1
|
Hernandez-Hernandez O, Sabater C, Calvete-Torre I, Doyagüez EG, Muñoz-Labrador AM, Julio-Gonzalez C, de Las Rivas B, Muñoz R, Ruiz L, Margolles A, Mancheño JM, Moreno FJ. Tailoring the natural rare sugars D-tagatose and L-sorbose to produce novel functional carbohydrates. NPJ Sci Food 2024; 8:74. [PMID: 39366963 PMCID: PMC11452612 DOI: 10.1038/s41538-024-00320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
This multidisciplinary study details the biosynthesis of novel non-digestible oligosaccharides derived from rare sugars, achieved through transfructosylation of D-tagatose and L-sorbose by levansucrase from Bacillus subtilis CECT 39 (SacB). The characterization of these carbohydrates using NMR and molecular docking was instrumental in elucidating the catalytic mechanism and substrate preference of SacB. Tagatose-based oligosaccharides were higher in abundance than L-sorbose-based oligosaccharides, with the most representative structures being: β-D-Fru-(2→6)-β-D-Fru-(2→1)-D-Tag and β-D-Fru-(2→1)-D-Tag. In vitro studies demonstrated the resistance of tagatose-based oligosaccharides to intestinal digestion and their prebiotic properties, providing insights into their structure-function relationship. β-D-Fru-(2→1)-D-Tag was the most resistant structure to small-intestinal digestion after three hours (99.8% remained unaltered). This disaccharide and the commercial FOS clustered in similar branches, indicating comparable modulatory properties on human fecal microbiota, and exerted a higher bifidogenic effect than unmodified tagatose. The bioconversion of selected rare sugars into β-fructosylated species with a higher degree of polymerization emerges as an efficient strategy to enhance the bioavailability of these carbohydrates and promote their interaction with the gut microbiota. These findings open up new opportunities for tailoring natural rare sugars, like D-tagatose and L-sorbose, to produce novel biosynthesized carbohydrates with functional and structural properties desirable for use as emerging prebiotics and low-calorie sweeteners.
Collapse
Affiliation(s)
| | - Carlos Sabater
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Inés Calvete-Torre
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Elisa G Doyagüez
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Ana M Muñoz-Labrador
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Cristina Julio-Gonzalez
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Blanca de Las Rivas
- Institute of Food Science, Technology and Nutrition, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Rosario Muñoz
- Institute of Food Science, Technology and Nutrition, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Lorena Ruiz
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - José M Mancheño
- Institute of Physical Chemistry 'Blas Cabrera' (IQF-CSIC), Serrano 119, 28006, Madrid, Spain
| | - F Javier Moreno
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Lee CY, So YS, Yoo SH, Lee BH, Seo DH. Impact of artificial sweeteners and rare sugars on the gut microbiome. Food Sci Biotechnol 2024; 33:2047-2064. [PMID: 39130663 PMCID: PMC11315849 DOI: 10.1007/s10068-024-01597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 08/13/2024] Open
Abstract
Alternative sugars are often used as sugar substitutes because of their low calories and glycemic index. Recently, consumption of these sweeteners in diet foods and beverages has increased dramatically, raising concerns about their health effects. This review examines the types and characteristics of artificial sweeteners and rare sugars and analyzes their impact on the gut microbiome. In the section on artificial sweeteners, we have described the chemical structures of different sweeteners, their digestion and absorption processes, and their effects on the gut microbiota. We have also discussed the biochemical properties and production methods of rare sugars and their positive and negative effects on gut microbial communities. Finally, we have described how artificial sweeteners and rare sugars alter the gut microbiome and how these changes affect the gut environment. Our observations aim to improve our understanding regarding the potential health implications of the consumption of artificial sweeteners and low-calorie sugars.
