1
|
Poppitt SD, Miles-Chan JL. Include oats, barley and soluble fibre in your diet: an achievable goal to improve cardiometabolic health. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:17. [PMID: 38304905 PMCID: PMC10777244 DOI: 10.21037/atm-23-1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 02/03/2024]
Affiliation(s)
- Sally D. Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High Value Nutrition, National Science Challenge, Auckland, New Zealand
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Jennifer L. Miles-Chan
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High Value Nutrition, National Science Challenge, Auckland, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
2
|
Hong MH, Jang YJ, Yoon JJ, Lee HS, Kim HY, Kang DG. Dohongsamul-tang inhibits cardiac remodeling and fibrosis through calcineurin/NFAT and TGF-β/Smad2 signaling in cardiac hypertrophy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116844. [PMID: 37453625 DOI: 10.1016/j.jep.2023.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dohongsammul-tang (DH) is a Korean traditional herbal medicine used to alleviate symptoms caused by extravasated blood. It is known to protect against cardiovascular diseases and promote blood circulation by activating blood circulation to dispel blood stasis. The DH based on the characteristics of its medicinal properties has discovered the potential of alleviating cardiac hypertrophy. Therefore, this study was performed to verify the pharmacological effect of DH on improving cardiovascular disorders and to demonstrate its mutual improvement effect on renal function. Furthermore, aim of this study is founding the new potential beyond the traditional medicinal efficacy of DH, a traditional medicine. AIM OF THE STUDY In cardiovascular disease, cardiac hypertrophy refers to a change in the shape of the heart's structure due to pressure overload. It is known that an increase in myofibrils causes thickening of the heart, resulting in high blood pressure. Therefore, suppressing cardiac hypertrophy may be a major factor in lowering the morbidity, mortality, and heart failure associated with cardiovascular disease. Therefore, the study was performed to investigate whether DH, traditionally used, has effects on improving and alleviating cardiac injury and fibrosis caused by cardiac hypertrophy. MATERIALS AND METHODS Dohongsamul-tang was composed of 6 herbal medicine and each material were boiled with 4 L distilled water for 2 h. The mixture for dohongsamul-tang centrifuged at 3000 rpm for 10 min and concentrated. The concentrated dohongsamul-tang extraction freeze-dried and sotred at 70 °C. The powder of dohongsamul-tang was diluted with distilled water and administered orally. In this study, pressure overload was induced by tying the transverse aortic arch, which is connected to the left ventricle, to the thickness of a 27G needle by performing a surgical operation. The resulting cardiac hypertrophy and heart remodeling was induced and maintained for 8 weeks. RESULTS The study administered propranolol and dohongsamul-tang orally for 10 weeks to investigate their effects on cardiac hypertrophy induced by transverse aortic contraction (TAC) surgery. Results showed that TAC group increased the left ventricle weight and decreased cardiac function, but dohongsamul-tang treatment attenuated these effects. The pressure-volume curve experiment revealed that dohongsamul-tang improved cardiovascular function, which was worsened by TAC group. Dohongsamul-tang treatment also downregulated collagen I and III through the TGF-β/Smad2 signaling pathway and improved hematological biomarkers of cardiac hypertrophy. In addition, dohongsamul-tang treatment improved renal function-related biomarkers, such as blood creatinine, blood urea nitrogen, and neutrophil gelatinase-associated lipocalin, which were increased by TAC-induced cardiac hypertrophy. CONCLUSIONS Taken together, dohongsamul-tang treatment inhibited cardiac remodeling due to pressure overload in the TAC-induced cardiac hypertrophy model, and this effect is thought to be manifested by improving the functional and morphological changes through the calcineurin/NFATc4 and reducing the cardiac fibrosis by suppressing TGF-β/Smad2 signaling pathways.
Collapse
Affiliation(s)
- Mi Hyeon Hong
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea; College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea.
| | - Youn Jae Jang
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea; College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea.
| | - Jung Joo Yoon
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea.
| | - Ho Sub Lee
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea; College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea.
| | - Hye Yoom Kim
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea.
| | - Dae Gill Kang
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea; College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, South Korea.
| |
Collapse
|
3
|
Collins SM, Gibson GR, Stainton GN, Bertocco A, Kennedy OB, Walton GE, Commane DM. Chronic consumption of a blend of inulin and arabinoxylan reduces energy intake in an ad libitum meal but does not influence perceptions of appetite and satiety: a randomised control-controlled crossover trial. Eur J Nutr 2023:10.1007/s00394-023-03136-6. [PMID: 37046122 DOI: 10.1007/s00394-023-03136-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE Prebiotic foods can be used to increase production of short-chain fatty acids (SCFA) in the gut. Of the SCFA, propionate is credited with the strongest anorectic activity. In previous work, a 50/50 blend of inulin and arabinoxylan was produced (I + AX) that significantly increased propionate production in an in vitro gut model. This study sought to establish whether chronic consumption of a prebiotic blend of I + AX decreases appetite and energy intake and increases intestinal propionate production in human participants. METHODS MIXSAT (clinicaltrials.gov id: NCT02846454, August 2016) was a double-blind randomised acute-within-chronic crossover feeding trial in healthy adult men (n = 20). Treatments were 8 g per day I + AX for 21 days or weight-matched maltodextrin control. The primary outcome measure was perceived satiety and appetite during an acute study visit. Secondary outcomes were energy intake in an ad libitum meal, faecal SCFA concentration, and faecal microbiota composition. RESULTS Perceived satiety and appetite were not affected by the intervention. I + AX was associated with a reduction in energy intake in an ad libitum meal, increased faecal SCFA concentration, and an increase in cell counts of Bifidobacteria, Lactobacilli, and other microbial genera associated with health. IMPLICATIONS Chronic consumption of this blend of prebiotics decreased energy intake in a single sitting. Further studies are needed to confirm mechanism of action and to determine whether this might be useful in weight control.
Collapse
Affiliation(s)
- Sineaid M Collins
- Food and Nutritional Sciences, University of Reading, Berkshire, UK.
| | - Glenn R Gibson
- Food and Nutritional Sciences, University of Reading, Berkshire, UK
| | - Gavin N Stainton
- Herbalife Nutrition, The Atrium, 1 Harefield Road, Uxbridge, Middlesex, UK
| | - Andrea Bertocco
- Herbalife Nutrition, The Atrium, 1 Harefield Road, Uxbridge, Middlesex, UK
| | - Orla B Kennedy
- Herbalife Nutrition, The Atrium, 1 Harefield Road, Uxbridge, Middlesex, UK
| | - Gemma E Walton
- Herbalife Nutrition, The Atrium, 1 Harefield Road, Uxbridge, Middlesex, UK
| | - Daniel M Commane
- Applied and Health Sciences, Northumbria University, Tyne and Wear, UK
| |
Collapse
|
4
|
|
5
|
Cyran MR, Snochowska KK. Evidence of intermolecular associations of β-glucan and high-molar mass xylan in a hot water extract of raw oat groat. Carbohydr Polym 2021; 272:118463. [PMID: 34420723 DOI: 10.1016/j.carbpol.2021.118463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/22/2022]
Abstract
High molar mass (HM) β-glucan present in oat products can reduce the risk of diet-related diseases, mainly owing to significantly increased digesta viscosity in human small intestine. To verify a research hypothesis that arabinoxylan (AX) present in oat water extract is associated with HM-β-glucan and thus may influence its functionality, multi-detection HPSEC coupled with enzymatic hydrolysis, sugar and 1H NMR analyses were performed. Isolated cell wall polysaccharide fraction comprised branched AX (arabinose-to-xylose ratio, Ara/Xyl ~ 0.8) and arabinogalactan-protein (AG-P). Nevertheless, it contained (10%) unbranched HM-xylan subfraction (weight-average molar mass, Mw ~ 3153 kg/mol), which was aggregated with β-glucan (Mw ~ 1029-1589 kg/mol) through its HM cellulose-like region. Of the two low molar mass-AXs (LM-AXs) isolated, the first having C(O)-3-monosubstituted and C(O)-2,3-disubstituted β-d-xylopyranosyl residues was covalently interlinked to HM-xylan. The second highly feruloylated, containing C(O)-3- and C(O)-2-monosubstituted units, was tightly bound to AG-P with terminal and 5-linked α-L-arabinofuranosyl residues, and non-covalently associated with LM-β-glucan subfraction.
