1
|
Meirong Q. The larvicidal efficacy and mechanism of action of 5-Ethenyl-2,2'-bithiophene extracted from Echinops ritro on Aedes aegypti larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105965. [PMID: 39084763 DOI: 10.1016/j.pestbp.2024.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 08/02/2024]
Abstract
Herein, we focused on the larvicidal effects and potential mechanisms of 5-ethenyl-2,2'-bithiophene (5 EB), a compound isolated from Echinops ritro L. on Aedes aegypti larvae. Our results show that 5 EB exhibits pronounced larvicidal activity against A. aegypti larvae, with an LC50 = 0.24 mg/L, considerably lesser than that of the traditional insecticide, rotenone. Observations using fluorescence microscopy, electron microscopy, and imaging flow cytometry demonstrated that 5 EB targets the hemocytes of larvae, leading to the disruption of their intracellular membrane systems. This disruption leads to considerable damage to the cellular structure and function, leading to the death of test subjects. Note that additional investigation into the molecular mechanism of 5 EB's action was conducted using transcriptomic analysis. Both GO and KEGG enrichment analyses reported that the differentially expressed genes were predominantly associated with membranes, lysosomes, and catalytic activities. To summarize, this study provides new options for developing new, environmentally friendly, plant-based larvicides for mosquito control.
Collapse
Affiliation(s)
- Quan Meirong
- Department of Entomology, College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, China.
| |
Collapse
|
2
|
Kalmouni J, Will JB, Townsend J, Paaijmans KP. Temperature and time of host-seeking activity impact the efficacy of chemical control interventions targeting the West Nile virus vector, Culex tarsalis. PLoS Negl Trop Dis 2024; 18:e0012460. [PMID: 39213461 PMCID: PMC11392387 DOI: 10.1371/journal.pntd.0012460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
West Nile virus (WNV) is the leading mosquito-borne disease causing-pathogen in the United States. Concerningly, there are no prophylactics or drug treatments for WNV and public health programs rely heavily on vector control efforts to lessen disease incidence. Insecticides can be effective in reducing vector numbers if implemented strategically, but can diminish in efficacy and promote insecticide resistance otherwise. Vector control programs which employ mass-fogging applications of insecticides, often conduct these methods during the late-night hours, when diel temperatures are coldest, and without a-priori knowledge on daily mosquito activity patterns. This study's aims were to 1) quantify the effect of temperature on the toxicity of two conventional insecticides used in fogging applications (malathion and deltamethrin) to Culex tarsalis, an important WNV vector, and 2) quantify the time of host-seeking of Cx. tarsalis and other local mosquito species in Maricopa County, Arizona. The temperature-toxicity relationship of insecticides was assessed using the WHO tube bioassay, and adult Cx. tarsalis, collected as larvae, were exposed to three different insecticide doses at three temperature regimes (15, 25, and 35°C; 80% RH). Time of host-seeking was assessed using collection bottle rotators with encephalitis vector survey traps baited with dry ice, first at 3h intervals during a full day, followed by 1h intervals during the night-time. Malathion became less toxic at cooler temperatures at all doses, while deltamethrin was less toxic at cooler temperatures at the low dose. Regarding time of host-seeking, Cx. tarsalis, Aedes vexans, and Culex quinquefasciatus were the most abundant vectors captured. During the 3-hour interval surveillance over a full day, Cx. tarsalis were most-active during post-midnight biting (00:00-06:00), accounting for 69.0% of all Cx. tarsalis, while pre-midnight biting (18:00-24:00) accounted for 30.0% of Cx. tarsalis. During the 1-hour interval surveillance overnight, Cx. tarsalis were most-active during pre-midnight hours (18:00-24:00), accounting for 50.2% of Cx. tarsalis captures, while post-midnight biting (00:00-06:00) accounted for 49.8% of Cx. tarsalis. Our results suggest that programs employing large-scale applications of insecticidal fogging should consider temperature-toxicity relationships coupled with time of host-seeking data to maximize the efficacy of vector control interventions in reducing mosquito-borne disease burden.
Collapse
Affiliation(s)
- Joshua Kalmouni
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - James B Will
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - John Townsend
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Shiau JC, Garcia-Diaz N, Kyle DE, Pathak AK. The influence of oviposition status on measures of transmission potential in malaria-infected mosquitoes depends on sugar availability. Parasit Vectors 2024; 17:236. [PMID: 38783366 PMCID: PMC11118549 DOI: 10.1186/s13071-024-06317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Like other oviparous organisms, the gonotrophic cycle of mosquitoes is not complete until they have selected a suitable habitat to oviposit. In addition to the evolutionary constraints associated with selective oviposition behavior, the physiological demands relative to an organism's oviposition status also influence their nutrient requirement from the environment. Yet, studies that measure transmission potential (vectorial capacity or competence) of mosquito-borne parasites rarely consider whether the rates of parasite replication and development could be influenced by these constraints resulting from whether mosquitoes have completed their gonotrophic cycle. METHODS Anopheles stephensi mosquitoes were infected with Plasmodium berghei, the rodent analog of human malaria, and maintained on 1% or 10% dextrose and either provided oviposition sites ('oviposited' herein) to complete their gonotrophic cycle or forced to retain eggs ('non-oviposited'). Transmission potential in the four groups was measured up to 27 days post-infection as the rates of (i) sporozoite appearance in the salivary glands ('extrinsic incubation period' or EIP), (ii) vector survival and (iii) sporozoite densities. RESULTS In the two groups of oviposited mosquitoes, rates of sporozoite appearance and densities in the salivary glands were clearly dependent on sugar availability, with shorter EIP and higher sporozoite densities in mosquitoes fed 10% dextrose. In contrast, rates of appearance and densities in the salivary glands were independent of sugar concentrations in non-oviposited mosquitoes, although both measures were slightly lower than in oviposited mosquitoes fed 10% dextrose. Vector survival was higher in non-oviposited mosquitoes. CONCLUSIONS Costs to parasite fitness and vector survival were buffered against changes in nutritional availability from the environment in non-oviposited but not oviposited mosquitoes. Taken together, these results suggest vectorial capacity for malaria parasites may be dependent on nutrient availability and oviposition/gonotrophic status and, as such, argue for more careful consideration of this interaction when estimating transmission potential. More broadly, the complex patterns resulting from physiological (nutrition) and evolutionary (egg-retention) trade-offs described here, combined with the ubiquity of selective oviposition behavior, implies the fitness of vector-borne pathogens could be shaped by selection for these traits, with implications for disease transmission and management. For instance, while reducing availability of oviposition sites and environmental sources of nutrition are key components of integrated vector management strategies, their abundance and distribution are under strong selection pressure from the patterns associated with climate change.