Collapse
Affiliation(s)
- Chang-Young Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Yun-Sang So
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| |
Collapse
|
3
|
Kishida K, Iida T, Yamada T, Toyoda Y. Intestinal absorption of D-fructose isomers, D-allulose, D-sorbose and D-tagatose, via glucose transporter type 5 (GLUT5) but not sodium-dependent glucose cotransporter 1 (SGLT1) in rats. Br J Nutr 2023; 130:1852-1858. [PMID: 38713062 DOI: 10.1017/s0007114523001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
D-allulose, D-sorbose and D-tagatose are D-fructose isomers that are called rare sugars. These rare sugars have been studied intensively in terms of biological production and food application as well as physiological effects. There are limited papers with regard to the transporters mediating the intestinal absorption of these rare sugars. We examined whether these rare sugars are absorbed via sodium-dependent glucose cotransporter 1 (SGLT1) as well as via GLUT type 5 (GLUT5) using rats. High-fructose diet fed rats, which express more intestinal GLUT5, exhibited significantly higher peripheral concentrations, Cmax and AUC0–180 min when D-allulose, D-sorbose and D-tagatose were orally administrated. KGA-2727, a selective SGLT1 inhibitor, did not affect the peripheral and portal vein concentrations and pharmacokinetic parameters of these rare sugars. The results suggest that D-allulose, D-sorbose and D-tagatose are likely transported via GLUT5 but not SGLT1 in rat small intestine.
Collapse
Affiliation(s)
- Kunihiro Kishida
- Department of Science and Technology on Food Safety, Kindai University, 930 Nishimitani, Kinokawa, Wakayama649-6493, Japan
| | - Tetsuo Iida
- Research and Development, Matsutani Chemical Industry Company, Limited, 5-3 Kita-Itami, Itami, Hyogo664-8508, Japan
| | - Takako Yamada
- Research and Development, Matsutani Chemical Industry Company, Limited, 5-3 Kita-Itami, Itami, Hyogo664-8508, Japan
| | - Yukiyasu Toyoda
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi468-8503, Japan
| |
Collapse
|
4
|
Papadopoulos PD, Tsigalou C, Valsamaki PN, Konstantinidis TG, Voidarou C, Bezirtzoglou E. The Emerging Role of the Gut Microbiome in Cardiovascular Disease: Current Knowledge and Perspectives. Biomedicines 2022; 10:biomedicines10050948. [PMID: 35625685 PMCID: PMC9139035 DOI: 10.3390/biomedicines10050948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The collection of normally non-pathogenic microorganisms that mainly inhabit our gut lumen shapes our health in many ways. Structural and functional perturbations in the gut microbial pool, known as “dysbiosis”, have been proven to play a vital role in the pathophysiology of several diseases, including cardiovascular disease (CVD). Although therapeutic regimes are available to treat this group of diseases, they have long been the main cause of mortality and morbidity worldwide. While age, sex, genetics, diet, tobacco use, and alcohol consumption are major contributors (World Health Organization, 2018), they cannot explain all of the consequences of CVD. In addition to the abovementioned traditional risk factors, the constant search for novel preventative and curative tools has shed light on the involvement of gut bacteria and their metabolites in the pathogenesis of CVD. In this narrative review, we will discuss the established interconnections between the gut microbiota and CVD, as well as the plausible therapeutic perspectives.
Collapse
Affiliation(s)
- Panagiotis D. Papadopoulos
- Master Programme Food, Nutrition and Microbiome, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.D.P.); (E.B.)
| | - Christina Tsigalou
- Master Programme Food, Nutrition and Microbiome, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.D.P.); (E.B.)
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| | - Pipitsa N. Valsamaki
- Nuclear Medicine Department, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | | | | | - Eugenia Bezirtzoglou
- Master Programme Food, Nutrition and Microbiome, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.D.P.); (E.B.)
