1
|
Singh P, Beyl RA, Marlatt KL, Ravussin E. Sleep Duration Alters Overfeeding-mediated Reduction in Insulin Sensitivity. J Clin Endocrinol Metab 2024:dgae466. [PMID: 39028757 DOI: 10.1210/clinem/dgae466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 07/21/2024]
Abstract
CONTEXT Weight gain and sleep restriction both reduce insulin sensitivity. However, it is not known if sleep duration alters glucose metabolism in response to overfeeding. OBJECTIVE To examine the effect of sleep duration on overfeeding-mediated alterations in carbohydrate metabolism and insulin sensitivity. METHODS Retrospective exploratory analysis of a longitudinal overfeeding study in healthy participants (n = 28, age: 26.9 ± 5.5 years, body mass index: 25.74 ± 2.45 kg/m2). After providing baseline study measures, participants were overfed 40% above weight maintenance calorie requirements for 8 weeks. Insulin sensitivity was determined by a 2-step hyperinsulinemic-euglycemic clamp. Baseline habitual sleep duration was estimated by accelerometry, and sleep groups were created based on median sleep duration (5.2 hours/night). RESULTS Overfeeding led to an average body weight gain of 7.3 ± .4 kg. Habitual sleep duration did not alter overfeeding-mediated body weight gain, fat gain, and fat distribution (all P > .15). Compared to participants with more sleep, fasting insulin (P = .01) and homeostatic model assessment for insulin resistance (P = .02) increased while fasting glucose remained unchanged (P = .68) with overfeeding in participants with shorter sleep duration. Glucose infusion rate during high insulin dose was reduced with overfeeding in participants with short sleep duration but not in participants with more sleep (P < .01). CONCLUSION Overfeeding mediated weight gain reduced liver, adipose, and whole-body insulin sensitivity prominently in individuals with short sleep duration but not in individuals with longer sleep duration. This suggests that promoting adequate sleep during short periods of overeating may prevent detrimental effects on glucose metabolism.
Collapse
Affiliation(s)
- Prachi Singh
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Robbie A Beyl
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Kara L Marlatt
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
2
|
Sivakumaran K, Ritonja JA, Palmer N, Pasumarthi T, Waseem H, Yu T, Denning A, Michaud D, Morgan RL. Effect of sleep disturbance on biomarkers related to the development of adverse health outcomes: A systematic review of the human literature. J Sleep Res 2022; 32:e13775. [PMID: 36330773 DOI: 10.1111/jsr.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Literature suggests that unrestricted and undisturbed sleep is vital for basic human function and performance; however, it is unclear as to what amount of sleep disturbance leads to dysregulation in biomarkers, which may underscore the development of adverse health effects. This systematic review aims to identify the amount of sleep disturbance that contributes to biomarker changes as a potential precursor to the development of adverse health effects. English-language comparative studies available in PubMed, Cochrane Central, EMBASE, and CINAHL databases from 1 January 1980 to 31 July 2021 were searched. Where possible, random-effects meta-analyses were used to examine the effect of sleep disturbances on adverse health effects. The risk of bias of individual studies was assessed using the Cochrane Risk of Bias Tool and the Risk of Bias of Nonrandomised Studies - of Exposures instruments and the certainty of the body of evidence for each outcome was assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. The search identified 92 primary studies reporting on blood pressure, hypertension, heart rate, cardiac arrhythmia, cardiac output, waist circumference, cortisol, adrenaline, noradrenaline, immune system markers, glucose, insulin, cholesterol, and triglyceride levels. Although some meta-analyses suggested there may be an association between sleep disturbances and certain outcomes, the certainty in the evidence was very low due to concerns with risk of bias, inconsistency across exposures, populations, and imprecision in the estimates of effects. Further research is needed to explore the point at which types, levels and duration of sleep disturbances may begin to increase the risk of developing adverse health outcomes to inform and tailor health interventions.
