1
|
Zhong G, Fang Z, Sun T, Ying M, Wang A, Chen Y, Wang H, Ma C, Wang C, Ge R, Liu G, Guo Y. Ubiquitin ligase RFWD2 promotes dendritic spine and synapse formation by activating the ERK/PEA3/c-Jun pathway in rat cerebral cortical neurons. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167319. [PMID: 38909848 DOI: 10.1016/j.bbadis.2024.167319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The regulation of protein degradation through the ubiquitin-proteasome system is essential for normal brain development, axon growth, synaptic growth and plasticity. The E3 ubiquitin ligase RFWD2 plays a key role in the onset and development of neurological diseases, including the pathogenesis of Alzheimer's disease (AD), but the mechanisms controlling the homeostasis of neuronal synaptic proteins are still poorly understood. Here, we showed that the expression level of RFWD2 gradually decreased with the age of the rats and was negatively correlated with the development of cerebral cortical neurons and dendrites in vivo. RFWD2 was shown to localize to presynaptic terminals and some postsynaptic sides of both excitatory synapses and inhibitory synapses via colocalization with neuronal synaptic proteins (SYN, PSD95, Vglut1 and GAD67). Overexpression of RFWD2 promoted dendrite development and dendritic spine formation and markedly decreased the expression of synaptophysin and PSD95 by reducing the expression of ETV1, ETV4, ETV5 and c-JUN in vitro. Furthermore, the whole-cell membrane slice clamp results showed that RFWD2 overexpression resulted in greater membrane capacitance in neuronal cells, inadequate cell repolarization, and a longer time course for neurons to emit action potentials with decreased excitability. RFWD2 regulates dendritic development and plasticity, dendritic spine formation and synaptic function in rat cerebral cortex neurons by activating the ERK/PEA3/c-Jun pathway via a posttranslational regulatory mechanism and can be used as an efficient treatment target for neurological diseases.
Collapse
Affiliation(s)
- Guangshang Zhong
- School of Laboratory Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China; School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Zhuling Fang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Tingting Sun
- School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Mengjiao Ying
- School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Ao Wang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Ying Chen
- School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Haojie Wang
- School of Clinical Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Caiyun Ma
- School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Chunjing Wang
- School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Rongjing Ge
- School of Clinical Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
| | - Gaofeng Liu
- School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China.
| | - Yu Guo
- School of Laboratory Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
2
|
Smith SS, Benanni S, Jones Q, Kenney L, Evrard MR. Manipulation of α4βδ GABA A receptors alters synaptic pruning in layer 3 prelimbic prefrontal cortex and impairs temporal order recognition: Implications for schizophrenia and autism. Brain Res 2024; 1835:148929. [PMID: 38599510 DOI: 10.1016/j.brainres.2024.148929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Temporal order memory is impaired in autism spectrum disorder (ASD) and schizophrenia (SCZ). These disorders, more prevalent in males, result in abnormal dendritic spine pruning during adolescence in layer 3 (L3) medial prefrontal cortex (mPFC), yielding either too many (ASD) or too few (SCZ) spines. Here we tested whether altering spine density in neural circuits including the mPFC could be associated with impaired temporal order memory in male mice. We have shown that α4βδ GABAA receptors (GABARs) emerge at puberty on spines of L5 prelimbic mPFC (PL) where they trigger pruning. We show here that α4βδ receptors also increase at puberty in L3 PL (P < 0.0001) and used these receptors as a target to manipulate spine density here. Pubertal injection (14 d) of the GABA agonist gaboxadol, at a dose (3 mg/kg) selective for α4βδ, reduced L3 spine density by half (P < 0.0001), while α4 knock-out increased spine density ∼ 40 % (P < 0.0001), mimicking spine densities in SCZ and ASD, respectively. In both cases, performance on the mPFC-dependent temporal order recognition task was impaired, resulting in decreases in the discrimination ratio which assesses preference for the novel object: -0.39 ± 0.15, gaboxadol versus 0.52 ± 0.09, vehicle; P = 0.0002; -0.048 ± 0.10, α4 KO versus 0.49 ± 0.04, wild-type; P < 0.0001. In contrast, the number of approaches was unaltered, reflecting unchanged locomotion. These data suggest that altering α4βδ GABAR expression/activity alters spine density in L3 mPFC and impairs temporal order memory to mimic changes in ASD and SCZ. These findings may provide insight into these disorders.