Collapse
Affiliation(s)
- Małgorzata R Cyran
- Department of Plant Biochemistry and Physiology, Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, 05-870 Błonie, Poland.
| | - Krzysztofa K Snochowska
- Department of Plant Biochemistry and Physiology, Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, 05-870 Błonie, Poland.
| |
Collapse
|
6
|
KHAN MA, AMIR RM, AMEER K, RAKHA A, FAIZ F, HAYAT I, NADEEM M, AHMED Z, RIAZ A, ASHRAF I. Characterization of oat bran β-glucan with special reference to efficacy study to elucidate its health claims for diabetic patients. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.39019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Allah RAKHA
- Arid Agriculture University Rawalpindi, Pakistan
| | - Farrukh FAIZ
- Karakoram International University Gilgit-Baltistan, Pakistan
| | | | | | | | - Aayesha RIAZ
- PMAS-Arid Agriculture University Rawalpindi, Pakistan
| | - Ijaz ASHRAF
- University of Agriculture Faisalabad, Pakistan
| |
Collapse
|
7
|
Wouk J, Dekker RFH, Queiroz EAIF, Barbosa-Dekker AM. β-Glucans as a panacea for a healthy heart? Their roles in preventing and treating cardiovascular diseases. Int J Biol Macromol 2021; 177:176-203. [PMID: 33609583 DOI: 10.1016/j.ijbiomac.2021.02.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Factors increasing the risks for CVD development are related to obesity, diabetes, high blood cholesterol, high blood pressure and lifestyle. CVD risk factors may be treated with appropriate drugs, but prolonged can use cause undesirable side-effects. Among the natural products used in complementary and alternative medicines, are the β-ᴅ-glucans; biopolymers found in foods (cereals, mushrooms), and can easily be produced by microbial fermentation. Independent of source, β-glucans of the mixed-linked types [(1 → 3)(1 → 6)-β-ᴅ-glucans - fungal, and (1 → 3)(1 → 4)-β-ᴅ-glucans - cereal] have widely been studied because of their biological activities, and have demonstrated cardiovascular protective effects. In this review, we discuss the roles of β-ᴅ-glucans in various pathophysiological conditions that lead to CVDs including obesity, dyslipidemia, hyperglycemia, oxidative stress, hypertension, atherosclerosis and stroke. The β-glucans from all of the sources cited demonstrated potential hypoglycemic, hypocholesterolemic and anti-obesogenicity activities, reduced hypertension and ameliorated the atherosclerosis condition. More recently, β-glucans are recognized as possessing prebiotic properties that modulate the gut microbiome and impact on the health benefits including cardiovascular. Overall, all the studies investigated unequivocally demonstrated the dietary benefits of consuming β-glucans regardless of source, thus constituting a promising panaceutical approach to reduce CVD risk factors.
Collapse
Affiliation(s)
- Jéssica Wouk
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual do Centro-Oeste, Campus CEDETEG, CEP: 85040-167, Guarapuava, Paraná, Brazil
| | - Robert F H Dekker
- Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370 Londrina, Paraná, Brazil; Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil.
| | - Eveline A I F Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde, Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78.557-267 Sinop, Mato Grosso, Brazil
| | - Aneli M Barbosa-Dekker
- Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil
| |
Collapse
|
8
|
Li LY, Wang YX, Zhang T, Zhang JF, Pan M, Huang XJ, Yin JY, Nie SP. Structural characteristics and rheological properties of alkali-extracted arabinoxylan from dehulled barley kernel. Carbohydr Polym 2020; 249:116813. [PMID: 32933661 DOI: 10.1016/j.carbpol.2020.116813] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022]
Abstract
Arabinoxylan (BIF-60) was isolated from barley water-insoluble fiber (BIF) by ethanol precipitation at 60 % (v/v). BIF-60 was composed of xylose (48.5 %) and arabinose (30.3 %). Its average molecular weight was 1360 kDa. Methylation and 1D/2D NMR analysis showed that BIF-60 possessed β-(l→4)-xylan as backbone, comprised of un-substituted (1,4-linked β-Xylp, 56.9 %), mono-substituted (1,2,4-linked and 1,3,4-linked β-Xylp, 22.1 %) and di-substituted (1,2,3,4-lin4ked β-Xylp, 18.4 %) xylose units, as well as other residues (T-Araf-(1→, T-Xylp-(1→, →5)-Araf-(1→, →2)-Araf-(1→, →3)-Araf-(1→ and →4)-Glcp-(1→). BIF-60 exhibited shear-thinning behaviour, low gel stability and weak gelling ability at high concentrations. This work provides a theoretical and experimental basis for molecular structure and properties of the alkali-extracted arabinoxylan from barley kernel, which could guide further functional research and application of barley-derived arabinoxylan.
Collapse
Affiliation(s)
- Lin-Yan Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Yu-Xiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Ting Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Jian-Fang Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Meng Pan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Xiao-Jun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| |
Collapse
|
9
|
Massot-Cladera M, Azagra-Boronat I, Franch À, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ. Gut Health-Promoting Benefits of a Dietary Supplement of Vitamins with Inulin and Acacia Fibers in Rats. Nutrients 2020; 12:E2196. [PMID: 32718017 PMCID: PMC7468733 DOI: 10.3390/nu12082196] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The study's objective was to ascertain whether a nutritional multivitamin and mineral supplement enriched with two different dietary fibers influences microbiota composition, mineral absorption, and some immune and metabolic biomarkers in adult rats. Nine-week-old Wistar rats were randomly assigned into four groups: the reference group; the group receiving a daily supplement based on a food matrix with proteins, vitamins, and minerals; and two other groups receiving this supplement enriched with inulin (V + I) or acacia (V + A) fiber for four weeks. Microbiota composition was determined in cecal content and mineral content in fecal, blood, and femur samples. Intestinal IgA concentration, hematological, and biochemical variables were evaluated. Both V + I and V + A supplementations increased Firmicutes and Actinobacteria phyla, which were associated with a higher presence of Lactobacillus and Bifidobacterium spp. V + A supplementation increased calcium, magnesium, phosphorus, and zinc concentrations in femur. V + I supplementation increased the fecal IgA content and reduced plasma total cholesterol and uric acid concentration. Both fiber-enriched supplements tested herein seem to be beneficial to gut-health, although differently.
Collapse
Affiliation(s)
- Malén Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Ignasi Azagra-Boronat
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
10
|
Korolenko TA, Bgatova NP, Ovsyukova MV, Shintyapina A, Vetvicka V. Hypolipidemic Effects of β-Glucans, Mannans, and Fucoidans: Mechanism of Action and Their Prospects for Clinical Application. Molecules 2020; 25:molecules25081819. [PMID: 32316136 PMCID: PMC7221696 DOI: 10.3390/molecules25081819] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
The search for lipid-lowering drugs is important for clinical medicine. This review summarizes our research findings regarding the hypolipidemic activity of polysaccharides. There are several validated agents altering lipid levels which reduce the risk of atherosclerotic cardiovascular events. Nonetheless, for many people, the risk of such an event remains unacceptably high despite treatment with these agents. This situation has prompted the search for new therapies to reduce the residual cardiovascular risk. The lipid-lowering effect of β-glucans consumed with food was demonstrated in patients with atherosclerosis. The mechanism of the protective effect of β-glucans is poorly studied. The effects of β-glucans are mediated by Toll-like receptors, by dectin-1, and possibly by other receptors. Nevertheless, the mechanism of the protective action of β-glucan in lipemic mice has been studied insufficiently. This review will present up-to-date information regarding experimental hypolipidemic polysaccharide compounds that hold promise for medicine. Phagocyte-specific chitotriosidase in humans contributes to innate immune responses against chitin-containing fungi. This enzyme has been first described in patients with Gaucher disease and serves as an important diagnostic biomarker. It has been reported that, in mice, chitin particles of certain size are recognized by macrophages through Toll-like receptors, dectin-1, and to a lesser extent through mannose receptor.