Collapse
Affiliation(s)
| | - Jennifer A. Ritonja
- Université de Montréal Hospital Research Centre (CRCHUM) Montreal Quebec Canada
- Department of Social and Preventive Medicine Université de Montréal Montreal Quebec Canada
| | | | - Tejanth Pasumarthi
- Evidence Foundation Cleveland Heights Ohio USA
- School of Interdisciplinary Science McMaster University Hamilton Ontario Canada
| | - Haya Waseem
- Evidence Foundation Cleveland Heights Ohio USA
| | - Tiffany Yu
- Evidence Foundation Cleveland Heights Ohio USA
- Faculty of Health Sciences McMaster University Hamilton Ontario Canada
| | - Allison Denning
- Health Canada, Environmental and Radiation Health Sciences Directorate Consumer & Clinical Radiation Protection Bureau Ottawa Ontario Canada
| | - David Michaud
- Health Canada, Environmental and Radiation Health Sciences Directorate Consumer & Clinical Radiation Protection Bureau Ottawa Ontario Canada
| | - Rebecca L. Morgan
- Evidence Foundation Cleveland Heights Ohio USA
- Department of Health Research Methods, Evidence and Impact McMaster University Hamilton Ontario Canada
| |
Collapse
|
3
|
Covassin N, Singh P, McCrady-Spitzer SK, St Louis EK, Calvin AD, Levine JA, Somers VK. Effects of Experimental Sleep Restriction on Energy Intake, Energy Expenditure, and Visceral Obesity. J Am Coll Cardiol 2022; 79:1254-1265. [PMID: 35361348 PMCID: PMC9187217 DOI: 10.1016/j.jacc.2022.01.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Although the consequences of sleep deficiency for obesity risk are increasingly apparent, experimental evidence is limited and there are no studies on body fat distribution. OBJECTIVES The purpose of this study was to investigate the effects of experimentally-induced sleep curtailment in the setting of free access to food on energy intake, energy expenditure, and regional body composition. METHODS Twelve healthy, nonobese individuals (9 males, age range 19 to 39 years) completed a randomized, controlled, crossover, 21-day inpatient study comprising 4 days of acclimation, 14 days of experimental sleep restriction (4 hour sleep opportunity) or control sleep (9 hour sleep opportunity), and a 3-day recovery segment. Repeated measures of energy intake, energy expenditure, body weight, body composition, fat distribution and circulating biomarkers were acquired. RESULTS With sleep restriction vs control, participants consumed more calories (P = 0.015), increasing protein (P = 0.050) and fat intake (P = 0.046). Energy expenditure was unchanged (all P > 0.16). Participants gained significantly more weight when exposed to experimental sleep restriction than during control sleep (P = 0.008). While changes in total body fat did not differ between conditions (P = 0.710), total abdominal fat increased only during sleep restriction (P = 0.011), with significant increases evident in both subcutaneous and visceral abdominal fat depots (P = 0.047 and P = 0.042, respectively). CONCLUSIONS Sleep restriction combined with ad libitum food promotes excess energy intake without varying energy expenditure. Weight gain and particularly central accumulation of fat indicate that sleep loss predisposes to abdominal visceral obesity. (Sleep Restriction and Obesity; NCT01580761).
Collapse
|
4
|
Effects of sleep manipulation on markers of insulin sensitivity: a systematic review and meta-analysis of randomized controlled trials. Sleep Med Rev 2022; 62:101594. [DOI: 10.1016/j.smrv.2022.101594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 01/03/2023]
|
5
|
Walhin JP, Gonzalez JT, Betts JA. Physiological responses to carbohydrate overfeeding. Curr Opin Clin Nutr Metab Care 2021; 24:379-384. [PMID: 33871420 DOI: 10.1097/mco.0000000000000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To consider emerging research into the physiological effects of excessive dietary carbohydrate intake, with a particular focus on interactions with physical activity. RECENT FINDINGS A single episode of massive carbohydrate overload initiates physiological responses to stimulate additional peptide hormone secretion by the gut and the conversion of carbohydrate into lipid by the intestine, liver and adipose tissue. These acute responses maintain glycaemic control both via increased oxidation of carbohydrate (rather than lipid) and via nonoxidative disposal of surplus carbohydrate into endogenous glycogen and lipid storage depots. Sustained carbohydrate overfeeding therefore results in a chronic accumulation of lipid in the liver, skeletal muscle and adipose tissue, which can impair insulin sensitivity and cardiometabolic health in general. Beyond any direct effect of such lipid deposition on body mass/composition, there is not yet clear evidence of physiologically meaningful metabolic or behavioural adaptations to carbohydrate overfeeding in terms of other components of energy balance. However, regular physical exercise can mitigate the negative health effects of carbohydrate overfeeding, independent of any effect on the net carbohydrate surplus. SUMMARY Research in this area has advanced understanding regarding the mechanisms of weight gain and associated health outcomes within the modern context of an abundant supply of dietary carbohydrate.