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
5
|
Foolchand A, Ghazi T, Chuturgoon AA. Malnutrition and Dietary Habits Alter the Immune System Which May Consequently Influence SARS-CoV-2 Virulence: A Review. Int J Mol Sci 2022; 23:2654. [PMID: 35269795 PMCID: PMC8910702 DOI: 10.3390/ijms23052654] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19, resulting from the SARS-CoV-2 virus, is a major pandemic that the world is fighting. SARS-CoV-2 primarily causes lung infection by attaching to the ACE2 receptor on the alveolar epithelial cells. However, the ACE2 receptor is also present in intestinal epithelial cells, suggesting a link between nutrition, virulence and clinical outcomes of COVID-19. Respiratory viral infections perturb the gut microbiota. The gut microbiota is shaped by our diet; therefore, a healthy gut is important for optimal metabolism, immunology and protection of the host. Malnutrition causes diverse changes in the immune system by repressing immune responses and enhancing viral vulnerability. Thus, improving gut health with a high-quality, nutrient-filled diet will improve immunity against infections and diseases. This review emphasizes the significance of dietary choices and its subsequent effects on the immune system, which may potentially impact SARS-CoV-2 vulnerability.
Collapse
Affiliation(s)
| | | | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, Howard College Campus, University of Kwa-Zulu Natal, Durban 4041, South Africa; (A.F.); (T.G.)
| |
Collapse
|
6
|
Biotechnological production of d-tagatose from lactose using metabolically engineering Lactiplantibacillus plantarum. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Sun Z, Miao T, Yin A, Qiu H, Xiao Y, Li Y, Hai J, Xu B. Optimization of fermentation conditions for production of l-arabinose isomerase of Lactobacillus plantarum WU14. Food Sci Nutr 2021; 9:230-243. [PMID: 33473287 PMCID: PMC7802578 DOI: 10.1002/fsn3.1989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 12/02/2022] Open
Abstract
As a substitute sweetener for sucrose, d-tagatose is widely used in products, such as health drinks, yogurt, fruit juices, baked goods, confectionery, and pharmaceutical preparations. In the fermentation process of l-AI produced by Lactobacillus plantarum, d-tagatose is produced through biotransformation and this study was based on the fermentation process of Lactobacillus plantarum WU14 producing l-AI to further research the biotransformation and separation process of d-tagatose. The kinetics of cell growth, substrate consumption, and l-arabinose isomerase formation were established by nonlinear fitting, and the fitting degrees were 0.996, 0.994, and 0.991, respectively, which could better reflect the change rule of d-tagatose biotransformation in the fermentation process of L. plantarum WU14. The separation process of d-tagatose was identified by decolorization, protein removal, desalination, and freeze drying, initially. Finally, the volume ratio of whole cell catalysts, d-galactose, and borate was 5:1:2 at 60°C, pH 7.17 through borate complexation; then, after 24 hr of conversion, the yield of d-tagatose was 58 g/L.
Collapse
Affiliation(s)
- Zhijun Sun
- College of Biological and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| | - Tingting Miao
- College of Biological and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| | - Aiguo Yin
- College of Biological and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| | - Hulin Qiu
- College of Biological and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| | - Yunyi Xiao
- College of Biological and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| | - Ying Li
- College of Biological and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| | - Jinping Hai
- College of Biological and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| | - Bo Xu
- College of Biological and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| |
Collapse
|
8
|
González C, González D, Zúñiga RN, Estay H, Troncoso E. Simulation of Human Small Intestinal Digestion of Starch Using an In Vitro System Based on a Dialysis Membrane Process. Foods 2020; 9:foods9070913. [PMID: 32664457 PMCID: PMC7405000 DOI: 10.3390/foods9070913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
This work deepens our understanding of starch digestion and the consequent absorption of hydrolytic products generated in the human small intestine. Gelatinized starch dispersions were digested with α-amylase in an in vitro intestinal digestion system (i-IDS) based on a dialysis membrane process. This study innovates with respect to the existing literature, because it considers the impact of simultaneous digestion and absorption processes occurring during the intestinal digestion of starchy foods and adopts phenomenological models that deal in a more realistic manner with the behavior found in the small intestine. Operating the i-IDS at different flow/dialysate flow ratios resulted in distinct generation and transfer curves of reducing sugars mass. This indicates that the operating conditions affected the mass transfer by diffusion and convection. However, the transfer process was also affected by membrane fouling, a dynamic phenomenon that occurred in the i-IDS. The experimental results were extrapolated to the human small intestine, where the times reached to transfer the hydrolytic products ranged between 30 and 64 min, according to the flow ratio used. We consider that the i-IDS is a versatile system that can be used for assessing and/or comparing digestion and absorption behaviors of different starch-based food matrices as found in the human small intestine, but the formation and interpretation of membrane fouling requires further studies for a better understanding at physiological level. In addition, further studies with the i-IDS are required if food matrices based on fat, proteins or more complex carbohydrates are of interest for testing. Moreover, a next improvement step of the i-IDS must include the simulation of some physiological events (e.g., electrolytes addition, enzyme activities, bile, dilution and pH) occurring in the human small intestine, in order to improve the comparison with in vivo data.
