindle assembly. Biol Rev Camb Philos Soc 2019; 94:2033-2048. [PMID: 31343816 DOI: 10.1111/brv.12547] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023]
Abstract
During cytokinesis, the organization of the spindle midzone and chromosome segregation is controlled by the central spindle, a microtubule cytoskeleton containing kinesin motors and non-motor microtubule-associated proteins. The anaphase spindle elongation 1/protein regulator of cytokinesis 1/microtubule associated protein 65 (Ase1/PRC1/MAP65) family of microtubule-bundling proteins are key regulators of central spindle assembly, mediating microtubule crosslinking and spindle elongation in the midzone. Ase1/PRC1/MAP65 serves as a complex regulatory platform for the recruitment of other midzone proteins at the spindle midzone. Herein, we summarize recent advances in understanding of the structural domains and molecular kinetics of the Ase1/PRC1/MAP65 family. We summarize the regulatory network involved in post-translational modifications of Ase1/PRC1 by cyclin-dependent kinase 1 (Cdk1), cell division cycle 14 (Cdc14) and Polo-like kinase 1 (Plk1) and also highlight multiple functions of Ase1/PRC1 in central spindle organization, spindle elongation and cytokinesis during cell division.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ya-Lan Wei
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yang Lin
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yue-Ling Li
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ming-Hui Lu
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
20
|
Abstract
Mechanical signals play many roles in cell and developmental biology. Several mechanotransduction pathways have been uncovered, but the mechanisms identified so far only address the perception of stress intensity. Mechanical stresses are tensorial in nature, and thus provide dual mechanical information: stress magnitude and direction. Here we propose a parsimonious mechanism for the perception of the principal stress direction. In vitro experiments show that microtubules are stabilized under tension. Based on these results, we explore the possibility that such microtubule stabilization operates in vivo, most notably in plant cells where turgor-driven tensile stresses exceed greatly those observed in animal cells. Cellular mechanical stress is a key determinant of cell shape and function, but how the cell senses stress direction is unclear. In this Perspective the authors propose that microtubules autonomously sense stress directions in plant cells, where tensile stresses are higher than in animal cells.
Collapse
|
21
|
Soleilhac E, Brillet-Guéguen L, Roussel V, Prudent R, Touquet B, Dass S, Aci-Sèche S, Kasam V, Barette C, Imberty A, Breton V, Vantard M, Horvath D, Botté C, Tardieux I, Roy S, Maréchal E, Lafanechère L. Specific Targeting of Plant and Apicomplexa Parasite Tubulin through Differential Screening Using In Silico and Assay-Based Approaches. Int J Mol Sci 2018; 19:ijms19103085. [PMID: 30304836 PMCID: PMC6213459 DOI: 10.3390/ijms19103085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023] Open
Abstract
Dinitroanilines are chemical compounds with high selectivity for plant cell α-tubulin in which they promote microtubule depolymerization. They target α-tubulin regions that have diverged over evolution and show no effect on non-photosynthetic eukaryotes. Hence, they have been used as herbicides over decades. Interestingly, dinitroanilines proved active on microtubules of eukaryotes deriving from photosynthetic ancestors such as Toxoplasma gondii and Plasmodium falciparum, which are responsible for toxoplasmosis and malaria, respectively. By combining differential in silico screening of virtual chemical libraries on Arabidopsis thaliana and mammal tubulin structural models together with cell-based screening of chemical libraries, we have identified dinitroaniline related and non-related compounds. They inhibit plant, but not mammalian tubulin assembly in vitro, and accordingly arrest A. thaliana development. In addition, these compounds exhibit a moderate cytotoxic activity towards T. gondii and P. falciparum. These results highlight the potential of novel herbicidal scaffolds in the design of urgently needed anti-parasitic drugs.
Collapse
Affiliation(s)
- Emmanuelle Soleilhac
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, INSERM, BGE U1038, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
| | - Loraine Brillet-Guéguen
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, INSERM, BGE U1038, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France.
| | - Véronique Roussel
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, INSERM, BGE U1038, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherches 5168 CNRS, CEA, INRA, Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
| | - Renaud Prudent
- Institute for Advanced Biosciences (IAB), Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France.
| | - Bastien Touquet
- Institute for Advanced Biosciences (IAB), Team Membrane and Cell Dynamics of Host Parasite Interactions, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France.
| | - Sheena Dass
- Institute for Advanced Biosciences (IAB), Team ApicoLipid, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, 38000 Grenoble, France.
| | - Samia Aci-Sèche
- Institut de Chimie Organique et Analytique (ICOA), UMR7311 CNRS-Université d'Orléans, Université d'Orléans, 45067 Orléans CEDEX 2, France.
| | - Vinod Kasam
- Laboratoire de Physique de Clermont, Université Clermont Auvergne, CNRS/IN2P3, UMR6533, 4 Avenue Blaise Pascal TSA 60026, CS 60026 63178 Aubière CEDEX, France.
| | - Caroline Barette
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, INSERM, BGE U1038, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales, Université Grenoble Alpes, CNRS, 38000 Grenoble, France.
| | - Vincent Breton
- Laboratoire de Physique de Clermont, Université Clermont Auvergne, CNRS/IN2P3, UMR6533, 4 Avenue Blaise Pascal TSA 60026, CS 60026 63178 Aubière CEDEX, France.
| | - Marylin Vantard
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherches 5168 CNRS, CEA, INRA, Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
- Grenoble Institut des Neurosciences; Inserm U1216; Université Grenoble Alpes, 38000 Grenoble, France.
| | - Dragos Horvath
- Laboratoire de Chemoinformatique, UMR7140 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Cyrille Botté
- Institute for Advanced Biosciences (IAB), Team ApicoLipid, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, 38000 Grenoble, France.
| | - Isabelle Tardieux
- Institute for Advanced Biosciences (IAB), Team Membrane and Cell Dynamics of Host Parasite Interactions, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France.
| | - Sylvaine Roy
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA, INSERM, BGE U1038, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherches 5168 CNRS, CEA, INRA, Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherches 5168 CNRS, CEA, INRA, Institut de Biosciences et Biotechnologies de Grenoble (BIG), Université Grenoble Alpes, CEA-Grenoble, 17 rue des Martyrs, 38000 Grenoble, France.