Collapse
Affiliation(s)
- Tatiana A. Korolenko
- Department of Clinical Neuroscience, Behavior and Neurotechnologies, Institute of Physiology and Basic Medicine, Timakov St. 4, Novosibirsk 630117, Russia; (T.A.K.); (M.V.O.)
| | - Nataliya P. Bgatova
- Laboratory of Ultrastructural Research, Department of Experimental Pharmacology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630117, Russia;
| | - Marina V. Ovsyukova
- Department of Clinical Neuroscience, Behavior and Neurotechnologies, Institute of Physiology and Basic Medicine, Timakov St. 4, Novosibirsk 630117, Russia; (T.A.K.); (M.V.O.)
| | - Alexandra Shintyapina
- Institute of Molecular Biology and Biophysics, Federal Research Center, Timakov St. 2, Novosibirsk 630117, Russia;
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
11
|
Armet AM, Deehan EC, Thöne JV, Hewko SJ, Walter J. The Effect of Isolated and Synthetic Dietary Fibers on Markers of Metabolic Diseases in Human Intervention Studies: A Systematic Review. Adv Nutr 2020; 11:420-438. [PMID: 31342059 PMCID: PMC7442353 DOI: 10.1093/advances/nmz074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/22/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
Observational studies provide strong evidence for the health benefits of dietary fiber (DF) intake; however, human intervention studies that supplement isolated and synthetic DFs have shown inconsistent results. Therefore, we conducted a systematic review to summarize the effects of DF supplementation on immunometabolic disease markers in intervention studies in healthy adults, and considered the role of DF dose, DF physicochemical properties, intervention duration, and the placebo used. Five databases were searched for studies published from 1990 to 2018 that assessed the effect of DF on immunometabolic markers. Eligible studies were those that supplemented isolated or synthetic DFs for ≥2 wk and reported baseline data to assess the effect of the placebo. In total, 77 publications were included. DF supplementation reduced total cholesterol (TC), LDL cholesterol, HOMA-IR, and insulin AUC in 36-49% of interventions. In contrast, <20% of the interventions reduced C-reactive protein (CRP), IL-6, glucose, glucose AUC, insulin, HDL cholesterol, and triglycerides. A higher proportion of interventions showed an effect if they used higher DF doses for CRP, TC, and LDL cholesterol (40-63%), viscous and mixed plant cell wall DFs for TC and LDL cholesterol (>50%), and longer intervention durations for CRP and glucose (50%). Half of the placebo-controlled studies used digestible carbohydrates as the placebo, which confounded findings for IL-6, glucose AUC, and insulin AUC. In conclusion, interventions with isolated and synthetic DFs resulted mainly in improved cholesterol concentrations and an attenuation of insulin resistance, whereas markers of dysglycemia and inflammation were largely unaffected. Although more research is needed to make reliable recommendations, a more targeted supplementation of DF with specific physicochemical properties at higher doses and for longer durations shows promise in enhancing several of its health effects.
Collapse
Affiliation(s)
- Anissa M Armet
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Edward C Deehan
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada,Address correspondence to ECD (e-mail: )
| | - Julia V Thöne
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada,Medical Department, Justus-Liebig University Giessen, Giessen, Germany
| | - Sarah J Hewko
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Jens Walter
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada,Address correspondence to JW (e-mail: )
| |
Collapse
|
12
|
Effects of Euglena gracilis EOD-1 Ingestion on Salivary IgA Reactivity and Health-Related Quality of Life in Humans. Nutrients 2019; 11:nu11051144. [PMID: 31121913 PMCID: PMC6566313 DOI: 10.3390/nu11051144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Euglena gracilis EOD-1, a microalgal strain known for high yields of the β-1, 3-glucan paramylon, is suggested to function as a dietary fiber and enhance immunity. Here, we aimed to investigate the effects of E. gracilis EOD-1 biomass (EOD1BM) ingestion on immunoglobulin A (IgA) antibody titers in saliva, its reactivity, and the health-related quality of life (QOL) in humans. Reacting human immunoglobulin preparations and saliva with paramylon granules revealed the presence of anti-paramylon antibodies in the blood and saliva. We conducted a placebo-controlled, double-blind, crossover study involving 13 healthy subjects who ingested the placebo or EOD1BM for 4 weeks. Saliva was collected from each subject before and after ingestion, and IgA titers and E. gracilis EOD-1 paramylon (EOD1PM) reactivity were compared. In the EOD1BM Ingestion group, the anti-EOD1PM IgA content and titer increased after EOD1BM ingestion. No such change was observed in the Placebo group. Furthermore, the health-related QOL, especially mental health, increased in the EOD1BM Ingestion group. Thus, EOD1BM ingestion led to the production of paramylon (PM)-specific IgA antibody and increased salivary IgA antibody titers. We demonstrate that EOD1BM ingestion enhanced the immunity in the mucosal surface, evoked an antigen-specific response, and increased the health-related QOL, thereby contributing to health improvement.
Collapse
|
13
|
Effects of cereal beta-glucan consumption on body weight, body mass index, waist circumference and total energy intake: A meta-analysis of randomized controlled trials. Complement Ther Med 2019; 43:131-139. [DOI: 10.1016/j.ctim.2019.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 12/15/2022] Open
|
14
|
Nishantha MDLC, Zhao X, Jeewani DC, Bian J, Nie X, Weining S. Direct comparison of β-glucan content in wild and cultivated barley. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1500486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Xian Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest Agriculture & Forest University, Yangling, Shaanxi, China
| | - Diddugodage Chamila Jeewani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest Agriculture & Forest University, Yangling, Shaanxi, China
| | - Jianxin Bian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest Agriculture & Forest University, Yangling, Shaanxi, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest Agriculture & Forest University, Yangling, Shaanxi, China
| | - Song Weining
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest Agriculture & Forest University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
CYP7A1-rs3808607: a single nucleotide polymorphism associated with cholesterol response to functional foods. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
McRae MP. Dietary Fiber Intake and Type 2 Diabetes Mellitus: An Umbrella Review of Meta-analyses. J Chiropr Med 2018; 17:44-53. [PMID: 29628808 DOI: 10.1016/j.jcm.2017.11.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/25/2017] [Accepted: 11/15/2017] [Indexed: 01/04/2023] Open
Abstract
Objective The purpose of this study was to review previously published meta-analyses on the effectiveness of dietary fiber on type 2 diabetes. Methods An umbrella review of all published meta-analyses was performed. A PubMed search from January 1, 1980, to April 30, 2017, was conducted using the following search strategy: (fiber OR glucan OR psyllium) AND (meta-analysis OR systematic review). Only English-language publications that provided quantitative statistical analysis on type 2 diabetes, fasting blood glucose concentrations, or glycosylated hemoglobin were retrieved. Results Sixteen meta-analyses were retrieved for inclusion in this umbrella review. In the meta-analyses comparing highest versus lowest dietary fiber intake, there was a statistically significant reduction in the relative risk (RR) of type 2 diabetes (RR = 0.81-0.85), with the greatest benefit coming from cereal fibers (RR = 0.67-0.87). However, statistically significant heterogeneity was observed in all of these meta-analyses. In the meta-analyses of supplementation studies using β-glucan or psyllium fibers on type 2 diabetic participants, statistically significant reductions were identified in both fasting blood glucose concentrations and glycosylated hemoglobin percentages. Conclusion This review suggests that those consuming the highest amounts of dietary fiber, especially cereal fiber, may benefit from a reduction in the incidence of developing type 2 diabetes. There also appears to be a small reduction in fasting blood glucose concentration, as well as a small reduction in glycosylated hemoglobin percentage for individuals with type 2 diabetes who add β-glucan or psyllium to their daily dietary intake.
Collapse
Affiliation(s)
- Marc P McRae
- Department of Basic Sciences, National University of Health Sciences, Lombard, Illinois
| |
Collapse
|
17
|
Sima P, Vannucci L, Vetvicka V. β-glucans and cholesterol (Review). Int J Mol Med 2018; 41:1799-1808. [PMID: 29393350 PMCID: PMC5810204 DOI: 10.3892/ijmm.2018.3411] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
Hypercholesterolemia is one of primary risk factors of cardiovascular disease, together with metabolic syndrome, hypertension and diabetes. Although progress has been made, the search for novel methods of preventing and treating dyslipidemia is ongoing and current therapies for cardiovascular disease induce various side effects. β-glucans are linear unbranched polysaccharides found in various natural sources, such as mushrooms. Due to their structure they are able to interact with innate immunity receptors, however they also act as dietary fibers in the digestive tract. As there are two forms of β-glucans, insoluble and soluble forms, they are able to interact with lipids and biliary salts in the bowel and consequently reduce cholesterol levels. Therefore, they may be developed as a suitable therapeutic option to treat patients with dyslipidemia, as they are natural molecules that do not induce any significant side effects. The current review discusses the evidence supporting the effects of β-glucans on cholesterol levels.
