1
|
Lusk S, Moushey AM, Iwakoshi N, Wilson CG, Li A, Ray R. Exaggerated postnatal surge of orexin neurons and the effects of elimination of excess orexin on blood pressure and exaggerated chemoreflex in spontaneously hypertensive rats. Front Physiol 2024; 15:1341649. [PMID: 39469444 PMCID: PMC11513569 DOI: 10.3389/fphys.2024.1341649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/26/2024] [Indexed: 10/30/2024] Open
Abstract
An overactive orexin (OX) system is associated with neurogenic hypertension and an exaggerated chemoreflex in spontaneously hypertensive rats (SHRs). However, the chronology and mechanism of this association is unclear. We hypothesized that increased postnatal neurogenesis of OX neurons in SHRs precedes and contributes to the aberrant increase in mean arterial blood pressure (MAP) and the exaggerated response to hypercapnia during postnatal development. Using immunohistochemical methods and bromodeoxyuridine, we mapped the timeline of orexin neuron neurogenesis and maturation during early postnatal development. We then used whole-body plethysmography with EEG and EMG to map the development of mean arterial pressure (MAP) and state regulation. Finally, we used OX-targeted saporin toxin to determine the effects of eliminating excess OX neurons on the elevated MAP and exaggerated chemoreflex in adult SHRs. We found that both SHRs and Wistar-Kyoto (WKY) rats experienced postnatal increases in OX neurons. However, SHRs experienced a greater increase than WKY rats before P15, which led to significantly more OX neurons in SHRs than age-matched WKY controls by P15-16 (3,720 ± 780 vs. 2,406 ± 363, p = 0.005). We found that neurogenesis, as evidenced by BrdU staining in OX-positive neurons, was the primary contributor to the excess OX neurons in SHRs during early postnatal development. While SHRs develop more OX neurons by P15-16, SHRs and normotensive WKY control rats have similar MAP during postnatal development until P25 in wakefulness (81.6 ± 6.6 vs. 67.5 ± 6.8 mmHg, p = 0.006) and sleep (79.3 ± 6.1 vs. 66.6 ± 6.5, p = 0.009), about 10 days after the surge of OX neurons. By selectively eliminating excess (∼30%) OX neurons in SHRs, we saw a significantly lowered MAP and hypercapnic ventilatory chemoreflex compared to non-lesioned SHRs at P40. Additionally, we found unique signatures in state indicative of the attention defecit phenotype commonly associated with this model. We suggest that the postnatal increase of OX neurons, primarily attributed to exaggerated postnatal OX neurogenesis, may be necessary for the development of higher MAP and exaggerated chemoreflex in SHRs, and modulation of the overactive OX system may have a potential therapeutic effect during the pre-hypertensive period.
Collapse
Affiliation(s)
- Savannah Lusk
- Dartmouth College, Department of Molecular and Systems Biology, Hanover, NH, United States
| | - Alexander M. Moushey
- Dartmouth College, Department of Molecular and Systems Biology, Hanover, NH, United States
| | - Nicholas Iwakoshi
- Loma Linda University, Center for Perinatal Biology, Loma Linda, CA, United States
| | | | - Aihua Li
- Dartmouth College, Department of Molecular and Systems Biology, Hanover, NH, United States
| | - Russell Ray
- Baylor College of Medicine, Department of Neuroscience, Houston, TX, United States
| |
Collapse
|
2
|
Zhong L, Zhang J, Yang J, Li B, Yi X, Speakman JR, Gao S, Li M. Chronic sleep fragmentation reduces left ventricular contractile function and alters gene expression related to innate immune response and circadian rhythm in the mouse heart. Gene 2024; 914:148420. [PMID: 38556117 DOI: 10.1016/j.gene.2024.148420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Sleep disorders have emerged as a widespread public health concern, primarily due to their association with an increased risk of developing cardiovascular diseases. Our previous research indicated a potential direct impact of insufficient sleep duration on cardiac remodeling in children and adolescents. Nevertheless, the underlying mechanisms behind the link between sleep fragmentation (SF) and cardiac abnormalities remain unclear. In this study, we aimed to investigate the effects of SF interventions at various life stages on cardiac structure and function, as well as to identify genes associated with SF-induced cardiac dysfunction. To achieve this, we established mouse models of chronic SF and