Collapse
Affiliation(s)
- Justine C Shiau
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, Athens, GA, USA
| | - Nathan Garcia-Diaz
- The NSF-REU Program, Odum School of Ecology, Athens, GA, USA
- Department of Biology, Willamette University, Salem, OR, USA
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Dennis E Kyle
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Ashutosh K Pathak
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
- Center for the Ecology of Infectious Diseases, Athens, GA, USA.
| |
Collapse
|
4
|
Ren N, Jin Q, Wang F, Huang D, Yang C, Zaman W, Salazar FV, Liu Q, Yuan Z, Xia H. Evaluation of vector susceptibility in Aedes aegypti and Culex pipiens pallens to Tibet orbivirus. mSphere 2024; 9:e0006224. [PMID: 38530016 PMCID: PMC11036799 DOI: 10.1128/msphere.00062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
Mosquito-borne viruses cause various infectious diseases in humans and animals. Tibet orbivirus (TIBOV), a newly identified arbovirus, efficiently replicates in different types of vertebrate and mosquito cells, with its neutralizing antibodies detected in cattle and goats. However, despite being isolated from Culicoides midges, Anopheles, and Culex mosquitoes, there has been a notable absence of systematic studies on its vector competence. Thus, in this study, Aedes aegypti and Culex pipiens pallens were reared in the laboratory to measure vector susceptibility through blood-feeding infection. Furthermore, RNA sequencing was used to examine the overall alterations in the Ae. aegypti transcriptome following TIBOV infection. The results revealed that Ae. aegypti exhibited a high susceptibility to TIBOV compared to Cx. p. pallens. Effective replication of the virus in Ae. aegypti midguts occurred when the blood-feeding titer of TIBOV exceeded 105 plaque-forming units mL-1. Nevertheless, only a few TIBOV RNA-positive samples were detected in the saliva of Ae. aegypti and Cx. p. pallens, suggesting that these mosquito species may not be the primary vectors for TIBOV. Moreover, at 2 dpi of TIBOV, numerous antimicrobial peptides downstream of the Toll and Imd signaling pathways were significantly downregulated in Ae. aegypti, indicating that TIBOV suppressed mosquitos' defense to survive in the vector at an early stage. Subsequently, the stress-activated protein kinase JNK, a crucial component of the MAPK signaling pathway, exhibited significant upregulation. Certain genes were also enriched in the MAPK signaling pathway in TIBOV-infected Ae. aegypti at 7 dpi.IMPORTANCETibet orbivirus (TIBOV) is an understudied arbovirus of the genus Orbivirus. Our study is the first-ever attempt to assess the vector susceptibility of this virus in two important mosquito vectors, Aedes aegypti and Culex pipiens pallens. Additionally, we present transcriptome data detailing the interaction between TIBOV and the immune system of Ae. aegypti, which expands the knowledge about orbivirus infection and its interaction with mosquitoes.
Collapse
Affiliation(s)
- Nanjie Ren
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Jin
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Doudou Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Cihan Yang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wahid Zaman
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Xia
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
5
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado - Impacts of sylvatic flavivirus infection in vectors and hosts on mosquito engorgement on non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.580944. [PMID: 38559148 PMCID: PMC10979881 DOI: 10.1101/2024.02.19.580944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The contact structure between vertebrate hosts and arthropod vectors plays a key role in the spread of arthropod-borne viruses (arboviruses); thus, it is important to determine whether arbovirus infection of either host or vector alters vector feeding behavior. Here we leveraged a study of the replication dynamics of two arboviruses isolated from their ancestral cycles in paleotropical forests, sylvatic dengue-2 (DENV-2) and Zika (ZIKV), in one non-human primate (NHP) species from the paleotropics (cynomolgus macaques, Macaca fascicularis) and one from the neotropics (squirrel monkeys, Saimiri boliviensis) to test the effect of both vector and host infection with each virus on completion of blood feeding (engorgement) of the mosquito Aedes albopictus. Although mosquitoes were starved and given no choice of hosts, engorgement rates varied dramatically, from 0% to 100%. While neither vector nor host infection systematically affected engorgement, NHP species and body temperature at the time of feeding did. We also interrogated the effect of repeated mosquito bites on cytokine expression and found that epidermal growth factor (EGF) and macrophage migration inhibitory factor (MIF) concentrations were dynamically associated with exposure to mosquito bites. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
- Information School, University of Washington, Seattle, WA, 98105
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555 USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| |
Collapse
|
6
|
Naik BR, Tyagi BK, Xue RD. Mosquito-borne diseases in India over the past 50 years and their Global Public Health Implications: A Systematic Review. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023; 39:258-277. [PMID: 38108431 DOI: 10.2987/23-7131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mosquito-borne diseases (MBDs) pose a significant public health concern globally, and India, with its unique eco-sociodemographic characteristics, is particularly vulnerable to these diseases. This comprehensive review aims to provide an in-depth overview of MBDs in India, emphasizing their impact and potential implications for global health. The article explores distribution, epidemiology, control or elimination, and economic burden of the prevalent diseases such as malaria, dengue, chikungunya, Japanese encephalitis, and lymphatic filariasis, which collectively contribute to millions of cases annually. It sheds light on their profound effects on morbidity, mortality, and socioeconomic burdens and the potential for international transmission through travel and trade. The challenges and perspectives associated with controlling mosquito populations are highlighted, underscoring the importance of effective public health communication for prevention and early detection. The potential for these diseases to spread beyond national borders is recognized, necessitating a holistic approach to address the challenge. A comprehensive literature search was conducted, covering the past five decades (1972-2022), utilizing databases such as Web of Science, PubMed, and Google Scholar, in addition to in-person library consultations. The literature review analyzed 4,082 articles initially identified through various databases. After screening and eligibility assessment, 252 articles were included for analysis. The review focused on malaria, dengue, chikungunya, Japanese encephalitis, and lymphatic filariasis. The included studies focused on MBDs occurrence in India, while those conducted outside India, lacking statistical analysis, or published before 1970 were excluded. This review provides valuable insights into the status of MBDs in India and underscores the need for concerted efforts to combat these diseases on both national and global scales through consilience.