Collapse
Affiliation(s)
- Petr Sima
- Laboratory of Immunotherapy, Institute of Microbiology of The Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of The Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
18
|
Thompson SV, Hannon BA, An R, Holscher HD. Effects of isolated soluble fiber supplementation on body weight, glycemia, and insulinemia in adults with overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2017; 106:1514-1528. [PMID: 29092878 DOI: 10.3945/ajcn.117.163246] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/02/2017] [Indexed: 11/14/2022] Open
Abstract
Background: There is strong epidemiologic evidence that dietary fiber intake is protective against overweight and obesity; however, results of intervention studies have been mixed. Soluble fiber beneficially affects metabolism, and fiber supplementation may be a feasible approach to improve body composition and glycemia in adults with overweight and obesity.Objective: We evaluated randomized controlled trials (RCTs) of isolated soluble fiber supplementation in overweight and obese adults on outcomes related to weight management [body mass index (BMI; in kg/m2), body weight, percentage of body fat, and waist circumference] and glucose and insulin metabolism (homeostasis model assessment of insulin resistance and fasting insulin) through a systematic review and meta-analysis.Design: We searched PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature and Cochrane Library databases. Eligible studies were RCTs that compared isolated soluble fiber with placebo treatments without energy-restriction protocols. Random-effects models were used to estimate pooled effect sizes and 95% CIs. Meta-regressions were performed to assess outcomes in relation to the intervention duration, fiber dose, and fiber type. Publication bias was assessed via Begg's and Egger's tests and funnel plot inspection.Results: Findings from 12 RCTs (n = 609 participants) from 2 to 17 wk of duration are summarized in this review. Soluble fiber supplementation reduced BMI by 0.84 (95% CI: -1.35, -0.32; P = 0.001), body weight by 2.52 kg (95% CI: -4.25, -0.79 kg; P = 0.004), body fat by 0.41% (95% CI: -0.58%, -0.24%; P < 0.001), fasting glucose by 0.17 mmol/L (95% CI: -0.28, -0.06 mmol/L; P = 0.002), and fasting insulin by 15.88 pmol/L (95% CI: -29.05, -2.71 pmol/L; P = 0.02) compared with the effects of placebo treatments. No publication bias was identified. Considerable between-study heterogeneity was observed for most outcomes.Conclusions: Isolated soluble fiber supplementation improves anthropometric and metabolic outcomes in overweight and obese adults, thereby indicating that supplementation may improve fiber intake and health in these individuals. However, the interpretation of these findings warrants caution because of the considerable between-study heterogeneity. This trial was registered at clinicaltrials.gov as NCT03003897.
Collapse
Affiliation(s)
| | | | - Ruopeng An
- Division of Nutritional Sciences, and.,Departments of Kinesiology and Community Health and
| | - Hannah D Holscher
- Division of Nutritional Sciences, and .,Departments of Kinesiology and Community Health and.,Food Science and Human Nutrition, University of Illinois, Urbana, IL
| |
Collapse
|
19
|
McRae MP. Dietary Fiber Is Beneficial for the Prevention of Cardiovascular Disease: An Umbrella Review of Meta-analyses. J Chiropr Med 2017; 16:289-299. [PMID: 29276461 DOI: 10.1016/j.jcm.2017.05.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/02/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
Objective The purpose of this study was to review previously published meta-analyses on the effectiveness of dietary fiber on cardiovascular disease. Methods An umbrella review of all published meta-analyses was performed. A PubMed search from January 1, 1980, to January 31, 2017, was conducted using the following search strategy: (fiber OR glucan OR psyllium OR fructans) AND (meta-analysis OR systematic review). Only English-language publications that provided quantitative statistical analysis on cardiovascular disease, lipid concentrations, or blood pressure were retrieved. Results Thirty-one meta-analyses were retrieved for inclusion in this umbrella review, and all meta-analyses comparing highest versus lowest dietary fiber intake reported statistically significant reductions in the relative risk (RR) of cardiovascular disease mortality (RR = 0.77-0.83), as well as the incidences of cardiovascular disease (RR = 0.72-0.91), coronary heart disease (RR = 0.76-0.93), and stroke (RR = 0.83-0.93). Meta-analyses on supplementation studies using β-glucan or psyllium fibers also reported statistically significant reductions in both total serum and low-density lipoprotein cholesterol concentrations. Conclusion This review suggests that individuals consuming the highest amounts of dietary fiber intake can significantly reduce their incidence and mortality from cardiovascular disease. Mechanistically, these beneficial effects may be due to dietary fibers' actions on reducing total serum and low-density lipoprotein cholesterol concentrations between 9.3 to 14.7 mg/dL and 10.8 to 13.5 mg/dL, respectively.
Collapse
Affiliation(s)
- Marc P McRae
- Department of Basic Sciences, National University of Health Sciences, Lombard, Illinois
| |
Collapse
|
20
|
Clinical and Physiological Perspectives of β-Glucans: The Past, Present, and Future. Int J Mol Sci 2017; 18:ijms18091906. [PMID: 28872611 PMCID: PMC5618555 DOI: 10.3390/ijms18091906] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022] Open
Abstract
β-Glucans are a group of biologically-active fibers or polysaccharides from natural sources with proven medical significance. β-Glucans are known to have antitumor, anti-inflammatory, anti-obesity, anti-allergic, anti-osteoporotic, and immunomodulating activities. β-Glucans are natural bioactive compounds and can be taken orally, as a food supplement, or as part of a daily diet, and are considered safe to use. The medical significance and efficiency of β-glucans are confirmed in vitro, as well as using animal- and human-based clinical studies. However, systematic study on the clinical and physiological significance of β-glucans is scarce. In this review, we not only discuss the clinical and physiological importance of β-glucans, we also compare their biological activities through the existing in vitro and animal-based in vivo studies. This review provides extensive data on the clinical study of β-glucans.
Collapse
|
21
|
Effect of β-glucan fortification on physico-chemical, rheological, textural, colour and organoleptic characteristics of low fat dahi. Journal of Food Science and Technology 2017; 54:2684-2693. [PMID: 28928508 DOI: 10.1007/s13197-017-2705-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
Fortified low fat functional dahi prepared by supplementing skimmed buffalo milk with β-glucan (0.25, 0.50, 0.75 and 1.0%) was assessed for physico-chemical, rheological, textural, colour and sensorial characteristics. Total solids in dahi increased significantly with the increase in β-glucan concentration, however, values of fat, protein and ash varied non-significantly upon β-glucan addition in dahi. β-glucan at 0.5% solids levels, produced low fat dahi with superior quality, less whey separation and good textural properties than the samples containing other levels. Syneresis and viscosity was positively affected with the addition of β-glucan till 0.5% level and higher concentration caused destabilization of the product. Fortified dahi showed greater firmness and consistent than control dahi sample. The addition of 0.5% level of β-glucan also imparted significantly better instrumental color values and sensory scores with attractive or natural dahi color when compared to control dahi samples and other dahi samples prepared with different levels of β-glucan.
Collapse
|
22
|
Trimigno A, Khakimov B, Mejia JLC, Mikkelsen MS, Kristensen M, Jespersen BM, Engelsen SB. Identification of weak and gender specific effects in a short 3 weeks intervention study using barley and oat mixed linkage β-glucan dietary supplements: a human fecal metabolome study by GC-MS. Metabolomics 2017; 13:108. [PMID: 28867988 PMCID: PMC5562775 DOI: 10.1007/s11306-017-1247-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/05/2017] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Mixed-linkage (1→3),(1→4)-β-d-glucans (BG) reduce cholesterol level and insulin response in humans. Despite this, their role in human metabolism and a mode of action remains largely unknown. OBJECTIVES To investigate the effects of three structurally different BG on human fecal metabolome in a full cross-over intervention using GC-MS metabolomics. METHODS Over three weeks of intervention, young healthy adults received food supplemented with BG from oat, two different BG from barley or a non-fiber control in a full cross-over design. Untargeted metabolomics and short chain fatty acid analysis was performed on day three fecal samples. ANOVA-simultaneous component analysis was applied to partition the data variation according to the study design, and PLS-DA was used to select most discriminative metabolite markers. RESULTS Univariate and multivariate data analysis revealed a dominating effect of inter-individual variances followed by a gender effect. Weak effects of BG intake were identified including an increased level of gamma-amino-butyrate and palmitoleic acid in males and a decreased level of enterolactone in females. Barley and oat derived BG were found to influence the human fecal metabolome differently. Barley BG increased the relative level of formate in males and isobutyrate, isovalerate, 2-methylbutyrate in females. In total 15, 3 and 11 human fecal metabolites were significantly different between control vs. BG, control vs. oat BG, and barley BG vs. oat BG, respectively. CONCLUSIONS The study show that human fecal metabolome largely reflects individual (∼28% variation) and gender (∼15% variation) differences, whereas the treatment effect of the BG (∼8% variation) only manifests in a few key metabolites (primarily by the metabolites: d-2-aminobutyric acid, palmitoleic acid, linoleic acid and 11-eicosenoic acid).