two-week sleep recovery (SR). Our results revealed that chronic SF significantly compromised left ventricular contractile function across different life stages, leading to alterations in cardiac structure and ventricular remodeling, particularly during early life stages. Moreover, microarray analysis of mouse heart tissue identified two significant modules and nine hub genes (Ddx60, Irf9, Oasl2, Rnf213, Cmpk2, Stat2, Parp14, Gbp3, and Herc6) through protein-protein interaction analysis. Notably, the interactome predominantly involved innate immune responses. Importantly, all hub genes lost significance following SR. The second module primarily consisted of circadian clock genes, and real-time PCR validation demonstrated significant upregulation of Arntl, Dbp, and Cry1 after SF, while subsequent SR restored normal Arntl expression. Furthermore, the expression levels of four hub genes (Ddx60, Irf9, Oasl2, and Cmpk2) and three circadian clock genes (Arntl, Dbp, and Cry1) exhibited correlations with structural and functional echocardiographic parameters. Overall, our findings suggest that SF impairs left ventricular contractile function and ventricular remodeling during early life stages, and this may be mediated by modulation of the innate immune response and circadian rhythm. Importantly, our findings suggest that a short period of SR can alleviate the detrimental effects of SF on the cardiac immune response, while the influence of SF on circadian rhythm appears to be more persistent. These findings underscore the importance of good sleep for maintaining cardiac health, particularly during early life stages.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Endocrinology, National Health Committee Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie Zhang
- Department of Endocrinology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jielin Yang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Bo Li
- Department of Endocrinology, National Health Committee Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinghao Yi
- Department of Endocrinology, National Health Committee Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shan Gao
- Department of Endocrinology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Ming Li
- Department of Endocrinology, National Health Committee Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
3
|
Roberts R, Huckstepp RT. Innate Sleep Apnea in Spontaneously Hypertensive Rats Is Associated With Microvascular Rarefaction and Neuronal Loss in the preBötzinger Complex. Stroke 2023; 54:3141-3152. [PMID: 38011231 PMCID: PMC10769171 DOI: 10.1161/strokeaha.123.044732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Sleep apnea (SA) is a major threat to physical health and carries a significant economic burden. These impacts are worsened by its interaction with, and induction of, its comorbidities. SA holds a bidirectional relationship with hypertension, which drives atherosclerosis/arteriolosclerosis, ultimately culminating in vascular dementia. METHODS To enable a better understanding of these sequelae of events, we investigated innate SA and its effects on cognition in adult-aged spontaneously hypertensive rats, which have a range of cardiovascular disorders: plethysmography and electroencephalographic/electromyographic recordings were used to assess sleep-wake state, breathing parameters, and sleep-disordered breathing; immunocytochemistry was used to assess vascular and neural health; the forced alteration Y maze and Barnes maze were used to assess short- and long-term memories, respectively; and an anesthetized preparation was used to assess baroreflex sensitivity. RESULTS Spontaneously hypertensive rats displayed a higher degree of sleep-disordered breathing, which emanates from poor vascular health leading to a loss of preBötzinger Complex neurons. These rats also display small vessel white matter disease, a form of vascular dementia, which may be exacerbated by the SA-induced neuroinflammation in the hippocampus to worsen the related deficits in both long- and short-term memories. CONCLUSIONS Therefore, we postulate that hypertension induces SA through vascular damage in the respiratory column, culminating in neuronal loss in the inspiratory oscillator. This induction of SA, which, in turn, will independently exacerbate hypertension and neural inflammation, increases the rate of vascular dementia.