Collapse
|
7
|
Chakraborty S, Gao S, Allan BF, Smith RL. Effects of cattle on vector-borne disease risk to humans: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011152. [PMID: 38113279 PMCID: PMC10763968 DOI: 10.1371/journal.pntd.0011152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 01/03/2024] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Vector-borne pathogens (VBPs) causing vector-borne diseases (VBDs) can circulate among humans, domestic animals, and wildlife, with cattle in particular serving as an important source of exposure risk to humans. The close associations between humans and cattle can facilitate the transmission of numerous VBPs, impacting public health and economic security. Published studies demonstrate that cattle can influence human exposure risk positively, negatively, or have no effect. There is a critical need to synthesize the information in the scientific literature on this subject, in order to illuminate the various ecological mechanisms that can affect VBP exposure risk in humans. Therefore, the aim of this systematic review was to review the scientific literature, provide a synthesis of the possible effects of cattle on VBP risk to humans, and propose future directions for research. This study was performed according to the PRISMA 2020 extension guidelines for systematic review. After screening 470 peer-reviewed articles published between 1999-2019 using the databases Web of Science Core Collection, PubMed Central, CABI Global Health, and Google Scholar, and utilizing forward and backward search techniques, we identified 127 papers that met inclusion criteria. Results of the systematic review indicate that cattle can be beneficial or harmful to human health with respect to VBDs depending on vector and pathogen ecology and livestock management practices. Cattle can increase risk of exposure to infections spread by tsetse flies and ticks, followed by sandflies and mosquitoes, through a variety of mechanisms. However, cattle can have a protective effect when the vector prefers to feed on cattle instead of humans and when chemical control measures (e.g., acaricides/insecticides), semio-chemicals, and other integrated vector control measures are utilized in the community. We highlight that further research is needed to determine ways in which these mechanisms may be exploited to reduce VBD risk in humans.
Collapse
Affiliation(s)
- Sulagna Chakraborty
- Program in Ecology, Evolution & Conservation Biology, University of Illinois Urbana-Champaign; Urbana, Illinois, United Sates of America
| | - Siyu Gao
- School of Social Work, The University of Minnesota, Twin Cities, Minnesota, United Sates of America
| | - Brian. F. Allan
- Program in Ecology, Evolution & Conservation Biology, University of Illinois Urbana-Champaign; Urbana, Illinois, United Sates of America
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, Illinois, United Sates of America
| | - Rebecca Lee Smith
- Program in Ecology, Evolution & Conservation Biology, University of Illinois Urbana-Champaign; Urbana, Illinois, United Sates of America
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, Illinois, United Sates of America
| |
Collapse
|
8
|
Huang X, Athrey GN, Kaufman PE, Fredregill C, Slotman MA. Effective population size of Culex quinquefasciatus under insecticide-based vector management and following Hurricane Harvey in Harris County, Texas. Front Genet 2023; 14:1297271. [PMID: 38075683 PMCID: PMC10702589 DOI: 10.3389/fgene.2023.1297271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/24/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction: Culex quinquefasciatus is a mosquito species of significant public health importance due to its ability to transmit multiple pathogens that can cause mosquito-borne diseases, such as West Nile fever and St. Louis encephalitis. In Harris County, Texas, Cx. quinquefasciatus is a common vector species and is subjected to insecticide-based management by the Harris County Public Health Department. However, insecticide resistance in mosquitoes has increased rapidly worldwide and raises concerns about maintaining the effectiveness of vector control approaches. This concern is highly relevant in Texas, with its humid subtropical climate along the Gulf Coast that provides suitable habitat for Cx. quinquefasciatus and other mosquito species that are known disease vectors. Therefore, there is an urgent and ongoing need to monitor the effectiveness of current vector control programs. Methods: In this study, we evaluated the impact of vector control approaches by estimating the effective population size of Cx. quinquefasciatus in Harris County. We applied Approximate Bayesian Computation to microsatellite data to estimate effective population size. We collected Cx. quinquefasciatus samples from two mosquito control operation areas; 415 and 802, during routine vector monitoring in 2016 and 2017. No county mosquito control operations were applied at area 415 in 2016 and 2017, whereas extensive adulticide spraying operations were in effect at area 802 during the summer of 2016. We collected data for eighteen microsatellite markers for 713 and 723 mosquitoes at eight timepoints from 2016 to 2017 in areas 415 and 802, respectively. We also investigated the impact of Hurricane Harvey's landfall in the Houston area in August of 2017 on Cx. quinquefasciatus population fluctuation. Results: We found that the bottleneck scenario was the most probable historical scenario describing the impact of the winter season at area 415 and area 802, with the highest posterior probability of 0.9167 and 0.4966, respectively. We also detected an expansion event following Hurricane Harvey at area 802, showing a 3.03-fold increase in 2017. Discussion: Although we did not detect significant effects of vector control interventions, we found considerable influences of the winter season and a major hurricane on the effective population size of Cx. quinquefasciatus. The fluctuations in effective population size in both areas showed a significant seasonal pattern. Additionally, the significant population expansion following Hurricane Harvey in 2017 supports the necessity for post-hurricane vector-control interventions.