| | - Laurence Lafanechère
- Institute for Advanced Biosciences (IAB), Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
22
|
Molines AT, Marion J, Chabout S, Besse L, Dompierre JP, Mouille G, Coquelle FM. EB1 contributes to microtubule bundling and organization, along with root growth, in Arabidopsis thaliana. Biol Open 2018; 7:bio.030510. [PMID: 29945874 PMCID: PMC6124560 DOI: 10.1242/bio.030510] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microtubules are involved in plant development and adaptation to their environment, but the sustaining molecular mechanisms remain elusive. Microtubule-end-binding 1 (EB1) proteins participate in directional root growth in Arabidopsis thaliana. However, a connection to the underlying microtubule array has not been established yet. We show here that EB1 proteins contribute to the organization of cortical microtubules in growing epidermal plant cells, without significant modulation of microtubule dynamics. Using super-resolution stimulated emission depletion (STED) microscopy and an original quantification approach, we also demonstrate a significant reduction of apparent microtubule bundling in cytoplasmic-EB1-deficient plants, suggesting a function for EB1 in the interaction between adjacent microtubules. Furthermore, we observed root growth defects in EB1-deficient plants, which are not related to cell division impairment. Altogether, our results support a role for EB1 proteins in root development, in part by maintaining the organization of cortical microtubules. This article has an associated First Person interview with the first author of the paper. Summary: EB1 proteins affect cortical-microtubule bundling and organization in Arabidopsis thaliana, without significant modulation of microtubule dynamics. They also participate in root growth, further linking microtubules to plant development.
Collapse
Affiliation(s)
- Arthur T Molines
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Jessica Marion
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Salem Chabout
- Institut Jean-Pierre Bourgin (IJPB), INRA - AgroParisTech, 78026 Versailles Cedex, France
| | - Laetitia Besse
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Jim P Dompierre
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin (IJPB), INRA - AgroParisTech, 78026 Versailles Cedex, France
| | - Frédéric M Coquelle
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
23
|
Fassier C, Fréal A, Gasmi L, Delphin C, Ten Martin D, De Gois S, Tambalo M, Bosc C, Mailly P, Revenu C, Peris L, Bolte S, Schneider-Maunoury S, Houart C, Nothias F, Larcher JC, Andrieux A, Hazan J. Motor axon navigation relies on Fidgetin-like 1-driven microtubule plus end dynamics. J Cell Biol 2018. [PMID: 29535193 PMCID: PMC5940295 DOI: 10.1083/jcb.201604108] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fassier et al. identify Fidgetin-like 1 (Fignl1) as a key growth cone (GC)-enriched microtubule (MT)-associated protein in motor circuit wiring. They show that Fignl1 modulates motor GC morphology and steering behavior by down-regulating EB binding at MT plus ends and promoting MT depolymerization beneath the cell cortex. During neural circuit assembly, extrinsic signals are integrated into changes in growth cone (GC) cytoskeleton underlying axon guidance decisions. Microtubules (MTs) were shown to play an instructive role in GC steering. However, the numerous actors required for MT remodeling during axon navigation and their precise mode of action are far from being deciphered. Using loss- and gain-of-function analyses during zebrafish development, we identify in this study the meiotic clade adenosine triphosphatase Fidgetin-like 1 (Fignl1) as a key GC-enriched MT-interacting protein in motor circuit wiring and larval locomotion. We show that Fignl1 controls GC morphology and behavior at intermediate targets by regulating MT plus end dynamics and growth directionality. We further reveal that alternative translation of Fignl1 transcript is a sophisticated mechanism modulating MT dynamics: a full-length isoform regulates MT plus end–tracking protein binding at plus ends, whereas shorter isoforms promote their depolymerization beneath the cell cortex. Our study thus pinpoints Fignl1 as a multifaceted key player in MT remodeling underlying motor circuit connectivity.
Collapse
Affiliation(s)
- Coralie Fassier
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Amélie Fréal
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Laïla Gasmi
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Christian Delphin
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Daniel Ten Martin
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Stéphanie De Gois
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Monica Tambalo
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Christophe Bosc
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Philippe Mailly
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France
| | - Céline Revenu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Leticia Peris
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Susanne Bolte
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Centre National de la Recherche Scientifique FR3631, Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Biologie du Développement, Centre National de la Recherche Scientifique UMR7622, Paris, France
| | - Corinne Houart
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Hospital Campus, London, England, UK
| | - Fatiha Nothias
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Jean-Christophe Larcher
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Biologie du Développement, Centre National de la Recherche Scientifique UMR7622, Paris, France
| | - Annie Andrieux
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Jamilé Hazan
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| |
Collapse
|
24
|
Xu Z, Schaedel L, Portran D, Aguilar A, Gaillard J, Marinkovich MP, Théry M, Nachury MV. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 2017; 356:328-332. [PMID: 28428427 DOI: 10.1126/science.aai8764] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/24/2017] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells rely on long-lived microtubules for intracellular transport and as compression-bearing elements. We considered that long-lived microtubules are acetylated inside their lumen and that microtubule acetylation may modify microtubule mechanics. Here, we found that tubulin acetylation is required for the mechanical stabilization of long-lived microtubules in cells. Depletion of the tubulin acetyltransferase TAT1 led to a significant increase in the frequency of microtubule breakage. Nocodazole-resistant microtubules lost upon removal of acetylation were largely restored by either pharmacological or physical removal of compressive forces. In in vitro reconstitution experiments, acetylation was sufficient to protect microtubules from mechanical breakage. Thus, acetylation increases mechanical resilience to ensure the persistence of long-lived microtubules.
