1
|
Dume B, Licarete E, Banciu M. Advancing cancer treatments: The role of oligonucleotide-based therapies in driving progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102256. [PMID: 39045515 PMCID: PMC11264197 DOI: 10.1016/j.omtn.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although recent advancements in cancer immunology have resulted in the approval of numerous immunotherapies, minimal progress has been observed in addressing hard-to-treat cancers. In this context, therapeutic oligonucleotides, including interfering RNAs, antisense oligonucleotides, aptamers, and DNAzymes, have gained a central role in cancer therapeutic approaches due to their capacity to regulate gene expression and protein function with reduced toxicity compared with conventional chemotherapeutics. Nevertheless, systemic administration of naked oligonucleotides faces many extra- and intracellular challenges that can be overcome by using effective delivery systems. Thus, viral and non-viral carriers can improve oligonucleotide stability and intracellular uptake, enhance tumor accumulation, and increase the probability of endosomal escape while minimizing other adverse effects. Therefore, gaining more insight into fundamental mechanisms of actions of various oligonucleotides and the challenges posed by naked oligonucleotide administration, this article provides a comprehensive review of the recent progress on oligonucleotide delivery systems and an overview of completed and ongoing cancer clinical trials that can shape future oncological treatments.
Collapse
Affiliation(s)
- Bogdan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Rodrigues AM, Paula Zen Petisco Fiore A, Guardia GDA, Tomasin R, Azevedo Reis Teixeira A, Giordano RJ, Schechtman D, Pagano M, Galante PAF, Bruni-Cardoso A. Identification of a novel alternative splicing isoform of the Hippo kinase STK3/MST2 with impaired kinase and cell growth suppressing activities. Oncogene 2024; 43:2938-2950. [PMID: 39174858 DOI: 10.1038/s41388-024-03104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024]
Abstract
Mammalian Ste-20-like Kinases 1 and 2 (MST1/2) are core serine-threonine kinases of the Hippo pathway regulating several cellular processes, including cell cycle arrest and cell death. Here, we discovered a novel alternative splicing variant of the MST2 encoding gene, STK3, in malignant cells and tumor datasets. This variant, named STK3∆7 or MST2∆7 (for mRNA or protein, respectively), resulted from the skipping of exon 7. MST2∆7 exhibited increased ubiquitylation and interaction with the E3 ubiquitin-protein ligase CHIP compared to the full-length protein (MST2FL). Exon 7 in STK3 encodes a segment within the kinase domain, and its exclusion compromised MST2 interaction with and phosphorylation of MOB, a major MST1/2 substrate. Nevertheless, MST2∆7 was capable of interacting with MST1 and MST2FL. Unlike MST2FL, overexpression of MST2∆7 did not lead to increased cell death and growth arrest. Strikingly, we observed the exclusion of STK3 exon 7 in 3.2-15% of tumor samples from patients of several types of cancer, while STK3∆7 was seldomly found in healthy tissues. Our study identified a novel STK3 splicing variant with loss of function and the potential to disturb tissue homeostasis by impacting on MST2 activities in the regulation of cell death and quiescence.
Collapse
Affiliation(s)
- Ana Maria Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Zen Petisco Fiore
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Department of Biology, New York University, New York, NY, USA
| | | | - Rebeka Tomasin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ricardo Jose Giordano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Çakan E, Lara OD, Szymanowska A, Bayraktar E, Chavez-Reyes A, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Therapeutic Antisense Oligonucleotides in Oncology: From Bench to Bedside. Cancers (Basel) 2024; 16:2940. [PMID: 39272802 PMCID: PMC11394571 DOI: 10.3390/cancers16172940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Advancements in our comprehension of tumor biology and chemoresistance have spurred the development of treatments that precisely target specific molecules within the body. Despite the expanding landscape of therapeutic options, there persists a demand for innovative approaches to address unmet clinical needs. RNA therapeutics have emerged as a promising frontier in this realm, offering novel avenues for intervention such as RNA interference and the utilization of antisense oligonucleotides (ASOs). ASOs represent a versatile class of therapeutics capable of selectively targeting messenger RNAs (mRNAs) and silencing disease-associated proteins, thereby disrupting pathogenic processes at the molecular level. Recent advancements in chemical modification and carrier molecule design have significantly enhanced the stability, biodistribution, and intracellular uptake of ASOs, thereby bolstering their therapeutic potential. While ASO therapy holds promise across various disease domains, including oncology, coronary angioplasty, neurological disorders, viral, and parasitic diseases, our review manuscript focuses specifically on the application of ASOs in targeted cancer therapies. Through a comprehensive examination of the latest research findings and clinical developments, we delve into the intricacies of ASO-based approaches to cancer treatment, shedding light on their mechanisms of action, therapeutic efficacy, and prospects.