Collapse
Affiliation(s)
- Carol González
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| | - Daniela González
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| | - Rommy N Zúñiga
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Humberto Estay
- Advanced Mining Technology Center (AMTC), University of Chile, Av. Tupper 2007, AMTC Building, Santiago 8370451, Chile
| | - Elizabeth Troncoso
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| |
Collapse
|
9
|
Brouns F. Saccharide Characteristics and Their Potential Health Effects in Perspective. Front Nutr 2020; 7:75. [PMID: 32733909 PMCID: PMC7357269 DOI: 10.3389/fnut.2020.00075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
To understand the effects of saccharides on our metabolism and health, we need a clear understanding of what they are, how they differ, and why some types are deemed "less healthy" and others "better for health." There are various ways to look at this topic. Firstly, saccharides can be classified according to their degree of polymerization (DP). This classification is useful when qualitative or quantitative analysis and calculation of intakes are required or for food-labeling definitions. However, it does not account for the fact that saccharides with a similar DP can differ in molecular composition, which will influence digestion, absorption, and metabolism. Secondly, another approach widely used in the biomedical and nutritional sciences is therefore a physiological classification, which addresses the rate and degree of digestibility and absorption, the glycemic response, and the metabolic fate. The individual health status also plays a role in this respect. An active, lean person will have a metabolic response that differs from an inactive person with overweight and insulin resistance. However, this approach will not give a complete answer either because the characteristics of the matrix/meal in which these carbohydrates (CHOs) are present will also influence the responses of our body. Thirdly, one can also rank CHOs by comparing their functional/technological properties, such as relative sweetness, viscosity, and solubility. Understanding CHO characteristics and related physiological responses will help understand health and disease implications. Therefore, a brief outline of different carbohydrate classifications is presented. This outline will be placed in the context of potential overall effects after consumption. The answer to the question whether we should we eat less of certain sugars depends on the angle from which you look at this matter; for example, do you address this question from a single molecular characteristic point of view or from a meal quality perspective? Looking at one particular CHO characteristic will almost always lead to a different conclusion (e.g., the labeling of fructose as toxic) than evaluating from a "total perspective" (fructose has adverse effects in certain conditions). Examples are given to help understand this matter for the benefit of justified dietary/food-based recommendations.
Collapse
Affiliation(s)
- Fred Brouns
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
10
|
Van Laar ADE, Grootaert C, Van Camp J. Rare mono- and disaccharides as healthy alternative for traditional sugars and sweeteners? Crit Rev Food Sci Nutr 2020; 61:713-741. [PMID: 32212974 DOI: 10.1080/10408398.2020.1743966] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Obesity and type 2 diabetes are major health problems affecting hundreds of millions of people. Caloric overfeeding with calorie-dense food ingredients like sugars may contribute to these chronic diseases. Sugar research has also identified mechanisms via which conventional sugars like sucrose and fructose can adversely influence metabolic health. To replace these sugars, numerous sugar replacers including artificial sweeteners and sugar alcohols have been developed. Rare sugars became new candidates to replace conventional sugars and their health effects are already reported in individual studies, but overviews and critical appraisals of their health effects are missing. This is the first paper to provide a detailed review of the metabolic health effects of rare sugars as a group. Especially allulose has a wide range of health effects. Tagatose and isomaltulose have several health effects as well, while other rare sugars mainly provide health benefits in mechanistic studies. Hardly any health claims have been approved for rare sugars due to a lack of evidence from human trials. Human trials with direct measures for disease risk factors are needed to allow a final appraisal of promising rare sugars. Mechanistic cell culture studies and animal models are required to enlarge our knowledge on understudied rare sugars.