Collapse
Affiliation(s)
- Zhenjie Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA. .,Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305-5168, USA
| | - Laura Schaedel
- CytoMorpho Laboratory, Laboratory of Cell and Plant Physiology (LPCV), UMR 5168, Biosciences and Biotechnology Institute of Grenoble, CEA/INRA/CNRS/Université Grenoble-Alpes, 17 rue des Martyrs, 38054 Grenoble, France
| | - Didier Portran
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Andrea Aguilar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Jérémie Gaillard
- CytoMorpho Laboratory, Laboratory of Cell and Plant Physiology (LPCV), UMR 5168, Biosciences and Biotechnology Institute of Grenoble, CEA/INRA/CNRS/Université Grenoble-Alpes, 17 rue des Martyrs, 38054 Grenoble, France
| | - M Peter Marinkovich
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305-5168, USA.,Division of Dermatology, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94305, USA
| | - Manuel Théry
- CytoMorpho Laboratory, Laboratory of Cell and Plant Physiology (LPCV), UMR 5168, Biosciences and Biotechnology Institute of Grenoble, CEA/INRA/CNRS/Université Grenoble-Alpes, 17 rue des Martyrs, 38054 Grenoble, France.,CytoMorpho Laboratory, A2T, UMRS 1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, INSERM/AP-HP/Université Paris Diderot, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| |
Collapse
|
25
|
Prezel E, Elie A, Delaroche J, Stoppin-Mellet V, Bosc C, Serre L, Fourest-Lieuvin A, Andrieux A, Vantard M, Arnal I. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles. Mol Biol Cell 2017; 29:154-165. [PMID: 29167379 PMCID: PMC5909928 DOI: 10.1091/mbc.e17-06-0429] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 11/11/2022] Open
Abstract
Tau is a neuronal microtubule bundler that is known to stabilize microtubules by promoting their growth and inhibiting their shrinkage. This study reveals novel mechanisms by which tau is able to switch microtubule network organizations via the differential regulation of microtubule bundling and dynamics. In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler that stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau’s ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain and is modulated by its projection domain. Site-specific pseudophosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles, or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo–electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phosphodependent mechanisms governing tau’s ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations that may have a deleterious impact during neurodegeneration.
Collapse
Affiliation(s)
- Elea Prezel
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes
| | - Auréliane Elie
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes
| | - Julie Delaroche
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes
| | - Virginie Stoppin-Mellet
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes
| | - Christophe Bosc
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes
| | - Laurence Serre
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes.,Centre National de la Recherche Scientifique, Grenoble Institut des Neurosci ences, Institut de Biosciences et Biotechnologies de Grenoble, F-38000 Grenoble, France
| | - Anne Fourest-Lieuvin
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes.,Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, F-38000 Grenoble, France
| | - Annie Andrieux
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes.,Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, F-38000 Grenoble, France
| | - Marylin Vantard
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes.,Centre National de la Recherche Scientifique, Grenoble Institut des Neurosci ences, Institut de Biosciences et Biotechnologies de Grenoble, F-38000 Grenoble, France
| | - Isabelle Arnal
- Inserm, U1216, Université Grenoble Alpes .,Grenoble Institut des Neurosciences, Université Grenoble Alpes.,Centre National de la Recherche Scientifique, Grenoble Institut des Neurosci ences, Institut de Biosciences et Biotechnologies de Grenoble, F-38000 Grenoble, France
| |
Collapse
|
26
|
Isozaki N, Shintaku H, Kotera H, Hawkins TL, Ross JL, Yokokawa R. Control of molecular shuttles by designing electrical and mechanical properties of microtubules. Sci Robot 2017; 2:2/10/eaan4882. [PMID: 33157889 DOI: 10.1126/scirobotics.aan4882] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
Kinesin-driven microtubules have been focused on to serve as molecular transporters, called "molecular shuttles," to replace micro/nanoscale molecular manipulations necessitated in micro total analysis systems. Although transport, concentration, and detection of target molecules have been demonstrated, controllability of the transport directions is still a major challenge. Toward broad applications of molecular shuttles by defining multiple moving directions for selective molecular transport, we integrated a bottom-up molecular design of microtubules and a top-down design of a microfluidic device. The surface charge density and stiffness of microtubules were controlled, allowing us to create three different types of microtubules, each with different gliding directions corresponding to their electrical and mechanical properties. The measured curvature of the gliding microtubules enabled us to optimize the size and design of the device for molecular sorting in a top-down approach. The integrated bottom-up and top-down design achieved separation of stiff microtubules from negatively charged, soft microtubules under an electric field. Our method guides multiple microtubules by integrating molecular control and microfluidic device design; it is not only limited to molecular sorters but is also applicable to various molecular shuttles with the high controllability in their movement directions.
Collapse
Affiliation(s)
- Naoto Isozaki
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Hirofumi Shintaku
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Taviare L Hawkins
- Department of Physics, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts Amherst, 666 North Pleasant Street, Amherst, MA 01003, USA
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
27
|
Fal K, Asnacios A, Chabouté ME, Hamant O. Nuclear envelope: a new frontier in plant mechanosensing? Biophys Rev 2017; 9:389-403. [PMID: 28801801 PMCID: PMC5578935 DOI: 10.1007/s12551-017-0302-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
In animals, it is now well established that forces applied at the cell surface are propagated through the cytoskeleton to the nucleus, leading to deformations of the nuclear structure and, potentially, to modification of gene expression. Consistently, altered nuclear mechanics has been related to many genetic disorders, such as muscular dystrophy, cardiomyopathy and progeria. In plants, the integration of mechanical signals in cell and developmental biology has also made great progress. Yet, while the link between cell wall stresses and cytoskeleton is consolidated, such cortical mechanical cues have not been integrated with the nucleoskeleton. Here, we propose to take inspiration from studies on animal nuclei to identify relevant methods amenable to probing nucleus mechanics and deformation in plant cells, with a focus on microrheology. To identify potential molecular targets, we also compare the players at the nuclear envelope, namely lamina and LINC complex, in both plant and animal nuclei. Understanding how mechanical signals are transduced to the nucleus across kingdoms will likely have essential implications in development (e.g. how mechanical cues add robustness to gene expression patterns), in the nucleoskeleton-cytoskeleton nexus (e.g. how stress is propagated in turgid/walled cells), as well as in transcriptional control, chromatin biology and epigenetics.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Atef Asnacios
- Laboratoire Matières et Systèmes Complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France.