Collapse
Affiliation(s)
- Reno Roberts
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
4
|
Nagai M, Tomitani N, Kario K. Social jet lag and morning blood pressure surge-central nervous system matters? Hypertens Res 2023; 46:2762-2765. [PMID: 37845398 DOI: 10.1038/s41440-023-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023]
Affiliation(s)
- Michiaki Nagai
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| | - Naoko Tomitani
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
5
|
Chen J, Chen J, Zhu T, Fu Y, Cheongi IH, Yi K, Wang H, Li X. Causal relationships of excessive daytime napping with atherosclerosis and cardiovascular diseases: a Mendelian randomization study. Sleep 2023; 46:6775966. [PMID: 36302037 DOI: 10.1093/sleep/zsac257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
STUDY OBJECTIVES Previous observational studies have found conflicting evidence on the relationship between daytime napping and incident cardiovascular diseases (CVDs), but it remains unclear whether these associations present causality. This study aims to verify whether and why there is a causal relationship between these parameters, and whether there is an etiological basis. METHODS A two-sample Mendelian randomization analysis was performed using 79 single nucleotide polymorphisms associated with daytime napping. Summary-level data for coronary atherosclerosis, peripheral atherosclerosis, total CVD, and five CVD outcomes were obtained from the FinnGen study. Meta-analyses were aimed at investigating the relationships of excessive daytime napping with total CVD, coronary heart disease, myocardial infarction (MI), and stroke incidence. Subgroup, network meta-analysis (NMA) and trial sequential analysis (TSA) were also performed in this study. RESULTS The inverse-variance weighted method demonstrated that a genetic predisposition to more frequent daytime napping was significantly associated with higher odds of coronary atherosclerosis (odds ratio [OR] = 1.55, 95% confidence interval [CI]: 1.11 to 2.17), MI (OR = 1.63, 95% CI: 1.06 to 2.50), and heart failure (OR = 1.80, 95%CI: 1.28 to 2.52). In NMA, an increased risk of developing CVD in people who napped for more than 60 min a day than those who did not nap was demonstrated and then supported by TSA results (summary relative risk = 1.98, 95% CI: 1.39 to 2.82). CONCLUSION Habitual daytime napping is causally associated with an increased risk of incident CVD primarily via the development of coronary atherosclerosis. An average napping duration of more than 60 min is associated with an elevated risk of CVD in all participants.
Collapse
Affiliation(s)
- Jiayun Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianren Zhu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Fu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Io Hong Cheongi
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kexin Yi
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Roles of sleep-related cardiovascular autonomic functions in voluntary-exercise-induced alleviation of hypertension in spontaneously hypertensive rats. Hypertens Res 2022; 45:1154-1167. [PMID: 35459851 DOI: 10.1038/s41440-022-00916-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Autonomic dysfunction and sleep problems are closely associated with hypertension and predict cardiovascular morbidity and mortality. Animal studies and clinical observations have identified exercise as an important factor in preventing and treating hypertension. However, the roles of autonomic function and sleep in the antihypertensive mechanisms of exercise are still not fully understood. This study aimed to clarify the physiological mechanisms associated with autonomic function and sleep through wheel exercise. Male spontaneously hypertensive rats (SHRs) were grouped into a wheel-exercised group and a sedentary group (controls). Electroencephalogram, electromyogram, electrocardiogram, and mean arterial pressure (MAP) were recorded simultaneously for 24 h once a week over 11 weeks. Wheel exercise was initiated in the SHRs at 12 weeks old and continued for another eight weeks. A significant suppression in the age-related elevation of MAP was noted in the SHRs undergoing wheel exercise. The reduction in MAP was correlated with increased parasympathetic activity and baroreflex sensitivity and decreased sympathetic activity, mainly during quiet sleep. Exercise increased the paradoxical sleep time and theta power (associated with cognitive function) but not the delta power (an indicator of sleep depth) or the attenuation of circadian rhythm flattening (characterized by increased wakefulness and less sleep during the light period and the opposite during the dark period). Furthermore, the exercise-induced changes in autonomic function occurred before those in sleep patterns, which were dependent on each other. In conclusion, wheel exercise can modulate sleep-related cardiovascular dysfunction and the flattening of circadian rhythm, preventing the progression of hypertension, which reduces the incidence of cardiovascular diseases.
