1
|
Chowdhury A, Mitra Mazumder P. Unlocking the potential of flavonoid-infused drug delivery systems for diabetic wound healing with a mechanistic exploration. Inflammopharmacology 2024:10.1007/s10787-024-01561-5. [PMID: 39217278 DOI: 10.1007/s10787-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is one of the common endocrine disorders generally characterized by elevated levels of blood sugar. It can originate either from the inability of the pancreas to synthesize insulin, which is considered as an autoimmune disorder, or the reduced production of insulin, considered as insulin resistivity. A wound can be defined as a condition of damage to living tissues including skin, mucous membrane and other organs as well. Wounds get complicated with respect to time based on specific processes like diabetes mellitus, obesity and immunocompromised conditions. Proper growth and functionality of the epidermis gets sustained due to impaired diabetic wound healing which shows a sign of dysregulated wound healing process. In comparison with synthetic medications, phytochemicals like flavonoids, tannins, alkaloids and glycosides have gained enormous importance relying on their distinct potential to heal diabetic wounds. Flavonoids are one of the most promising and important groups of natural compounds which can be used to treat acute as well as chronic wounds. Flavonoids show excellent properties due to the presence of hydroxyl groups in their chemical structure, which makes this class of compounds different from others. Based on the novel principles of nanotechnology via utilizing suitable drug delivery systems, the delivery of bioactive constituents from plant source amplifies the wound-healing mechanism, minimizes complexities and enhances bioavailability. Hence, the encapsulation and applicability of flavonoids with an emphasis on mechanistic route and wound-healing therapeutics have been highlighted in the subsequent study with focus on multiple drug delivery systems.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
2
|
Kang H. Regulation of Acetylation States by Nutrients in the Inhibition of Vascular Inflammation and Atherosclerosis. Int J Mol Sci 2023; 24:ijms24119338. [PMID: 37298289 DOI: 10.3390/ijms24119338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Atherosclerosis (AS) is a chronic metabolic disorder and primary cause of cardiovascular diseases, resulting in substantial morbidity and mortality worldwide. Initiated by endothelial cell stimulation, AS is characterized by arterial inflammation, lipid deposition, foam cell formation, and plaque development. Nutrients such as carotenoids, polyphenols, and vitamins can prevent the atherosclerotic process by modulating inflammation and metabolic disorders through the regulation of gene acetylation states mediated with histone deacetylases (HDACs). Nutrients can regulate AS-related epigenetic states via sirtuins (SIRTs) activation, specifically SIRT1 and SIRT3. Nutrient-driven alterations in the redox state and gene modulation in AS progression are linked to their protein deacetylating, anti-inflammatory, and antioxidant properties. Nutrients can also inhibit advanced oxidation protein product formation, reducing arterial intima-media thickness epigenetically. Nonetheless, knowledge gaps remain when it comes to understanding effective AS prevention through epigenetic regulation by nutrients. This work reviews and confirms the underlying mechanisms by which nutrients prevent arterial inflammation and AS, focusing on the epigenetic pathways that modify histones and non-histone proteins by regulating redox and acetylation states through HDACs such as SIRTs. These findings may serve as a foundation for developing potential therapeutic agents to prevent AS and cardiovascular diseases by employing nutrients based on epigenetic regulation.
Collapse
Affiliation(s)
- Hyunju Kang
- Department of Food and Nutrition, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
3
|
Parnigoni A, Viola M, Karousou E, Rovera S, Giaroni C, Passi A, Vigetti D. ROLE OF HYALURONAN IN PATHOPHYSIOLOGY OF VASCULAR1 ENDOTHELIAL AND SMOOTH MUSCLE CELLS. Am J Physiol Cell Physiol 2022; 323:C505-C519. [PMID: 35759431 DOI: 10.1152/ajpcell.00061.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the main components of the extracellular matrix (ECM) of the blood vessel is hyaluronic acid or hyaluronan (HA). It is a ubiquitous polysaccharide belonging to the family of glycosaminoglycans, but, differently from other proteoglycan-associated glycosaminoglycans, it is synthesized on the plasma membrane by a family of three HA synthases (HAS). HA can be released as a free polymer in the extracellular space or remain associated with the membrane in the pericellular space via HAS or via binding proteins. In fact, several cell surface proteins can interact with HA working as HA receptors like CD44, RHAMM, and LYVE-1. In physiological conditions, HA is localized in the glycocalyx and in the adventitia and is responsible for the loose and hydrated vascular structure favoring flexibility and allowing the stretching of vessels in response to mechanical forces. During atherogenesis, ECM undergoes dramatic alterations which have a crucial role in lipoprotein retention and in triggering multiple signaling cascades that wake up cells from their quiescent status. HA becomes highly present in the media and neointima favoring smooth muscle cells dedifferentiation, migration, and proliferation that strongly contribute to vessel wall thickening. Further, HA is able to modulate immune cell recruitment both within the vessel wall and on the endothelial cell layer. This review is focused on the effects of HA on vascular cell behavior.
Collapse
Affiliation(s)
- Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Simona Rovera
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
4
|
Yu Q, Zhao J, Liu B. Bazedoxifene activates the angiotensin II-induced HUVEC hypertension model by targeting SIRT1. Exp Ther Med 2022; 23:120. [PMID: 34970343 PMCID: PMC8713184 DOI: 10.3892/etm.2021.11043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023] Open
Abstract
The shift in vascular function to vasoconstriction, pro-inflammatory state, oxidative stress and carbon monoxide deficiency may to endothelial dysfunction and injury, which is the key event in hypertension. Estrogen receptor modulators play a protective role in blood vessels. The present study aimed to investigate the effect of bazedoxifene, a selective estrogen receptor modulator, on human umbilical vein endothelial cells (HUVECs) and its potential underlying mechanism of action. The present study treated endothelial cells with different concentrations of bazedoxifene and determined cell viability using Cell Counting Kit-8 to screen for the optimal working concentration of bazedoxifene. Subsequently, an angiotensin II (AngII)-induced vascular endothelial cell model was established to observe the effect of bazedoxifene on AngII-induced endothelial cells. The concentrations of nitric oxide (NO) and reactive oxygen species (ROS) were detected using NO and ROS kits, respectively. The protein expression of sirtuin 1 (SIRT1), oxidative stress-related proteins and apoptosis-related proteins was detected using western blotting, and apoptosis was detected using a TUNEL assay. The results demonstrated that bazedoxifene promoted AngII-induced HUVEC viability, reduced the expression of stress-related proteins and inhibited apoptosis. Furthermore, bazedoxifene activated SIRT1 to promote the proliferation and inhibit the oxidative stress and apoptosis of AngII-induced HUVECs. These findings suggested that bazedoxifene could effectively promote AngII-induced HUVEC proliferation and inhibit cell apoptosis and oxidative stress. In addition, bazedoxifene protected HUVEC dysfunction induced by AngII by targeting the activation of SIRT1. In summary, bazedoxifene could improve the protective role against hypertension induced by AngII.
Collapse
Affiliation(s)
- Qian Yu
- Department of Cardiovascular Medicine, Sichuan Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Jin Zhao
- Department of Cardiovascular Surgical, Affiliated Hospital of Weifang Medical University, Weifang, Shadong 261031, P.R. China
| | - Baotang Liu
- Department of Cardiovascular Surgical, Affiliated Hospital of Weifang Medical University, Weifang, Shadong 261031, P.R. China
| |
Collapse
|
5
|
Abstract
Sirtuin1 is a nutrient-sensitive class III histone deacetylase which is a well-known regulator of organismal lifespan. It has been extensively studied for its role in metabolic regulation as well. Along with its involvement in ageing and metabolism, Sirtuin1 directly deacetylates many critical proteins controlling cardiovascular pathophysiology. Studies using conditional expression and deletion of Sirtuin1 have revealed that it functions in a highly tissue/organ-specific manner. In the vasculature, Sirtuin1 controls endothelial homoeostasis by governing the expression of inflammatory mediators, oxidants and essential transcription factors. Adding to this complexity, Sirtuin1 expression and/or function is also governed by some of these target proteins. Therefore, the importance of better understanding the organ and tissue specificity of Sirtuin1 is highly desirable. Considering the huge volume of research done in this field, this review focuses on Sirtuin1 targets regulating vascular endothelial function. Here, we summarize the discovery of Sirtuin1 as a transcription controller and the further identification of direct target proteins involved in the vascular physiology. Overall, this review presents a holistic picture of the complex cross-talk involved in the molecular regulation of vascular physiology by Sirtuin1.