| |
Collapse
|
28
|
High-Resolution Imaging of a Single Gliding Protofilament of Tubulins by HS-AFM. Sci Rep 2017; 7:6166. [PMID: 28733669 PMCID: PMC5522458 DOI: 10.1038/s41598-017-06249-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/08/2017] [Indexed: 11/26/2022] Open
Abstract
In vitro gliding assay of microtubules (MTs) on kinesins has provided us with valuable biophysical and chemo-mechanical insights of this biomolecular motor system. Visualization of MTs in an in vitro gliding assay has been mainly dependent on optical microscopes, limited resolution of which often render them insufficient sources of desired information. In this work, using high speed atomic force microscopy (HS-AFM), which allows imaging with higher resolution, we monitored MTs and protofilaments (PFs) of tubulins while gliding on kinesins. Moreover, under the HS-AFM, we also observed splitting of gliding MTs into single PFs at their leading ends. The split single PFs interacted with kinesins and exhibited translational motion, but with a slower velocity than the MTs. Our investigation at the molecular level, using the HS-AFM, would provide new insights to the mechanics of MTs in dynamic systems and their interaction with motor proteins.
Collapse
|
29
|
Parrotta L, Faleri C, Cresti M, Cai G. Proteins immunologically related to MAP65-1 accumulate and localize differentially during bud development in Vitis vinifera L. PROTOPLASMA 2017; 254:1591-1605. [PMID: 27913905 DOI: 10.1007/s00709-016-1055-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Various arrays of microtubules are present throughout the plant cell cycle and are involved in distinct functions. Microtubule-associated proteins (MAPs) regulate microtubule dynamics by acting as stabilizers, destabilizers, and promoters of microtubule dynamics. The MAP65 family is a specific group of cross-linkers required for structural maintenance of microtubules. In plants, different isoforms of MAP65 are differentially expressed according to their developmental program. In this work, we analyzed the differential distribution of proteins immunologically related to MAP65-1 during bud development in grapevine (Vitis vinifera L.). First, we annotated the MAP65 genes present in the Vitis genome in order to compare the number and sequence of genes to other species. Subsequently, we focused on a specific isoform (MAP65-1) by characterizing its accumulation and distribution. Proteins were extracted from different organs of Vitis (buds, leaves, flowers, and tendrils), were separated by two-dimensional electrophoresis (2-DE), and were probed by immunoblot with a specific antiserum. We found seven spots immunologically related to MAP65-1, grouped in two distinct clusters, which accumulate differentially according to the developmental stage. In addition, we analyzed the localization of MAP65-1 during three different stages of bud development. Implication of data on the use of different isotypes of MAP65-1 during Vitis development is discussed.
Collapse
Affiliation(s)
- Luigi Parrotta
- Dipartimento Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, via Irnerio 42, 40126, Bologna, Italy.
| | - Claudia Faleri
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Mauro Cresti
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
30
|
Characterization of microtubule buckling in living cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:581-594. [PMID: 28424847 DOI: 10.1007/s00249-017-1207-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Microtubules are filamentous biopolymers involved in essential biological processes. They form key structures in eukaryotic cells, and thus it is very important to determine the mechanisms involved in the formation and maintenance of the microtubule network. Microtubule bucklings are transient and localized events commonly observed in living cells and characterized by a fast bending and its posterior relaxation. Active forces provided by molecular motors have been indicated as responsible for most of these rapid deformations. However, the factors that control the shape amplitude and the time scales of the rising and release stages remain unexplored. In this work, we study microtubule buckling in living cells using Xenopus laevis melanophores as a model system. We tracked single fluorescent microtubules from high temporal resolution (0.3-2 s) confocal movies. We recovered the center coordinates of the filaments with 10-nm precision and analyzed the amplitude of the deformation as a function of time. Using numerical simulations, we explored different force mechanisms resulting in microtubule bending. The simulated events reproduce many features observed for microtubules, suggesting that a mechanistic model captures the essential processes underlying microtubule buckling. Also, we studied the interplay between actively transported vesicles and the microtubule network using a two-color technique. Our results suggest that microtubules may affect transport indirectly besides serving as tracks of motor-driven organelles. For example, they could obstruct organelles at microtubule intersections or push them during filament mechanical relaxation.
Collapse
|
31
|
Ramirez-Rios S, Serre L, Stoppin-Mellet V, Prezel E, Vinit A, Courriol E, Fourest-Lieuvin A, Delaroche J, Denarier E, Arnal I. A TIRF microscopy assay to decode how tau regulates EB’s tracking at microtubule ends. Methods Cell Biol 2017; 141:179-197. [DOI: 10.1016/bs.mcb.2017.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Boruc J, Weimer AK, Stoppin-Mellet V, Mylle E, Kosetsu K, Cedeño C, Jaquinod M, Njo M, De Milde L, Tompa P, Gonzalez N, Inzé D, Beeckman T, Vantard M, Van Damme D. Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression. PLANT PHYSIOLOGY 2017; 173:582-599. [PMID: 27879390 PMCID: PMC5210758 DOI: 10.1104/pp.16.01602] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/18/2016] [Indexed: 05/04/2023]
Abstract
Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development. The beta Aurora (Aurora3) localizes to centromeres and likely functions in chromosome separation. In contrast to the wealth of data available on the role of Aurora in other kingdoms, knowledge on their function in plants is merely emerging. This is exemplified by the fact that only histone H3 and the plant homolog of TPX2 have been identified as Aurora substrates in plants. Here we provide biochemical, genetic, and cell biological evidence that the microtubule-bundling protein MAP65-1-a member of the MAP65/Ase1/PRC1 protein family, implicated in central spindle formation and cytokinesis in animals, yeasts, and plants-is a genuine substrate of alpha Aurora kinases. MAP65-1 interacts with Aurora1 in vivo and is phosphorylated on two residues at its unfolded tail domain. Its overexpression and down-regulation antagonistically affect the alpha Aurora double mutant phenotypes. Phospho-mutant analysis shows that Aurora contributes to the microtubule bundling capacity of MAP65-1 in concert with other mitotic kinases.