Collapse
Affiliation(s)
- Elif Çakan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Olivia D Lara
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | | | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
4
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
5
|
Hsia T, Chen Y. RNA-encapsulating lipid nanoparticles in cancer immunotherapy: From pre-clinical studies to clinical trials. Eur J Pharm Biopharm 2024; 197:114234. [PMID: 38401743 DOI: 10.1016/j.ejpb.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems such as RNA-encapsulating lipid nanoparticles (RNA LNPs) have dramatically advanced in function and capacity over the last few decades. RNA LNPs boast of a diverse array of external and core configurations that enhance targeted delivery and prolong circulatory retention, advancing therapeutic outcomes. Particularly within the realm of cancer immunotherapies, RNA LNPs are increasingly gaining prominence. Pre-clinical in vitro and in vivo studies have laid a robust foundation for new and ongoing clinical trials that are actively enrolling patients for RNA LNP cancer immunotherapy. This review explores RNA LNPs, starting from their core composition to their external membrane formulation, set against a backdrop of recent clinical breakthroughs. We further elucidate the LNP delivery avenues, broach the prevailing challenges, and contemplate the future perspectives of RNA LNP-mediated immunotherapy.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
6
|
Saadh MJ, Almoyad MAA, Arellano MTC, Maaliw RR, Castillo-Acobo RY, Jalal SS, Gandla K, Obaid M, Abdulwahed AJ, Ibrahem AA, Sârbu I, Juyal A, Lakshmaiya N, Akhavan-Sigari R. Long non-coding RNAs: controversial roles in drug resistance of solid tumors mediated by autophagy. Cancer Chemother Pharmacol 2023; 92:439-453. [PMID: 37768333 DOI: 10.1007/s00280-023-04582-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023]
Abstract
Current genome-wide studies have indicated that a great number of long non-coding RNAs (lncRNAs) are transcribed from the human genome and appeared as crucial regulators in a variety of cellular processes. Many studies have displayed a significant function of lncRNAs in the regulation of autophagy. Autophagy is a macromolecular procedure in cells in which intracellular substrates and damaged organelles are broken down and recycled to relieve cell stress resulting from nutritional deprivation, irradiation, hypoxia, and cytotoxic agents. Autophagy can be a double-edged sword and play either a protective or a damaging role in cells depending on its activation status and other cellular situations, and its dysregulation is related to tumorigenesis in various solid tumors. Autophagy induced by various therapies has been shown as a unique mechanism of resistance to anti-cancer drugs. Growing evidence is showing the important role of lncRNAs in modulating drug resistance via the regulation of autophagy in a variety of cancers. The role of lncRNAs in drug resistance of cancers is controversial; they may promote or suppress drug resistance via either activation or inhibition of autophagy. Mechanisms by which lncRNAs regulate autophagy to affect drug resistance are different, mainly mediated by the negative regulation of micro RNAs. In this review, we summarize recent studies that investigated the role of lncRNAs/autophagy axis in drug resistance of different types of solid tumors.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11831, Jordan
| | | | | | - Renato R Maaliw
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines
| | | | - Sarah Salah Jalal
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, University of Chaitanya, Hanamkonda, India
| | | | | | - Azher A Ibrahem
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115, Iași, Romania.