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Giridhar N. Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Phillip E. Kaufman
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Chris Fredregill
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - Michel A. Slotman
- Department of Entomology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Fields M, Balanay JAG, Byrd BD, Kearney GD, Richards SL. Retrospective Assessment of Preparedness for Mosquito Control Post-Hurricane Florence in North Carolina. Disaster Med Public Health Prep 2023; 17:e511. [PMID: 37849374 DOI: 10.1017/dmp.2023.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
OBJECTIVES Ideally, mosquito control programs (MCPs) use surveillance to target control measures to potentially dangerous mosquito populations. In North Carolina (NC), where there is limited financial support for mosquito control, communities may suffer from mosquito-related issues post-hurricane due to lack of existing MCPs. Here, study objectives were to (1) investigate the emergency response of a subset of NC counties post-Hurricane Florence and (2) develop guidelines and policy recommendations to assist MCPs in post-hurricane mosquito control response. METHODS A survey was administered to a subset of eastern NC counties (an area previously impacted by hurricanes) with various levels of MCPs (from none to well-developed). RESULTS All respondents indicated that having Federal Emergency Management Agency (FEMA) training would be helpful in developing a post-hurricane emergency response plan for mosquito control. There was concern related to a lack of knowledge of emergency control methods (eg, aerial/ground, adulticiding/larviciding) post-hurricane. MCP structure (eg, infrastructure, resources, operational plans/policies) could facilitate response activities and help ensure necessary emergency financial support from agencies such as FEMA. CONCLUSIONS Mosquito control post-hurricane protects public health. Public health and other agencies can be networking resources for MCPs. Policy recommendations include implementation of routine FEMA assistance training workshops to improve an understanding of processes involved in assistance and reimbursement.
Collapse
Affiliation(s)
- Melinda Fields
- Environmental Health Sciences Program, Department of Health Education and Promotion, College of Health Human Performance, East Carolina University, Greenville, NC, USA
| | - Jo Anne G Balanay
- Environmental Health Sciences Program, Department of Health Education and Promotion, College of Health Human Performance, East Carolina University, Greenville, NC, USA
| | - Brian D Byrd
- Environmental Health Sciences Program, School of Health Sciences, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC, USA
| | - Gregory D Kearney
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Stephanie L Richards
- Environmental Health Sciences Program, Department of Health Education and Promotion, College of Health Human Performance, East Carolina University, Greenville, NC, USA
| |
Collapse
|
10
|
Albó Timor A, Lucati F, Bartumeus F, Caner J, Escartin S, Mariani S, Palmer JRB, Ventura M. A fast and inexpensive genotyping system for the simultaneous analysis of human and Aedes albopictus short tandem repeats. Parasit Vectors 2023; 16:347. [PMID: 37798758 PMCID: PMC10557338 DOI: 10.1186/s13071-023-05977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Determination of the interactions between hematophagous mosquitoes and their human hosts is of great importance for better understanding the transmission dynamics of mosquito-borne arboviruses and developing effective strategies to mitigate risk. Genetic analysis of human and mosquito DNA can play a key role in this, but commercial kits for human short tandem repeat (STR) genotyping are expensive and do not allow for the simultaneous STR analysis of host and vector DNA. Here, we present an inexpensive and straightforward STR-loci multiplex system capable of simultaneously amplifying Aedes albopictus and human STRs from blood-fed mosquitoes. Additionally, we examine the effect of storage methods and post-feeding time on the integrity of host DNA. METHODS Thirty-five STRs (16 human and 19 Ae. albopictus STRs) subdivided in three multiplexes were tested for amplification and scoring reliability. Under laboratory conditions we compared the efficacy of two preservation methods (absolute ethanol vs lysis buffer) on the integrity of host DNA in Ae. albopictus blood meals. We also evaluated the effect of post-feeding time by sacrificing blood-fed mosquitoes at different time intervals after feeding, and we assessed our ability to detect multiple feedings. To determine if the system can be employed successfully under field conditions, we carried out a preliminary study using field-collected Ae. albopictus. RESULTS All 35 STRs amplified consistently in the laboratory. Lysis buffer performed better than absolute ethanol in terms of allele peak height and clarity of electropherograms. Complete human DNA profiles could be obtained up to 48 h following the blood meal. Analysis of multiple feedings confirmed that peak heights can be used as a proxy to determine post-feeding time and thus derive the number of different people bitten by a mosquito. In the field trial, amplification was successful for 32 STRs. We found human DNA signal in 38 of the 61 field-collected mosquitoes (62%), of which 34 (89%) had ingested a single blood meal, while four (11%) contained double meals. CONCLUSIONS Our new genotyping system allows fast and reliable screening of both host and vector species, and can be further adapted to other mosquito species living in close contact with humans.
Collapse
Affiliation(s)
| | - Federica Lucati
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain.
- Department of Political and Social Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Frederic Bartumeus
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
- Centre for Research on Ecology and Forestry Applications (CREAF), Cerdanyola del Vallès, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jenny Caner
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Santi Escartin
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Simone Mariani
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - John R B Palmer
- Department of Political and Social Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Ventura
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| |
Collapse
|
11
|
Zahid MH, Van Wyk H, Morrison AC, Coloma J, Lee GO, Cevallos V, Ponce P, Eisenberg JNS. The biting rate of Aedes aegypti and its variability: A systematic review (1970-2022). PLoS Negl Trop Dis 2023; 17:e0010831. [PMID: 37552669 PMCID: PMC10456196 DOI: 10.1371/journal.pntd.0010831] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 08/25/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Transmission models have a long history in the study of mosquito-borne disease dynamics. The mosquito biting rate (MBR) is an important parameter in these models, however, estimating its value empirically is complex. Modeling studies obtain biting rate values from various types of studies, each of them having its strengths and limitations. Thus, understanding these study designs and the factors that contribute to MBR estimates and their variability is an important step towards standardizing these estimates. We do this for an important arbovirus vector Aedes aegypti. METHODOLOGY/PRINCIPAL FINDINGS We perform a systematic review using search terms such as 'biting rate' and 'biting frequency' combined with 'Aedes aegypti' ('Ae. aegypti' or 'A. aegypti'). We screened 3,201 articles from PubMed and ProQuest databases, of which 21 met our inclusion criteria. Two broader types of studies are identified: human landing catch (HLC) studies and multiple feeding studies. We analyze the biting rate data provided as well as the methodologies used in these studies to characterize the variability of these estimates across temporal, spatial, and environmental factors and to identify the strengths and limitations of existing methodologies. Based on these analyses, we present two approaches to estimate population mean per mosquito biting rate: one that combines studies estimating the number of bites taken per gonotrophic cycle and the gonotrophic cycle duration, and a second that uses data from histological studies. Based on one histological study dataset, we estimate biting rates of Ae. aegypti (0.41 and 0.35 bite/mosquito-day in Thailand and Puerto Rico, respectively). CONCLUSIONS/SIGNIFICANCE Our review reinforces the importance of engaging with vector biology when using mosquito biting rate data in transmission modeling studies. For Ae. aegypti, this includes understanding the variation of the gonotrophic cycle duration and the number of bites per gonotrophic cycle, as well as recognizing the potential for spatial and temporal variability. To address these variabilities, we advocate for site-specific data and the development of a standardized approach to estimate the biting rate.