Collapse
Affiliation(s)
- Joanna Boruc
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.);
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.);
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.);
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.);
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.);
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Annika K Weimer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Virginie Stoppin-Mellet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Evelien Mylle
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Ken Kosetsu
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Cesyen Cedeño
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Michel Jaquinod
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Maria Njo
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Liesbeth De Milde
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Peter Tompa
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Marylin Vantard
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Daniël Van Damme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.);
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.);
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.);
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.);
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.);
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| |
Collapse
|
33
|
Noble JW, Hunter DV, Roskelley CD, Chan EKL, Mills J. Loukoumasomes Are Distinct Subcellular Structures from Rods and Rings and Are Structurally Associated with MAP2 and the Nuclear Envelope in Retinal Cells. PLoS One 2016; 11:e0165162. [PMID: 27798680 PMCID: PMC5087950 DOI: 10.1371/journal.pone.0165162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 10/07/2016] [Indexed: 12/19/2022] Open
Abstract
“Rods and rings” (RR) and loukoumasomes are similarly shaped, subcellular macromolecular structures with as yet unknown function. RR, so named because of their shape, are formed in response to inhibition in the GTP or CTP synthetic pathways and are highly enriched in the two key enzymes of the nucleotide synthetic pathway. Loukoumasomes also occur as linear and toroidal bodies and were initially inferred to be the same as RR, largely due to their shared shape and size and the fact that it was unclear if they shared the same subcomponents. In human retinoblastoma tissue and cells we have observed toroidal, perinuclear, macromolecular structures of similar size and antigenicity to those previously reported in neurons (neuronal-loukoumasomes). To further characterize the subcomponents of the retinal-loukoumasomes, confocal analysis following immunocytochemical staining for alpha-tubulin, beta-III tubulin and detyrosinated tubulin was performed. These studies indicate that retinal-loukoumasomes are enriched for beta-III tubulin and other tubulins associated with microtubules. Immunofluorescence together with the in situ proximity ligation assay (PLA), confirmed that beta-III tubulin colocalized with detyrosinated tubulin within loukoumasomes. Our results indicate that these tissues contain only loukoumasomes because these macromolecular structures are immunoreactive with an anti-tubulin antibody but are not recognized by the prototype anti-RR/inosine monophosphate dehydrogenase (IMPDH) antibody (It2006). To further compare the RR and retinal-loukoumasomes, retinoblastoma cells were exposed to the IMPDH-inhibitor ribavirin, a drug known to induce the formation of RR. In contrast to RR, the production of retinal-loukoumasomes was unaffected. Coimmunostaining of Y79 cells for beta-III tubulin and IMPDH indicate that these cells, when treated with ribavirin, can contain both retinal-loukoumasomes and RR and that these structures are antigenically distinct. Subcellular fractionation studies indicate that ribavirin increased the RR subcomponent, IMPDH, in the nuclear fraction of Y79 cells from 21.3 ± 5.8% (0 mM ribavirin) to 122.8 ± 7.9% (1 mM ribavirin) while the subcellular localization of the retinal-loukoumasome subcomponent tubulin went unaltered. Further characterization of retinal-loukoumasomes in retinoblastoma cells reveals that they are intimately associated with lamin folds within the nuclear envelope. Using immunofluorescence and the in situ PLA in this cell type, we have observed colocalization of beta-III tubulin with MAP2. As MAP2 is a microtubule-associated protein implicated in microtubule crosslinking, this supports a role for microtubule crosslinkers in the formation of retinal-loukoumasomes. Together, these results suggest that loukoumasomes and RR are distinct subcellular macromolecular structures, formed by different cellular processes and that there are other loukoumasome-like structures within retinal tissues and cells.
Collapse
Affiliation(s)
- Jake W. Noble
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Diana V. Hunter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin D. Roskelley
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward K. L. Chan
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Julia Mills
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
34
|
Velot L, Molina A, Rodrigues-Ferreira S, Nehlig A, Bouchet BP, Morel M, Leconte L, Serre L, Arnal I, Braguer D, Savina A, Honore S, Nahmias C. Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3. Oncotarget 2016; 6:43557-70. [PMID: 26498358 PMCID: PMC4791250 DOI: 10.18632/oncotarget.6196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/14/2015] [Indexed: 01/15/2023] Open
Abstract
The regulation of microtubule dynamics is critical to ensure essential cell functions. End binding protein 1 (EB1) is a master regulator of microtubule dynamics that autonomously binds an extended GTP/GDP-Pi structure at growing microtubule ends and recruits regulatory proteins at this location. However, negative regulation of EB1 association with growing microtubule ends remains poorly understood. We show here that microtubule-associated tumor suppressor ATIP3 interacts with EB1 through direct binding of a non-canonical proline-rich motif. Results indicate that ATIP3 does not localize at growing microtubule ends and that in situ ATIP3-EB1 molecular complexes are mostly detected in the cytosol. We present evidence that a minimal EB1-interacting sequence of ATIP3 is both necessary and sufficient to prevent EB1 accumulation at growing microtubule ends in living cells and that EB1-interaction is involved in reducing cell polarity. By fluorescence recovery of EB1-GFP after photobleaching, we show that ATIP3 silencing accelerates EB1 turnover at microtubule ends with no modification of EB1 diffusion in the cytosol. We propose a novel mechanism by which ATIP3-EB1 interaction indirectly reduces the kinetics of EB1 exchange on its recognition site, thereby accounting for negative regulation of microtubule dynamic instability. Our findings provide a unique example of decreased EB1 turnover at growing microtubule ends by cytosolic interaction with a tumor suppressor.