Collapse
|
7
|
Lai CT, Chen CY, She SC, Chen WJ, Kuo TBJ, Lin HC, Yang CCH. Production of Lactobacillus brevis ProGA28 attenuates stress-related sleep disturbance and modulates the autonomic nervous system and the motor response in anxiety/depression behavioral tests in Wistar-Kyoto rats. Life Sci 2022; 288:120165. [PMID: 34822793 DOI: 10.1016/j.lfs.2021.120165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
AIMS Many studies have reported that the production of Lactobacillus brevis is beneficial for sleep, but the underlying mechanism remains unclear. Other known beneficial effects of Lactobacillus brevis include improvement of anxious or depressive symptoms and better modulation of the autonomic nervous system, both of which impact sleep. In this study, we investigated whether the sleep benefit of Lactobacillus brevis was associated with the modulating effects on the autonomic nervous system and anxious/depressive symptoms. MAIN METHODS Wistar-Kyoto rats were fed the production of Lactobacillus brevis (ProGA28) for the last 2 weeks of treatment before being exposed to case exchange (stress-induced insomnia paradigm). Waking, quiet sleep, and paradoxical sleep states were defined based on polysomnographic measurements. Autonomic functioning was assessed by heart rate variability (HRV). A combined behavioral test was used to evaluate anxiety-like or depressive-like behaviors after the following 2 days. KEY FINDINGS In exposure to the dirty cage, the control group had significant prolongation of sleep latency, sleep loss during the first 2 h, and decreased parasympathetic activity and increased sympathetic activity during quiet sleep, which were significantly mitigated in the ProGA28 group. In behavioral tests, the ProGA28 group exhibited significantly less anxiety/depression-like motor responses in the elevated plus maze test, the forced swimming test, and the three-chamber social interaction test. Less initial sleep loss in the ProGA28 group was related to higher parasympathetic activity during quiet sleep, and shorter sleep latency in both groups was associated with longer time staying in the open arm in the elevated plus maze test. SIGNIFICANCE These findings suggest that L. brevis ProGA28 can attenuate stress-related sleep disturbance, which may be associated with increased parasympathetic activity and decreased anxiety-like behaviors.
Collapse
Affiliation(s)
- Chun-Ting Lai
- Institute of Brain Science, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Sleep Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chun-Yu Chen
- Department of Medicine, Taipei Veterans General Hospital Yuli Branch, Hualien County, Taiwan
| | - Sheng-Chieh She
- Institute of Brain Science, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Sleep Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Wei-Jen Chen
- College of Management, Chang Jung Christian University, Tainan, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Sleep Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Clinical Research Center, Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Cheryl C H Yang
- Institute of Brain Science, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Sleep Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
Moriya S, Takahashi H, Masukawa D, Yamada M, Ishigooka J, Nishimura K. Dual orexin receptor antagonist (DORA-12) treatment affects the overall levels of Net/maoA mRNA expression in the hippocampus. J Pharmacol Sci 2021; 145:198-201. [PMID: 33451754 DOI: 10.1016/j.jphs.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
The orexinergic system plays a significant role in regulating proper sleep/wake maintenance. Dual orexin receptor antagonist (DORA) is widely prescribed for insomnia symptoms. The antagonist acts on orexin 1 and 2 receptors located in certain brain areas, including the locus coeruleus and dorsal raphe. Nevertheless, its effects on monoamine-related gene expression remain unclear. Here, we measured the expression levels of monoamine-related genes in DORA-treated mice. DORA treatment significantly affected overall levels of noradrenalin transporter/monoamine oxidases A mRNA expression in the hippocampus. Our findings suggest that DORA contributes to noradrenalin-related gene expression regulation in the central nervous system.