Collapse
Affiliation(s)
- Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | - Safae Benanni
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | - Quiana Jones
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | - Lindsay Kenney
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | - Matthew R Evrard
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| |
Collapse
|
3
|
Chen XY, Cheng AY, Wang ZY, Jin JM, Lin JY, Wang B, Guan YY, Zhang H, Jiang YX, Luan X, Zhang LJ. Dbl family RhoGEFs in cancer: different roles and targeting strategies. Biochem Pharmacol 2024; 223:116141. [PMID: 38499108 DOI: 10.1016/j.bcp.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Small Ras homologous guanosine triphosphatase (Rho GTPase) family proteins are highly associated with tumorigenesis and development. As intrinsic exchange activity regulators of Rho GTPases, Rho guanine nucleotide exchange factors (RhoGEFs) have been demonstrated to be closely involved in tumor development and received increasing attention. They mainly contain two families: the diffuse B-cell lymphoma (Dbl) family and the dedicator of cytokinesis (Dock) family. More and more emphasis has been paid to the Dbl family members for their abnormally high expression in various cancers and their correlation to poor prognosis. In this review, the common and distinctive structures of Dbl family members are discussed, and their roles in cancer are summarized with a focus on Ect2, Tiam1/2, P-Rex1/2, Vav1/2/3, Trio, KALRN, and LARG. Significantly, the strategies targeting Dbl family RhoGEFs are highlighted as novel therapeutic opportunities for cancer.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ao-Yu Cheng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zi-Ying Wang
- School of Biological Engineering, Tianjin University of Science&Technology, Tianjin 301617, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hao Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Xin Jiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Structure of the Sec14 domain of Kalirin reveals a distinct class of lipid-binding module in RhoGEFs. Nat Commun 2023; 14:96. [PMID: 36609407 PMCID: PMC9823006 DOI: 10.1038/s41467-022-35678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Gated entry of lipophilic ligands into the enclosed hydrophobic pocket in stand-alone Sec14 domain proteins often links lipid metabolism to membrane trafficking. Similar domains occur in multidomain mammalian proteins that activate small GTPases and regulate actin dynamics. The neuronal RhoGEF Kalirin, a central regulator of cytoskeletal dynamics, contains a Sec14 domain (KalbSec14) followed by multiple spectrin-like repeats and catalytic domains. Previous studies demonstrated that Kalirin lacking its Sec14 domain fails to maintain cell morphology or dendritic spine length, yet whether and how KalbSec14 interacts with lipids remain unknown. Here, we report the structural and biochemical characterization of KalbSec14. KalbSec14 adopts a closed conformation, sealing off the canonical ligand entry site, and instead employs a surface groove to bind a limited set of lysophospholipids. The low-affinity interactions of KalbSec14 with lysolipids are expected to serve as a general model for the regulation of Rho signaling by other Sec14-containing Rho activators.
Collapse
|
5
|
Parnell E, Voorn RA, Martin-de-Saavedra MD, Loizzo DD, Dos Santos M, Penzes P. A developmental delay linked missense mutation in Kalirin-7 disrupts protein function and neuronal morphology. Front Mol Neurosci 2022; 15:994513. [PMID: 36533124 PMCID: PMC9751355 DOI: 10.3389/fnmol.2022.994513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/28/2022] [Indexed: 07/30/2023] Open
Abstract
The Rac1 guanine exchange factor Kalirin-7 is a key regulator of dendritic spine morphology, LTP and dendritic arborization. Kalirin-7 dysfunction and genetic variation has been extensively linked to various neurodevelopmental and neurodegenerative disorders. Here we characterize a Kalirin-7 missense mutation, glu1577lys (E1577K), identified in a patient with severe developmental delay. The E1577K point mutation is located within the catalytic domain of Kalirin-7, and results in a robust reduction in Kalirin-7 Rac1 Guanosine exchange factor activity. In contrast to wild type Kalirin-7, the E1577K mutant failed to drive dendritic arborization, spine density, NMDAr targeting to, and activity within, spines. Together these results indicate that reduced Rac1-GEF activity as result of E1577K mutation impairs neuroarchitecture, connectivity and NMDAr activity, and is a likely contributor to impaired neurodevelopment in a patient with developmental delay.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Roos A. Voorn
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - M. Dolores Martin-de-Saavedra
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Madrid, Spain
| | - Daniel D. Loizzo
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Marc Dos Santos
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Peter Penzes
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Centre for Autism and Neurodevelopment, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Heinze A, Schuldt C, Khudayberdiev S, van Bommel B, Hacker D, Schulz TG, Stringhi R, Marcello E, Mikhaylova M, Rust MB. Functional interdependence of the actin regulators CAP1 and cofilin1 in control of dendritic spine morphology. Cell Mol Life Sci 2022; 79:558. [PMID: 36264429 PMCID: PMC9585016 DOI: 10.1007/s00018-022-04593-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
Abstract
The vast majority of excitatory synapses are formed on small dendritic protrusions termed dendritic spines. Dendritic spines vary in size and density that are crucial determinants of excitatory synaptic transmission. Aberrations in spine morphogenesis can compromise brain function and have been associated with neuropsychiatric disorders. Actin filaments (F-actin) are the major structural component of dendritic spines, and therefore, actin-binding proteins (ABP) that control F-actin dis-/assembly moved into the focus as critical regulators of brain function. Studies of the past decade identified the ABP cofilin1 as a key regulator of spine morphology, synaptic transmission, and behavior, and they emphasized the necessity for a tight control of cofilin1 to ensure proper brain function. Here, we report spine enrichment of cyclase-associated protein 1 (CAP1), a conserved multidomain protein with largely unknown physiological functions. Super-resolution microscopy and live cell imaging of CAP1-deficient hippocampal neurons revealed impaired synaptic F-actin organization and dynamics associated with alterations in spine morphology. Mechanistically, we found that CAP1 cooperates with cofilin1 in spines and that its helical folded domain is relevant for this interaction. Moreover, our data proved functional interdependence of CAP1 and cofilin1 in control of spine morphology. In summary, we identified CAP1 as a novel regulator of the postsynaptic actin cytoskeleton that is essential for synaptic cofilin1 activity.
Collapse
Affiliation(s)
- Anika Heinze
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany
| | - Cara Schuldt
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany
| | - Sharof Khudayberdiev
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany
| | - Bas van Bommel
- AG Optobiology, Institute of Biology, Humboldt-University, 10115, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Daniela Hacker
- AG Optobiology, Institute of Biology, Humboldt-University, 10115, Berlin, Germany
- Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Toni G Schulz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Ramona Stringhi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133, Milan, Italy
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt-University, 10115, Berlin, Germany
- Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany.
- DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany.
| |
Collapse
|
7
|
Abstract
The cognitive dysfunction experienced by patients with schizophrenia represents a major unmet clinical need. We believe that enhancing synaptic function and plasticity by targeting kalirin may provide a novel means to remediate these symptoms. Karilin (a protein encoded by the KALRN gene) has multiple functional domains, including two Dbl homology (DH) guanine exchange factor (GEF) domains, which act to enhance the activity of the Rho family guanosine triphosphate (GTP)-ases. Here, we provide an overview of kalirin's roles in brain function and its therapeutic potential in schizophrenia. We outline how it mediates diverse effects via a suite of distinct isoforms that couple to members of the Rho GTPase family to regulate synapse formation and stabilisation, and how genomic and post-mortem data implicate it in schizophrenia. We then review the current state of knowledge about the influence of kalirin on brain function at a systems level, based largely on evidence from transgenic mouse models, which support its proposed role in regulating dendritic spine function and plasticity. We demonstrate that, whilst the GTPases are classically considered to be 'undruggable', targeting kalirin and other Rho GEFs provides a means to indirectly modulate their activity. Finally, we integrate across the information presented to assess the therapeutic potential of kalirin for schizophrenia and highlight the key outstanding questions required to advance it in this capacity; namely, the need for more information about the diversity and function of its isoforms, how these change across neurodevelopment, and how they affect brain function in vivo.
Collapse
|
8
|
Evrard MR, Li M, Shen H, Smith SS. Preventing adolescent synaptic pruning in mouse prelimbic cortex via local knockdown of α4βδ GABA A receptors increases anxiety response in adulthood. Sci Rep 2021; 11:21059. [PMID: 34702942 PMCID: PMC8548505 DOI: 10.1038/s41598-021-99965-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023] Open
Abstract
Anxiety is increasingly reported, especially in adolescent females. The etiology is largely unknown, which limits effective treatment. Layer 5 prelimbic cortex (L5PL) increases anxiety responses but undergoes adolescent synaptic pruning, raising the question of the impact of pruning on anxiety. Here we show that preventing L5PL pruning increases anxiety in response to an aversive event in adolescent and adult female mice. Spine density of Golgi-stained neurons decreased ~ 63% from puberty (~ PND35, vaginal opening) to post-puberty (PND56, P < 0.0001). Expression of α4βδ GABAA receptors (GABARs) transiently increased tenfold in L5PL at puberty (P < 0.00001), but decreased post-pubertally. Both global and local knockdown of these receptors during puberty prevented pruning, increasing spine density post-pubertally (P < 0.0001), an effect reversed by blocking NMDA receptors (NMDARs). Pubertal expression of the NMDAR-dependent spine protein kalirin7 decreased (50%, P < 0.0001), an effect prevented by α4 knock-out, suggesting that α4βδ-induced reductions in kalirin7 underlie pruning. Increased spine density due to local α4 knockdown at puberty decreased open arm time on the elevated plus maze post-pubertally (62%, P < 0.0001) in response to an aversive stimulus, suggesting that increases in L5PL synapses increase anxiety responses. These findings suggest that prelimbic synaptic pruning is necessary to limit anxiety in adulthood and may suggest novel therapies.
Collapse
Affiliation(s)
- Matthew R Evrard
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.,Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| | - Michael Li
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.,College of Arts and Sciences, Hunter College, New York, NY, 10065, USA
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.,School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.
| |
Collapse
|
9
|
Bircher JE, Koleske AJ. Trio family proteins as regulators of cell migration and morphogenesis in development and disease - mechanisms and cellular contexts. J Cell Sci 2021; 134:jcs248393. [PMID: 33568469 PMCID: PMC7888718 DOI: 10.1242/jcs.248393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The well-studied members of the Trio family of proteins are Trio and kalirin in vertebrates, UNC-73 in Caenorhabditis elegans and Trio in Drosophila Trio proteins are key regulators of cell morphogenesis and migration, tissue organization, and secretion and protein trafficking in many biological contexts. Recent discoveries have linked Trio and kalirin to human disease, including neurological disorders and cancer. The genes for Trio family proteins encode a series of large multidomain proteins with up to three catalytic activities and multiple scaffolding and protein-protein interaction domains. As such, Trio family proteins engage a wide array of cell surface receptors, substrates and interaction partners to coordinate changes in cytoskeletal regulatory and protein trafficking pathways. We provide a comprehensive review of the specific mechanisms by which Trio family proteins carry out their functions in cells, highlight the biological and cellular contexts in which they occur, and relate how alterations in these functions contribute to human disease.