Collapse
Affiliation(s)
- Amar D E Van Laar
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - John Van Camp
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. MICROBIOME 2020; 8:36. [PMID: 32169105 PMCID: PMC7071638 DOI: 10.1186/s40168-020-00821-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/02/2020] [Indexed: 05/03/2023]
Abstract
Coronary artery disease (CAD) is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Over the past decade, it has become clear that the inhabitants of our gut, the gut microbiota, play a vital role in human metabolism, immunity, and reactions to diseases, including CAD. Although correlations have been shown between CAD and the gut microbiota, demonstration of potential causal relationships is much more complex and challenging. In this review, we will discuss the potential direct and indirect causal roots between gut microbiota and CAD development via microbial metabolites and interaction with the immune system. Uncovering the causal relationship of gut microbiota and CAD development can lead to novel microbiome-based preventative and therapeutic interventions. However, an interdisciplinary approach is required to shed light on gut bacterial-mediated mechanisms (e.g., using advanced nanomedicine technologies and incorporation of demographic factors such as age, sex, and ethnicity) to enable efficacious and high-precision preventative and therapeutic strategies for CAD.
Collapse
Affiliation(s)
- Negin Kazemian
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada.
| |
Collapse
|
12
|
Gim-Krumm M, Donoso P, Zuñiga RN, Estay H, Troncoso E. A comprehensive study of glucose transfer in the human small intestine using an in vitro intestinal digestion system (i-IDS) based on a dialysis membrane process. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Acevedo W, Capitaine C, Rodríguez R, Araya-Durán I, González-Nilo F, Pérez-Correa JR, Agosin E. Selecting optimal mixtures of natural sweeteners for carbonated soft drinks through multi-objective decision modeling and sensory validation. J SENS STUD 2018. [DOI: 10.1111/joss.12466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Waldo Acevedo
- Department of Chemical and Bioprocess Engineering; School of Engineering, Pontificia Universidad Católica de Chile; Santiago Chile
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso; Valparaíso Chile
| | | | | | - Ingrid Araya-Durán
- Universidad Andrés Bello; Faculty of Biological Sciences, Center for Bioinformatics and Integrative Biology; Santiago Chile
| | - Fernando González-Nilo
- Universidad Andrés Bello; Faculty of Biological Sciences, Center for Bioinformatics and Integrative Biology; Santiago Chile
| | - José R. Pérez-Correa
- Department of Chemical and Bioprocess Engineering; School of Engineering, Pontificia Universidad Católica de Chile; Santiago Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering; School of Engineering, Pontificia Universidad Católica de Chile; Santiago Chile
- Centro de Aromas y Sabores; DICTUC; Santiago Chile
| |
Collapse
|
14
|
Mooradian AD, Smith M, Tokuda M. The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clin Nutr ESPEN 2017; 18:1-8. [PMID: 29132732 DOI: 10.1016/j.clnesp.2017.01.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/05/2016] [Accepted: 01/12/2017] [Indexed: 01/16/2023]
Abstract
The rapid increase in the prevalence of obesity worldwide has been partially attributed to the overconsumption of added sugars. Recent guidelines call for limiting the consumption of simple sugars to less than 10% of daily caloric consumption. High intensity sweeteners are regulated as food additives and include aspartame, acesulfame-k, neotame, saccharin, sucralose, cyclamate and alitame. Steviol glycosides and Luo Han Guo fruit extracts are high intensity sweeteners that are designated as generally recognized as safe (GRAS). Commonly used non-caloric artificial sweeteners may have unfavorable effect on health including glucose intolerance and failure to cause weight reduction. The nutritive sweeteners include sugar alcohols such as sorbitol, xylitol, lactitol, mannitol, erythritol, trehalose and maltitol. Naturally occurring rare sugars have recently emerged as an alternative category of sweeteners. These monosaccharides and their derivatives are found in nature in small quantities and lack significant calories. This category includes d-allulose (d-psicose), d-tagatose, d-sorbose and d-allose. Limiting consumption of any sweetener may well be the best health advice. Identifying natural sweeteners that have favorable effects on body weight and metabolism may help achieving the current recommendations of restricting simple sugar consumption.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Department of Medicine, University of Florida College of Medicine, Jacksonville, FL 32209, United States.