Collapse
Affiliation(s)
- Jitendra Kumar
- François M. Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Santosh Kumar
- François M. Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
6
|
Hossain E, Li Y, Anand-Srivastava MB. Angiotensin II-induced overexpression of sirtuin 1 contributes to enhanced expression of Giα proteins and hyperproliferation of vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2021; 321:H496-H508. [PMID: 34270373 DOI: 10.1152/ajpheart.00898.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) plays an important role in the regulation of various physiological functions including proliferation, hypertrophy of vascular smooth muscle cells (VSMCs) through the overexpression of Giα proteins. Sirtuin 1 (Sirt1), a class III histone deacetylase and epigenetic regulator is implicated in a wide range of cellular functions, including migration and growth of VSMCs and in ANG II-induced hypertension. The present study was undertaken to examine the role of Sirt1 in ANG II-induced overexpression of Giα proteins and hyperproliferation of aortic VSMCs. We show that ANG II treatment of VSMCs increased the expression of Sirt1, which was attenuated by AT1 and AT2 receptor antagonists, losartan, and PD123319, respectively. In addition, the knockdown of Sirt1 by siRNA attenuated ANG II-induced overexpression of Giα-2 and Giα-3 proteins, hyperproliferation of VSMCs and the overexpression of cell cycle proteins, cyclin D1, Cdk4, and phosphorylated retinoblastoma proteins. Furthermore, ANG II-induced increased levels of superoxide anion (O2-) and NADPH oxidase activity and increased phosphorylation of ERK1/2 and Akt that are implicated in enhanced expression of Giα proteins and hyperproliferation of VSMCs were also attenuated to control levels by silencing of Sirt1. In addition, depletion of Sirt1 by siRNA also attenuated ANG II-induced enhanced phosphorylation of platelet-derived growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR), and insulin-like growth factor receptor (IGFR) in VSMCs. In summary, our results demonstrate that ANG II increased the expression of Sirt1, which through oxidative stress, growth factor receptor-mediated mitogen-activated protein (MAP) kinase/Akt signaling pathway enhances the expression of Giα proteins and cell cycle proteins and results in the hyperproliferation of VSMCs.NEW & NOTEWORTHY ANG II regulates various physiological functions including proliferation of VSMCs through the overexpression of Giα proteins. Sirt1, a class III histone deacetylase, is implicated in several cellular functions, including VSMC growth and ANG II-induced hypertension. We showed for the first time that ANG II increased the expression of Sirt1, which through oxidative stress, growth factor receptor-mediated MAP kinase/Akt signaling pathway enhances the levels of Giα and cell cycle proteins resulting in the hyperproliferation of VSMCs.
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Quebec, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Quebec, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Quebec, Canada
| |
Collapse
|
7
|
Nomura Y, Nakano M, Woo Sung H, Han M, Pandey D. Inhibition of HDAC6 Activity Protects Against Endothelial Dysfunction and Atherogenesis in vivo: A Role for HDAC6 Neddylation. Front Physiol 2021; 12:675724. [PMID: 34220539 PMCID: PMC8245780 DOI: 10.3389/fphys.2021.675724] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
We previously reported that histone deacetylase 6 (HDAC6) has an important role in endothelial cell (EC) function in vitro. However, whether HDAC6 plays a role in atherogenesis in vivo and the mechanism(s) that control HDAC6 activity/expression in response to atherogenic stimuli are unclear. The goals of this study were to determine whether HDAC6 inhibitor tubacin attenuates atherogenesis and to elucidate specific molecular mechanism(s) that regulate endothelial HDAC6 expression/activity. We evaluated whether administration of tubacin attenuated or reversed the endothelial dysfunction and atherosclerosis induced in mice by a single intraperitoneal injection of adeno-associated viruses encoding liver-target PCSK9 gain-of-function mutant followed by a high fat diet (HFD) for 18 weeks. Tubacin significantly blunted PCSK9-induced increases in pulse wave velocity (index of vascular stiffness and overall vascular health) that are also seen in atherogenic mice. Furthermore, tubacin protected vessels from defective vasorelaxation, as evaluated by acetylcholine-mediated relaxation using wire myograph. Plaque burden defined by Oil Red O staining was also found to be significantly less in mice that received tubacin than in those that received PCSK9 alone. Inhibition of the NEDDylation pathway with MLN4924, an inhibitor of NEDD8-activating enzyme 1 (NAE1), significantly increased HDAC6 activity in HAECs. Interestingly, HDAC6 expression remained unchanged. Further, HAECs exposed to the atherogenic stimulus oxidized low-density lipoprotein (OxLDL) exhibited enhanced HDAC6 activity, which was attenuated by pretreatment with MLN4924. The HDAC6 NEDDylation molecular pathway might regulate genes related to endothelial control of vasomotor tone, reactivity, and atherosclerosis. Tubacin may represent a novel pharmacologic intervention for atherogenesis and other vasculopathies.
Collapse
Affiliation(s)
- Yohei Nomura
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Mitsunori Nakano
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hyun Woo Sung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Mingming Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Anesthesiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Deepesh Pandey
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
8
|
Yang X, Yang Y, Guo J, Meng Y, Li M, Yang P, Liu X, Aung LHH, Yu T, Li Y. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1136-1160. [PMID: 33664994 PMCID: PMC7896131 DOI: 10.1016/j.omtn.2021.01.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD) is one of the most common causes of death worldwide. The introduction of percutaneous revascularization has revolutionized the therapy of patients with CAD. Despite the advent of drug-eluting stents, restenosis remains the main challenge in treating patients with CAD. In-stent restenosis (ISR) indicates the reduction in lumen diameter after percutaneous coronary intervention, in which the vessel's lumen re-narrowing is attributed to the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) and dysregulation of endothelial cells (ECs). Increasing evidence has demonstrated that epigenetics is involved in the occurrence and progression of ISR. In this review, we provide the latest and comprehensive analysis of three separate but related epigenetic mechanisms regulating ISR, namely, DNA methylation, histone modification, and non-coding RNAs. Initially, we discuss the mechanism of restenosis. Furthermore, we discuss the biological mechanism underlying the diverse epigenetic modifications modulating gene expression and functions of VSMCs, as well as ECs in ISR. Finally, we discuss potential therapeutic targets of the small molecule inhibitors of cardiovascular epigenetic factors. A more detailed understanding of epigenetic regulation is essential for elucidating this complex biological process, which will assist in developing and improving ISR therapy.
Collapse
Affiliation(s)
- Xi Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Xin Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| |
Collapse
|
9
|
Machin DR, Auduong Y, Gogulamudi VR, Liu Y, Islam MT, Lesniewski LA, Donato AJ. Lifelong SIRT-1 overexpression attenuates large artery stiffening with advancing age. Aging (Albany NY) 2020; 12:11314-11324. [PMID: 32564006 PMCID: PMC7343505 DOI: 10.18632/aging.103322] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023]
Abstract
Advanced age is accompanied by aortic stiffening that is associated with decreased vascular expression of sirtuin-1 (SIRT-1). Interventions that increase SIRT-1 expression also lower age-related aortic stiffness. Therefore, we sought to determine if lifelong SIRT-1 overexpression would attenuate age-related aortic stiffening. Aortic pulse wave velocity (PWV) was assessed from 3-24 months in SIRT-1 transgenic overexpressing (SIRTTG) and wild-type (WT) mice. To determine the role of aortic structural changes on aortic stiffening, histological assessment of aortic wall characteristics was performed. Across the age range (3-24 mo), PWV was 8-17% lower in SIRTTG vs. WT (P<0.05). Moreover, the slope of age-related aortic stiffening was lower in SIRTTG vs. WT (2.1±0.2 vs. 3.8±0.3 cm/sec/mo, respectively). Aortic elastin decreased with advancing age in WT (P<0.05 old vs. young WT), but was maintained in SIRTTG mice (P>0.05). There was an age-related increase in aortic collagen, advanced glycation end products, and calcification in WT (P<0.05 old vs. young WT). However, this did not occur in SIRTTG (P>0.05). These findings indicate that lifelong SIRT-1 overexpression attenuates age-related aortic stiffening. These functional data are complemented by histological assessment, demonstrating that the deleterious changes to the aortic wall that normally occur with advancing age are prevented in SIRTTG mice.
Collapse
Affiliation(s)
- Daniel R. Machin
- University of Utah, Department of Internal Medicine, Salt Lake City, UT 84132, USA
| | - Yauling Auduong
- University of Utah, Department of Internal Medicine, Salt Lake City, UT 84132, USA
| | | | - Yu Liu
- University of Utah, Department of Internal Medicine, Salt Lake City, UT 84132, USA
| | - Md. Torikul Islam
- University of Utah, Department of Nutrition and Integrative Physiology, Salt Lake City, UT 84112, USA
| | - Lisa A. Lesniewski
- University of Utah, Department of Internal Medicine, Salt Lake City, UT 84132, USA
- University of Utah, Department of Nutrition and Integrative Physiology, Salt Lake City, UT 84112, USA
- VA Salt Lake City, GRECC, Salt Lake City, UT 84148, USA
| | - Anthony J. Donato
- University of Utah, Department of Internal Medicine, Salt Lake City, UT 84132, USA
- University of Utah, Department of Nutrition and Integrative Physiology, Salt Lake City, UT 84112, USA
- University of Utah, Department of Biochemistry, Salt Lake City, UT 84132, USA
- VA Salt Lake City, GRECC, Salt Lake City, UT 84148, USA
| |
Collapse
|
10
|
Zhao TC, Wang Z, Zhao TY. The important role of histone deacetylases in modulating vascular physiology and arteriosclerosis. Atherosclerosis 2020; 303:36-42. [PMID: 32535412 DOI: 10.1016/j.atherosclerosis.2020.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases are the leading cause of deaths in the world. Endothelial dysfunction followed by inflammation of the vessel wall leads to atherosclerotic lesion formation that causes ischemic heart and myocardial hypertrophy, which ultimately progress into cardiac dysfunction and failure. Histone deacetylases (HDACs) have been recognized to play crucial roles in cardiovascular disease, particularly in the epigenetic regulation of gene transcription in response to a variety of stresses. The unique nature of HDAC regulation includes that HDACs form a complex co-regulatory network with other transcription factors, deacetylate histones and non-histone proteins to facilitate the regulatory mechanism of the vascular system. The selective HDAC inhibitors are considered as the most promising target in cardiovascular disease, especially for preventing cardiac hypertrophy. In this review, we discuss our present knowledge of the cellular and molecular basis of HDACs in mediating the biological function of vascular cells and related pharmacologic interventions in vascular disease.