Collapse
Affiliation(s)
- Josie E Bircher
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| | - Anthony J Koleske
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| |
Collapse
|
10
|
Parnell E, Shapiro LP, Voorn RA, Forrest MP, Jalloul HA, Loizzo DD, Penzes P. KALRN: A central regulator of synaptic function and synaptopathies. Gene 2020; 768:145306. [PMID: 33189799 DOI: 10.1016/j.gene.2020.145306] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
The synaptic regulator, kalirin, plays a key role in synaptic plasticity and formation of dendritic arbors and spines. Dysregulation of the KALRN gene has been linked to various neurological disorders, including autism spectrum disorder, Alzheimer's disease, schizophrenia, addiction and intellectual disabilities. Both genetic and molecular studies highlight the importance of normal KALRN expression for healthy neurodevelopment and function. This review aims to give an in-depth analysis of the structure and molecular mechanisms of kalirin function, particularly within the brain. These data are correlated to genetic evidence of patient mutations within KALRN and animal models of Kalrn that together give insight into the manner in which this gene may be involved in neurodevelopment and the etiology of disease. The emerging links to human disease from post-mortem, genome wide association (GWAS) and exome sequencing studies are examined to highlight the disease relevance of kalirin, particularly in neurodevelopmental diseases. Finally, we will discuss efforts to pharmacologically regulate kalirin protein activity and the implications of such endeavors for the treatment of human disease. As multiple disease states arise from deregulated synapse formation and altered KALRN expression and function, therapeutics may be developed to provide control over KALRN activity and thus synapse dysregulation. As such, a detailed understanding of how kalirin regulates neuronal development, and the manner in which kalirin dysfunction promotes neurological disease, may support KALRN as a valuable therapeutic avenue for future pharmacological intervention.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Lauren P Shapiro
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Roos A Voorn
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Hiba A Jalloul
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Daniel D Loizzo
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Northwestern University Center for Autism and Neurodevelopment, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
DBS is activated by EPHB2/SRC signaling-mediated tyrosine phosphorylation in HEK293 cells. Mol Cell Biochem 2019; 459:83-93. [PMID: 31089935 DOI: 10.1007/s11010-019-03552-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/04/2019] [Indexed: 01/09/2023]
Abstract
It is well known that Rho family small GTPases (Rho GTPase) has a role of molecular switch in intracellular signal transduction. The switch cycle between GTP-bound and GDP-bound state of Rho GTPase regulates various cell responses such as gene transcription, cytoskeletal rearrangements, and vesicular trafficking. Rho GTPase-specific guanine nucleotide exchange factors (RhoGEFs) are regulated by various extracellular stimuli and activates Rho GTPase such as RhoA, Rac1, and Cdc42. The molecular mechanisms that regulate RhoGEFs are poorly understood. Our studies reveal that Dbl's big sister (DBS), a RhoGEF for Cdc42 and RhoA, is phosphorylated at least on tyrosine residues at 479, 660, 727, and 926 upon stimulation by SRC signaling and that the phosphorylation at Tyr-660 is particularly critical for the serum response factor (SRF)-dependent transcriptional activation of DBS by Ephrin type-B receptor 2 (EPHB2)/SRC signaling. In addition, our studies also reveal that the phosphorylation of Tyr-479 and Tyr-660 on DBS leads to the actin cytoskeletal reorganization by EPHB2/SRC signaling. These findings are thought to be useful for understanding pathological conditions related to DBS such as cancer and non-syndromic autism in future.
Collapse
|
12
|
Nishikawa M, Nakano S, Nakao H, Sato K, Sugiyama T, Akao Y, Nagaoka H, Yamakawa H, Nagase T, Ueda H. The interaction between PLEKHG2 and ABL1 suppresses cell growth via the NF-κB signaling pathway in HEK293 cells. Cell Signal 2019; 61:93-107. [PMID: 31100317 DOI: 10.1016/j.cellsig.2019.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 01/30/2023]
Abstract
The Rho family small GTPases mediate cell responses through actin cytoskeletal rearrangement. We previously reported that PLEKHG2, a Rho-specific guanine nucleotide exchange factor, is regulated via interaction with several proteins. We found that PLEKHG2 interacted with non-receptor tyrosine kinase ABL1, but the cellular function remains unclear. Here, we show that the interaction between PLEKHG2 and ABL1 attenuated the PLEKHG2-induced serum response element-dependent gene transcription in a tyrosine phosphorylation-independent manner. PLEKHG2 and ABL1 were co-localized and accumulated within cells co-expressing PLEKHG2 and ABL1. The cellular fractionation analysis suggested that the accumulation involved actin cytoskeletal reorganization. We also revealed that the co-expression of PLEKHG2 with ABL1, but not BCR-ABL, suppressed cell growth and synergistically enhanced NF-κB-dependent gene transcription. The cell growth suppression was canceled by co-expression with IκBα, a member of the NF-κB inhibitor protein family. This study suggests that the interaction between PLEKHG2 and ABL1 suppresses cell growth through intracellular protein accumulation via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Masashi Nishikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Shun Nakano
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Hiromu Nakao
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Katsuya Sato
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1193, Japan
| | - Tsuyoshi Sugiyama
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, Nagamine Ichihiraga 795-1, Seki, Gifu 501-3892, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Hitoshi Nagaoka
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1193, Japan
| | | | | | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| |
Collapse
|
13
|
Parato J, Shen H, Smith SS. α4βδ GABA A Receptors Trigger Synaptic Pruning and Reduce Dendritic Length of Female Mouse CA3 Hippocampal Pyramidal Cells at Puberty. Neuroscience 2019; 398:23-36. [PMID: 30496825 PMCID: PMC6411036 DOI: 10.1016/j.neuroscience.2018.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023]
Abstract
Synaptic pruning during adolescence is critical for optimal cognition. The CA3 hippocampus contains unique spine types and plays a pivotal role in pattern separation and seizure generation, where sex differences exist, but adolescent pruning has only been studied in the male. Thus, for the present study we assessed pruning of specific spine types in the CA3 hippocampus during adolescence and investigated a possible mechanism in the female mouse. To this end, we used Golgi-impregnated brains from pubertal (∼PND 35, assessed by vaginal opening) and post-pubertal (PND 56) mice. Spine density was assessed from z-stack (0.1-μm steps) images taken using a Nikon DS-U3 camera through a Nikon Eclipse Ci-L microscope and analyzed with NIS Elements. Spine density decreased significantly (P < 0.05) during adolescence, with 50-60% decreases in mushroom and stubby spine-types (P < 0.05, ∼PND35 vs. PND56) in non-proestrous mice. This was associated with decreases in kalirin-7, a spine protein which stabilizes the cytoskeleton and is required for spine maintenance. Because our previous findings suggest that pubertal increases in α4βδ GABAA receptors (GABARs) trigger pruning in CA1, we investigated their role in CA3. α4 expression in CA3 hippocampus increased 4-fold at puberty (P < 0.05), assessed by immunostaining and verified electrophysiologically by an increased response to gaboxadol (100 nM), which is selective for α4βδ. Knock-out of α4 prevented the pubertal decrease in kalirin-7 and synaptic pruning and also increased the dendritic length, demonstrating a functional link. These data suggest that pubertal α4βδ GABARs alter dendritic morphology and trigger pruning in female CA3 hippocampus.