| | - Meridith Smith
- Department of Medicine, University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Masaaki Tokuda
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
15
|
Turck D, Bresson J, Burlingame B, Fairweather‐Tait S, Heinonen M, Hirsch‐Ernst KI, Mangelsdorf I, McArdle HJ, Naska A, Nowicka G, Pentieva K, Sanz Y, Siani A, Sjödin A, Stern M, Tomé D, Van Loveren H, Vinceti M, Willatts P, Neuhäuser‐Berthold M. Scientific Opinion on the energy conversion factor of d‐tagatose for labelling purposes. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Association between dietary habits and recurrent respiratory infection in children: A case–control study. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2015. [DOI: 10.1016/j.jtcms.2016.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Oku T, Murata-Takenoshita Y, Yamazaki Y, Shimura F, Nakamura S. d-Sorbose inhibits disaccharidase activity and demonstrates suppressive action on postprandial blood levels of glucose and insulin in the rat. Nutr Res 2014; 34:961-7. [DOI: 10.1016/j.nutres.2014.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 09/15/2014] [Accepted: 09/24/2014] [Indexed: 11/24/2022]
|
18
|
Myles IA. Fast food fever: reviewing the impacts of the Western diet on immunity. Nutr J 2014; 13:61. [PMID: 24939238 PMCID: PMC4074336 DOI: 10.1186/1475-2891-13-61] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/23/2014] [Indexed: 02/08/2023] Open
Abstract
While numerous changes in human lifestyle constitute modern life, our diet has been gaining attention as a potential contributor to the increase in immune-mediated diseases. The Western diet is characterized by an over consumption and reduced variety of refined sugars, salt, and saturated fat. Herein our objective is to detail the mechanisms for the Western diet's impact on immune function. The manuscript reviews the impacts and mechanisms of harm for our over-indulgence in sugar, salt, and fat, as well as the data outlining the impacts of artificial sweeteners, gluten, and genetically modified foods; attention is given to revealing where the literature on the immune impacts of macronutrients is limited to either animal or in vitro models versus where human trials exist. Detailed attention is given to the dietary impact on the gut microbiome and the mechanisms by which our poor dietary choices are encoded into our gut, our genes, and are passed to our offspring. While today's modern diet may provide beneficial protection from micro- and macronutrient deficiencies, our over abundance of calories and the macronutrients that compose our diet may all lead to increased inflammation, reduced control of infection, increased rates of cancer, and increased risk for allergic and auto-inflammatory disease.
Collapse
Affiliation(s)
- Ian A Myles
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike Building 33, Room 2W10A, Bethesda, MD, 20892, Maryland.
| |
Collapse
|
19
|
Chattopadhyay S, Raychaudhuri U, Chakraborty R. Artificial sweeteners - a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2014; 51:611-21. [PMID: 24741154 PMCID: PMC3982014 DOI: 10.1007/s13197-011-0571-1] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/07/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
Abstract
Now a days sugar free food are very much popular because of their less calorie content. So food industry uses various artificial sweeteners which are low in calorie content instead of high calorie sugar. U.S. Food and Drug Administration has approved aspartame, acesulfame-k, neotame, cyclamate and alitame for use as per acceptable daily intake (ADI) value. But till date, breakdown products of these sweeteners have controversial health and metabolic effects. On the other hand, rare sugars are monosaccharides and have no known health effects because it does not metabolize in our body, but shows same sweet taste and bulk property as sugar. Rare sugars have no such ADI value and are mainly produced by using bioreactor and so inspite of high demand, rare sugars cannot be produced in the desired quantities.