Collapse
Affiliation(s)
- Mondal Hasan Zahid
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biology, University of Florida, Gainesville, Florida, United States of America and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Hannah Van Wyk
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, California, United States of America
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Gwenyth O. Lee
- Rutgers Global Health Institute & Department of Biostatistics and Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Varsovia Cevallos
- Instituto Nacional de Investigación en Salud Pública, Centro de investigación en enfermedades infecciosas y vectoriales-CIREV, Quito, Ecuador
| | - Patricio Ponce
- Instituto Nacional de Investigación en Salud Pública, Centro de investigación en enfermedades infecciosas y vectoriales-CIREV, Quito, Ecuador
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
12
|
Li HH, Su MP, Wu SC, Tsou HH, Chang MC, Cheng YC, Tsai KN, Wang HW, Chen GH, Tang CK, Chung PJ, Tsai WT, Huang LR, Yueh YA, Chen HW, Pan CY, Akbari OS, Chang HH, Yu GY, Marshall JM, Chen CH. Mechanical transmission of dengue virus by Aedes aegypti may influence disease transmission dynamics during outbreaks. EBioMedicine 2023; 94:104723. [PMID: 37487418 PMCID: PMC10382859 DOI: 10.1016/j.ebiom.2023.104723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Dengue virus outbreaks are increasing in number and severity worldwide. Viral transmission is assumed to require a minimum time period of viral replication within the mosquito midgut. It is unknown if alternative transmission periods not requiring replication are possible. METHODS We used a mouse model of dengue virus transmission to investigate the potential of mechanical transmission of dengue virus. We investigated minimal viral titres necessary for development of symptoms in bitten mice and used resulting parameters to inform a new model of dengue virus transmission within a susceptible population. FINDINGS Naïve mice bitten by mosquitoes immediately after they took partial blood meals from dengue infected mice showed symptoms of dengue virus, followed by mortality. Incorporation of mechanical transmission into mathematical models of dengue virus transmission suggest that this supplemental transmission route could result in larger outbreaks which peak sooner. INTERPRETATION The potential of dengue transmission routes independent of midgut viral replication has implications for vector control strategies that target mosquito lifespan and suggest the possibility of similar mechanical transmission routes in other disease-carrying mosquitoes. FUNDING This study was funded by grants from the National Health Research Institutes, Taiwan (04D2-MMMOST02), the Human Frontier Science Program (RGP0033/2021), the National Institutes of Health (1R01AI143698-01A1, R01AI151004 and DP2AI152071) and the Ministry of Science and Technology, Taiwan (MOST104-2321-B-400-016).
Collapse
Affiliation(s)
- Hsing-Han Li
- National Mosquito-Borne Disease Control Research Center, NHRI, Miaoli, 350401, Taiwan; National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan; Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Matthew P Su
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan; Institute for Advanced Research, Nagoya University, Nagoya, 464-8601, Japan
| | - Shih-Cheng Wu
- National Mosquito-Borne Disease Control Research Center, NHRI, Miaoli, 350401, Taiwan; National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan; Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10021, Taiwan
| | - Hsiao-Hui Tsou
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 350401, Taiwan; Graduate Institute of Biostatistics, College of Public Health, China Medical University, Taichung, 40402, Taiwan
| | - Meng-Chun Chang
- Department of Life Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chieh Cheng
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 350401, Taiwan
| | - Kuen-Nan Tsai
- Institute of Molecular and Genomic Medicine, NHRI, Miaoli, 350401, Taiwan
| | - Hsin-Wei Wang
- National Mosquito-Borne Disease Control Research Center, NHRI, Miaoli, 350401, Taiwan; National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Guan-Hua Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Cheng-Kang Tang
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan; Program of Plant Protection and Health, Academy of Circular Economy, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Pei-Jung Chung
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Wan-Ting Tsai
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, NHRI, Miaoli, 350401, Taiwan
| | - Yueh Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, NHRI, Miaoli, 350401, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Chao-Ying Pan
- Department of Health, Kaohsiung City Government, Kaohsiung, 800852, Taiwan
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hsiao-Han Chang
- Department of Life Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Chun-Hong Chen
- National Mosquito-Borne Disease Control Research Center, NHRI, Miaoli, 350401, Taiwan; National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan.
| |
Collapse
|
13
|
Vajda ÉA, Saeung M, Ross A, McIver DJ, Tatarsky A, Moore SJ, Lobo NF, Chareonviriyaphap T. A semi-field evaluation in Thailand of the use of human landing catches (HLC) versus human-baited double net trap (HDN) for assessing the impact of a volatile pyrethroid spatial repellent and pyrethroid-treated clothing on Anopheles minimus landing. Malar J 2023; 22:202. [PMID: 37400831 PMCID: PMC10318828 DOI: 10.1186/s12936-023-04619-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/10/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The mosquito landing rate measured by human landing catches (HLC) is the conventional endpoint used to evaluate the impact of vector control interventions on human-vector exposure. Non-exposure based alternatives to the HLC are desirable to minimize the risk of accidental mosquito bites. One such alternative is the human-baited double net trap (HDN), but the estimated personal protection of interventions using the HDN has not been compared to the efficacy estimated using HLC. This semi-field study in Sai Yok District, Kanchanaburi Province, Thailand, evaluates the performance of the HLC and the HDN for estimating the effect on Anopheles minimus landing rates of two intervention types characterized by contrasting modes of action, a volatile pyrethroid spatial repellent (VSPR) and insecticide-treated clothing (ITC). METHODS Two experiments to evaluate the protective efficacy of (1) a VPSR and (2) ITC, were performed. A block randomized cross-over design over 32 nights was carried out with both the HLC or HDN. Eight replicates per combination of collection method and intervention or control arm were conducted. For each replicate, 100 An. minimus were released and were collected for 6 h. The odds ratio (OR) of the released An. minimus mosquitoes landing in the intervention compared to the control arm was estimated using logistic regression, including collection method, treatment, and experimental day as fixed effects. RESULTS For the VPSR, the protective efficacy was similar for the two methods: 99.3%, 95% CI (99.5-99.0) when measured by HLC, and 100% (100, Inf) when measured by HDN where no mosquitoes were caught (interaction test p = 0.99). For the ITC, the protective efficacy was 70% (60-77%) measured by HLC but there was no evidence of protection when measured by HDN [4% increase (15-27%)] (interaction test p < 0.001). CONCLUSIONS Interactions between mosquitoes, bite prevention tools and the sampling method may impact the estimated intervention protective efficacy. Consequently, the sampling method must be considered when evaluating these interventions. The HDN is a valid alternative trapping method (relative to the HLC) for evaluating the impact of bite prevention methods that affect mosquito behaviour at a distance (e.g. VPSR), but not for interventions that operate through tarsal contact (e.g., ITC).