Collapse
Affiliation(s)
- Lauriane Velot
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,CNRS UMR8104, Institut Cochin, Paris, France
| | - Angie Molina
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,CNRS UMR8104, Institut Cochin, Paris, France
| | - Sylvie Rodrigues-Ferreira
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,CNRS UMR8104, Institut Cochin, Paris, France
| | - Anne Nehlig
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France
| | - Benjamin Pierre Bouchet
- Cell Biology, Faculty of Science, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | | | - Ludovic Leconte
- Cell and Tissue Imaging Core Facilty, PICT-IBiSA, CNRS UMR144 Institut Curie, Centre de Recherche, Paris, France
| | - Laurence Serre
- Inserm U836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Isabelle Arnal
- Inserm U836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Diane Braguer
- Aix Marseille Université, Inserm, CRO2 UMR_S 911, Marseille, France.,APHM, Hôpital Timone, Marseille, France
| | - Ariel Savina
- Scientific Partnerships Roche SAS, Boulogne Billancourt, France
| | - Stéphane Honore
- Aix Marseille Université, Inserm, CRO2 UMR_S 911, Marseille, France.,APHM, Hôpital Timone, Marseille, France
| | - Clara Nahmias
- Inserm U981, Institut Gustave Roussy Department of Molecular Medicine, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,CNRS UMR8104, Institut Cochin, Paris, France
| |
Collapse
|
35
|
Abstract
The dynamic instability of microtubules is characterised by slow growth phases stochastically interrupted by rapid depolymerisations called catastrophes. Rescue events can arrest the depolymerisation and restore microtubule elongation. However the origin of these rescue events remain unexplained. Here we show that microtubule lattice self-repair, in structurally damaged sites, is responsible for the rescue of microtubule growth. Tubulin photo-conversion in cells revealed that free tubulin dimers can incorporate along the shafts of microtubules, especially in regions where microtubules cross each other, form bundles or become bent due to mechanical constraints. These incorporation sites appeared to act as effective rescue sites ensuring microtubule rejuvenation. By securing damaged microtubule growth, the self-repair process supports a mechanosensitive growth by specifically promoting microtubule assembly in regions where they are subjected to physical constraints.
Collapse
|
36
|
Abstract
Proteins that associate with microtubules (MTs) are crucial to generate MT arrays and establish different cellular architectures. One example is PRC1 (protein regulator of cytokinesis 1), which cross-links antiparallel MTs and is essential for the completion of mitosis and cytokinesis. Here we describe a 4-Å-resolution cryo-EM structure of monomeric PRC1 bound to MTs. Residues in the spectrin domain of PRC1 contacting the MT are highly conserved and interact with the same pocket recognized by kinesin. We additionally found that PRC1 promotes MT assembly even in the presence of the MT stabilizer taxol. Interestingly, the angle of the spectrin domain on the MT surface corresponds to the previously observed cross-bridge angle between MTs cross-linked by full-length, dimeric PRC1. This finding, together with molecular dynamic simulations describing the intrinsic flexibility of PRC1, suggests that the MT-spectrin domain interface determines the geometry of the MT arrays cross-linked by PRC1.
Collapse
|
37
|
Letort G, Nedelec F, Blanchoin L, Théry M. Centrosome centering and decentering by microtubule network rearrangement. Mol Biol Cell 2016; 27:2833-43. [PMID: 27440925 PMCID: PMC5025270 DOI: 10.1091/mbc.e16-06-0395] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 11/11/2022] Open
Abstract
Numerical simulations are used to investigate the role of microtubule network architecture in centrosome positioning. Microtubule gliding along cell edges and pivoting around the centrosome are key regulators of the orientation of pushing forces, the magnitude of which depends on the number, dynamics, and stiffness of microtubules. The centrosome is positioned at the cell center by pushing and pulling forces transmitted by microtubules (MTs). Centrosome decentering is often considered to result from asymmetric, cortical pulling forces exerted in particular by molecular motors on MTs and controlled by external cues affecting the cell cortex locally. Here we used numerical simulations to investigate the possibility that it could equally result from the redistribution of pushing forces due to a reorientation of MTs. We first showed that MT gliding along cell edges and pivoting around the centrosome regulate MT rearrangement and thereby direct the spatial distribution of pushing forces, whereas the number, dynamics, and stiffness of MTs determine the magnitude of these forces. By modulating these parameters, we identified different regimes, involving both pushing and pulling forces, characterized by robust centrosome centering, robust off-centering, or “reactive” positioning. In the last-named conditions, weak asymmetric cues can induce a misbalance of pushing and pulling forces, resulting in an abrupt transition from a centered to an off-centered position. Taken together, these results point to the central role played by the configuration of the MTs on the distribution of pushing forces that position the centrosome. We suggest that asymmetric external cues should not be seen as direct driver of centrosome decentering and cell polarization but instead as inducers of an effective reorganization of the MT network, fostering centrosome motion to the cell periphery.
Collapse
Affiliation(s)
- Gaëlle Letort
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS/Université Grenoble-Alpes, 38054 Grenoble, France
| | - Francois Nedelec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Laurent Blanchoin
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS/Université Grenoble-Alpes, 38054 Grenoble, France CytoMorpho Lab, Hopital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, INSERM/Université Paris Diderot, 75010 Paris, France
| | - Manuel Théry
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS/Université Grenoble-Alpes, 38054 Grenoble, France CytoMorpho Lab, Hopital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, INSERM/Université Paris Diderot, 75010 Paris, France
| |
Collapse
|
38
|
Rosero A, Oulehlová D, Stillerová L, Schiebertová P, Grunt M, Žárský V, Cvrčková F. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics. PLANT & CELL PHYSIOLOGY 2016; 57:488-504. [PMID: 26738547 DOI: 10.1093/pcp/pcv209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 12/24/2015] [Indexed: 05/03/2023]
Abstract
Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development.