Collapse
Affiliation(s)
- Ting C Zhao
- Department of Surgery and Plastics Surgery, Brown University, Rhode Island Hospital, Providence, RI, USA.
| | - Zhengke Wang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, 50 Maude Street, RI, 02908, USA
| | - Tina Y Zhao
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
11
|
Sirtuins family as a target in endothelial cell dysfunction: implications for vascular ageing. Biogerontology 2020; 21:495-516. [PMID: 32285331 DOI: 10.1007/s10522-020-09873-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
The vascular endothelium is a protective barrier between the bloodstream and the vasculature that may be disrupted by different factors such as the presence of diseased states. Diseases like diabetes and obesity pose a great risk toward endothelial cell inflammation and oxidative stress, leading to endothelial cell dysfunction and thereby cardiovascular complications such as atherosclerosis. Sirtuins are NAD+-dependent histone deacetylases that are implicated in the pathophysiology of cardiovascular diseases, and they have been identified to be important regulators of endothelial cell function. A handful of recent studies suggest that disbalance in the regulation of endothelial sirtuins, mainly sirtuin 1 (SIRT1), contributes to endothelial cell dysfunction. Herein, we summarize how SIRT1 and other sirtuins may contribute to endothelial cell function and how presence of diseased conditions may alter their expressions to cause endothelial dysfunction. Moreover, we discuss how the beneficial effects of exercise on the endothelium are dependent on SIRT1. These mainly include regulation of signaling pathways related to endothelial nitric oxide synthase phosphorylation and nitric oxide production, mitochondrial biogenesis and mitochondria-mediated apoptotic pathways, oxidative stress and inflammatory pathways. Sirtuins as modulators of the adverse conditions in the endothelium hold a promising therapeutic potential for health conditions related to endothelial dysfunction and vascular ageing.
Collapse
|
12
|
Luo Y, Lu S, Gao Y, Yang K, Wu D, Xu X, Sun G, Sun X. Araloside C attenuates atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy. Aging (Albany NY) 2020; 12:1704-1724. [PMID: 31986489 PMCID: PMC7053643 DOI: 10.18632/aging.102708] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis-related cardiovascular disease is still the predominant cause of death worldwide. Araloside C (AsC), a natural saponin, exerts extensive anti-inflammatory properties. In this study, we explored the protective effects and mechanism of AsC on macrophage polarization in atherosclerosis in vivo and in vitro. Using a high-fat diet (HFD)-fed ApoE-/- mouse model and RAW264.7 macrophages exposed to ox-LDL, AsC was evaluated for its effects on polarization and autophagy. AsC significantly reduced the plaque area in atherosclerotic mice and lipid accumulation in ox-LDL-treated macrophages, promoted M2 phenotype macrophage polarization, increased the number of autophagosomes and modulated the expression of autophagy-related proteins. Moreover, the autophagy inhibitor 3-methyladenine and BECN1 siRNA obviously abolished the antiatherosclerotic and M2 macrophage polarization effects of AsC. Mechanistically, AsC targeted Sirt1and increased its expression, and this increase in expression was associated with increased autophagy and M2 phenotype polarization. In contrast, the effects of AsC were markedly blocked by EX527 and Sirt1 siRNA. Altogether, AsC attenuates foam cell formation and lessens atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy.
Collapse
Affiliation(s)
- Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ye Gao
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, Heilongjiang, China
| | - Ke Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Daoshun Wu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
13
|
Caon I, Bartolini B, Moretto P, Parnigoni A, Caravà E, Vitale DL, Alaniz L, Viola M, Karousou E, De Luca G, Hascall VC, Passi A, Vigetti D. Sirtuin 1 reduces hyaluronan synthase 2 expression by inhibiting nuclear translocation of NF-κB and expression of the long-noncoding RNA HAS2-AS1. J Biol Chem 2020; 295:3485-3496. [PMID: 31932306 PMCID: PMC7076221 DOI: 10.1074/jbc.ra119.011982] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan (HA) is one of the most prevalent glycosaminoglycans of the vascular extracellular matrix (ECM). Abnormal HA accumulation within blood vessel walls is associated with tissue inflammation and is prominent in most vascular pathological conditions such as atherosclerosis and restenosis. Hyaluronan synthase 2 (HAS2) is the main hyaluronan synthase enzyme involved in HA synthesis and uses cytosolic UDP-glucuronic acid and UDP-GlcNAc as substrates. The synthesis of UDP-glucuronic acid can alter the NAD+/NADH ratio via the enzyme UDP-glucose dehydrogenase, which oxidizes the alcohol group at C6 to the COO- group. Here, we show that HAS2 expression can be modulated by sirtuin 1 (SIRT1), the master metabolic sensor of the cell, belonging to the class of NAD+-dependent deacetylases. Our results revealed the following. 1) Treatments of human aortic smooth muscle cells (AoSMCs) with SIRT1 activators (SRT1720 and resveratrol) inhibit both HAS2 expression and accumulation of pericellular HA coats. 2) Tumor necrosis factor α (TNFα) induced HA-mediated monocyte adhesion and AoSMC migration, whereas SIRT1 activation prevented immune cell recruitment and cell motility by reducing the expression levels of the receptor for HA-mediated motility, RHAMM, and the HA-binding protein TNF-stimulated gene 6 protein (TSG6). 3) SIRT1 activation prevented nuclear translocation of NF-κB (p65), which, in turn, reduced the levels of HAS2-AS1, a long-noncoding RNA that epigenetically controls HAS2 mRNA expression. In conclusion, we demonstrate that both HAS2 expression and HA accumulation by AoSMCs are down-regulated by the metabolic sensor SIRT1.
Collapse
Affiliation(s)
- Ilaria Caon
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Barbara Bartolini
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Elena Caravà
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Daiana L Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Pcia. de Bs. As., Centro de Investigaciones y Transferencia del Noroeste de la Pcia. de Bs. As. (CIT NOBA UNNOBA-CONICET), B6000, Junín, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Pcia. de Bs. As., Centro de Investigaciones y Transferencia del Noroeste de la Pcia. de Bs. As. (CIT NOBA UNNOBA-CONICET), B6000, Junín, Argentina
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Giancarlo De Luca
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Vincent C Hascall
- Lerner Research Institute, ND20, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria via J. H. Dunant 5, 21100 Varese, Italy.
| |
Collapse
|
14
|
Kang ES, Kim HJ, Han SG, Seo HG. Duck Oil-loaded Nanoemulsion Inhibits Senescence of Angiotensin II-treated Vascular Smooth Muscle Cells by Upregulating SIRT1. Food Sci Anim Resour 2020; 40:106-117. [PMID: 31970335 PMCID: PMC6957441 DOI: 10.5851/kosfa.2019.e93] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/14/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023] Open
Abstract
Cellular senescence is associated with age-related vascular disorders and has
been implicated in vascular dysfunctions. Here, we show that duck oil-loaded
nanoemulsion (DO-NE) attenuates premature senescence of vascular smooth muscle
cells (VSMCs) triggered by angiotensin II (Ang II). Compared with control
nanoemulsion (NE), DO-NE significantly inhibited the activity of
senescence-associated β-galactosidase, which is a biomarker of cellular
senescence, in Ang II-treated VSMCs. SIRT1 protein expression was dose- and
time-dependently induced in VSMCs exposed to DO-NE, but not in those exposed to
NE, and SIRT1 promoter activity was also elevated. Consistently, DO-NE also
dose-dependently rescued Ang II-induced repression of SIRT1 expression,
indicating that SIRT1 is linked to the anti-senescence action of DO-NE in VSMCs
treated with Ang II. Furthermore, the SIRT1 agonist resveratrol potentiated the
effects of DO-NE on VSMCs exposed to Ang II, whereas the SIRT1 inhibitor
sirtinol elicited the opposite effect. These findings indicate that DO-NE
inhibits senescence by upregulating SIRT1 and thereby impedes vascular aging
triggered by Ang II.
Collapse
Affiliation(s)
- Eun Sil Kang
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, Seoul 05029, Korea
| | - Hyo Juong Kim
- Taekyung Food and Processing R&D Center, Seoul 07057, Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, Seoul 05029, Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
15
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
16
|
Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther 2019; 196:15-43. [PMID: 30439455 PMCID: PMC6450782 DOI: 10.1016/j.pharmthera.2018.11.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
17
|
Stoll S, Wang C, Qiu H. DNA Methylation and Histone Modification in Hypertension. Int J Mol Sci 2018; 19:ijms19041174. [PMID: 29649151 PMCID: PMC5979462 DOI: 10.3390/ijms19041174] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/23/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Systemic hypertension, which eventually results in heart failure, renal failure or stroke, is a common chronic human disorder that particularly affects elders. Although many signaling pathways involved in the development of hypertension have been reported over the past decades, which has led to the implementation of a wide variety of anti-hypertensive therapies, one half of all hypertensive patients still do not have their blood pressure controlled. The frontier in understanding the molecular mechanisms underlying hypertension has now advanced to the level of epigenomics. Particularly, increasing evidence is emerging that DNA methylation and histone modifications play an important role in gene regulation and are involved in alteration of the phenotype and function of vascular cells in response to environmental stresses. This review seeks to highlight the recent advances in our knowledge of the epigenetic regulations and mechanisms of hypertension, focusing on the role of DNA methylation and histone modification in the vascular wall. A better understanding of the epigenomic regulation in the hypertensive vessel may lead to the identification of novel target molecules that, in turn, may lead to novel drug discoveries for the treatment of hypertension.