Collapse
Affiliation(s)
- Sanchari Chattopadhyay
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032 India
| | - Utpal Raychaudhuri
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032 India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032 India
| |
Collapse
|
20
|
Payne AN, Chassard C, Lacroix C. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obes Rev 2012; 13:799-809. [PMID: 22686435 DOI: 10.1111/j.1467-789x.2012.01009.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Western diet, comprised of highly refined carbohydrates and fat but reduced complex plant polysaccharides, has been attributed to the prevalence of obesity. A concomitant rise in the consumption of fructose and sugar substitutes such as sugar alcohols, artificial sweeteners, even rare sugars, has mirrored this trend, as both probable contributor and solution to the epidemic. Acknowledgement of the gut microbiota as a factor involved in obesity has sparked much controversy as to the cause and consequence of this relationship. Dietary intakes are a known modulator of gut microbial phylogeny and metabolic activity, frequently exploited to stimulate beneficial bacteria, promoting health benefits. Comparably little research exists on the impact of 'unconscious' dietary modulation on the resident commensal community mediated by increased fructose and sugar substitute consumption. This review highlights mechanisms of potential host and gut microbial fructose and sugar substitute metabolism. Evidence is presented suggesting these sugar compounds, particularly fructose, condition the microbiota, resulting in acquisition of a westernized microbiome with altered metabolic capacity. Disturbances in host-microbe interactions resulting from fructose consumption are also explored.
Collapse
Affiliation(s)
- A N Payne
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, Zurich, Switzerland
| | | | | |
Collapse
|
21
|
Yamazaki Y, Nakamura S, Shimura F, Oku T. Maximum Permissive Dosage for Transitory Diarrhea, Estimation of Available Energy, and Fate of D-tagatose in Healthy Female Subjects. ACTA ACUST UNITED AC 2011. [DOI: 10.4327/jsnfs.64.403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Holub I, Gostner A, Theis S, Nosek L, Kudlich T, Melcher R, Scheppach W. Novel findings on the metabolic effects of the low glycaemic carbohydrate isomaltulose (Palatinose). Br J Nutr 2010; 103:1730-7. [PMID: 20211041 PMCID: PMC2943747 DOI: 10.1017/s0007114509993874] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 11/06/2022]
Abstract
The slow digestible disaccharide isomaltulose (iso; Palatinose) is available as novel functional carbohydrate ingredient for manufacturing of low glycaemic foods and beverages. Although basically characterised, various information on physiological effects of iso are still lacking. Thus, the objective of the present study was to expand scientific knowledge of physiological characteristics of iso by a set of three human intervention trials. Using an ileostomy model, iso was found to be essentially absorbed, irrespective of the nature of food (beverage and solid food). Apparent digestibility of 50 g iso from two different meals was 95.5 and 98.8 %; apparent absorption was 93.6 and 96.1 %, respectively. In healthy volunteers, a single dose intake of iso resulted in lower postprandial blood glucose and insulin responses than did sucrose (suc), while showing prolonged blood glucose delivery over 3 h test. In a 4-week trial with hyperlipidaemic individuals, regular consumption of 50 g/d iso within a Western-type diet was well tolerated and did not affect blood lipids. Fasting blood glucose and insulin resistance were lower after the 4-week iso intervention compared with baseline. This would be consistent with possible beneficial metabolic effects as a consequence of the lower and prolonged glycaemic response and lower insulinaemic burden. However, there was no significant difference at 4 weeks after iso compared with suc. In conclusion, the study shows that iso is completely available from the small intestine, irrespective of food matrix, leading to a prolonged delivery of blood glucose. Regular iso consumption is well tolerated also in subjects with increased risk for vascular diseases.