Collapse
Affiliation(s)
- Alessia Trimigno
- 0000 0001 0674 042Xgrid.5254.6Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
- 0000 0004 1757 1758grid.6292.fDepartment of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Piazza Goidanich 60, 47521 Cesena (FC), Italy
| | - Bekzod Khakimov
- 0000 0001 0674 042Xgrid.5254.6Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Josue Leonardo Castro Mejia
- 0000 0001 0674 042Xgrid.5254.6Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mette Skau Mikkelsen
- 0000 0001 0674 042Xgrid.5254.6Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mette Kristensen
- 0000 0001 0674 042Xgrid.5254.6Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Birthe Møller Jespersen
- 0000 0001 0674 042Xgrid.5254.6Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Søren Balling Engelsen
- 0000 0001 0674 042Xgrid.5254.6Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| |
Collapse
|
23
|
åman P. Cholesterol-lowering effects of barley dietary fibre in humans: scientific support for a generic health claim. SCANDINAVIAN JOURNAL OF FOOD & NUTRITION 2016. [DOI: 10.1080/17482970601057990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Per åman
- Department of Food ScienceSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
24
|
A systematic review and meta-analysis of randomized controlled trials of the effect of barley β-glucan on LDL-C, non-HDL-C and apoB for cardiovascular disease risk reductioni-iv. Eur J Clin Nutr 2016; 70:1239-1245. [DOI: 10.1038/ejcn.2016.89] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/20/2016] [Indexed: 02/03/2023]
|
25
|
Wang Y, Harding SV, Eck P, Thandapilly SJ, Gamel TH, Abdel-Aal ESM, Crow GH, Tosh SM, Jones PJ, Ames NP. High-Molecular-Weight β-Glucan Decreases Serum Cholesterol Differentially Based on the CYP7A1 rs3808607 Polymorphism in Mildly Hypercholesterolemic Adults. J Nutr 2016; 146:720-7. [PMID: 26936139 DOI: 10.3945/jn.115.223206] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/19/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND β-Glucan, a soluble fiber with viscous property, has a documented cholesterol-lowering effect. The molecular weight (MW) of β-glucan, which contributes to viscosity, and an individual's genotype might influence the cholesterol-lowering efficacy of β-glucan. OBJECTIVES This study was designed to determine whether the cholesterol-lowering efficacy of barley β-glucan varied as a function of MW and the daily dose consumed. Our second aim was to determine whether any gene-diet interactions are associated with the cholesterol-lowering efficacy of β-glucan. METHODS In a randomized controlled crossover trial, 30 mildly hypercholesterolemic adults [12 men and 18 women, aged 27-78 y; body mass index (in kg/m(2)): 20-40; total cholesterol (TC): 5.0-8.0 mmol/L; LDL cholesterol: 2.7-5.0 mmol/L] were randomly assigned to receive a breakfast that contained either barley β-glucan at 3 g high MW (HMW)/d, 5 g low MW (LMW)/d, or 3 g LMW/d or a control diet, each for 5 wk. The washout period between the phases was 4 wk. Fasting blood samples were collected at the start and end of each phase for blood lipid analysis and genotyping. RESULTS Consumption of 3 g HMW β-glucan/d lowered TC by -0.12 mmol/L (95% CI: -0.24, -0.006 mmol/L) compared with the control diet (P= 0.0046), but the LMW β-glucan, at either 3 g/d or 5 g/d, did not change serum cholesterol concentrations. This effect of HMW β-glucan was associated with gene-diet interaction, whereby individuals with the single nucleotide polymorphism (SNP) rs3808607-G allele (GG or GT) of the cytochrome P450 family 7 subfamily A member 1 gene (CYP7A1) had greater responses to 3 g HMW β-glucan/d in lowering TC than TT carriers (P= 0.0006). CONCLUSIONS The HMW β-glucan rather than LMW β-glucan reduced circulating TC effectively in mildly hypercholesterolemic adults. The cholesterol-lowering effect of β-glucan may also be determined by the genetic characteristics of an individual. These data show that individuals carrying theCYP7A1SNP rs3808607-G allele are more responsive to the cholesterol-lowering effect of β-glucan with HMW than TT carriers. This trial was registered atclinicaltrials.govasNCT01408719.
Collapse
Affiliation(s)
- Yanan Wang
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Winnipeg, Canada; Departments of Human Nutritional Sciences and Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, Canada
| | - Scott V Harding
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Winnipeg, Canada; Diabetes and Nutritional Sciences, King's College London, London, United Kingdom
| | - Peter Eck
- Departments of Human Nutritional Sciences and
| | - Sijo J Thandapilly
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Winnipeg, Canada; Departments of Human Nutritional Sciences and Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, Canada
| | - Tamer H Gamel
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Canada; and
| | - El-Sayed M Abdel-Aal
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Canada; and
| | - Gary H Crow
- Animal Science, University of Manitoba, Winnipeg, Canada
| | - Susan M Tosh
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Canada; and
| | - Peter Jh Jones
- Departments of Human Nutritional Sciences and Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, Canada
| | - Nancy P Ames
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Winnipeg, Canada; Departments of Human Nutritional Sciences and Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, Canada
| |
Collapse
|
26
|
Gunness P, Williams BA, Gerrits WJ, Bird AR, Kravchuk O, Gidley MJ. Circulating triglycerides and bile acids are reduced by a soluble wheat arabinoxylan via modulation of bile concentration and lipid digestion rates in a pig model. Mol Nutr Food Res 2016; 60:642-51. [DOI: 10.1002/mnfr.201500686] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/12/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Purnima Gunness
- ARC Centre of Excellence in Plant Cell Walls; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; The University of Queensland
| | - Barbara A. Williams
- ARC Centre of Excellence in Plant Cell Walls; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; The University of Queensland
| | | | | | - Olena Kravchuk
- Biometry Hub, School of Agriculture, Food and Wine; University of Adelaide; Australia
| | - Michael J. Gidley
- ARC Centre of Excellence in Plant Cell Walls; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; The University of Queensland
| |
Collapse
|
27
|
Zhu X, Sun X, Wang M, Zhang C, Cao Y, Mo G, Liang J, Zhu S. Quantitative assessment of the effects of beta-glucan consumption on serum lipid profile and glucose level in hypercholesterolemic subjects. Nutr Metab Cardiovasc Dis 2015; 25:714-723. [PMID: 26026211 DOI: 10.1016/j.numecd.2015.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/19/2015] [Accepted: 04/21/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND & AIMS A growing body of evidence suggests that beta-glucan derived from oats or barley can reduce cardiovascular disease risk through reductions in serum lipids. However, the effects of beta-glucan on lipid changes in hypercholesterolemic patient groups are inconsistent. The objective of this study was to identify and quantify the effect of beta-glucan, a marker of water-soluble fiber, on various lipid parameters and glucose level in hypercholesterolemic subjects. METHODS AND RESULTS We performed a comprehensive literature search to identify the relevant randomized controlled trials (RCTs) that investigated the effects of beta-glucan consumption in hypercholesterolemic subjects. Mean differences (MDs) and 95% confidence intervals (CIs) were calculated for net changes in lipid concentrations by using fixed-effects or random-effects models according to heterogeneity. Publication bias, sensitivity analysis and subgroup analyses were also performed. Seventeen eligible RCTs with 916 subjects were included in the meta-analysis. The pooled result showed that beta-glucan consumption in hypercholesterolemic population significantly lowered the total cholesterol (TC) (MD, -0.26 mmol/L; 95% CI, -0.33 to -0.18; P < 0.00001) and low-density lipoprotein (LDL)-cholesterol concentration (MD, -0.21 mmol/L; 95% CI, -0.27 to -0.14; P < 0.00001). However, there were no significant differences in high-density lipoprotein (HDL)-cholesterol, triglycerides (TG) and glucose. No adverse effects were reported among the eligible trials. CONCLUSION Our meta-analysis showed that beta-glucan consumption significantly decreased TC and LDL-cholesterol concentrations but did not affect TG, HDL-cholesterol, and glucose concentrations in hypercholesterolemic subjects.