Collapse
Affiliation(s)
- Shaunrick Stoll
- Division of Pharmacology and Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Charles Wang
- Center for Genomics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Hongyu Qiu
- Division of Pharmacology and Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
18
|
Qi J, Wang F, Yang P, Wang X, Xu R, Chen J, Yuan Y, Lu Z, Duan J. Mitochondrial Fission Is Required for Angiotensin II-Induced Cardiomyocyte Apoptosis Mediated by a Sirt1-p53 Signaling Pathway. Front Pharmacol 2018; 9:176. [PMID: 29593530 PMCID: PMC5854948 DOI: 10.3389/fphar.2018.00176] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/16/2018] [Indexed: 01/06/2023] Open
Abstract
Hypertension-induced cardiac apoptosis is a major contributor to early-stage heart-failure. Our previous studies have found that p53-mediated mitochondrial fission is involved in aldosterone-induced podocyte apoptosis. However, it is not clear that whether p53-induced mitochondrial fission is critical for hypertensive Angiotensin II (AngII)-induced cardiomyocyte apoptosis. In this study, we found that inhibition of the mitochondrial fission protein Drp1 (dynamin-related protein 1) by Mdivi-1 prevented cardiomyocyte apoptosis and cardiac remodeling in SHRs. In vitro we found that treatment of cultured neonatal rat cardiomyocytes with AngII induced Drp1 expression, mitochondrial fission, and apoptosis. Knockdown of Drp1 inhibited AngII-induced mitochondrial fission and cardiomyocyte apoptosis. Furthermore, AngII induced p53 acetylation. Knockdown of p53 inhibited AngII-induced Drp1 expression, mitochondrial fission, and cardiomyocyte apoptosis. Besides, we found that Sirt1 was able to reverse AngII-induced p53 acetylation and its binding to the Drp1 promoter, which subsequently inhibited mitochondrial fission and eventually attenuated cardiomyocyte apoptosis. Collectively, these results suggest that AngII degrades Sirt1 to increase p53 acetylation, which induces Drp1 expression and eventually results in cardiomyocyte apoptosis. Sirt1/p53/Drp1dependent mitochondrial fission may be a valuable therapeutic target for hypertension induced heart failure.
Collapse
Affiliation(s)
- Jia Qi
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Gerontology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feng Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ping Yang
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xuelian Wang
- Department of Gerontology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Renjie Xu
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jihui Chen
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanggang Yuan
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaoyang Lu
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Gerontology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junli Duan
- Department of Gerontology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
19
|
Izzo C, Carrizzo A, Alfano A, Virtuoso N, Capunzo M, Calabrese M, De Simone E, Sciarretta S, Frati G, Oliveti M, Damato A, Ambrosio M, De Caro F, Remondelli P, Vecchione C. The Impact of Aging on Cardio and Cerebrovascular Diseases. Int J Mol Sci 2018; 19:E481. [PMID: 29415476 PMCID: PMC5855703 DOI: 10.3390/ijms19020481] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 01/03/2023] Open
Abstract
A growing number of evidences report that aging represents the major risk factor for the development of cardio and cerebrovascular diseases. Understanding Aging from a genetic, biochemical and physiological point of view could be helpful to design a better medical approach and to elaborate the best therapeutic strategy to adopt, without neglecting all the risk factors associated with advanced age. Of course, the better way should always be understanding risk-to-benefit ratio, maintenance of independence and reduction of symptoms. Although improvements in treatment of cardiovascular diseases in the elderly population have increased the survival rate, several studies are needed to understand the best management option to improve therapeutic outcomes. The aim of this review is to give a 360° panorama on what goes on in the fragile ecosystem of elderly, why it happens and what we can do, right now, with the tools at our disposal to slow down aging, until new discoveries on aging, cardio and cerebrovascular diseases are at hand.
Collapse
Affiliation(s)
- Carmine Izzo
- Departement of Medicine and Surgery, University of Salerno, 84081 Salerno, Italy; (C.I.); (M.C.); (M.O.); (F.D.C.); (P.R.)
| | - Albino Carrizzo
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (S.S.); (G.F.); (A.D.); (M.A.)
| | - Antonia Alfano
- Heart Department, A.O.U. “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.A.); (E.D.S.)
| | - Nicola Virtuoso
- Department of Cardiovascular Medicine, A.O.U. Federico II, 80131 Naples, Italy;
| | - Mario Capunzo
- Departement of Medicine and Surgery, University of Salerno, 84081 Salerno, Italy; (C.I.); (M.C.); (M.O.); (F.D.C.); (P.R.)
| | - Mariaconsiglia Calabrese
- Rehabilitation Department, A.O.U. “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy;
| | - Eros De Simone
- Heart Department, A.O.U. “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.A.); (E.D.S.)
| | - Sebastiano Sciarretta
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (S.S.); (G.F.); (A.D.); (M.A.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Giacomo Frati
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (S.S.); (G.F.); (A.D.); (M.A.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Marco Oliveti
- Departement of Medicine and Surgery, University of Salerno, 84081 Salerno, Italy; (C.I.); (M.C.); (M.O.); (F.D.C.); (P.R.)
| | - Antonio Damato
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (S.S.); (G.F.); (A.D.); (M.A.)
| | - Mariateresa Ambrosio
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (S.S.); (G.F.); (A.D.); (M.A.)
| | - Francesco De Caro
- Departement of Medicine and Surgery, University of Salerno, 84081 Salerno, Italy; (C.I.); (M.C.); (M.O.); (F.D.C.); (P.R.)
| | - Paolo Remondelli
- Departement of Medicine and Surgery, University of Salerno, 84081 Salerno, Italy; (C.I.); (M.C.); (M.O.); (F.D.C.); (P.R.)
| | - Carmine Vecchione
- Departement of Medicine and Surgery, University of Salerno, 84081 Salerno, Italy; (C.I.); (M.C.); (M.O.); (F.D.C.); (P.R.)
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (S.S.); (G.F.); (A.D.); (M.A.)
| |
Collapse
|
20
|
Hwang JS, Han SG, Lee CH, Seo HG. Whey Protein Attenuates Angiotensin II-Primed Premature Senescence of Vascular Smooth Muscle Cells through Upregulation of SIRT1. Korean J Food Sci Anim Resour 2017; 37:917-925. [PMID: 29725214 PMCID: PMC5932937 DOI: 10.5851/kosfa.2017.37.6.917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022] Open
Abstract
Whey protein, a by-product of milk curdling, exhibits diverse biological activities and is used as a dietary supplement. However, its effects on stress-induced vascular aging have not yet been elucidated. In this study, we found that whey protein significantly inhibited the Ang II-primed premature senescence of vascular smooth muscle cells (VSMCs). In addition, we observed a marked dose- and time-dependent increase in SIRT1 promoter activity and mRNA in VSMCs exposed to whey protein, accompanied by elevated SIRT1 protein expression. Ang II-mediated repression of SIRT1 level was dose-dependently reversed in VSMCs treated with whey protein, suggesting that SIRT1 is involved in preventing senescence in response to this treatment. Furthermore, resveratrol, a well-defined activator of SIRT1, potentiated the effects of whey protein on Ang II-primed premature senescence, whereas sirtinol, an inhibitor of SIRT1, exerted the opposite. Taken together, these results indicated that whey protein-mediated upregulation of SIRT1 exerts an anti-senescence effect, and can thus ameliorate Ang IIinduced vascular aging as a dietary supplement.
Collapse
Affiliation(s)
- Jung Seok Hwang
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
| | - Chi-Ho Lee
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
21
|
Lin Y, Zhao Y, Liu E. High glucose upregulates endothelin type B receptors in vascular smooth muscle cells via the downregulation of Sirt1. Int J Mol Med 2017; 41:439-445. [PMID: 29115394 DOI: 10.3892/ijmm.2017.3242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/17/2017] [Indexed: 11/06/2022] Open
Abstract
Silent information regulator family protein 1 (Sirt1) has recently gained attention for its protective effects against diabetic and cardiovascular diseases (CVDs). Vascular smooth muscle endothelin type B (ETB) receptors are involved in the pathogenesis of CVDs and diabetes. The aim of present study was to explore whether Sirt1 is involved in high glucose (HG)-mediated regulation of ETB receptors in rat superior mesenteric arteries (SMA). The rat SMA segments were cultured in the presence and absence of HG with or without the activator of Sirt1 and specific inhibitor for the extracellular signal-regulated protein kinase 1/2 (ERK1/2) for 24 h. Following organ culture, the contractile responses to sarafotoxin 6c were studied using a sensitive myograph, and the ETB receptor protein expression level was determined using western blotting. The results demonstrated that HG induced upregulation of ETB receptor expression and increased receptor-mediated vasoconstriction in SMA. Resveratrol (Res; a Sirt1 activator) concentration-dependently inhibited the HG-induced upregulation of ETB receptor expression and receptor-mediated vasoconstriction. Additionally, these effects could also be abolished by an inhibitor of the ERK1/2 signaling pathway. Furthermore, upregulation of ERK1/2 phosphorylation induced by HG was inhibited by Res. In conclusion, HG upregulated ETB receptors by downregulating Sirt1 and subsequently activating the ERK1/2 signaling pathways in the organ culture SMA.
Collapse
Affiliation(s)
- Yan Lin
- Xi'an Jiaotong University Cardiovascular Research Center, Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Zhao
- Department of Pathophysiology, School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Enqi Liu
- Xi'an Jiaotong University Cardiovascular Research Center, Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
22
|
Nagar H, Jung SB, Ryu MJ, Choi SJ, Piao S, Song HJ, Kang SK, Shin N, Kim DW, Jin SA, Jeong JO, Irani K, Jeon BH, Shong M, Kweon GR, Kim CS. CR6-Interacting Factor 1 Deficiency Impairs Vascular Function by Inhibiting the Sirt1-Endothelial Nitric Oxide Synthase Pathway. Antioxid Redox Signal 2017; 27:234-249. [PMID: 28117598 DOI: 10.1089/ars.2016.6719] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Mitochondrial dysfunction has emerged as a major contributing factor to endothelial dysfunction and vascular disease, but the key mechanisms underlying mitochondrial dysfunction-induced endothelial dysfunction remain to be elucidated. In this study, we aim at determining whether mitochondrial dysfunction in endothelial cells plays a key role in vascular disease, by examining the phenotype of endothelial-specific CR6-interacting factor 1 (CRIF1) knockout mice. We also used siRNA-mediated downregulation of CRIF1 gene in the endothelial cells to study about the in vitro pathophysiological underlying mechanisms. RESULTS Downregulation of CRIF1 in endothelial cells caused disturbances of mitochondrial oxidative phosphorylation complexes and membrane potential, leading to enhanced mitochondrial reactive oxygen species production. Gene silencing of CRIF1 results in decreased SIRT1 expression along with increased endothelial nitric oxide synthase (eNOS) acetylation, leading to reduced nitric oxide production both in vitro and in vivo. Endothelium-dependent vasorelaxation of aortic rings from CRIF1 knockout (KO) mice was considerably less than in wild-type mice, and it was partially recovered by Sirt1 overexpression in CRIF1 KO mice. INNOVATION Our results show for the first time a relationship between mitochondrial dysfunction and impaired vascular function induced in CRIF1 deficiency conditions and also the possible underlying pathway involved. CONCLUSION These findings indicate that CRIF1 plays an important role in maintaining mitochondrial and endothelial function through its effects on the SIRT1-eNOS pathway. Antioxid. Redox Signal. 27, 234-249.