Collapse
Affiliation(s)
- Amparo Rosero
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Colombian Institute for Agricultural Research-CORPOICA-Turipana, Km 13 via Monteria, Cereté, Cordoba, Colombia Department of Cell Biology, Faculty of Science, Palacký University Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 586/11, CZ 783 71 Olomouc-Holice, Czech Republic
| | - Denisa Oulehlová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 160 00 Prague 6, Czech Republic
| | - Lenka Stillerová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Petra Schiebertová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Michal Grunt
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 160 00 Prague 6, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| |
Collapse
|
39
|
Abu-Abied M, Mordehaev I, Sunil Kumar GB, Ophir R, Wasteneys GO, Sadot E. Analysis of Microtubule-Associated-Proteins during IBA-Mediated Adventitious Root Induction Reveals KATANIN Dependent and Independent Alterations of Expression Patterns. PLoS One 2015; 10:e0143828. [PMID: 26630265 PMCID: PMC4668071 DOI: 10.1371/journal.pone.0143828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022] Open
Abstract
Adventitious roots (AR) are post embryonic lateral organs that differentiate from non-root tissues. The understanding of the molecular mechanism which underlies their differentiation is important because of their central role in vegetative plant propagation. Here it was studied how the expression of different microtubule (MT)-associated proteins (MAPs) is affected during AR induction, and whether expression differences are dependent on MT organization itself. To examine AR formation when MTs are disturbed we used two mutants in the MT severing protein KATANIN. It was found that rate and number of AR primordium formed following IBA induction for three days was reduced in bot1-1 and bot1-7 plants. The reduced capacity to form ARs in bot1-1 was associated with altered expression of MAP-encoding genes along AR induction. While the expression of MAP65-4, MAP65-3, AURORA1, AURORA2 and TANGLED, increased in wild-type but not in bot1-1 plants, the expression of MAP65-8 and MDP25 decreased in wild type plants but not in the bot1-1 plant after two days of IBA-treatment. The expression of MOR1 was increased two days after AR induction in wild type and bot1-1 plants. To examine its expression specifically in AR primordium, MOR1 upstream regulatory sequence was isolated and cloned to regulate GFP. Expression of GFP was induced in the primary root tips and lateral roots, in the pericycle of the hypocotyls and in all stages of AR primordium formation. It is concluded that the expression of MAPs is regulated along AR induction and that reduction in KATANIN expression inhibits AR formation and indirectly influences the specific expression of some MAPs.
Collapse
Affiliation(s)
- Mohamad Abu-Abied
- The Institute of Plant Sciences, The Volcani Center, ARO, Bet-Dagan, Israel
| | - Inna Mordehaev
- The Institute of Plant Sciences, The Volcani Center, ARO, Bet-Dagan, Israel
| | | | - Ron Ophir
- The Institute of Plant Sciences, The Volcani Center, ARO, Bet-Dagan, Israel
| | - Geoffrey O. Wasteneys
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Einat Sadot
- The Institute of Plant Sciences, The Volcani Center, ARO, Bet-Dagan, Israel
- * E-mail:
| |
Collapse
|
40
|
Kabir AMR, Inoue D, Afrin T, Mayama H, Sada K, Kakugo A. Buckling of Microtubules on a 2D Elastic Medium. Sci Rep 2015; 5:17222. [PMID: 26596905 PMCID: PMC4657045 DOI: 10.1038/srep17222] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/27/2015] [Indexed: 01/24/2023] Open
Abstract
We have demonstrated compression stress induced mechanical deformation of microtubules (MTs) on a two-dimensional elastic medium and investigated the role of compression strain, strain rate, and a MT-associated protein in the deformation of MTs. We show that MTs, supported on a two-dimensional substrate by a MT-associated protein kinesin, undergo buckling when they are subjected to compression stress. Compression strain strongly affects the extent of buckling, although compression rate has no substantial effect on the buckling of MTs. Most importantly, the density of kinesin is found to play the key role in determining the buckling mode of MTs. We have made a comparison between our experimental results and the ‘elastic foundation model’ that theoretically predicts the buckling behavior of MTs and its connection to MT-associated proteins. Taking into consideration the role of kinesin in altering the mechanical property of MTs, we are able to explain the buckling behavior of MTs by the elastic foundation model. This work will help understand the buckling mechanism of MTs and its connection to MT-associated proteins or surrounding medium, and consequently will aid in obtaining a meticulous scenario of the compression stress induced deformation of MTs in cells.
Collapse
Affiliation(s)
| | - Daisuke Inoue
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tanjina Afrin
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
41
|
Lopez BJ, Valentine MT. Molecular control of stress transmission in the microtubule cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [PMID: 26225932 DOI: 10.1016/j.bbamcr.2015.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this article, we will summarize recent progress in understanding the mechanical origins of rigidity, strength, resiliency and stress transmission in the MT cytoskeleton using reconstituted networks formed from purified components. We focus on the role of network architecture, crosslinker compliance and dynamics, and molecular determinants of single filament elasticity, while highlighting open questions and future directions for this work.
Collapse
Affiliation(s)
- Benjamin J Lopez
- Department of Mechanical Engineering and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5070, USA
| | - Megan T Valentine
- Department of Mechanical Engineering and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5070, USA.
| |
Collapse
|
42
|
Elie A, Prezel E, Guérin C, Denarier E, Ramirez-Rios S, Serre L, Andrieux A, Fourest-Lieuvin A, Blanchoin L, Arnal I. Tau co-organizes dynamic microtubule and actin networks. Sci Rep 2015; 5:9964. [PMID: 25944224 PMCID: PMC4421749 DOI: 10.1038/srep09964] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/25/2015] [Indexed: 12/02/2022] Open
Abstract
The crosstalk between microtubules and actin is essential for cellular functions. However, mechanisms underlying the microtubule-actin organization by cross-linkers remain largely unexplored. Here, we report that tau, a neuronal microtubule-associated protein, binds to microtubules and actin simultaneously, promoting in vitro co-organization and coupled growth of both networks. By developing an original assay to visualize concomitant microtubule and actin assembly, we show that tau can induce guided polymerization of actin filaments along microtubule tracks and growth of single microtubules along actin filament bundles. Importantly, tau mediates microtubule-actin co-alignment without changing polymer growth properties. Mutagenesis studies further reveal that at least two of the four tau repeated motifs, primarily identified as tubulin-binding sites, are required to connect microtubules and actin. Tau thus represents a molecular linker between microtubule and actin networks, enabling a coordination of the two cytoskeletons that might be essential in various neuronal contexts.