Collapse
Affiliation(s)
- Élodie A Vajda
- Malaria Elimination Initiative, University of California, 550 16th street, San Francisco, CA, 94158, USA.
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, CH-2003, Basel, Switzerland.
| | - Manop Saeung
- Kasetsart University, 50 Thanon Ngamwongwan, Lat Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Amanda Ross
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, CH-2003, Basel, Switzerland
| | - David J McIver
- Malaria Elimination Initiative, University of California, 550 16th street, San Francisco, CA, 94158, USA
| | - Allison Tatarsky
- Malaria Elimination Initiative, University of California, 550 16th street, San Francisco, CA, 94158, USA
| | - Sarah J Moore
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, CH-2003, Basel, Switzerland
- Vector Control Product Testing Unit, Department of Environmental and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| | - Neil F Lobo
- Malaria Elimination Initiative, University of California, 550 16th street, San Francisco, CA, 94158, USA
- University of Notre Dame, Notre Dame, IN, 46556, USA
| | | |
Collapse
|
14
|
Wu SL, Henry JM, Citron DT, Mbabazi Ssebuliba D, Nakakawa Nsumba J, Sánchez C. HM, Brady OJ, Guerra CA, García GA, Carter AR, Ferguson HM, Afolabi BE, Hay SI, Reiner RC, Kiware S, Smith DL. Spatial dynamics of malaria transmission. PLoS Comput Biol 2023; 19:e1010684. [PMID: 37307282 PMCID: PMC10289676 DOI: 10.1371/journal.pcbi.1010684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/23/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023] Open
Abstract
The Ross-Macdonald model has exerted enormous influence over the study of malaria transmission dynamics and control, but it lacked features to describe parasite dispersal, travel, and other important aspects of heterogeneous transmission. Here, we present a patch-based differential equation modeling framework that extends the Ross-Macdonald model with sufficient skill and complexity to support planning, monitoring and evaluation for Plasmodium falciparum malaria control. We designed a generic interface for building structured, spatial models of malaria transmission based on a new algorithm for mosquito blood feeding. We developed new algorithms to simulate adult mosquito demography, dispersal, and egg laying in response to resource availability. The core dynamical components describing mosquito ecology and malaria transmission were decomposed, redesigned and reassembled into a modular framework. Structural elements in the framework-human population strata, patches, and aquatic habitats-interact through a flexible design that facilitates construction of ensembles of models with scalable complexity to support robust analytics for malaria policy and adaptive malaria control. We propose updated definitions for the human biting rate and entomological inoculation rates. We present new formulas to describe parasite dispersal and spatial dynamics under steady state conditions, including the human biting rates, parasite dispersal, the "vectorial capacity matrix," a human transmitting capacity distribution matrix, and threshold conditions. An [Formula: see text] package that implements the framework, solves the differential equations, and computes spatial metrics for models developed in this framework has been developed. Development of the model and metrics have focused on malaria, but since the framework is modular, the same ideas and software can be applied to other mosquito-borne pathogen systems.
Collapse
Affiliation(s)
- Sean L. Wu
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - John M. Henry
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
- Quantitative Ecology and Resource Management, University of Washington, Seattle, Washington, United States of America
| | - Daniel T. Citron
- Department of Population Health, Grossman School of Medicine, New York University, New York, New York, United States of America
| | | | - Juliet Nakakawa Nsumba
- Department of Mathematics, Makerere University Department of Mathematics, School of Physical Sciences, College of Natural Science, Makerere University, Kampala, Uganda
| | - Héctor M. Sánchez C.
- Division of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
- Division of Biostatistics, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Oliver J. Brady
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Carlos A. Guerra
- MCD Global Health, Silver Spring, Maryland, United States of America
| | | | - Austin R. Carter
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - Heather M. Ferguson
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Bakare Emmanuel Afolabi
- International Centre for Applied Mathematical Modelling and Data Analytics, Federal University Oye Ekiti, Ekiti State, Nigeria
- Department of Mathematics, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Simon I. Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
- Department of Health Metrics Science, University of Washington, Seattle, Washington, United States of America
| | - Robert C. Reiner
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
- Department of Health Metrics Science, University of Washington, Seattle, Washington, United States of America
| | - Samson Kiware
- Ifakara Health Institute, Dar es Salaam, Tanzania
- Pan-African Mosquito Control Association (PAMCA), Nairobi, Kenya
| | - David L. Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
- Department of Health Metrics Science, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Padonou GG, Zoungbédji DM, Sovi A, Salako AS, Konkon AK, Yovogan B, Adoha CJ, Odjo EM, Osse R, Sina H, Govoétchan R, Kpanou CD, Sagbohan HW, Baba-Moussa L, Akogbéto M. Trophic preferences of Anopheles coluzzii (Diptera: Culicidae): what implications for malaria vector control in Benin? JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:554-563. [PMID: 36939048 DOI: 10.1093/jme/tjad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/14/2023] [Accepted: 02/03/2023] [Indexed: 05/13/2023]
Abstract
The main objective of the present study is to assess the preferences in terms of vertebrate hosts of Anopheles coluzzii, the main malaria vector in the pastoral area of Malanville, Benin, where rice cultivation and livestock are the main source of income for the populations. Adult mosquitoes were collected through pyrethrum spray catch, and human landing catch in two communes in Benin: Malanville, a pastoral area, and Porto-Novo, a nonpastoral area. Molecular species identification was performed through PCR within the Anopheles gambiae complex. Blood meal origin and P. falciparum sporozoite infection were determined using ELISA blood meal and circumsporozoite protein tests, respectively. Overall, 97% of females of An. gambiae s.l. were An. coluzzii, with biting behavior more pronounced outdoors in the pastoral area. In Malanville, the main vertebrate hosts on which females An. coluzzii blood fed were goats (44%), humans (24.29%), bovines (22%), and pigs (1.4%). Our results also showed that single-host blood meals (human: 24.29% or animal: 68%) were mostly observed compared to mixed blood meals (8.58%). The human biting rate (HBR) and P. falciparum sporozoite rate (SR) of An. coluzzii were 66.25 bites/man/night and 0.77%, respectively. However, in the nonpastoral zone (Porto-novo), 93.98% of samples were An. coluzzii. The latter blood-fed mostly (86.84%) on humans, with an estimated HBR of 21.53 b/m/n and SR of 5.81%. The present study revealed an opportunistic and zoophagic behavior of An. coluzzii in the Malanville area with an overall low mean SR.