Collapse
Affiliation(s)
- Harsha Nagar
- 1 Department of Physiology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Saet-Byel Jung
- 3 Department of Endocrinology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Min Jeong Ryu
- 4 Department of Biochemistry, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Su-Jung Choi
- 1 Department of Physiology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Shuyu Piao
- 1 Department of Physiology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Hee-Jung Song
- 5 Department of Neurology, Chungnam National University Hospital , Daejeon, Republic of Korea
| | - Shin Kwang Kang
- 6 Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital , Daejeon, Republic of Korea
| | - Nara Shin
- 2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,7 Department of Anatomy, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Dong Woon Kim
- 2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,7 Department of Anatomy, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Seon-Ah Jin
- 8 Division of Cardiology, Department of Medicine, Chungnam National University Hospital, Chungnam National University School of Medicine , Daejeon, Republic of Korea
| | - Jin-Ok Jeong
- 8 Division of Cardiology, Department of Medicine, Chungnam National University Hospital, Chungnam National University School of Medicine , Daejeon, Republic of Korea
| | - Kaikobad Irani
- 9 Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Byeong Hwa Jeon
- 1 Department of Physiology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Minho Shong
- 3 Department of Endocrinology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Gi Ryang Kweon
- 2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,4 Department of Biochemistry, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| | - Cuk-Seong Kim
- 1 Department of Physiology, School of Medicine, Chungnam National University , Daejeon, Republic of Korea.,2 Department of Medical Science, School of Medicine, Chungnam National University , Daejeon, Republic of Korea
| |
Collapse
|
23
|
Abstract
Cardiovascular disease (CVD) is the leading cause of death in both men and women and has largely been attributed to genetic makeup and lifestyle factors. However, genetic regulation does not fully explain the pathophysiology. Recently, epigenetic regulation, the regulation of the genetic code by modifications that affect the transcription and translation of target genes, has been shown to be important. Silent information regulator-2 proteins or sirtuins are an epigenetic regulator family of class III histone deacetylases (HDACs), unique in their dependency on coenzyme NAD+, that are postulated to mediate the beneficial effects of calorie restriction, thus promoting longevity by reducing the incidence of chronic diseases such as cancer, diabetes, and CVD. Emerging evidence shows that SIRT1 is ubiquitously expressed throughout the body. Resveratrol, a plant polyphenol, has cardioprotective effects and its mechanism of action is attributed to regulation of SIRT1. Incoproation of resveratrol into the diet may be a powerful therapeutic option for the prevention and treatment of CVD.
Collapse
|
24
|
Ling L, Gu S, Cheng Y. Resveratrol inhibits adventitial fibroblast proliferation and induces cell apoptosis through the SIRT1 pathway. Mol Med Rep 2016; 15:567-572. [PMID: 28101569 PMCID: PMC5364863 DOI: 10.3892/mmr.2016.6098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/26/2016] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is one of the most important causes of cardiovascular disease and studies have showed that adventitial fibroblasts, which are considered to be the most common cell type of the vascular adventitia, are involved in the development of early atherosclerotic plaques. Resveratrol is a plant polyphenolic compound confirmed to have anti‑atherosclerotic and cardioprotective effects. The aim of the present study was to investigate the effects of resveratrol on adventitial fibroblasts in vitro and to clarify the underlying mechanism. Adventitial fibroblasts were isolated from the thoracic aorta of 8‑week‑old SPF Sprague‑Dawley rats. Following pre‑treatment with different concentrations of resveratrol, cell viability, DNA synthesis ability, cell apoptosis and cell migration ability were assessed in vitro. Through transfection with small interfering (si)RNA targeting sirtuin 1 (SIRT1), the role of the SIRT1 pathway in these processes was evaluated. Western blot analysis was used to assess the protein expression of SIRT1. It was demonstrated that resveratrol inhibited the cell viability, DNA synthesis and migratory ability of the adventitial fibroblasts, and induced cell apoptosis in a concentration‑dependent manner in vitro. These effects were partly through the SIRT1 pathways. siRNA targeting SIRT1 successfully reversed the antiproliferative, antimigratory and pro‑apoptotic effects of resveratrol on adventitial fibroblasts. In conclusion, the data showed that resveratrol inhibited cell viability, DNA synthesis and cell migration, and induced cell apoptosis in the rat adventitial fibroblasts in vitro through the SIRT1 signaling pathway. As the activation and migration of adventitial fibroblasts contributes to the early development of atherosclerosis, this may be a mechanism underlying the anti‑atherosclerotic effect of resveratrol.
Collapse
Affiliation(s)
- Lin Ling
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shaohua Gu
- Department of Nephrology, The Third People's Hospital of Kunshan, Kunshan, Jiangsu 215300, P.R. China
| | - Yan Cheng
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
25
|
Matsumoto T, Watanabe S, Ando M, Yamada K, Iguchi M, Taguchi K, Kobayashi T. Diabetes and Age-Related Differences in Vascular Function of Renal Artery: Possible Involvement of Endoplasmic Reticulum Stress. Rejuvenation Res 2016; 19:41-52. [PMID: 26234558 DOI: 10.1089/rej.2015.1662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To study the time-course relationship between vascular functions and endoplasmic reticulum (ER) stress in type 2 diabetes, we investigated vascular function and associated protein expression, including cyclo-oxygenase (COX), ER stress, and apoptotic markers, in renal arteries (RA) from type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats at the young adult (4 months old) and aged (18 months old) stages. In the RA of aged OLETF (vs. young OLETF), we found: (1) Increased contractions induced by uridine adenosine tetraphosphate (Up4A) and phenylephrine, (2) decreased relaxation and increased contraction induced by acetylcholine (ACh) at lower and higher concentrations, respectively, and (3) increased expression of COX-1 and C/EBP-homologous protein (CHOP, a pro-apoptotic protein). In aged rats, the expression of COX-1, COX-2, PDI (an ER protein disulfide isomerase), Bax (a proapoptotic marker), and CHOP were increased in RA from OLETF rats (vs. age-matched control Long-Evans Tokushima Otsuka [LETO] rats). Up-regulation of PDI and Bax were seen in the RA from young OLETF (vs. young LETO) rats. No age-related alterations were apparent in the above changes in RA from LETO rats, excluding ACh-induced contraction. Short-term treatment with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA, 100 mg/kg per day, intraperitoneally for 1 week) to OLETF rats at the chronic stage of the disease (12 months old) could suppress renal arterial contractions induced by Up4A and ACh. These results suggest that a long-term duration of disease may be important for the development of vascular dysfunction rather than aging per se. The early regulation of ER stress may be important against the development of diabetes-associated vascular dysfunction.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University , Shinagawa-ku, Tokyo, Japan
| | - Shun Watanabe
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University , Shinagawa-ku, Tokyo, Japan
| | - Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University , Shinagawa-ku, Tokyo, Japan
| | - Kosuke Yamada
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University , Shinagawa-ku, Tokyo, Japan
| | - Maika Iguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University , Shinagawa-ku, Tokyo, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University , Shinagawa-ku, Tokyo, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University , Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
26
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. Int J Cardiol 2016; 227:66-82. [PMID: 27852009 DOI: 10.1016/j.ijcard.2016.11.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) retains a leadership as a major cause of human death worldwide. Although a substantial progress was attained in the development of cardioprotective and vasculoprotective drugs, a search for new efficient therapeutic strategies and promising targets is under way. Modulation of epigenetic CVD mechanisms through administration epigenetically active agents is one of such new approaches. Epigenetic mechanisms involve heritable changes in gene expression that are not linked to the alteration of DNA sequence. Pathogenesis of CVDs is associated with global genome-wide changes in DNA methylation and histone modifications. Epigenetically active compounds that influence activity of epigenetic modulators such as DNA methyltransferases (DNMTs), histone acetyltransferases, histone deacetylases (HDACs), etc. may correct these pathogenic changes in the epigenome and therefore be used for CVD therapy. To date, many epigenetically active natural substances (such as polyphenols and flavonoids) and synthetic compounds such as DNMT inhibitors or HDAC inhibitors are known. Both native and chemical DNMT and HDAC inhibitors possess a wide range of cytoprotective activities such as anti-inflammatory, antioxidant, anti-apoptotic, anti-anfibrotic, and anti-hypertrophic properties, which are beneficial of treatment of a variety of CVDs. However, so far, only synthetic DNMT inhibitors enter clinical trials while synthetic HDAC inhibitors are still under evaluation in preclinical studies. In this review, we consider epigenetic mechanisms such as DNA methylation and histone modifications in cardiovascular pathology and the epigenetics-based therapeutic approaches focused on the implementation of DNMT and HDAC inhibitors.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow, 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, 121609, Russia; National Research Center for Preventive Medicine, Moscow, 101000, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
27
|
|
28
|
Zhang MJ, Zhou Y, Chen L, Wang X, Long CY, Pi Y, Gao CY, Li JC, Zhang LL. SIRT1 improves VSMC functions in atherosclerosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:11-5. [PMID: 27080738 DOI: 10.1016/j.pbiomolbio.2016.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
Abstract
Despite advancements in diagnosis and treatment of cardiovascular diseases (CVDs), the morbidity and mortality of CVDs are still rising. Atherosclerosis is a chronic inflammatory disease contributing to multiple CVDs. Considering the complexity and severity of atherosclerosis, it is apparent that exploring the mechanisms of atherosclerotic formation and seeking new therapies for patients with atherosclerosis are required to overcome the heavy burden of CVDs on the quality and length of life of the global population. Vascular smooth muscle cells (VSMCs) play a dominant role in functional and structural changes of the arterial walls in response to atherogenic factors. Therefore, improvement of VSMC functions will slow down the development of atherosclerosis to a large extent. Given its protective performances on regulation of cholesterol metabolism and inflammatory responses, SIRT1 has long been known as an anti-atherosclerosis factor. In this review, we focus on the effects of SIRT1 on VSMC functions and thereby the development of atherosclerosis.