| | - Ashima Juyal
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Szymanowska A, Rodriguez-Aguayo C, Lopez-Berestein G, Amero P. Non-Coding RNAs: Foes or Friends for Targeting Tumor Microenvironment. Noncoding RNA 2023; 9:52. [PMID: 37736898 PMCID: PMC10514839 DOI: 10.3390/ncrna9050052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a group of molecules critical for cell development and growth regulation. They are key regulators of important cellular pathways in the tumor microenvironment. To analyze ncRNAs in the tumor microenvironment, the use of RNA sequencing technology has revolutionized the field. The advancement of this technique has broadened our understanding of the molecular biology of cancer, presenting abundant possibilities for the exploration of novel biomarkers for cancer treatment. In this review, we will summarize recent achievements in understanding the complex role of ncRNA in the tumor microenvironment, we will report the latest studies on the tumor microenvironment using RNA sequencing, and we will discuss the potential use of ncRNAs as therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
| |
Collapse
|
8
|
Zhang Y, Lu L, Song F, Zou X, Liu Y, Zheng X, Qian J, Gu C, Huang P, Yang Y. Research progress on non-protein-targeted drugs for cancer therapy. J Exp Clin Cancer Res 2023; 42:62. [PMID: 36918935 PMCID: PMC10011800 DOI: 10.1186/s13046-023-02635-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Non-protein target drugs, especially RNA-based gene therapies for treating hereditary diseases, have been recognized worldwide. As cancer is an insurmountable challenge, no miracle drug is currently available. With the advancements in the field of biopharmaceuticals, research on cancer therapy has gradually focused on non-protein target-targeted drugs, especially RNA therapeutics, including oligonucleotide drugs and mRNA vaccines. This review mainly summarizes the clinical research progress in RNA therapeutics and highlights that appropriate target selection and optimized delivery vehicles are key factors in increasing the effectiveness of cancer treatment in vivo.
Collapse
Affiliation(s)
- Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 158 Shangtang Road, Hangzhou, 310014, China
| | - Lu Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 158 Shangtang Road, Hangzhou, 310014, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 158 Shangtang Road, Hangzhou, 310014, China
| | - Yujia Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xiaowei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Chunyan Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China. .,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 158 Shangtang Road, Hangzhou, 310014, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
9
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
10
|
Parma B, Wurdak H, Ceppi P. Harnessing mitochondrial metabolism and drug resistance in non-small cell lung cancer and beyond by blocking heat-shock proteins. Drug Resist Updat 2022; 65:100888. [DOI: 10.1016/j.drup.2022.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022]
|
11
|
Lei T, Xiao Z, Bi W, Cai S, Yang Y, Du H. Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases. Ageing Res Rev 2022; 82:101769. [PMID: 36283618 DOI: 10.1016/j.arr.2022.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 01/31/2023]
Abstract
Neurodegenerative diseases (NDs) are aging-related diseases that involve the death of neurons in the brain. Dysregulation of protein homeostasis leads to the production of toxic proteins or the formation of aggregates, which is the pathological basis of NDs. Small heat shock proteins (HSPB) is involved in the establishment of a protein quality control (PQC) system to maintain cellular homeostasis. HSPB can be secreted into the extracellular space and delivered by various routes, especially extracellular vehicles (EVs). HSPB plays an important role in influencing the aggregation phase of toxic proteins involved in heat shock transcription factor (HSF) regulation, oxidative stress, autophagy and apoptosis pathways. HSPB conferred neuroprotective effects by resisting toxic protein aggregation, reducing autophagy and reducing neuronal apoptosis. The HSPB treatment strategies, including targeted PQC system therapy and delivery of EVs-HSPB, can improve disease manifestations for NDs. This review aims to provide a comprehensive insight into the impact of HSPB in NDs and the feasibility of new technology to enhance HSPB expression and EVs-HSPB delivery for neurodegenerative disease.
Collapse
Affiliation(s)
- Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangzhuang Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Wangyu Bi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Shanglin Cai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjie Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
12
|
Li ZH, Ma YJ, Jia ZH, Weng YY, Zhang P, Zhu SJ, Wang F. Meta-analysis of gemcitabine plus nab-paclitaxel combined with targeted agents in the treatment of metastatic pancreatic cancer. World J Clin Cases 2022; 10:9703-9713. [PMID: 36186177 PMCID: PMC9516936 DOI: 10.12998/wjcc.v10.i27.9703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/17/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gemcitabine plus nab-paclitaxel (GA) is a commonly used first-line treatment regimen for metastatic pancreatic cancer, and many studies will add a novel targeted agent to this regimen for improving patient survival rate. However, the clinical effectiveness of GA is the most controversial issue.
AIM To compare the efficacy and safety of GA regimen with a targeted agent and GA regimen.
METHODS Up to 1 December 2021, the eligible randomized controlled trials (RCTs) relating to GA and GA with a targeted agent were searched on PubMed, EMBASE and Cochrane Library for eligible data. We screened out appropriate studies for overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and toxicity, which had been pooled and finally analyzed by using Stata version 15.1. In addition, we use Reference Citation Analysis (https://www.referencecitationanalysis.com/) to collect the latest related literature to improve the latest cutting-edge research results.