Collapse
Affiliation(s)
- Jean-Philippe Walhin
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, UK
| | | | | |
Collapse
|
6
|
Brouwer A, Asare Bediako I, Paszkiewicz RL, Kolka CM, Bergman RN, Broussard JL. Impact of sleep deprivation and high-fat feeding on insulin sensitivity and beta cell function in dogs. Diabetologia 2020; 63:875-884. [PMID: 32016566 PMCID: PMC7304935 DOI: 10.1007/s00125-019-05084-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Insufficient sleep is increasingly recognised as a major risk factor for the development of obesity and diabetes, and short-term sleep loss in clinical studies leads to a reduction in insulin sensitivity. Sleep loss-induced metabolic impairments are clinically relevant, since reductions in insulin sensitivity after sleep loss are comparable to insulin sensitivity differences between healthy individuals and those with impaired glucose tolerance. However, the relative effects of sleep loss vs high-fat feeding in the same individual have not been assessed. In addition, to our knowledge no diurnal (active during the daytime) non-human mammalian model of sleep loss-induced metabolic impairment exists, which limits our ability to study links between sleep and metabolism. METHODS This study examined the effects of one night of total sleep deprivation on insulin sensitivity and beta cell function, as assessed by an IVGTT, before and after 9 months of high-fat feeding in a canine model. RESULTS One night of total sleep deprivation in lean dogs impaired insulin sensitivity to a similar degree as a chronic high-fat diet (HFD)(normal sleep: 4.95 ± 0.45 mU-1 l-1 min-1; sleep deprivation: 3.14 ± 0.21 mU-1 l-1 min-1; HFD: 3.74 ± 0.48 mU-1 l-1 min-1; mean ± SEM). Hyperinsulinaemic compensation was induced by the chronic HFD, suggesting adequate beta cell response to high-fat feeding. In contrast, there was no beta cell compensation after one night of sleep deprivation, suggesting that there was metabolic dysregulation with acute sleep loss that, if sustained during chronic sleep loss, could contribute to the risk of type 2 diabetes. After chronic high-fat feeding, acute total sleep deprivation did not cause further impairments in insulin sensitivity (sleep deprivation + chronic HFD: 3.28 mU-1 l-1 min-1). CONCLUSIONS/INTERPRETATION Our findings provide further evidence that sleep is important for metabolic health and establish a diurnal animal model of metabolic disruption during insufficient sleep.
Collapse
Affiliation(s)
- Annelies Brouwer
- Sleep and Metabolism Laboratory, Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523-1582, USA
- Amsterdam UMC, Vrije Universiteit, Department of Psychiatry, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands
| | - Isaac Asare Bediako
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rebecca L Paszkiewicz
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cathryn M Kolka
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Josiane L Broussard
- Sleep and Metabolism Laboratory, Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523-1582, USA.
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
7
|
Surowska A, Jegatheesan P, Campos V, Marques AS, Egli L, Cros J, Rosset R, Lecoultre V, Kreis R, Boesch C, Pouymayou B, Schneiter P, Tappy L. Effects of Dietary Protein and Fat Content on Intrahepatocellular and Intramyocellular Lipids during a 6-Day Hypercaloric, High Sucrose Diet: A Randomized Controlled Trial in Normal Weight Healthy Subjects. Nutrients 2019; 11:nu11010209. [PMID: 30669704 PMCID: PMC6357079 DOI: 10.3390/nu11010209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/11/2023] Open
Abstract
Sucrose overfeeding increases intrahepatocellular (IHCL) and intramyocellular (IMCL) lipid concentrations in healthy subjects. We hypothesized that these effects would be modulated by diet protein/fat content. Twelve healthy men and women were studied on two occasions in a randomized, cross-over trial. On each occasion, they received a 3-day 12% protein weight maintenance diet (WM) followed by a 6-day hypercaloric high sucrose diet (150% energy requirements). On one occasion the hypercaloric diet contained 5% protein and 25% fat (low protein-high fat, LP-HF), on the other occasion it contained 20% protein and 10% fat (high protein-low fat, HP-LF). IHCL and IMCL concentrations (magnetic resonance spectroscopy) and energy expenditure (indirect calorimetry) were measured after WM, and again after HP-LF/LP-HF. IHCL increased from 25.0 ± 3.6 after WM to 147.1 ± 26.9 mmol/kg wet weight (ww) after LP-HF and from 30.3 ± 7.7 to 57.8 ± 14.8 after HP-LF (two-way ANOVA with interaction: p < 0.001 overfeeding x protein/fat content). IMCL increased from 7.1 ± 0.6 to 8.8 ± 0.7 mmol/kg ww after LP-HF and from 6.2 ± 0.6 to 6.9 ± 0.6 after HP-LF, (p < 0.002). These results indicate that liver and muscle fat deposition is enhanced when sucrose overfeeding is associated with a low protein, high fat diet compared to a high protein, low fat diet.
Collapse
Affiliation(s)
- Anna Surowska
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | | | - Vanessa Campos
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Anne-Sophie Marques
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Léonie Egli
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Jérémy Cros
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Robin Rosset
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Virgile Lecoultre
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Roland Kreis
- Department for Biomedical Research, University of Bern and Institute of Diagnostic Interventional and Pediatric Radiology, University Hospital, 3012 Bern, Switzerland.
| | - Chris Boesch
- Department for Biomedical Research, University of Bern and Institute of Diagnostic Interventional and Pediatric Radiology, University Hospital, 3012 Bern, Switzerland.
| | - Bertrand Pouymayou
- Department for Biomedical Research, University of Bern and Institute of Diagnostic Interventional and Pediatric Radiology, University Hospital, 3012 Bern, Switzerland.
| | - Philippe Schneiter
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Luc Tappy
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|