Collapse
Affiliation(s)
- Julie Parato
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
14
|
Katrancha SM, Wu Y, Zhu M, Eipper BA, Koleske AJ, Mains RE. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity. Hum Mol Genet 2017; 26:4728-4740. [PMID: 28973398 PMCID: PMC5886096 DOI: 10.1093/hmg/ddx355] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sara M Katrancha
- Interdepartmental Neuroscience Program
- Department of Neuroscience
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yi Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA
| | - Minsheng Zhu
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Betty A Eipper
- Department of Neuroscience
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony J Koleske
- Interdepartmental Neuroscience Program
- Department of Neuroscience
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
15
|
Miller MB, Yan Y, Machida K, Kiraly DD, Levy AD, Wu YI, Lam TT, Abbott T, Koleske AJ, Eipper BA, Mains RE. Brain Region and Isoform-Specific Phosphorylation Alters Kalirin SH2 Domain Interaction Sites and Calpain Sensitivity. ACS Chem Neurosci 2017; 8:1554-1569. [PMID: 28418645 DOI: 10.1021/acschemneuro.7b00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kalirin7 (Kal7), a postsynaptic Rho GDP/GTP exchange factor (RhoGEF), plays a crucial role in long-term potentiation and in the effects of cocaine on behavior and spine morphology. The KALRN gene has been linked to schizophrenia and other disorders of synaptic function. Mass spectrometry was used to quantify phosphorylation at 26 sites in Kal7 from individual adult rat nucleus accumbens and prefrontal cortex before and after exposure to acute or chronic cocaine. Region- and isoform-specific phosphorylation was observed along with region-specific effects of cocaine on Kal7 phosphorylation. Evaluation of the functional significance of multisite phosphorylation in a complex protein like Kalirin is difficult. With the identification of five tyrosine phosphorylation (pY) sites, a panel of 71 SH2 domains was screened, identifying subsets that interacted with multiple pY sites in Kal7. In addition to this type of reversible interaction, endoproteolytic cleavage by calpain plays an essential role in long-term potentiation. Calpain cleaved Kal7 at two sites, separating the N-terminal domain, which affects spine length, and the PDZ binding motif from the GEF domain. Mutations preventing phosphorylation did not affect calpain sensitivity or GEF activity; phosphomimetic mutations at specific sites altered protein stability, increased calpain sensitivity, and reduced GEF activity.
Collapse
Affiliation(s)
| | | | | | - Drew D. Kiraly
- Department
of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
LaRese TP, Yan Y, Eipper BA, Mains RE. Using Kalirin conditional knockout mice to distinguish its role in dopamine receptor mediated behaviors. BMC Neurosci 2017; 18:45. [PMID: 28535798 PMCID: PMC5442696 DOI: 10.1186/s12868-017-0363-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/19/2017] [Indexed: 01/25/2023] Open
Abstract
Background Mice lacking Kalirin-7 (Kal7KO), a Rho GDP/GTP exchange factor, self-administer cocaine at a higher rate than wildtype mice, and show an exaggerated locomotor response to experimenter-administered cocaine. Kal7, which localizes to post-synaptic densities at glutamatergic synapses, interacts directly with the GluN2B subunit of the N-methyl-d-aspartate (NMDA; GluN) receptor. Consistent with these observations, Kal7 plays an essential role in NMDA receptor dependent long term potentiation and depression, and glutamatergic transmission plays a key role in the response to chronic cocaine. A number of genetic studies have implicated altered Kalirin expression in schizophrenia and other disorders such as Alzheimer’s Disease. Results A comparison of the effects of experimenter-administered cocaine on mice lacking all Kalirin isoforms to its effects on mice lacking only Kalirin-7 identified Kal7 as the key isoform whose deletion produces exaggerated locomotor responses to cocaine. Pretreatment of Kal7KO mice with a low dose of ifenprodil, a selective GluN2B antagonist, eliminated their enhanced locomotor response to cocaine, revealing an important role for GluN2B in this behavior. Selective knockout of Kalirin in dopamine transporter expressing neurons produced a transient enhancement of cocaine-induced locomotion, while knockout of Kalirin in Drd1a- or Drd2-dopamine receptor expressing neurons was without effect. As observed in Kalirin global knockout mice, eliminating Kalirin expression in Drd2-expressing neurons increased exploratory behavior in the elevated zero maze, an effect eliminated by pretreatment with ifenprodil. Conclusions The cocaine-sensitive neuronal pathways which are most sensitive to altered Kalirin function may be the pathways most dependent on GluN2B and Drd2. Electronic supplementary material The online version of this article (doi:10.1186/s12868-017-0363-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taylor P LaRese
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| | - Yan Yan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA.,Departments of Neuroscience and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA.