RESULTS Seven RCTs involving 1544 patients (848 men and 696 women) were included. There were no significant differences between GA with a targeted agent and GA in PFS [hazard ratio (HR): 1.18 95% confidence interval (CI): 0.91-1.53], OS (HR: 1.12 95%CI: 0.99-1.27), and ORR (HR: 0.96 95%CI: 0.71-1.29). There was no notable difference in the two groups in grade 3/4 toxicity (fatigue, anemia, vomiting and neutropenia), whereas the incidence of grade 3/4 diarrhea considerably increased in GA with a targeted drug.
CONCLUSION Adding a novel targeted agent to the GA regimen did not improve survival rate of patients with metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Zhong-Hui Li
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Yin-Jie Ma
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Zong-Hang Jia
- Department of Oncology, Shandong University of Traditional Chinese Medicine, Jinan 250022, Shandong Province, China
| | - Yue-Yan Weng
- Department of Acupuncture and Moxibustion, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ping Zhang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Shi-Jie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Fang Wang
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| |
Collapse
|
13
|
Asgharzadeh F, Moradi-Marjaneh R, Marjaneh MM. The Role of Heat Shock Protein 27 in Carcinogenesis and Treatment of Colorectal Cancer. Curr Pharm Des 2022; 28:2677-2685. [PMID: 35490324 DOI: 10.2174/1381612828666220427140640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
Abstract
The incidence of colorectal cancer (CRC) has significantly increased in recent decades, which has made this disease an important global health issue. Despite many efforts, there is no useful prognostic or diagnostic biomarker for CRC. Heat shock protein 27 (Hsp27) is one of the most studied members of the Hsp family. It has attracted particular attention in CRC pathogenesis since it is involved in fundamental cell functions for cell survival. Evidence shows that Hsp27 plays important role in CRC progression and metastasis. Hsp27 overexpression has been observed in CRC and is suggested to be associated with CRC's poor prognosis. In the present review, we focus on the current knowledge of the role of Hsp27 in CRC carcinogenesis and the underlying mechanisms. In addition, we discuss the value of targeting Hsp27 in CRC treatment.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi-Marjaneh
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Alberti G, Vergilio G, Paladino L, Barone R, Cappello F, Conway de Macario E, Macario AJL, Bucchieri F, Rappa F. The Chaperone System in Breast Cancer: Roles and Therapeutic Prospects of the Molecular Chaperones Hsp27, Hsp60, Hsp70, and Hsp90. Int J Mol Sci 2022; 23:ijms23147792. [PMID: 35887137 PMCID: PMC9324353 DOI: 10.3390/ijms23147792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 12/26/2022] Open
Abstract
Breast cancer (BC) is a major public health problem, with key pieces of information needed for developing preventive and curative measures still missing. For example, the participation of the chaperone system (CS) in carcinogenesis and anti-cancer responses is poorly understood, although it can be predicted to be a crucial factor in these mechanisms. The chief components of the CS are the molecular chaperones, and here we discuss four of them, Hsp27, Hsp60, Hsp70, and Hsp90, focusing on their pro-carcinogenic roles in BC and potential for developing anti-BC therapies. These chaperones can be targets of negative chaperonotherapy, namely the elimination/blocking/inhibition of the chaperone(s) functioning in favor of BC, using, for instance, Hsp inhibitors. The chaperones can also be employed in immunotherapy against BC as adjuvants, together with BC antigens. Extracellular vesicles (EVs) in BC diagnosis and management are also briefly discussed, considering their potential as easily accessible carriers of biomarkers and as shippers of anti-cancer agents amenable to manipulation and controlled delivery. The data surveyed from many laboratories reveal that, to enhance the understanding of the role of the CS in BS pathogenesis, one must consider the CS as a physiological system, encompassing diverse members throughout the body and interacting with the ubiquitin–proteasome system, the chaperone-mediated autophagy machinery, and the immune system (IS). An integrated view of the CS, including its functional partners and considering its highly dynamic nature with EVs transporting CS components to reach all the cell compartments in which they are needed, opens as yet unexplored pathways leading to carcinogenesis that are amenable to interference by anti-cancer treatments centered on CS components, such as the molecular chaperones.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Giuseppe Vergilio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Correspondence:
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| |
Collapse
|
15
|
Shi L, Hou B. Urokinase Regulates Heat Shock Protein 27 to Treat Chronic Glaucoma Rats. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study explored urokinase’s effect on the production of heat shock protein 27 in chronic glaucoma rats. 45 SD rats were equally assigned into healthy group, glaucoma group, and urokinase group followed by analysis of intraocular pressure by TONO-PENAVVI tonometer, apoptosis
of retinal ganglion cells by TUNEL staining, pathological morphology by H&E staining, levels of SOD, MDA, and NO as well as the expression of HSP27 and p-p38MAPK. After treatment, the intraocular pressure was increased in glaucoma group and decreased in urokinase group (P < 0.05).