Collapse
Affiliation(s)
- Ines Holub
- Department of Medicine II, Division of Gastroenterology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
A potentially important new drug for treating type 2 diabetes, tagatose, is now in phase 3 clinical trial. The history, development, additional health benefits, mechanisms of action and the potential for the drug are presented in context with a review of the rapidly growing epidemic of type 2 diabetes and treatments for it. An epimer of fructose, the natural hexose tagatose was originally developed by Spherix Incorporated (formerly Biospherics Inc.) as a low-calorie sugar substitute. Only 20% of orally ingested tagatose is fully metabolized, principally in the liver, following a metabolic pathway identical to that of fructose. Following a decade of studies, tagatose became generally recognized as safe for use in foods and beverages under US FDA regulation. The simple sugar is commercially produced by isomerization of galactose, which is prepared from lactose. Early human studies suggested tagatose as a potential antidiabetic drug through its beneficial effects on postprandial hyperglycaemia and hyperinsulinaemia. A subsequent 14-month trial confirmed its potential for treating type 2 diabetes, and tagatose showed promise for inducing weight loss and raising high-density lipoprotein cholesterol, both important to the control of diabetes and constituting benefits independent of the disease. Furthermore, tagatose was shown to be an antioxidant and a prebiotic, both properties cited in the maintenance and promotion of health. No current therapies for type 2 diabetes provide these multiple health benefits. The predominant side effects of tagatose are gastrointestinal disturbances associated with excessive consumption, generally accommodated within 1- to 2-week period. The health and use potentials for tagatose (branded Naturlose((R)) for this use) are given with respect to current type 2 diabetes drugs and markets. Under an FDA-affirmed protocol, Spherix is currently conducting a phase 3 trial to evaluate a placebo-subtracted treatment effect based on a decrease in HbA(1c) levels. Side effects, contraindications and possibly beneficial new findings will be carefully monitored. It is hoped that early results of the trial may become available by mid-2008. If a subsequent NDA is successful, tagatose may fill a major health need.
Collapse
Affiliation(s)
- Y Lu
- Spherix Incorporated, 12051 Indian Creek Court, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
24
|
Netherwood T, Martín-Orúe SM, O'Donnell AG, Gockling S, Graham J, Mathers JC, Gilbert HJ. Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nat Biotechnol 2004; 22:204-9. [PMID: 14730317 DOI: 10.1038/nbt934] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 11/20/2003] [Indexed: 11/09/2022]
Abstract
The inclusion of genetically modified (GM) plants in the human diet has raised concerns about the possible transfer of transgenes from GM plants to intestinal microflora and enterocytes. The persistence in the human gut of DNA from dietary GM plants is unknown. Here we study the survival of the transgene epsps from GM soya in the small intestine of human ileostomists (i.e., individuals in which the terminal ileum is resected and digesta are diverted from the body via a stoma to a colostomy bag). The amount of transgene that survived passage through the small bowel varied among individuals, with a maximum of 3.7% recovered at the stoma of one individual. The transgene did not survive passage through the intact gastrointestinal tract of human subjects fed GM soya. Three of seven ileostomists showed evidence of low-frequency gene transfer from GM soya to the microflora of the small bowel before their involvement in these experiments. As this low level of epsps in the intestinal microflora did not increase after consumption of the meal containing GM soya, we conclude that gene transfer did not occur during the feeding experiment.
Collapse
MESH Headings
- Base Sequence
- DNA Damage
- DNA, Plant/administration & dosage
- DNA, Plant/analysis
- DNA, Plant/chemistry
- DNA, Plant/metabolism
- Food, Genetically Modified
- Humans
- Intestine, Small/metabolism
- Intestine, Small/surgery
- Molecular Sequence Data
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/microbiology
- Sequence Analysis, DNA
- Transgenes
Collapse
Affiliation(s)
- Trudy Netherwood
- School of Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK
| | | | | | | | | | | | | |
Collapse
|