Collapse
Affiliation(s)
- Shunpei Moriya
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Hitoshi Takahashi
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Makiko Yamada
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Jun Ishigooka
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan; CNS Pharmacological Research Institute, Shibuya-ku, Tokyo, 151-0051, Japan
| | - Katsuji Nishimura
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
9
|
Humer E, Pieh C, Brandmayr G. Metabolomics in Sleep, Insomnia and Sleep Apnea. Int J Mol Sci 2020; 21:ijms21197244. [PMID: 33008070 PMCID: PMC7583860 DOI: 10.3390/ijms21197244] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep-wake disorders are highly prevalent disorders, which can lead to negative effects on cognitive, emotional and interpersonal functioning, and can cause maladaptive metabolic changes. Recent studies support the notion that metabolic processes correlate with sleep. The study of metabolite biomarkers (metabolomics) in a large-scale manner offers unique opportunities to provide insights into the pathology of diseases by revealing alterations in metabolic pathways. This review aims to summarize the status of metabolomic analyses-based knowledge on sleep disorders and to present knowledge in understanding the metabolic role of sleep in psychiatric disorders. Overall, findings suggest that sleep-wake disorders lead to pronounced alterations in specific metabolic pathways, which might contribute to the association of sleep disorders with other psychiatric disorders and medical conditions. These alterations are mainly related to changes in the metabolism of branched-chain amino acids, as well as glucose and lipid metabolism. In insomnia, alterations in branched-chain amino acid and glucose metabolism were shown among studies. In obstructive sleep apnea, biomarkers related to lipid metabolism seem to be of special importance. Future studies are needed to examine severity, subtypes and treatment of sleep-wake disorders in the context of metabolite levels.
Collapse
Affiliation(s)
- Elke Humer
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria;
- Correspondence: ; Tel.: +43-273-2893-2676
| | - Christoph Pieh
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria;
| | - Georg Brandmayr
- Section for Artificial Intelligence and Decision Support, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
10
|
Maki KA, Burke LA, Calik MW, Watanabe-Chailland M, Sweeney D, Romick-Rosendale LE, Green SJ, Fink AM. Sleep fragmentation increases blood pressure and is associated with alterations in the gut microbiome and fecal metabolome in rats. Physiol Genomics 2020; 52:280-292. [PMID: 32567509 PMCID: PMC7468692 DOI: 10.1152/physiolgenomics.00039.2020] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota, via the production of metabolites entering the circulation, plays a role in blood pressure regulation. Blood pressure is also affected by the characteristics of sleep. To date, no studies have examined relationships among the gut microbiota/metabolites, blood pressure, and sleep. We hypothesized that fragmented sleep is associated with elevated mean arterial pressure, an altered and dysbiotic gut microbial community, and changes in fecal metabolites. In our model system, rats were randomized to 8 h of sleep fragmentation during the rest phase (light phase) or were undisturbed (controls) for 28 consecutive days. Rats underwent sleep and blood pressure recordings, and fecal samples were analyzed during: baseline (days -4 to -1), early sleep fragmentation (days 0-3), midsleep fragmentation (days 6-13), late sleep fragmentation (days 20-27), and recovery/rest (days 28-34). Less sleep per hour during the sleep fragmentation period was associated with increased mean arterial pressure. Analyses of gut microbial communities and metabolites revealed that putative short chain fatty acid-producing bacteria were differentially abundant between control and intervention animals during mid-/late sleep fragmentation and recovery. Midsleep fragmentation was also characterized by lower alpha diversity, lower Firmicutes:Bacteroidetes ratio, and higher Proteobacteria in intervention rats. Elevated putative succinate-producing bacteria and acetate-producing bacteria were associated with lower and higher mean arterial pressure, respectively, and untargeted metabolomics analysis demonstrates that certain fecal metabolites are significantly correlated with blood pressure. These data reveal associations between sleep fragmentation, mean arterial pressure, and the gut microbiome/fecal metabolome and provide insight to links between disrupted sleep and cardiovascular pathology.