Collapse
Affiliation(s)
- Ming-Jie Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Yi Zhou
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Lei Chen
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Xu Wang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Chun-Yan Long
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Yan Pi
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Chang-Yue Gao
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Jing-Cheng Li
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Li-Li Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China.
| |
Collapse
|
29
|
Nour-Eldine W, Ghantous CM, Zibara K, Dib L, Issaa H, Itani HA, El-Zein N, Zeidan A. Adiponectin Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Remodeling through Nitric Oxide and the RhoA/ROCK Pathway. Front Pharmacol 2016; 7:86. [PMID: 27092079 PMCID: PMC4823273 DOI: 10.3389/fphar.2016.00086] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Adiponectin (APN), an adipocytokine, exerts protective effects on cardiac remodeling, while angiotensin II (Ang II) induces hypertension and vascular remodeling. The potential protective role of APN on the vasculature during hypertension has not been fully elucidated yet. Here, we evaluate the molecular mechanisms of the protective role of APN in the physiological response of the vascular wall to Ang II. METHODS AND RESULTS Rat aortic tissues were used to investigate the effect of APN on Ang II-induced vascular remodeling and hypertrophy. We investigated whether nitric oxide (NO), the RhoA/ROCK pathway, actin cytoskeleton remodeling, and reactive oxygen species (ROS) mediate the anti-hypertrophic effect of APN. Ang II-induced protein synthesis was attenuated by pre-treatment with APN, NO donor S-nitroso-N-acetylpenicillamine (SNAP), or cGMP. The hypertrophic response to Ang II was associated with a significant increase in RhoA activation and vascular force production, which were prevented by APN and SNAP. NO was also associated with inhibition of Ang II-induced phosphorylation of cofilin. In addition, immunohistochemistry revealed that 24 h Ang II treatment increased the F- to G-actin ratio, an effect that was inhibited by SNAP. Ang II-induced ROS formation and upregulation of p22(phox) mRNA expression were inhibited by APN and NO. Both compounds failed to inhibit Nox1 and p47(phox) expression. CONCLUSION Our results suggest that the anti-hypertrophic effects of APN are due, in part, to NO-dependent inhibition of the RhoA/ROCK pathway and ROS formation.
Collapse
Affiliation(s)
- Wared Nour-Eldine
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese UniversityBeirut, Lebanon
| | - Crystal M Ghantous
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese University Beirut, Lebanon
| | - Leila Dib
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Hawraa Issaa
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese UniversityBeirut, Lebanon
| | - Hana A Itani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Nabil El-Zein
- ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese University Beirut, Lebanon
| | - Asad Zeidan
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| |
Collapse
|
30
|
Phytochemical Compounds and Protection from Cardiovascular Diseases: A State of the Art. BIOMED RESEARCH INTERNATIONAL 2015; 2015:918069. [PMID: 26504846 PMCID: PMC4609427 DOI: 10.1155/2015/918069] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/14/2015] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases represent a worldwide relevant socioeconomical problem. Cardiovascular disease prevention relies also on lifestyle changes, including dietary habits. The cardioprotective effects of several foods and dietary supplements in both animal models and in humans have been explored. It was found that beneficial effects are mainly dependent on antioxidant and anti-inflammatory properties, also involving modulation of mitochondrial function. Resveratrol is one of the most studied phytochemical compounds and it is provided with several benefits in cardiovascular diseases as well as in other pathological conditions (such as cancer). Other relevant compounds are Brassica oleracea, curcumin, and berberine, and they all exert beneficial effects in several diseases. In the attempt to provide a comprehensive reference tool for both researchers and clinicians, we summarized in the present paper the existing literature on both preclinical and clinical cardioprotective effects of each mentioned phytochemical. We structured the discussion of each compound by analyzing, first, its cellular molecular targets of action, subsequently focusing on results from applications in both ex vivo and in vivo models, finally discussing the relevance of the compound in the context of human diseases.
Collapse
|
31
|
Favero G, Franceschetti L, Rodella LF, Rezzani R. Sirtuins, aging, and cardiovascular risks. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9804. [PMID: 26099749 PMCID: PMC4476976 DOI: 10.1007/s11357-015-9804-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/12/2015] [Indexed: 05/17/2023]
Abstract
The sirtuins comprise a highly conserved family proteins present in virtually all species from bacteria to mammals. Sirtuins are members of the highly conserved class III histone deacetylases, and seven sirtuin genes (sirtuins 1-7) have been identified and characterized in mammals. Sirtuin activity is linked to metabolic control, apoptosis, cell survival, development, inflammation, and healthy aging. In this review, we summarize and discuss the potential mutual relations between each sirtuin and cardiovascular health and the impact of sirtuins on oxidative stress and so age-related cardiovascular disorders, underlining the possibility that sirtuins will be novel targets to contrast cardiovascular risks induced by aging.
Collapse
Affiliation(s)
- Gaia Favero
- />Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Lorenzo Franceschetti
- />Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi Fabrizio Rodella
- />Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- />Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, Brescia, Italy
| | - Rita Rezzani
- />Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- />Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, Brescia, Italy
| |
Collapse
|
32
|
Wang M, Shah AM. Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries. J Mol Cell Cardiol 2015; 83:101-11. [PMID: 25665458 PMCID: PMC4459900 DOI: 10.1016/j.yjmcc.2015.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 01/12/2023]
Abstract
The aging population is increasing dramatically. Aging–associated stress simultaneously drives proinflammatory remodeling, involving angiotensin II and other factors, in both the heart and large arteries. The structural remodeling and functional changes that occur with aging include cardiac and vascular wall stiffening, systolic hypertension and suboptimal ventricular-arterial coupling, features that are often clinically silent and thus termed a silent syndrome. These age-related effects are the result of responses initiated by cardiovascular proinflammatory cells. Local proinflammatory signals are coupled between the heart and arteries due to common mechanical and humoral messengers within a closed circulating system. Thus, targeting proinflammatory signaling molecules would be a promising approach to improve age-associated suboptimal ventricular-arterial coupling, a major predisposing factor for the pathogenesis of clinical cardiovascular events such as heart failure.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Blvd, Baltimore, MD 21224, USA.
| | - Ajay M Shah
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
| |
Collapse
|
33
|
|
34
|
Ma L, Li Y. SIRT1: role in cardiovascular biology. Clin Chim Acta 2014; 440:8-15. [PMID: 25444742 DOI: 10.1016/j.cca.2014.10.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/02/2014] [Accepted: 10/24/2014] [Indexed: 01/22/2023]
Abstract
SIRT1 (silent information regulator two protein) is a type III protein deacetylase that regulates a variety of important metabolic and physiologic processes including stress resistance, metabolism, apoptosis and energy balance. It reverses cholesterol transport and reduces risk for development of atherosclerosis and cardiovascular disease. The following review highlights the potential role of SIRT1 on cardiovascular biology and function.
Collapse
Affiliation(s)
- Lina Ma
- Department of Geriatrics, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Yun Li
- Department of Geriatrics, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
35
|
Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health--promising therapeutic or hopeless illusion? Pharmacol Res 2014; 90:88-115. [PMID: 25151891 DOI: 10.1016/j.phrs.2014.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 02/07/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural polyphenolic compound that exists in Polygonum cuspidatum, grapes, peanuts and berries, as well as their manufactured products, especially red wine. Resveratrol is a pharmacologically active compound that interacts with multiple targets in a variety of cardiovascular disease models to exert protective effects or induce a reduction in cardiovascular risks parameters. This review attempts to primarily serve to summarize the current research findings regarding the putative cardioprotective effects of resveratrol and the molecular pathways underlying these effects. One intent is to hopefully provide a relatively comprehensive resource for clues that may prompt ideas for additional mechanistic studies which might further elucidate and strengthen the role of the stilbene family of compounds in cardiovascular disease and cardioprotection. Model systems that incorporate a significant functional association with tissues outside of the cardiovascular system proper, such as adipose (cell culture, obesity models) and pancreatic (diabetes) tissues, were reviewed, and the molecular pathways and/or targets related to these models and influenced by resveratrol are discussed. Because the body of work encompassing the stilbenes and other phytochemicals in the context of longevity and the ability to presumably mitigate a plethora of afflictions is replete with conflicting information and controversy, especially so with respect to the human response, we tried to remain as neutral as possible in compiling and presenting the more current data with minimal commentary, permitting the reader free reign to extract the knowledge most helpful to their own investigations.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yam-Fung Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Susan Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael Gyda
- Life Sciences Multimedia Productions, Drexel Hill, PA, USA.
| | - Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China; Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
36
|
ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation. Cell Death Differ 2014; 21:1262-74. [PMID: 24786827 DOI: 10.1038/cdd.2014.46] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 01/25/2023] Open
Abstract
Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure. Our previous studies found that the activation of insulin-like growth factor receptor II (IGF-IIR) signaling was critical for hypertensive angiotensin II (ANG II)-induced cardiomyocyte apoptosis. However, the detailed mechanism by which ANG II regulates IGF-IIR in heart cells remains elusive. In this study, we found that ANG II activated its downstream kinase JNK to increase IGF-IIR expression through the ANG II receptor angiotensin type 1 receptor. JNK activation subsequently led to sirtuin 1 (SIRT1) degradation via the proteasome, thus preventing SIRT1 from deacetylating heat-shock transcription factor 1 (HSF1). The resulting increase in the acetylation of HSF1 impaired its ability to bind to the IGF-IIR promoter region (nt -748 to -585). HSF1 protected cardiomyocytes by acting as a repressor of IGF-IIR gene expression, and ANG II diminished this HSF1-mediated repression through enhanced acetylation, thus activating the IGF-IIR apoptosis pathway. Taken together, these results suggest that HSF1 represses IGF-IIR gene expression to protect cardiomyocytes. ANG II activates JNK to degrade SIRT1, resulting in HSF1 acetylation, which induces IGF-IIR expression and eventually results in cardiac hypertrophy and apoptosis. HSF1 could be a valuable target for developing treatments for cardiac diseases in hypertensive patients.
Collapse
|
37
|
Gao P, Xu TT, Lu J, Li L, Xu J, Hao DL, Chen HZ, Liu DP. Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J Mol Med (Berl) 2013; 92:347-57. [PMID: 24352856 DOI: 10.1007/s00109-013-1111-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/25/2013] [Accepted: 11/28/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED Angiotensin II (AngII) induces the development of vascular hypertrophy and hypertension. We have shown previously that overexpression of class III deacetylase SIRT1 inhibits AngII-induced hypertrophy in vascular smooth muscle cells (VSMCs). However, the direct role of SIRT1 in VSMCs in response to AngII infusion in vivo remains unclear. Here, we found that the expression and activity of SIRT1 in mouse aortas was decreased significantly by AngII infusion. VSMC-specific SIRT1 transgene (SV-Tg) prevented the increase in systolic blood pressure (SBP) caused by AngII infusion without affecting heart function in mice. SIRT1 overexpression alleviated vascular remodeling in mouse thoracic and renal aortas induced by AngII infusion, and significantly inhibited reactive oxygen species (ROS) generation, vascular inflammation, and collagen synthesis in arterial walls. Reduced expression of transforming growth factor-β 1 (TGF-β1) was also observed in the aortas of AngII-infused SV-Tg mice. Moreover, SIRT1 overexpression decreased AngII-increased binding of nuclear factor-κB on its specific binding sites on TGF-β1 promoter. Taken together, these data demonstrate that SIRT1 overexpression in VSMCs reduces SBP and inhibits AngII-induced vascular remodeling in mice. The inhibition of vascular remodeling contributes, at least in part, to the antihypertensive effect of SIRT1. KEY MESSAGE SIRT1 is reduced in aortas of AngII-infused hypertensive mice. SIRT1 VSMC transgene alleviates AngII-increased systolic blood pressure. SIRT1 VSMC transgene attenuates AngII-induced vascular remodeling. VSMC SIRT1 overexpression inhibits remodeling-related pathological changes. VSMC SIRT1 overexpression reduces AngII-induced TGF-β1 expression.
Collapse
Affiliation(s)
- Peng Gao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, No.5 Dong Dan San Tiao, Beijing, 100050, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Calorie or dietary restriction (CR) has attracted attention because it is the oldest and most robust way to extend rodent life span. The idea that the nutrient sensors, termed sirtuins, might mediate effects of CR was proposed 13 years ago and has been challenged in the intervening years. This review addresses these challenges and draws from a great body of new data in the sirtuin field that shows a systematic redirection of mammalian physiology in response to diet by sirtuins. The prospects for drugs that can deliver at least a subset of the benefits of CR seems very real.
Collapse
Affiliation(s)
- Leonard Guarente
- Department of Biology, Glenn Laboratory for the Science of Aging, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
39
|
Ma L, Liu X, Zhao Y, Chen B, Li X, Qi R. Ginkgolide B reduces LOX-1 expression by inhibiting Akt phosphorylation and increasing Sirt1 expression in oxidized LDL-stimulated human umbilical vein endothelial cells. PLoS One 2013; 8:e74769. [PMID: 24069345 PMCID: PMC3775799 DOI: 10.1371/journal.pone.0074769] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) is an important risk factor in the development of atherosclerosis. LOX-1, a lectin-like receptor for ox-LDL, is present primarily on endothelial cells and upregulated by ox-LDL, tumor necrosis factor a, shear stress, and cytokines in atherosclerosis. Recent studies demonstrated that ginkgolide B, a platelet-activating factor receptor antagonist, has antiinflammatory and antioxidant effects on endothelial and nerve cells. The present study investigated the effects of ginkgolide B on LOX-1 expression and the possible mechanism of action. Our results showed that ginkgolide B inhibited LOX-1 and intercellular cell adhesion molecule-1 (ICAM-1) expression in ox-LDL-stimulated endothelial cells through a mechanism associated with the attenuation of Akt activation. Similar data were obtained by silencing Akt and LY294002. We also evaluated Sirt1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. These molecules play a protective role in endothelial cell injury. The results showed that ginkgolide B increased Sirt1 expression in ox-LDL-treated cells. The inhibitory effects of ginkgolide B on LOX-1 and ICAM-1 expression were reduced in Sirt1 siRNA-transfected cells. Nrf2 expression was increased in ox-LDL-treated cells, and ginkgolide B downregulated Nrf2 expression. These results suggest that ginkgolide B reduces Nrf2 expression by inhibiting LOX-1 expression, consequently reducing oxidative stress injury in ox-LDL-stimulated cells. Altogether, these results indicate that the protective effect of ginkgolide B on endothelial cells may be attributable to a decrease in LOX-1 expression and an increase in Sirt1 expression in ox-LDL-stimulated endothelial cells, the mechanism of which is linked to the inhibition of Akt activation. Ginkgolide B may be a multiple-target drug that exerts protective effects in ox-LDL-treated human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Lina Ma
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xueqing Liu
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P. R. China
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P. R. China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P. R. China
| | - Xingguang Li
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Ruomei Qi
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
40
|
Rodiño-Janeiro BK, Paradela-Dobarro B, Castiñeiras-Landeira MI, Raposeiras-Roubín S, González-Juanatey JR, Álvarez E. Current status of NADPH oxidase research in cardiovascular pharmacology. Vasc Health Risk Manag 2013; 9:401-28. [PMID: 23983473 PMCID: PMC3750863 DOI: 10.2147/vhrm.s33053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- European Molecular Biology Laboratory, Grenoble, France
| | | | | | - Sergio Raposeiras-Roubín
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
| | - José R González-Juanatey
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| | - Ezequiel Álvarez
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| |
Collapse
|
41
|
Li L, Gao P, Chen HZ, Zhang ZQ, Xu TT, Jia YY, Zhang HN, Du GH, Liu DP. Up-regulation of Fas Ligand Expression by Sirtuin 1 in both Flow-restricted Vessels and Serum-stimulated Vascular Smooth Muscle Cells. ACTA ACUST UNITED AC 2013; 28:65-71. [DOI: 10.1016/s1001-9294(13)60024-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Zarzuelo MJ, López-Sepúlveda R, Sánchez M, Romero M, Gómez-Guzmán M, Ungvary Z, Pérez-Vizcaíno F, Jiménez R, Duarte J. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging. Biochem Pharmacol 2013; 85:1288-96. [PMID: 23422569 DOI: 10.1016/j.bcp.2013.02.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 01/15/2023]
Abstract
Vascular aging is characterized by up-regulation of NADPH oxidase, oxidative stress and endothelial dysfunction. Previous studies demonstrate that the activity of the evolutionarily conserved NAD(+)-dependent deacetylase SIRT1 declines with age and that pharmacological activators of SIRT1 confer significant anti-aging cardiovascular effects. To determine whether dysregulation of SIRT1 promotes NADPH oxidase-dependent production of reactive oxygen species (ROS) and impairs endothelial function we assessed the effects of three structurally different inhibitors of SIRT1 (nicotinamide, sirtinol, EX527) in aorta segments isolated from young Wistar rats. Inhibition of SIRT1 induced endothelial dysfunction, as shown by the significantly reduced relaxation to the endothelium-dependent vasodilators acetylcholine and the calcium ionophore A23187. Endothelial dysfunction induced by SIRT1 inhibition was prevented by treatment of the vessels with the NADPH oxidase inhibitor apocynin or superoxide dismutase. Inhibition of SIRT1 significantly increased vascular superoxide production, enhanced NADPH oxidase activity, and mRNA expression of its subunits p22(phox) and NOX4, which were prevented by resveratrol. Peroxisome proliferator-activated receptor-α (PPARα) activation mimicked the effects of resveratrol while PPARα inhibition prevented the effects of this SIRT1 activator. SIRT1 co-precipitated with PPARα and nicotinamide increased the acetylation of the PPARα coactivator PGC-1α, which was suppressed by resveratrol. In conclusion, impaired activity of SIRT1 induces endothelial dysfunction and up-regulates NADPH oxidase-derived ROS production in the vascular wall, mimicking the vascular aging phenotype. Moreover, a new mechanism for controlling endothelial function after SIRT1 activation involves a decreased PGC-1α acetylation and the subsequent PPARα activation, resulting in both decreased NADPH oxidase-driven ROS production and NO inactivation.