Collapse
Affiliation(s)
- X Zhu
- Department of Cardiovascular Medicine, People's Hospital of Gaozhou, Gaozhou 525200, Guangdong, China.
| | - X Sun
- Department of Cardiovascular Medicine, People's Hospital of Gaozhou, Gaozhou 525200, Guangdong, China
| | - M Wang
- Department of Cardiac Surgery, People's Hospital of Gaozhou, Gaozhou 525200, Guangdong, China
| | - C Zhang
- Department of Cardiovascular Medicine, People's Hospital of Gaozhou, Gaozhou 525200, Guangdong, China
| | - Y Cao
- Department of Cardiac Surgery, People's Hospital of Gaozhou, Gaozhou 525200, Guangdong, China
| | - G Mo
- Department of Cardiovascular Medicine, People's Hospital of Gaozhou, Gaozhou 525200, Guangdong, China
| | - J Liang
- Department of Cardiovascular Medicine, People's Hospital of Gaozhou, Gaozhou 525200, Guangdong, China
| | - S Zhu
- Department of Cardiovascular Medicine, People's Hospital of Gaozhou, Gaozhou 525200, Guangdong, China
| |
Collapse
|
28
|
Zou Y, Liao D, Huang H, Li T, Chi H. A systematic review and meta-analysis of beta-glucan consumption on glycemic control in hypercholesterolemic individuals. Int J Food Sci Nutr 2015; 66:355-62. [PMID: 26001090 DOI: 10.3109/09637486.2015.1034250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Evidence from animal and observational studies has supported the beneficial effects of beta-glucan intake on glycemic control, but intervention studies in hypercholesterolemic crowd have generated mixed results and have not been systematically examined. In the present study, we aimed to quantitatively evaluate the relation between beta-glucan consumption from oats or barley on glycemic control in hypercholesterolemic individuals. A systematic literature review was conducted for relevant published randomized controlled trials studies (RCTs) in electronic databases through July 2014. Twelve trials with a total of 603 subjects were included in the meta-analysis. Beta-glucan consumption did not significantly affect measures of glycemic control. Summary estimates of weighted mean differences (WMD) and 95% confidence interval was 0.05 mmol/L (-0.11, 0.02) for fasting glucose concentration and 0.75 pmol/L (-1.82, 3.32) for fasting insulin concentrations. In conclusion, there was not a significant overall effect of beta-glucan intake on improvements of fasting glucose and insulin concentrations in hypercholesterolemic subjects.
Collapse
Affiliation(s)
- Ying Zou
- Department of Traditional Chinese Medicine, The Second Clinical Medical College, Guangdong Medical College , Dongguan, Guangdong , China
| | | | | | | | | |
Collapse
|
29
|
Chen S, Wang J, Cheng H, Guo W, Yu M, Zhao Q, Wu Z, Zhao L, Yin Z, Hong Z. Targeted delivery of NK007 to macrophages to treat colitis. J Pharm Sci 2015; 104:2276-84. [PMID: 25964181 DOI: 10.1002/jps.24473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/26/2015] [Accepted: 04/15/2015] [Indexed: 01/15/2023]
Abstract
Macrophages are important therapeutic targets for various disorders, including infectious diseases, inflammatory diseases, metabolic diseases, and cancer. In this study, we report a novel oral delivery system for the targeted delivery of anti-inflammatory therapeutics to macrophages. Using this formulation, the model drug tylophorine malate (NK007) was tightly incorporated inside beta-glucan particle shells by the formation of colloidal particles with chitosan, tripolyphosphate, and alginate via electrostatic interactions. This formulation specifically delivered NK007 to macrophages in vivo after oral gavage and effectively cured colitis in the dextran sulfate sodium-induced murine colitis model, highlighting the utility of beta-glucan particles as an oral anti-inflammation drug delivery system by targeting macrophages. In this work, NK007 was selected as the model drug. However, this novel oral carrier system has the potential to be applied as a platform for the treatment of many other diseases for which macrophages are the therapeutic targets.
Collapse
Affiliation(s)
- Siming Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Hao Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Wenjun Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Min Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenzhou Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Liqing Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhinan Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
30
|
Skouroliakou M, Ntountaniotis D, Kastanidou O, Massara P. Evaluation of Barley's Beta-glucan Food Fortification through Investigation of Intestinal Permeability in Healthy Adults. J Am Coll Nutr 2015; 35:13-9. [DOI: 10.1080/07315724.2014.967893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Brewer’s spent grain: source of value-added polysaccharides for the food industry in reference to the health claims. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2461-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Evidence-Based Approach to Fiber Supplements and Clinically Meaningful Health Benefits, Part 1: What to Look for and How to Recommend an Effective Fiber Therapy. ACTA ACUST UNITED AC 2015; 50:82-89. [PMID: 25972618 PMCID: PMC4415962 DOI: 10.1097/nt.0000000000000082] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dietary fiber that is intrinsic and intact in fiber-rich foods (eg, fruits, vegetables, legumes, whole grains) is widely recognized to have beneficial effects on health when consumed at recommended levels (25 g/d for adult women, 38 g/d for adult men). Most (90%) of the US population does not consume this level of dietary fiber, averaging only 15 g/d. In an attempt to bridge this “fiber gap,” many consumers are turning to fiber supplements, which are typically isolated from a single source. Fiber supplements cannot be presumed to provide the health benefits that are associated with dietary fiber from whole foods. Of the fiber supplements on the market today, only a minority possess the physical characteristics that underlie the mechanisms driving clinically meaningful health benefits. The first part (current issue) of this 2-part series will focus on the 4 main characteristics of fiber supplements that drive clinical efficacy (solubility, degree/rate of fermentation, viscosity, and gel formation), the 4 clinically meaningful designations that identify which health benefits are associated with specific fibers, and the gel-dependent mechanisms in the small bowel that drive specific health benefits (eg, cholesterol lowering, improved glycemic control). The second part (next issue) of this 2-part series will focus on the effects of fiber supplements in the large bowel, including the 2 mechanisms by which fiber prevents/relieves constipation (insoluble mechanical irritant and soluble gel-dependent water-holding capacity), the gel-dependent mechanism for attenuating diarrhea and normalizing stool form in irritable bowel syndrome, and the combined large bowel/small bowel fiber effects for weight loss/maintenance. The second part will also discuss how processing for marketed products can attenuate efficacy, why fiber supplements can cause gastrointestinal symptoms, and how to avoid symptoms for better long-term compliance.
Collapse
|
33
|
Oat β-glucan: physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties. Br J Nutr 2014; 112 Suppl 2:S4-S13. [PMID: 25267243 DOI: 10.1017/s0007114514002256] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The water-soluble, mixed-linkage β-glucan, a form of soluble dietary fibre, is considered the main biologically active component responsible for the capacity of many oat products to lower postprandial glycaemia and fasting plasma cholesterol in human subjects. The present review discusses the physical and chemical properties of oat β-glucan that are considered important predictors of these beneficial metabolic effects. In vitro modelling and animal and human studies have provided compelling evidence showing that the ability of oat β-glucan to increase the viscosity of digesta in the gastrointestinal tract (GIT) is a primary determinant of its blood-glucose and cholesterol-lowering properties. Therefore, the chemical structure, molecular weight (MW), the rate and extent of dissolution and solution rheology of oat β-glucan are key factors in determining the physiological function of oat-containing foods. The structure and properties of oat β-glucan vary between species and varieties of oats, and are also affected by the growing and storage conditions and processing of oat grain. In addition, the extraction and analysis methods may also contribute to the variations in the structure, MW, hydration and solution rheology of β-glucan obtained from different laboratories. Recent work has demonstrated that β-glucan solubility in foods depends on the source of the material and processing conditions; solubility may also be subject to changes during food preparation and storage (such as freezing). In conclusion, both the amount and MW of β-glucan that are solubilised in the GIT need to be considered when assessing the blood-glucose and cholesterol-lowering properties of oat-containing foods.
Collapse
|
34
|
Ulbricht C. An Evidence-Based Systematic Review of Beta-Glucan by the Natural Standard Research Collaboration. J Diet Suppl 2014; 11:361-475. [DOI: 10.3109/09286586.2014.975066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Barley grain non-starch polysaccharides with malting and nutritional significance. KVASNY PRUMYSL 2014. [DOI: 10.18832/kp2014025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Panahi S, Ezatagha A, Jovanovski E, Jenkins A, Temelli F, Vasanthan T, Vuksan V. Glycemic effect of oat and barley beta-glucan when incorporated into a snack bar: a dose escalation study. J Am Coll Nutr 2014; 33:442-9. [PMID: 25127170 DOI: 10.1080/07315724.2013.875366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND The blood glucose-lowering effects of β-glucan from oats and barley depend on the amounts consumed and their rheological properties. This has been recently challenged with growing evidence that the food matrix may also be an important factor in predicting its physiological response. OBJECTIVE The objective of this study was to examine the effects of varying doses of β-glucan from oats and barley and added to a snack bar on postprandial glycemia. DESIGN In a randomized crossover study, 12 healthy males and females consumed one of 8 snack bars containing 0 (control), 1.5, 3, and 6 g of β-glucan derived from oats or barley or 3 white bread controls. All treatments contained 50 g of available carbohydrate. Blood glucose concentrations were measured after ingestion of the treatments over 2 hours. RESULTS Incorporation of 1.5 to 6 g of β-glucan into snack bars had no additional glucose-lowering benefits irrespective of dose and source compared to the control bars (0 g β-glucan), suggesting that both the solid food matrix and composition of the bars may play a role in their effects on glycemic response. All bars reduced blood glucose area under the curve (AUC) by an average of 25% (p < 0.05) compared to the mean of the 3 white bread controls. CONCLUSION Adding β-glucan from oats and barley to the snack bar formulation used in this study did not yield any additional benefits beyond the glucose-lowering effects of the snack bars themselves.