Collapse
Affiliation(s)
- Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - David Mahouton Zoungbédji
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Faculty of Agronomy, University of Parakou, Parakou, Benin
- Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, UK
| | | | - Alphonse Keller Konkon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Boulais Yovogan
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Constantin Jesukèdè Adoha
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Esdras Mahoutin Odjo
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Razaki Osse
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- École de gestion et d'exploitation des systèmes d'élevage, Université Nationale d'Agriculture de Porto-Novo, Porto-Novo, Bénin
| | - Haziz Sina
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Abomey-Calavi, Benin
| | - Renaud Govoétchan
- Faculty of Agronomy, University of Parakou, Parakou, Benin
- Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, UK
| | - Casimir Dossou Kpanou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Hermann W Sagbohan
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Lamine Baba-Moussa
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Abomey-Calavi, Benin
| | - Martin Akogbéto
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| |
Collapse
|
16
|
Glover B, Lee GO, Suing O, Ha TA, Thongsripong P, Cevallos V, Ponce P, Van Wyk H, Morrison AC, Coloma J, Eisenberg JN. Validity of Self-Reported Mosquito Bites to Assess Household Mosquito Abundance in Six Communities of Esmeraldas Province, Ecuador. Am J Trop Med Hyg 2023; 108:981-986. [PMID: 37037437 PMCID: PMC10160883 DOI: 10.4269/ajtmh.22-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/13/2023] [Indexed: 04/12/2023] Open
Abstract
Mosquito-borne diseases are a global burden; however, current methods of evaluating human-mosquito contact rates are expensive and time consuming. Validated surveys of self-reported mosquito bites may be an inexpensive way to determine mosquito presence and bite exposure level in an area, but this remains untested. In this study, a survey of self-reported mosquito bites was validated against household mosquito abundance from six communities in Esmeraldas, Ecuador. From February 2021 to July 2022, households were interviewed monthly, and five questions were used to ask participants how often they were bitten by mosquitoes at different times during the day. At the same time, adult mosquitoes were collected using a Prokopack aspirator. Species were identified and counted. Survey responses were compared with the total number of mosquitoes found in the home using negative binomial regression. More frequent self-reported mosquito bites were significantly associated with higher numbers of collected adult mosquitoes. These associations were driven by the prevalence of the dominant genera, Culex. These results suggest that surveys of perceived mosquito bites relate to actual mosquito presence, making them a potentially useful tool for determining the impact of vector-control interventions on community perceptions of risk but less useful for assessing the risk of nondominant species such as Aedes aegypti. Further work is needed to examine the robustness of these results in other contexts.
Collapse
Affiliation(s)
- Brian Glover
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Gwenyth O. Lee
- Rutgers Global Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey
| | - Oscar Suing
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Thien-An Ha
- Division of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, California
| | - Panpim Thongsripong
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida
| | - Varsovia Cevallos
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Patricio Ponce
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Hannah Van Wyk
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, California
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, California
| | - Joseph N.S. Eisenberg
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
Roy B, Venu E, Kumar S, Dubey S, Lakshman D, Mandal B, Sinha P. Leaf Curl Epidemic Risk in Chilli as a Consequence of Vector Migration Rate and Contact Rate Dynamics: A Critical Guide to Management. Viruses 2023; 15:v15040854. [PMID: 37112834 PMCID: PMC10144731 DOI: 10.3390/v15040854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Chilli is an important commercial crop grown in tropical and subtropical climates. The whitefly-transmitted chilli leaf curl virus (ChiLCV) is a serious threat to chilli cultivation. Vector migration rate and host–vector contact rate, the major drivers involved in the epidemic process, have been pinpointed to link management. The complete interception of migrant vectors immediately after transplantation has been noted to increase the survival time (to remain infection free) of the plants (80%) and thereby delay the epidemic process. The survival time under interception (30 days) has been noted to be nine weeks (p < 0.05), as compared to five weeks, which received a shorter period of interception (14–21 days). Non-significant differences in hazard ratios between 21- and 30-day interceptions helped optimize the cover period to 26 days. Vector feeding rate, estimated as a component of contact rate, is noted to increase until the sixth week with host density and decline subsequently due to plant succulence factor. Correspondence between the peak time of virus transmission or inoculation rate (at 8 weeks) and contact rate (at 6 weeks) suggests that host succulence is of critical importance in host–vector interactions. Infection proportion estimates in inoculated plants at different leaf stages have supported the view that virus transmission potential with plant age decreases, presumably due to modification in contact rate. The hypothesis that migrant vectors and contact rate dynamics are the primary drivers of the epidemic has been proved and translated into rules to guide management strategies.