Collapse
Affiliation(s)
- María José Zarzuelo
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rodella LF, Favero G, Rossini C, Foglio E, Bonomini F, Reiter RJ, Rezzani R. Aging and vascular dysfunction: beneficial melatonin effects. AGE (DORDRECHT, NETHERLANDS) 2013; 35:103-115. [PMID: 22109832 PMCID: PMC3543744 DOI: 10.1007/s11357-011-9336-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/25/2011] [Indexed: 05/29/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological functions and metabolic processes. In aging and in diseases associated with the elderly, the loss of cells in vital structures or organs may be related to several factors. Sirtuin1 (SIRT1) is a member of the sirtuin family of protein deacetylases involved in life span extension; however, its involvement in the aging is not yet completely defined. Recently, melatonin, a pleiotropic molecule, shown to activate SIRT1 in primary neurons of young animals, as well as in aged neurons of a murine model of senescence. Melatonin is known to modulate oxidative stress-induced senescence and pro-survival pathways. We treated 6- and 15-week-old apolipoprotein E (APOE)-deficient mice (APOE 6w and 15w) with two melatonin formulations (FAST and RETARD) to evaluate their anti-aging effect. Morphological changes in vessels (aortic arch) of APOE mice were evaluated SIRT1, p53, endothelial nitric oxide synthase (eNOS), and endothelin-1 (ET-1) markers. We demonstrate that SIRT1 and eNOS decresed in APOE mice between 6 and 15 weeks and that aging induced an elevated expression of p53 and ET-1 in APOE animals. Melatonin improved the impairment of endothelial damage and reduced loss of SIRT1 and eNOS decreasing p53 and ET-1 expression. The RETARD melatonin preparation caused a greater improvement of vessel cytoarchitecture. In summary, we indicate that SIRT1-p53-eNOS axis as one of the important marker of advanced vascular dysfunctions linked to aging. Finally, we suggest that extended-release melatonin (RETARD) provides a more appropriate option for contrasting these dysfunctions compared with rapid release melatonin (FAST) administration.
Collapse
Affiliation(s)
- Luigi Fabrizio Rodella
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Gaia Favero
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Claudia Rossini
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Eleonora Foglio
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Francesca Bonomini
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Russel J. Reiter
- />Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Rita Rezzani
- />Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| |
Collapse
|
44
|
Abstract
The average lifespan of humans is increasing, and with it the percentage of people entering the 65 and older age group is growing rapidly and will continue to do so in the next 20 years. Within this age group, cardiovascular disease will remain the leading cause of death, and the cost associated with treatment will continue to increase. Aging is an inevitable part of life and unfortunately poses the largest risk factor for cardiovascular disease. Although numerous studies in the cardiovascular field have considered both young and aged humans, there are still many unanswered questions as to how the genetic pathways that regulate aging in model organisms influence cardiovascular aging. Likewise, in the molecular biology of aging field, few studies fully assess the role of these aging pathways in cardiovascular health. Fortunately, this gap is beginning to close, and these two fields are merging together. We provide an overview of some of the key genes involved in regulating lifespan and health span, including sirtuins, AMP-activated protein kinase, mammalian target of rapamycin, and insulin-like growth factor 1 and their roles regulating cardiovascular health. We then discuss a series of review articles that will appear in succession and provide a more comprehensive analysis of studies carried out linking genes of aging and cardiovascular health, and perspectives of future directions of these two intimately linked fields.
Collapse
Affiliation(s)
- Brian J North
- Glenn Laboratories for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
45
|
El Assar M, Angulo J, Vallejo S, Peiró C, Sánchez-Ferrer CF, Rodríguez-Mañas L. Mechanisms involved in the aging-induced vascular dysfunction. Front Physiol 2012; 3:132. [PMID: 22783194 PMCID: PMC3361078 DOI: 10.3389/fphys.2012.00132] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/20/2012] [Indexed: 12/25/2022] Open
Abstract
Vascular aging is a key process determining health status of aged population. Aging is an independent cardiovascular risk factor associated to an impairment of endothelial function, which is a very early and important event leading to cardiovascular disease. Vascular aging, formerly being considered an immutable and inexorable risk factor, is now viewed as a target process for intervention in order to achieve a healthier old age. A further knowledge of the mechanisms underlying the age-related vascular dysfunction is required to design an adequate therapeutic strategy to prevent or restore this impairment of vascular functionality. Among the proposed mechanisms that contribute to age-dependent endothelial dysfunction, this review is focused on the following aspects occurring into the vascular wall: (1) the reduction of nitric oxide (NO) bioavailability, caused by diminished NO synthesis and/or by augmented NO scavenging due to oxidative stress, leading to peroxynitrite formation (ONOO(-)); (2) the possible sources involved in the enhancement of oxidative stress; (3) the increased activity of vasoconstrictor factors; and (4) the development of a low-grade pro-inflammatory environment. Synergisms and interactions between all these pathways are also analyzed. Finally, a brief summary of some cellular mechanisms related to endothelial cell senescence (including telomere and telomerase, stress-induced senescence, as well as sirtuins) are implemented, as they are likely involved in the age-dependent endothelial dysfunction, as well as in the lower vascular repairing capacity observed in the elderly. Prevention or reversion of those mechanisms leading to endothelial dysfunction through life style modifications or pharmacological interventions could markedly improve cardiovascular health in older people.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe Madrid, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy. PLoS Biol 2012; 10:e1001326. [PMID: 22589701 PMCID: PMC3348157 DOI: 10.1371/journal.pbio.1001326] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/29/2012] [Indexed: 11/24/2022] Open
Abstract
NAD(P)H oxidase plays a role in cancer metabolism by providing NAD+ to support increased glycolysis. Elevated aerobic glycolysis in cancer cells (the Warburg effect) may be attributed to respiration injury or mitochondrial dysfunction, but the underlying mechanisms and therapeutic significance remain elusive. Here we report that induction of mitochondrial respiratory defect by tetracycline-controlled expression of a dominant negative form of DNA polymerase γ causes a metabolic shift from oxidative phosphorylation to glycolysis and increases ROS generation. We show that upregulation of NOX is critical to support the elevated glycolysis by providing additional NAD+. The upregulation of NOX is also consistently observed in cancer cells with compromised mitochondria due to the activation of oncogenic Ras or loss of p53, and in primary pancreatic cancer tissues. Suppression of NOX by chemical inhibition or genetic knockdown of gene expression selectively impacts cancer cells with mitochondrial dysfunction, leading to a decrease in cellular glycolysis, a loss of cell viability, and inhibition of cancer growth in vivo. Our study reveals a previously unrecognized function of NOX in cancer metabolism and suggests that NOX is a potential novel target for cancer treatment. Glycolysis is a cytoplasmic metabolic process that produces energy from glucose. In normal cells, the rate of glycolysis is low, and glycolysis products are further processed in the mitochondria via oxidative phosphorylation, a very efficient energy-producing process. Cancer cells, however, display higher levels of glycolysis followed by cytoplasmic fermentation, and reduced levels of oxidative phosphorylation. It was thought that increased glycolysis is associated with mitochondrial dysfunction, but how these phenomena are functionally linked was not known. Understanding how these processes are regulated will be essential for developing more effective anti-cancer therapies. Here, we show that induction of mitochondrial dysfunction by either genetic or chemical approaches results in a switch from oxidative phosphorylation to glycolysis. We further show that NADPH oxidase (NOX), an enzyme known to catalyze the oxidation of NAD(P)H, also plays a critical role in supporting increased glycolysis in cancer cells by generating NAD+, a substrate for one of the key glycolytic reactions. Inhibition of NOX leads to inhibition of cancer cell proliferation in vitro and suppression of tumor growth in vivo. This study reveals a novel function for NOX in cancer metabolism, explains the increased glycolysis observed in cancer cells, and identifies NOX as a potential anti-cancer therapeutic target.
Collapse
|
47
|
Abstract
SIRT1 is an NAD-dependent deacetylase that regulates stress response pathways. By deacetylating transcription factors and co-factors, SIRT1 modulates metabolism, inflammation, hypoxic responses, circadian rhythms, cell survival, and longevity. Since SIRT1 plays a key role in regulating pathways involved in cardiovascular diseases and metabolic diseases cancer, the regulation of SIRT1 has received intense scrutiny. The post-transcriptional regulation of SIRT1 is mediated by two classes of molecules, RNA-binding proteins (RBPs) and non-coding small RNAs. MicroRNAs (miRNAs) are short non-coding RNAs that regulate target gene expression in a post-transcriptional manner. More than 16 miRNAs modulate SIRT1 expression, including miR-34a. miR-34a induces colon cancer apoptosis through SIRT1, and miR-34a also promotes senescence in endothelial cells via SIRT1. This review describes the impact of miRNAs on SIRT1. The background of SIRT1 and miRNAs will be summarized, followed by the mechanism by which several key miRNAs alter SIRT1 levels, and how the RBP HuR regulates SIRT1. MicroRNA regulation of SIRT1 might affect a wide variety of pathways in humans, from metabolic diseases such as diabetes to cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Munekazu Yamakuchi
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry Rochester, NY, USA
| |
Collapse
|
48
|
Li H, Xia N, Förstermann U. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 2012; 26:102-10. [DOI: 10.1016/j.niox.2011.12.006] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 12/11/2011] [Accepted: 12/21/2011] [Indexed: 11/29/2022]
|
49
|
Chu LM, Lassaletta AD, Robich MP, Sellke FW. Resveratrol in the Prevention and Treatment of Coronary Artery Disease. Curr Atheroscler Rep 2011; 13:439-46. [DOI: 10.1007/s11883-011-0202-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Affiliation(s)
- Leonard Guarente
- Paul F. Glenn Lab and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|