Collapse
Affiliation(s)
- Shirin Panahi
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Ontario , CANADA
| | | | | | | | | | | | | |
Collapse
|
37
|
Macháň P, Ehrenbergerová J, Cerkal R, Benešová K, Vaculová K. The Influence of Genotype and Environment on Arabinoxylan and Beta-glucan Contents in Grain of Spring Barley (Hordeum vulgare L.). ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun201462030553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Gavurníková S, Havrlentová M, Kraic J. Effects of starchy and β-glucan additives on flour, dough, and bread parameters. ACTA ALIMENTARIA 2014. [DOI: 10.1556/aalim.43.2014.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Ibrügger S, Kristensen M, Poulsen MW, Mikkelsen MS, Ejsing J, Jespersen BM, Dragsted LO, Engelsen SB, Bügel S. Extracted oat and barley β-glucans do not affect cholesterol metabolism in young healthy adults. J Nutr 2013; 143:1579-85. [PMID: 23946347 DOI: 10.3945/jn.112.173054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
β-Glucans are known to exhibit hypocholesterolemic effects. Increased intestinal viscosity is thought to be crucial for cholesterol lowering. It is suggested that concentration, molecular mass, and structure, including the ratio of (1→3) to (1→4) glucan bonds in the molecule, are of importance for β-glucan functionality. This study investigated the effects of 3 different β-glucan sources, incorporated into a beverage and yogurt, on blood lipids and fecal endpoints. Fourteen participants completed this randomized, crossover, single-blinded study with four 3-wk periods: control and 3.3 g/d oat, barley, and barley mutant β-glucans of similar molecular mass. Before and after each period, fasting and postprandial blood samples were drawn and 3-d fecal samples were collected. Treatment did not affect changes in total, LDL, and HDL cholesterol compared with control; however, consumption of 3.3 g/d of oat β-glucans for 3 wk resulted in greater decreases in total (-0.29 ± 0.09 mmol/L, P < 0.01), LDL (-0.23 ± 0.07 mmol/L, P < 0.01), and HDL (-0.05 ± 0.03 mmol/L, P < 0.05) cholesterol compared with baseline. Changes in LDL in the β-glucan treatments were not related to β-glucan structure (cellotriosyl:cellotetraosyl). Decreases in fasting triacylglycerol were substantially greater after oat β-glucan treatment compared with control (P = 0.03). Fecal dry and wet weight, stool frequency, fecal pH, and energy excretion were unaffected. The results do not fully support the hypocholesterolemic effects by differently structured oat and barley β-glucans. However, substantial differences compared with baseline suggest a potential for oat β-glucan, presumably due to its higher solubility and viscosity. This underlines the importance of elusive structural β-glucan features for beneficial physiologic effects.
Collapse
Affiliation(s)
- Sabine Ibrügger
- Bioactive Foods and Health, Department of Nutrition, Exercise, and Sports, and
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
El Rabey HA, Al-Seeni MN, Amer HM. Efficiency of barley bran and oat bran in ameliorating blood lipid profile and the adverse histological changes in hypercholesterolemic male rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:263594. [PMID: 23984330 PMCID: PMC3747344 DOI: 10.1155/2013/263594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/01/2013] [Accepted: 07/11/2013] [Indexed: 01/24/2023]
Abstract
The efficiency of oat bran and barley bran in lowering the induced hyperlipidemia and hypercholesterolemia in blood of male Albino rats (Rattus rattus) was studied. Twenty rats were divided into four groups each consisted of five rats and fed the specified test diets for eight weeks. The first group (G1) is the negative group which was fed basal diet, the second group (G2) was fed 1.0% cholesterol, was the third group (G3) fed 1.0% cholesterol and 10% oats bran, and the fourth group (G4) was fed 1.0% cholesterol and 10% barley bran. Feeding rats on 1% cholesterol significantly increased serum total cholesterol, low density lipoprotein, and very low density lipoprotein and triglyceride and decreased serum high density lipoprotein. Furthermore, enzyme activity of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase was increased, and lipid peroxide was increased, whereas catalase and glutathione-S-transferase were decreased. Kidney functions parameters in the cholesterol supplemented group were elevated compared with the negative control. In addition, histological alteration in kidney, liver, heart, and testes was observed, compared with the negative control. Hypercholesterolemic rats supplemented with oat bran and barley bran showed significant decrease in lipid parameters, significant increase in high density lipoprotein-cholesterol, improved antioxidant enzyme, and improved histopathology of kidney, liver, heart, and testes. In conclusion, both oat bran and barley bran had protective effects against induced hyperlipidemia and improved histological alterations. Oat bran appeared more efficient than barley bran in lowering the lipid profile levels in hypercholesterolemic rats.
Collapse
Affiliation(s)
- Haddad A El Rabey
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | | |
Collapse
|
41
|
Shatwan IA, Ahmed LA, Badkook MM. Effect of Barley Flour, Crude Cinnamon, and Their Combination on Glycemia, Dyslipidemia, and Adipose Tissue Hormones in Type 2 Diabetic Rats. J Med Food 2013; 16:656-62. [DOI: 10.1089/jmf.2012.0083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Israa Ali Shatwan
- Food and Nutrition Department, Faculty of Home Economics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lamiaa Ali Ahmed
- Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Cairo, Egypt
| | - Maha Mohamed Badkook
- Food and Nutrition Department, Faculty of Home Economics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
42
|
Molecular weight of barley β-glucan influences energy expenditure, gastric emptying and glycaemic response in human subjects. Br J Nutr 2013; 110:2173-9. [PMID: 23742725 DOI: 10.1017/s0007114513001682] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Barley β-glucan (BG) has been shown to reduce glycaemic response (GR) in some studies. It is hypothesised that this reduction may be a function of its physical properties that delay gastric emptying (GE). The effect of these changes in GR and GE on diet-induced thermogenesis (DIT) is not known. The aim of the present study was to assess the effect of BG of different molecular weights and purities on GR, GE and DIT in healthy subjects. This was a randomised, single-blind, repeated-measures design where fifteen healthy subjects were tested on three occasions following an overnight fast. Following the baseline measurements, the volunteers were fed a soup containing high-molecular-weight BG (HBG), a soup containing low-molecular-weight BG (LBG) or a control soup with no BG (CHO). Following the consumption of the breakfast, GR was measured using finger-prick blood samples, GE was determined using the 13C-octanoic acid breath test and DIT was measured using indirect calorimetry. There was a difference in GR AUC between the soups after 60 min but not after 120 min. The CHO and LBG meals had a greater GR than the HBG meal. There were differences in all GE time points, with the HBG meal having the slowest GE time. There was a correlation between the GR and the initial GE times. There were differences in total DIT between the three test meals with the HBG meal having the lowest DIT. The present study indicates that HBG has the ability to delay GE due to increased viscosity, resulting in a decreased GR and DIT.
Collapse
|
43
|
The increasing use of barley and barley by-products in the production of healthier baked goods. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2012.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Abstract
Maintenance of normal blood glucose levels is important for avoiding chronic diseases such as type 2 diabetes, cardiovascular problems, and obesity. Type 2 diabetes is one of the major health problems affecting the world population and this condition can be exacerbated by poor diet, low physical activity, and genetic abnormalities. Food plays an important role in the management of blood glucose and associated complications in diabetes. This is attributed to the ability of food-based ingredients to modulate blood glucose without causing any adverse health consequences. This chapter focuses on four important food groups such as cereals, legumes, fruits, and spices that have active ingredients such as soluble dietary fiber, polyphenols, and antinutrients with the ability to reduce glycemic and insulin response in humans. Other food ingredients such as simple sugars, sugar alcohols, and some proteins are also discussed in moderation.