| |
Collapse
|
17
|
Qiao H, An SC, Xu C, Ma XM. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res 2017; 1663:29-37. [PMID: 28284898 DOI: 10.1016/j.brainres.2017.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
|
18
|
Afroz S, Shen H, Smith SS. α4βδ GABA A receptors reduce dendritic spine density in CA1 hippocampus and impair relearning ability of adolescent female mice: Effects of a GABA agonist and a stress steroid. Neuroscience 2017; 347:22-35. [PMID: 28189613 DOI: 10.1016/j.neuroscience.2017.01.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/22/2017] [Accepted: 01/31/2017] [Indexed: 01/10/2023]
Abstract
Synaptic pruning underlies the transition from an immature to an adult CNS through refinements of neuronal circuits. Our recent study indicates that pubertal synaptic pruning is triggered by the inhibition generated by extrasynaptic α4βδ GABAA receptors (GABARs) which are increased for 10 d on dendritic spines of CA1 pyramidal cells at the onset of puberty (PND 35-44) in the female mouse, suggesting α4βδ GABARs as a novel target for the regulation of adolescent synaptic pruning. In the present study we used a pharmacological approach to further examine the role of these receptors in altering spine density during puberty of female mice and the impact of these changes on spatial learning, assessed in adulthood. Two drugs were chronically administered during the pubertal period (PND 35-44): the GABA agonist gaboxadol (GBX, 0.1mg/kg, i.p.), to enhance current gated by α4βδ GABARs and the neurosteroid/stress steroid THP (3α-OH-5β-pregnan-20-one, 10mg/kg, i.p.) to decrease expression of α4βδ. Spine density was determined on PND 56 with Golgi staining. Spatial learning and relearning were assessed using the multiple object relocation task and an active place avoidance task on PND 56. Pubertal GBX decreased spine density post-pubertally by 70% (P<0.05), while decreasing α4βδ expression with THP increased spine density by twofold (P<0.05), in both cases, with greatest effects on the mushroom spines. Adult relearning ability was compromised in both hippocampus-dependent tasks after pubertal administration of either drug. These findings suggest that an optimal spine density produced by α4βδ GABARs is necessary for optimal cognition in adults.
Collapse
Affiliation(s)
- Sonia Afroz
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA; School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| |
Collapse
|
19
|
Miller MB, Yan Y, Wu Y, Hao B, Mains RE, Eipper BA. Alternate promoter usage generates two subpopulations of the neuronal RhoGEF Kalirin-7. J Neurochem 2016; 140:889-902. [PMID: 27465683 DOI: 10.1111/jnc.13749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 11/28/2022]
Abstract
Kalirin (Kal), a dual Rho GDP/GTP exchange factor (GEF), plays essential roles within and outside the nervous system. Tissue-specific, developmentally regulated alternative splicing generates isoforms with one (Kal7) or two (Kal9, Kal12) GEF domains along with a kinase (Kal12) domain; while Kal9 and Kal12 are crucial for neurite outgrowth, Kal7 plays important roles in spine maintenance and synaptic plasticity. Tissue-specific usage of alternate Kalrn promoters (A, B, C, D) places four different peptides before the Sec14 domain. cSec14, with an amphipathic helix encoded by the C-promoter (Kal-C-helix), is the only variant known to interact with phosphoinositides. We sought to elucidate the biological significance of Kalirin promoter usage and lipid binding. While Ex1B expression was predominant early in development, Ex1C expression increased when synaptogenesis occurred. Kal-C-helix-containing Kal7 (cKal7) was enriched at the postsynaptic density, present in the microsomal fraction and absent from cytosol; no significant amount of cKal9 or cKal12 could be identified in mouse brain. Similarly, in primary hippocampal neurons, endogenous cKalirin colocalized with postsynaptic density 95 in dendritic spines, juxtaposed to Vglut1-positive puncta. When expressed in young neurons, bSec14-EGFP was diffusely distributed, while cSec14-EGFP localized to internal puncta. Transfected bKal7-EGFP and cKal7-EGFP localized to dendritic spines and increased spine density in more mature cultured neurons. Although promoter usage did not alter the Rac-GEF activity of Kal7, the synaptic puncta formed by cKal7-EGFP were smaller than those formed by bKal7-EGFP. Molecular modeling predicted a role for Kal-C-helix residue Arg15 in the interaction of cSec14 with phosphoinositides. Consistent with this prediction, mutation of Arg15 to Gln altered the localization of cSec14-EGFP and cKal7-EGFP. These data suggest that phosphoinositide-dependent interactions unique to cKal7 contribute to protein localization and function. Cover Image for this issue: doi. 10.1111/jnc.13791.