Collapse
Affiliation(s)
- Auréliane Elie
- 1] Inserm, U836, BP170, 38042 Grenoble, Cedex 9, France [2] Université Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, 38042 Grenoble, Cedex 9, France
| | - Elea Prezel
- 1] Inserm, U836, BP170, 38042 Grenoble, Cedex 9, France [2] Université Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, 38042 Grenoble, Cedex 9, France
| | - Christophe Guérin
- Institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, 38054 Grenoble, France
| | - Eric Denarier
- 1] Inserm, U836, BP170, 38042 Grenoble, Cedex 9, France [2] Université Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, 38042 Grenoble, Cedex 9, France [3] iRTSV, GPC, CEA, 38054 Grenoble, France
| | - Sacnicte Ramirez-Rios
- 1] Inserm, U836, BP170, 38042 Grenoble, Cedex 9, France [2] Université Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, 38042 Grenoble, Cedex 9, France
| | - Laurence Serre
- 1] Inserm, U836, BP170, 38042 Grenoble, Cedex 9, France [2] Université Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, 38042 Grenoble, Cedex 9, France
| | - Annie Andrieux
- 1] Inserm, U836, BP170, 38042 Grenoble, Cedex 9, France [2] Université Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, 38042 Grenoble, Cedex 9, France [3] iRTSV, GPC, CEA, 38054 Grenoble, France
| | - Anne Fourest-Lieuvin
- 1] Inserm, U836, BP170, 38042 Grenoble, Cedex 9, France [2] Université Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, 38042 Grenoble, Cedex 9, France [3] iRTSV, GPC, CEA, 38054 Grenoble, France
| | - Laurent Blanchoin
- Institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, 38054 Grenoble, France
| | - Isabelle Arnal
- 1] Inserm, U836, BP170, 38042 Grenoble, Cedex 9, France [2] Université Grenoble Alpes, Grenoble Institut des Neurosciences, BP170, 38042 Grenoble, Cedex 9, France
| |
Collapse
|
43
|
Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells. Biophys J 2015; 106:2625-35. [PMID: 24940780 DOI: 10.1016/j.bpj.2014.04.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/07/2014] [Accepted: 04/18/2014] [Indexed: 12/24/2022] Open
Abstract
The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 μm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells.
Collapse
|
44
|
|
45
|
Abstract
Many cell functions rely on microtubule dynamics and ordering. Two recent studies show that microtubule severing by katanin plays an overbearing role in this process and is primarily regulated at microtubule crossovers.
Collapse
|
46
|
Komis G, Mistrik M, Šamajová O, Doskočilová A, Ovečka M, Illés P, Bartek J, Šamaj J. Dynamics and organization of cortical microtubules as revealed by superresolution structured illumination microscopy. PLANT PHYSIOLOGY 2014; 165:129-48. [PMID: 24686112 PMCID: PMC4012574 DOI: 10.1104/pp.114.238477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/28/2014] [Indexed: 05/07/2023]
Abstract
Plants employ acentrosomal mechanisms to organize cortical microtubule arrays essential for cell growth and differentiation. Using structured illumination microscopy (SIM) adopted for the optimal documentation of Arabidopsis (Arabidopsis thaliana) hypocotyl epidermal cells, dynamic cortical microtubules labeled with green fluorescent protein fused to the microtubule-binding domain of the mammalian microtubule-associated protein MAP4 and with green fluorescent protein-fused to the alpha tubulin6 were comparatively recorded in wild-type Arabidopsis plants and in the mitogen-activated protein kinase mutant mpk4 possessing the former microtubule marker. The mpk4 mutant exhibits extensive microtubule bundling, due to increased abundance and reduced phosphorylation of the microtubule-associated protein MAP65-1, thus providing a very useful genetic tool to record intrabundle microtubule dynamics at the subdiffraction level. SIM imaging revealed nano-sized defects in microtubule bundling, spatially resolved microtubule branching and release, and finally allowed the quantification of individual microtubules within cortical bundles. Time-lapse SIM imaging allowed the visualization of subdiffraction, short-lived excursions of the microtubule plus end, and dynamic instability behavior of both ends during free, intrabundle, or microtubule-templated microtubule growth and shrinkage. Finally, short, rigid, and nondynamic microtubule bundles in the mpk4 mutant were observed to glide along the parent microtubule in a tip-wise manner. In conclusion, this study demonstrates the potential of SIM for superresolution time-lapse imaging of plant cells, showing unprecedented details accompanying microtubule dynamic organization.
Collapse
Affiliation(s)
- George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Martin Mistrik
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Anna Doskočilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Peter Illés
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | - Jiri Bartek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic (G.K., O.Š., A.D., M.O., P.I., J.Š.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic (M.M., J.B.); and
- Danish Cancer Society Research Center, DK–2100 Copenhagen, Denmark (J.B.)
| | | |
Collapse
|
47
|
Kabir AMR, Inoue D, Hamano Y, Mayama H, Sada K, Kakugo A. Biomolecular Motor Modulates Mechanical Property of Microtubule. Biomacromolecules 2014; 15:1797-805. [DOI: 10.1021/bm5001789] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Hiroyuki Mayama
- Department
of Chemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | | | | |
Collapse
|
48
|
Microtubule networks for plant cell division. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:187-94. [PMID: 25136380 DOI: 10.1007/s11693-014-9142-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants.
Collapse
|
49
|
Abstract
The mechanical characteristics of endothelial cells reveal four distinct compartments, namely glycocalyx, cell cortex, cytoplasm and nucleus. There is accumulating evidence that endothelial nanomechanics of these individual compartments control vascular physiology. Depending on protein composition, filament formation and interaction with cross-linker proteins, these four compartments determine endothelial stiffness. Structural organization and mechanical properties directly influence physiological processes such as endothelial barrier function, nitric oxide release and gene expression. This review will focus on endothelial nanomechanics and its impact on vascular function.
Collapse
|
50
|
Abstract
The following protocol describes a method to control the orientation and polarity of polymerizing microtubules (MTs). Reconstitution of specific geometries of dynamic MT networks is achieved using a ultraviolet (UV) micropatterning technique in combination with stabilized MT microseeds. The process is described in three main parts. First, the surface is passivated to avoid the non-specific absorption of proteins, using different polyethylene glycol (PEG)-based surface treatment. Second, specific adhesive surfaces (the micropatterns) are imprinted through a photomask using deep UVs. Lastly, MT microseeds are adhered to the micropatterns followed by MT polymerization.
Collapse
Affiliation(s)
- Didier Portran
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|