Collapse
Affiliation(s)
- Buddhadeb Roy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Emmadi Venu
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sathiyaseelan Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shailja Dubey
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Dilip Lakshman
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Bikash Mandal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Parimal Sinha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence:
| |
Collapse
|
18
|
Wang J, Zhu Z. Novel paradigm of mosquito-borne disease control based on self-powered strategy. Front Public Health 2023; 11:1115000. [PMID: 36741958 PMCID: PMC9895093 DOI: 10.3389/fpubh.2023.1115000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Affiliation(s)
- Junhao Wang
- School of Electronic Information Engineering, Southwest University, Chongqing, China,State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Zhiyuan Zhu
- School of Electronic Information Engineering, Southwest University, Chongqing, China,*Correspondence: Zhiyuan Zhu ✉
| |
Collapse
|
19
|
Fikrig K, Rose N, Burkett-Cadena N, Kamgang B, Leisnham PT, Mangan J, Ponlawat A, Rothman SE, Stenn T, McBride CS, Harrington LC. Aedes albopictus host odor preference does not drive observed variation in feeding patterns across field populations. Sci Rep 2023; 13:130. [PMID: 36599854 DOI: 10.1038/s41598-022-26591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Laboratory and field-based studies of the invasive mosquito Aedes albopictus demonstrate its competency to transmit over twenty different pathogens linked to a broad range of vertebrate hosts. The vectorial capacity of Ae. albopictus to transmit these pathogens remains unclear, partly due to knowledge gaps regarding its feeding behavior. Blood meal analyses from field-captured specimens have shown vastly different feeding patterns, with a wide range of anthropophagy (human feeding) and host diversity. To address this knowledge gap, we asked whether differences in innate host preference may drive observed variation in Ae. albopictus feeding patterns in nature. Low generation colonies (F2-F4) were established with field-collected mosquitoes from three populations with high reported anthropophagy (Thailand, Cameroon, and Florida, USA) and three populations in the United States with low reported anthropophagy (New York, Maryland, and Virginia). The preference of these Ae. albopictus colonies for human versus non-human animal odor was assessed in a dual-port olfactometer along with control Ae. aegypti colonies already known to show divergent behavior in this assay. All Ae. albopictus colonies were less likely (p < 0.05) to choose the human-baited port than the anthropophilic Ae. aegypti control, instead behaving similarly to zoophilic Ae. aegypti. Our results suggest that variation in reported Ae. albopictus feeding patterns are not driven by differences in innate host preference, but may result from differences in host availability. This work is the first to compare Ae. albopictus and Ae. aegypti host preference directly and provides insight into differential vectorial capacity and human feeding risk.
Collapse
Affiliation(s)
| | - Noah Rose
- Princeton University, Princeton, NJ, USA
| | | | - Basile Kamgang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | | | | | - Alongkot Ponlawat
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | | | | | | |
Collapse
|
20
|
Kasper J, Tomotani B, Hovius A, McIntyre M, Musicante M. Changing distributions of the cosmopolitan mosquito species Culex quinquefasciatus Say and endemic Cx. pervigilans Bergroth (Diptera: Culicidae) in New Zealand. NEW ZEALAND JOURNAL OF ZOOLOGY 2022. [DOI: 10.1080/03014223.2022.2121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Julia Kasper
- Natural Environment, Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | | | - Anton Hovius
- Natural Environment, Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Mary McIntyre
- Health, Environment and Infection, Dept. Public Health, University of Otago, Wellington, New Zealand
| | | |
Collapse
|
21
|
Marzal A, Magallanes S, Garcia-Longoria L. Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour. BIOLOGY 2022; 11:726. [PMID: 35625454 PMCID: PMC9138572 DOI: 10.3390/biology11050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Vector-borne infectious diseases (e.g., malaria, dengue fever, and yellow fever) result from a parasite transmitted to humans and other animals by blood-feeding arthropods. They are major contributors to the global disease burden, as they account for nearly a fifth of all infectious diseases worldwide. The interaction between vectors and their hosts plays a key role driving vector-borne disease transmission. Therefore, identifying factors governing host selection by blood-feeding insects is essential to understand the transmission dynamics of vector-borne diseases. Here, we review published information on the physical and chemical stimuli (acoustic, visual, olfactory, moisture and thermal cues) used by mosquitoes and other haemosporidian vectors to detect their vertebrate hosts. We mainly focus on studies on avian malaria and related haemosporidian parasites since this animal model has historically provided important advances in our understanding on ecological and evolutionary process ruling vector-borne disease dynamics and transmission. We also present relevant studies analysing the capacity of feather and skin symbiotic bacteria in the production of volatile compounds with vector attractant properties. Furthermore, we review the role of uropygial secretions and symbiotic bacteria in bird-insect vector interactions. In addition, we present investigations examining the alterations induced by haemosporidian parasites on their arthropod vector and vertebrate host to enhance parasite transmission. Finally, we propose future lines of research for designing successful vector control strategies and for infectious disease management.
Collapse
Affiliation(s)
- Alfonso Marzal
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain;
- Grupo de Investigación y Sostenibilidad Ambiental, Universidad Nacional Federico Villarreal, Lima 15007, Peru
| | - Sergio Magallanes
- Department of Wetland Ecology, Biological Station (EBD-CSIC), Avda, Américo Vespucio 26, 41092 Sevilla, Spain;
| | - Luz Garcia-Longoria
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain;
| |
Collapse
|
22
|
Fikrig K, Harrington LC. Understanding and interpreting mosquito blood feeding studies: the case of Aedes albopictus. Trends Parasitol 2021; 37:959-975. [PMID: 34497032 DOI: 10.1016/j.pt.2021.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
Blood feeding is a fundamental mosquito behavior with consequences for pathogen transmission and control. Feeding behavior can be studied through two lenses - patterns and preference. Feeding patterns are assessed via blood meal analyses, reflecting mosquito-host associations influenced by environmental and biological parameters. Bias can profoundly impact results, and we provide recommendations for mitigating these effects. We also outline design choices for host preference research, which can take many forms, and highlight their respective (dis)advantages for preference measurement. Finally, Aedes albopictus serves as a case study for how to apply these lessons to interpret data and understand feeding biology. We illustrate how assumptions and incomplete evidence can lead to inconsistent interpretations by reviewing Ae. albopictus feeding studies alongside prevalent narratives about perceived behavior.
Collapse
Affiliation(s)
- Kara Fikrig
- Department of Entomology, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|