Collapse
Affiliation(s)
- Megan B Miller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Yan Yan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Yi Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
20
|
Makrythanasis P, Guipponi M, Santoni FA, Zaki M, Issa MY, Ansar M, Hamamy H, Antonarakis SE. Exome sequencing discloses KALRN homozygous variant as likely cause of intellectual disability and short stature in a consanguineous pedigree. Hum Genomics 2016; 10:26. [PMID: 27421267 PMCID: PMC4947303 DOI: 10.1186/s40246-016-0082-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The recent availability of whole-exome sequencing has opened new possibilities for the evaluation of individuals with genetically undiagnosed intellectual disability. RESULTS We report two affected siblings, offspring of first-cousin parents, with intellectual disability, hypotonia, short stature, growth hormone deficiency, and delayed bone age. All members of the nuclear family were genotyped, and exome sequencing was performed in one of the affected individuals. We used an in-house algorithm (CATCH v1.1) that combines homozygosity mapping with exome sequencing results and provides a list of candidate variants. One identified novel homozygous missense variant in KALRN (NM_003947.4:c.3644C>A: p.(Thr1215Lys)) was predicted to be pathogenic by all pathogenicity prediction software used (SIFT, PolyPhen, Mutation Taster). KALRN encodes the protein kalirin, which is a GTP-exchange factor protein with a reported role in cytoskeletal remodeling and dendritic spine formation in neurons. It is known that mice with ablation of Kalrn exhibit age-dependent functional deficits and behavioral phenotypes. CONCLUSION Exome sequencing provided initial evidence linking KALRN to monogenic intellectual disability in man, and we propose that KALRN is the causative gene for the autosomal recessive phenotype in this family.
Collapse
Affiliation(s)
- Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Michel Guipponi
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva, Switzerland
| | - Maha Zaki
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Mahmoud Y Issa
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva, Switzerland
| | - Hanan Hamamy
- Department of Genetic Medicine and Development, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva, Switzerland.
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva, Switzerland. .,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland. .,iGE3, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| |
Collapse
|
21
|
Afroz S, Parato J, Shen H, Smith SS. Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABAA receptors on dendritic spines. eLife 2016; 5. [PMID: 27136678 PMCID: PMC4871702 DOI: 10.7554/elife.15106] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
Adolescent synaptic pruning is thought to enable optimal cognition because it is disrupted in certain neuropathologies, yet the initiator of this process is unknown. One factor not yet considered is the α4βδ GABAA receptor (GABAR), an extrasynaptic inhibitory receptor which first emerges on dendritic spines at puberty in female mice. Here we show that α4βδ GABARs trigger adolescent pruning. Spine density of CA1 hippocampal pyramidal cells decreased by half post-pubertally in female wild-type but not α4 KO mice. This effect was associated with decreased expression of kalirin-7 (Kal7), a spine protein which controls actin cytoskeleton remodeling. Kal7 decreased at puberty as a result of reduced NMDAR activation due to α4βδ-mediated inhibition. In the absence of this inhibition, Kal7 expression was unchanged at puberty. In the unpruned condition, spatial re-learning was impaired. These data suggest that pubertal pruning requires α4βδ GABARs. In their absence, pruning is prevented and cognition is not optimal. DOI:http://dx.doi.org/10.7554/eLife.15106.001 Memories are formed at structures in the brain known as dendritic spines. These structures receive connections from other brain cells through regions called synapses. In humans, the number of these brain connections increases dramatically from birth to childhood, reflecting a period of rapid learning. However, the number of these brain connections halves after puberty, a dramatic reduction shown in many brain areas and for many species, including humans and rodents. This process is referred to as adolescent synaptic pruning and is thought to be important for optimal learning in adulthood because it is disrupted in autism and schizophrenia. Synaptic pruning is believed to remove unnecessary brain connections to make room for new relevant memories. However, the process that triggers synaptic pruning is not known. Within the brain, proteins called inhibitory GABA receptors are targets for chemicals that reduce the activity of nerve cells. As brain connections must be kept active to survive, inhibitory receptors could help to trigger synaptic pruning. Afroz, Parato et al. now show that, at puberty, the number of a particular type of GABAA receptor increases in the brain of female mice. This triggers synaptic pruning in the hippocampus, a key brain area necessary for learning and memory. By reducing brain activity, these inhibitory receptors also reduce the levels of a protein in the dendritic spine that stabilizes the scaffolding of the spine to maintain its structure. Mice that do not have these GABAA receptors maintain a constant high level of brain connections throughout adolescence, and synaptic pruning does not occur in their brains. These mice were initially able to learn to avoid a specific location that provided a mild shock to their foot. However, when this location changed the mice were unable to re-learn where to avoid, suggesting that too many brain connections limits learning potential. Brain connections are regulated by many factors, including the environment and stress. Future studies will test how these additional factors alter synaptic pruning in adolescence, and will test drugs that target these inhibitory receptors to manipulate adolescent pruning. These findings may suggest new treatments for “normalizing” synaptic pruning in conditions where this process occurs abnormally, such as autism and schizophrenia. DOI:http://dx.doi.org/10.7554/eLife.15106.002
Collapse
Affiliation(s)
- Sonia Afroz
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, United States.,Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, United States
| | - Julie Parato
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, United States.,Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, United States
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, United States.,School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Sheryl Sue Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, United States.,The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, United States
| |
Collapse
|
22
|
Kalirin is required for BDNF-TrkB stimulated neurite outgrowth and branching. Neuropharmacology 2016; 107:227-238. [PMID: 27036892 DOI: 10.1016/j.neuropharm.2016.03.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/03/2016] [Accepted: 03/28/2016] [Indexed: 01/19/2023]
Abstract
Exogenous brain-derived neurotrophic factor (BDNF), acting through TrkB, is known to promote neurite formation and branching. This response to BDNF was eliminated by inhibition of TrkB kinase and by specific inhibition of the GEF1 domain of Kalirin, which activates Rac1. Neurons from Kalrn knockout mice were unable to activate Rac1 in response to BDNF. BDNF-triggered neurite outgrowth was abolished when Kalrn expression was reduced using shRNA that targets all of the major Kalrn isoforms, and reduced in neurons from Kalrn knockout mice. The Kalrn isoforms expressed early in development also include a GEF2 domain that activates RhoA. However, BDNF-stimulated neurite outgrowth in Kalrn knockout neurons was rescued by expression of Kalirin-7, which includes only the GEF1 domain but lacks the GEF2 domain. Dendritic morphogenesis, which requires spatially restricted, coordinated changes in the actin cytoskeleton and in the organization of microtubules, involves essential contributions from multiple Rho GEFs. Since Tiam1, another Rho GEF, is also required for BDNF-stimulated neurite outgrowth, an inhibitory fragment of Tiam1 (PHn-CC-EX) was tested and found to interfere with both Kalirin and Tiam1 GEF activity. The prolonged TrkB activation observed in response to BDNF in Kalrn knockout neurons and the altered time course and extent of ERK, CREB and Akt activation observed in the absence of Kalrn would be expected to alter the response of these neurons to other regulatory factors.