Collapse
Affiliation(s)
- Katherine A Maki
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, Illinois
- Nursing Department, Nursing Research and Translational Science, National Institutes of Health, Clinical Center, Bethesda, Maryland
| | - Larisa A Burke
- Office of Research Facilitation, College of Nursing, University of Illinois at Chicago, Chicago, Illinois
| | - Michael W Calik
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, Illinois
| | - Miki Watanabe-Chailland
- NMR-Based Metabolomics Core, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dagmar Sweeney
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois
| | | | - Stefan J Green
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois
| | - Anne M Fink
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Wang J, Chen X, Liao J, Zhou L, Han H, Tao J, Lu Z. Non breathing-related sleep fragmentation and imaging markers in patients with atherosclerotic cerebral small vessel disease (CSVD): a cross-sectional case-control study. BMC Neurol 2020; 20:98. [PMID: 32183737 PMCID: PMC7076927 DOI: 10.1186/s12883-020-01647-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Background Sleep fragmentation was shown to be positively associated with cognitive impairment in patients with cerebral small vessel disease (CSVD); however, the underlying mechanisms are not well characterized. In this study, we sought to clarify this issue by investigating the relationship between non breathing-related sleep fragmentation and brain imaging markers in patients with CSVD. Methods Eighty-four CSVD patients and 24 age- and sex-matched healthy controls were prospectively recruited. All subjects underwent 3.0 T superconducting magnetic resonance imaging and overnight polysomnography. Polysomnography parameters including sleep onset latency (SOL), total sleep time (TST); sleep efficiency (SE), wake after sleep onset (WASO), percentage of each sleep stage (N1, N2, N3 and rapid eye movement [REM]), arousal index (ArI), periodic limb movement in sleep index (PLSMI), and periodic limb movement related arousal index (PLMAI) were compared between CSVD patients and healthy controls. The relationship between arousal index and CSVD markers was explored in the CSVD group. Results On polysomnography, CSVD patients showed significantly higher ArI, WASO, PLSMI, and PLMAI, and lower sleep efficiency and N− 3 ratio compared to healthy controls (p < 0.05). On ordinal logistic regression, higher ArI showed a positive association with the severity of periventricular white matter hyperintensity (odds ratio [OR] 1.121, 95% confidence interval [CI] 0.138–2.185) and perivascular space (OR 2.108, 95% CI 1.032–4.017) in CSVD patients, after adjusting for potential confounding variables. Conclusions These preliminary results indicate that non breathing-related sleep fragmentation is common and related to the pathological markers of CSVD patients. Future prospective research is required to determine the causal relationship between sleep parameters and CSVD pathology.
Collapse
Affiliation(s)
- Jihui Wang
- Department of Psychiatry, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaodong Chen
- Department of Neurology, the Third Affiliated Hospital, Sun Yat-sen University, No. 60, Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Jinchi Liao
- Department of Neurology, the Third Affiliated Hospital, Sun Yat-sen University, No. 60, Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Li Zhou
- Department of Rehabilitative Medicine, the First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Hongying Han
- Department of Psychiatry, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiong Tao
- Department of Psychiatry, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhengqi Lu
- Department of Neurology, the Third Affiliated Hospital, Sun Yat-sen University, No. 60, Tianhe Road, Tianhe District, Guangzhou, 510630, China.