Collapse
|
45
|
Brockman DA, Chen X, Gallaher DD. Consumption of a high β-glucan barley flour improves glucose control and fatty liver and increases muscle acylcarnitines in the Zucker diabetic fatty rat. Eur J Nutr 2012. [PMID: 23229409 DOI: 10.1007/s00394‐012‐0478‐2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE The soluble fiber β-glucan, a natural component of barley, has been shown to lower the postprandial glucose response and is thought to improve insulin resistance. METHODS This study examined the effect of chronic consumption of the high β-glucan barley flour on glucose control, liver lipids and markers of muscle fatty acid oxidation in the Zucker diabetic fatty (ZDF) rat. Two groups of ZDF rats were fed diets containing either 6% β-glucan in the form of barley flour or cellulose as a control for 6 weeks. A group of Zucker lean rats served as a negative control. RESULTS The barley flour group had an increased small intestinal contents viscosity compared to the obese control group. After 6 weeks, the barley flour group had reduced glycated hemoglobin, lower relative kidney weights and a reduced area under the curve during a glucose tolerance test, indicating improved glucose control. Fasting plasma adiponectin levels increased in the barley flour group and were not different than the lean control group. ZDF rats on the barley flour diet had lower relative epididymal fat pad weights than the obese control and a greater food efficiency ratio. The barley flour group also had reduced liver weights and a decreased concentration of liver lipids. The barley flour group had significantly higher concentrations of muscle acylcarnitines, a metabolite generated during fatty acid oxidation. CONCLUSION These results show that chronic consumption of β-glucans can improve glucose control and decrease fatty liver in a model of diabetes with obesity.
Collapse
Affiliation(s)
- David A Brockman
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, 1334 Eckles Avenue, St. Paul, MN, 55108-1038, USA
| | | | | |
Collapse
|
46
|
Consumption of a high β-glucan barley flour improves glucose control and fatty liver and increases muscle acylcarnitines in the Zucker diabetic fatty rat. Eur J Nutr 2012; 52:1743-53. [PMID: 23229409 DOI: 10.1007/s00394-012-0478-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/27/2012] [Indexed: 01/21/2023]
Abstract
PURPOSE The soluble fiber β-glucan, a natural component of barley, has been shown to lower the postprandial glucose response and is thought to improve insulin resistance. METHODS This study examined the effect of chronic consumption of the high β-glucan barley flour on glucose control, liver lipids and markers of muscle fatty acid oxidation in the Zucker diabetic fatty (ZDF) rat. Two groups of ZDF rats were fed diets containing either 6% β-glucan in the form of barley flour or cellulose as a control for 6 weeks. A group of Zucker lean rats served as a negative control. RESULTS The barley flour group had an increased small intestinal contents viscosity compared to the obese control group. After 6 weeks, the barley flour group had reduced glycated hemoglobin, lower relative kidney weights and a reduced area under the curve during a glucose tolerance test, indicating improved glucose control. Fasting plasma adiponectin levels increased in the barley flour group and were not different than the lean control group. ZDF rats on the barley flour diet had lower relative epididymal fat pad weights than the obese control and a greater food efficiency ratio. The barley flour group also had reduced liver weights and a decreased concentration of liver lipids. The barley flour group had significantly higher concentrations of muscle acylcarnitines, a metabolite generated during fatty acid oxidation. CONCLUSION These results show that chronic consumption of β-glucans can improve glucose control and decrease fatty liver in a model of diabetes with obesity.
Collapse
|
47
|
Kumar V, Sinha AK, Makkar HPS, de Boeck G, Becker K. Dietary roles of non-starch polysaccharides in human nutrition: a review. Crit Rev Food Sci Nutr 2012; 52:899-935. [PMID: 22747080 DOI: 10.1080/10408398.2010.512671] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonstarch polysaccharides (NSPs) occur naturally in many foods. The physiochemical and biological properties of these compounds correspond to dietary fiber. Nonstarch polysaccharides show various physiological effects in the small and large intestine and therefore have important health implications for humans. The remarkable properties of dietary NSPs are water dispersibility, viscosity effect, bulk, and fermentibility into short chain fatty acids (SCFAs). These features may lead to diminished risk of serious diet related diseases which are major problems in Western countries and are emerging in developing countries with greater affluence. These conditions include coronary heart disease, colo-rectal cancer, inflammatory bowel disease, breast cancer, tumor formation, mineral related abnormalities, and disordered laxation. Insoluble NSPs (cellulose and hemicellulose) are effective laxatives whereas soluble NSPs (especially mixed-link β-glucans) lower plasma cholesterol levels and help to normalize blood glucose and insulin levels, making these kinds of polysaccharides a part of dietary plans to treat cardiovascular diseases and Type 2 diabetes. Moreover, a major proportion of dietary NSPs escapes the small intestine nearly intact, and is fermented into SCFAs by commensal microflora present in the colon and cecum and promotes normal laxation. Short chain fatty acids have a number of health promoting effects and are particularly effective in promoting large bowel function. Certain NSPs through their fermented products may promote the growth of specific beneficial colonic bacteria which offer a prebiotic effect. Various modes of action of NSPs as therapeutic agent have been proposed in the present review. In addition, NSPs based films and coatings for packaging and wrapping are of commercial interest because they are compatible with several types of food products. However, much of the physiological and nutritional impact of NSPs and the mechanism involved is not fully understood and even the recommendation on the dose of different dietary NSPs intake among different age groups needs to be studied.
Collapse
Affiliation(s)
- Vikas Kumar
- Institute for Animal Production in the Tropics and Subtropics, University of Hohenheim 70599, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
48
|
Rahar S, Swami G, Nagpal N, Nagpal MA, Singh GS. Preparation, characterization, and biological properties of β-glucans. J Adv Pharm Technol Res 2012; 2:94-103. [PMID: 22171300 PMCID: PMC3217690 DOI: 10.4103/2231-4040.82953] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
β-Glucans are soluble fibers with physiological functions, such as, interference with absorption of sugars and reduction of serum lipid levels. β-glucans are found in different species, such as, Rhynchelytrum repens, Lentinus edodes, Grifola frondosa, Tremella mesenterica, Tremella aurantia, Zea may, Agaricus blazei, Phellinus baummi, Saccharomyces cerevisae (yeast), and Agaricus blazei murell (mushroom). Analysis of the fractions reveals the presence of arabinose, glucose, xylose, and traces of rhamnose and galactose. The presence of β-glucan in these fractions is confirmed by hydrolyzing the polymers with endo-β-glucanase from Bacillus subtilis, followed by high-performance liquid chromatography (HPLC) analysis of the characteristic oligosaccharides produced. The 4 M KOH fractions from different tissues are subjected to gel permeation chromatography on Sepharose 4B, with separation of polysaccharides, with different degrees of polymerization, the highest molecular mass (above 2000 kDa) being found in young leaves. The molecular mass of the leaf blade polymers is similar (250 kDa) to that of the maize coleoptiles β-glucan used for comparison. The 4 M KOH fraction injected into rats with streptozotocin-induced diabetes has shown hypoglycemic activity, reducing blood sugar to normal levels for approximately 24 hours. This performance is better than that obtained with pure β-glucan from barley, which decreases blood sugar levels for about four hours. These results suggest that the activity of β-glucans is responsible for the use of this plant extract as a hypoglycemic drug in folk medicine.
Collapse
Affiliation(s)
- Sandeep Rahar
- Department of Pharmaceutical Chemistry, B.I.S. College of Pharmacy, Gagra (Moga), India
| | | | | | | | | |
Collapse
|
49
|
Cloetens L, Ulmius M, Johansson-Persson A, Akesson B, Onning G. Role of dietary beta-glucans in the prevention of the metabolic syndrome. Nutr Rev 2012; 70:444-58. [PMID: 22835138 DOI: 10.1111/j.1753-4887.2012.00494.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The present review examines the evidence regarding the effect of β-glucan on variables linked to the metabolic syndrome (MetS), including appetite control, glucose control, hypertension, and gut microbiota composition. Appetite control can indirectly influence MetS by inducing a decreased energy intake, and promising results for a β-glucan intake to decrease appetite have been found using gut hormone responses and subjective appetite indicators. Beta-glucan also improves the glycemic index of meals and beneficially influences glucose metabolism in patients with type 2 diabetes or MetS, as well as in healthy subjects. Furthermore, a blood-pressure-lowering effect of β-glucan in hypertensive subjects seems fairly well substantiated. The gut microbiota composition might be an interesting target to prevent MetS, and preliminary results indicate the prebiotic potential of β-glucan. The evidence that β-glucan influences appetite control and gut microbiota in a positive way is still insufficient or difficult to interpret, and additional studies are needed in this field. Still, much evidence indicates that increased β-glucan intake could prevent MetS. Such evidence should encourage increased efforts toward the development of β-glucan-containing functional foods and promote the intake of β-glucan-rich foods, with the aim of reducing healthcare costs and disease prevalence.
Collapse
Affiliation(s)
- Lieselotte Cloetens
- Biomedical Nutrition, Pure and Applied Biochemistry, Centre for Applied Life Sciences at Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
50
|
|