Collapse
|
23
|
Vishwanatha KS, Bäck N, Lam TT, Mains RE, Eipper BA. O-Glycosylation of a Secretory Granule Membrane Enzyme Is Essential for Its Endocytic Trafficking. J Biol Chem 2016; 291:9835-50. [PMID: 26961877 DOI: 10.1074/jbc.m115.711838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Indexed: 01/08/2023] Open
Abstract
Peptidylglycine α-amidating monooxygenase (PAM) (EC 1.14.17.3) catalyzes peptide amidation, a crucial post-translational modification, through the sequential actions of its monooxygenase (peptidylglycine α-hydroxylating monooxygenase) and lyase (peptidyl-α-hydroxyglycine α-amidating lyase (PAL)) domains. Alternative splicing generates two different regions that connect the protease-resistant catalytic domains. Inclusion of exon 16 introduces a pair of Lys residues, providing a site for controlled endoproteolytic cleavage of PAM and the separation of soluble peptidylglycine α-hydroxylating monooxygenase from membrane-associated PAL. Exon 16 also includes two O-glycosylation sites. PAM-1 lacking both glycosylation sites (PAM-1/OSX; where OSX is O-glycan-depleted mutant of PAM-1) was stably expressed in AtT-20 corticotrope tumor cells. In PAM-1/OSX, a cleavage site for furin-like convertases was exposed, generating a shorter form of membrane-associated PAL. The endocytic trafficking of PAM-1/OSX differed dramatically from that of PAM-1. A soluble fragment of the cytosolic domain of PAM-1 was produced in the endocytic pathway and entered the nucleus; very little soluble fragment of the cytosolic domain was produced from PAM-1/OSX. Internalized PAM-1/OSX was rapidly degraded; unlike PAM-1, very little internalized PAM-1/OSX was detected in multivesicular bodies. Blue native PAGE analysis identified high molecular weight complexes containing PAM-1; the ability of PAM-1/OSX to form similar complexes was markedly diminished. By promoting the formation of high molecular weight complexes, O-glycans may facilitate the recycling of PAM-1 through the endocytic compartment.
Collapse
Affiliation(s)
| | - Nils Bäck
- the Department of Anatomy, Faculty of Medicine, University of Helsinki, Fin-00014, Helsinki, Finland, and
| | - TuKiet T Lam
- the W. M. Keck Foundation Biotechnology Resource Laboratory, Yale/Keck MS and Proteomics Resource, Yale/NIDA Neuroproteomics Center, Yale University, New Haven, Connecticut 06511
| | | | - Betty A Eipper
- From the Departments of Neuroscience and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030,
| |
Collapse
|
24
|
Miller MB, Vishwanatha KS, Mains RE, Eipper BA. An N-terminal Amphipathic Helix Binds Phosphoinositides and Enhances Kalirin Sec14 Domain-mediated Membrane Interactions. J Biol Chem 2015; 290:13541-55. [PMID: 25861993 DOI: 10.1074/jbc.m115.636746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 11/06/2022] Open
Abstract
Previous studies revealed an essential role for the lipid-binding Sec14 domain of kalirin (KalSec14), but its mechanism of action is not well understood. Because alternative promoter usage appends unique N-terminal peptides to the KalSec14 domain, we used biophysical, biochemical, and cell biological approaches to examine the two major products, bKalSec14 and cKalSec14. Promoter B encodes a charged, unstructured peptide, whereas promoter C encodes an amphipathic helix (Kal-C-helix). Both bKalSec14 and cKalSec14 interacted with lipids in PIP strip and liposome flotation assays, with significantly greater binding by cKalSec14 in both assays. Disruption of the hydrophobic face of the Kal-C-helix in cKalSec14KKED eliminated its increased liposome binding. Although cKalSec14 showed significantly reduced binding to liposomes lacking phosphatidylinositol phosphates or cholesterol, liposome binding by bKalSec14 and cKalSec14KKED was not affected. When expressed in AtT-20 cells, bKalSec14-GFP was diffusely localized, whereas cKalSec14-GFP localized to the trans-Golgi network and secretory granules. The amphipathic C-helix was sufficient for this localization. When AtT-20 cells were treated with a cell-permeant derivative of the Kal-C-helix (Kal-C-helix-Arg9), we observed increased secretion of a product stored in mature secretory granules, with no effect on basal secretion; a cell-permeant control peptide (Kal-C-helixKKED-Arg9) did not have this effect. Through its ability to control expression of a novel, phosphoinositide-binding amphipathic helix, Kalrn promoter usage is expected to affect function.
Collapse
Affiliation(s)
| | | | | | - Betty A Eipper
- From the Departments of Neuroscience and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|