| |
Collapse
|
12
|
Liu SH, Lai CT, Chen HR, Lin WL, Yamada S, Lugtu IC, Chou YH, Yang CC, Kuo TBJ, Chen SA, Lo LW. The Impact of Estrogen Supplementation to Autonomic and Sleep Modulations in Free-Moving Spontaneously Hypertensive Rats. Int Heart J 2020; 61:128-137. [DOI: 10.1536/ihj.19-297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Shin-Huei Liu
- Division of Cardiology, Taipei Veterans General Hospital
| | - Chun-Ting Lai
- Institute of Brain Science, National Yang-Ming University
- Sleep Research Center, National Yang-Ming University
| | | | - Wei-Lun Lin
- Division of Cardiology, Taipei Veterans General Hospital
- Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University
| | - Shinya Yamada
- Division of Cardiology, Taipei Veterans General Hospital
| | | | - Yu-Hui Chou
- Division of Cardiology, Taipei Veterans General Hospital
| | - Cheryl C.H. Yang
- Institute of Brain Science, National Yang-Ming University
- Sleep Research Center, National Yang-Ming University
| | - Terry Bo-Jau Kuo
- Institute of Brain Science, National Yang-Ming University
- Sleep Research Center, National Yang-Ming University
- Digital Medicine Center, National Yang-Ming University
| | - Shih-Ann Chen
- Division of Cardiology, Taipei Veterans General Hospital
- Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University
| | - Li-Wei Lo
- Division of Cardiology, Taipei Veterans General Hospital
- Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University
| |
Collapse
|
13
|
Arbinaga F, Joaquin-Mingorance M, Fernández-Cuenca S. Expression of anger in university students according to perceived quality of sleep. Sleep Sci 2019; 12:28-34. [PMID: 31105892 PMCID: PMC6508946 DOI: 10.5935/1984-0063.20190058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective We analyzed the expression of anger according to the perceived quality of
sleep in university students. Methods A total sample of 1252 students participated in the study, with an average
age of 23.58 years. Using an ex-post facto design and an incidental sampling
procedure, the Pittsburgh Sleep Quality Index and the State-Trait Anger
Expression Inventory-2 were applied. Results Students with poor sleep quality (PSQI scores> 5) scored higher on the
subscales of STAXI-2, showing higher risk of obtaining superior values in
Trait Anxiety [OR=1.90] and in the Index of Expression of Anger [OR=1.56],
but not in Internal Control of Anger. Conclusions There appears to be a marked relationship between quality of sleep and anger,
and it is suggested that sleep hygiene programs can help to reduce the
negative consequences of poor sleep quality in terms of health and academic
performance in students.
Collapse
Affiliation(s)
- Félix Arbinaga
- University of Huelva, Department of Clinical and Experimental Psychology (Huelva - Spain)
| | | | | |
Collapse
|
14
|
Li X, Pang X, Liu Z, Zhang Q, Sun C, Yang J, Li Y. Joint effect of less than 1 h of daytime napping and seven to 8 h of night sleep on the risk of stroke. Sleep Med 2018; 52:180-187. [DOI: 10.1016/j.sleep.2018.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022]
|
15
|
Trzepizur W, Cortese R, Gozal D. Murine models of sleep apnea: functional implications of altered macrophage polarity and epigenetic modifications in adipose and vascular tissues. Metabolism 2018; 84:44-55. [PMID: 29154950 PMCID: PMC5955762 DOI: 10.1016/j.metabol.2017.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent disease across the lifespan, is characterized by chronic intermittent hypoxia and sleep fragmentation, and has been independently associated with substantial cardiometabolic morbidity. However, the reversibility of end-organ morbidity with treatment is not always apparent, suggesting that both tissue remodeling and epigenetic mechanisms may be operationally involved. Here, we review the cumulative evidence focused around murine models of OSA to illustrate the temporal dependencies of cardiometabolic dysfunction and its reversibility, and more particularly to discuss the critical contributions of tissue macrophages to adipose tissue insulin resistance and vascular atherogenesis. In addition, we describe initial findings potentially implicating epigenetic alterations in both the emergence of the cardiometabolic morbidity of OSA, and in its reversibility with treatment. We anticipate that improved understanding of macrophage biology and epigenetics in the context of intermittent hypoxia and sleep fragmentation will lead to discovery of novel therapeutic targets and improved cardiovascular and metabolic outcomes in OSA.
Collapse
Affiliation(s)
- Wojciech Trzepizur
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States; Département de Pneumologie, Centre de Recherche Clinique, CHU d'Angers, Université Bretagne Loire, UNIV Angers, INSERM UMR 1063, Angers, France
| | - Rene Cortese
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| | - David Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|