In addition, glaucoma group showed significantly increased apoptosis rate (P < 0.05) which was decreased in urokinase group (P < 0.05). In glaucoma group, the nerve fibers were disorderly arranged and ganglion cells were greatly reduced which were improved in urokinase
group. Compared to healthy group, glaucoma group had lower MDA level and higher SOD levels (P < 0.05) which were reversed in urokinase group (P < 0.05). HSP27 and P-P38MAPK levels in glaucoma group were higher than healthy group (P < 0.05) and urokinase group
(P < 0.05). In conclusion, urokinase can reduce the apoptosis of retinal ganglion cells in glaucoma rats and protect the function of the optic nerve by reducing the level of HSP27.
Collapse
Affiliation(s)
- Lei Shi
- Department of Outpatient, Jingnan Medical Treatment Area, Chinese the People’s Liberation Army (PLA) General Hospital, Beijing, 100036, China
| | - Baoke Hou
- Department of Ophthalmology, Chinese the People’s Liberation Army (PLA) General Hospital, Beijing, 100036, China
| |
Collapse
|
16
|
Zheng S, Liang Y, Li L, Tan Y, Liu Q, Liu T, Lu X. Revisiting the Old Data of Heat Shock Protein 27 Expression in Squamous Cell Carcinoma: Enigmatic HSP27, More Than Heat Shock. Cells 2022; 11:cells11101665. [PMID: 35626702 PMCID: PMC9139513 DOI: 10.3390/cells11101665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022] Open
Abstract
Initially discovered to be induced by heat shock, heat shock protein 27 (HSP27, also called HSPB1), a member of the small HSP family, can help cells better withstand or avoid heat shock damage. After years of studies, HSP27 was gradually found to be extensively engaged in various physiological or pathophysiological activities. Herein, revisiting the previously published data concerning HSP27, we conducted a critical review of the literature regarding its role in squamous cell carcinoma (SCC) from the perspective of clinicopathological and prognostic significance, excluding studies conducted on adenocarcinoma, which is very different from SCC, to understand the enigmatic role of HSP27 in the tumorigenesis of SCC, including normal mucosa, dysplasia, intraepithelial neoplasm, carcinoma in situ and invasive SCC.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China;
| | - Lu Li
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (L.L.); (T.L.)
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (L.L.); (T.L.)
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
- Correspondence: ; Tel./Fax: +86-991-436-6447
| |
Collapse
|
17
|
Lampros M, Vlachos N, Voulgaris S, Alexiou GA. The Role of Hsp27 in Chemotherapy Resistance. Biomedicines 2022; 10:897. [PMID: 35453647 PMCID: PMC9028095 DOI: 10.3390/biomedicines10040897] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Heat shock protein (Hsp)-27 is a small-sized, ATP-independent, chaperone molecule that is overexpressed under conditions of cellular stress such as oxidative stress and heat shock, and protects proteins from unfolding, thus facilitating proteostasis and cellular survival. Despite its protective role in normal cell physiology, Hsp27 overexpression in various cancer cell lines is implicated in tumor initiation, progression, and metastasis through various mechanisms, including modulation of the SWH pathway, inhibition of apoptosis, promotion of EMT, adaptation of CSCs in the tumor microenvironment and induction of angiogenesis. Investigation of the role of Hsp27 in the resistance of various cancer cell types against doxorubicin, herceptin/trastuzumab, gemcitabine, 5-FU, temozolomide, and paclitaxel suggested that Hsp27 overexpression promotes cancer cell survival against the above-mentioned chemotherapeutic agents. Conversely, Hsp27 inhibition increased the efficacy of those chemotherapy drugs, both in vitro and in vivo. Although numerous signaling pathways and molecular mechanisms were implicated in that chemotherapy resistance, Hsp27 most commonly contributed to the upregulation of Akt/mTOR signaling cascade and inactivation of p53, thus inhibiting the chemotherapy-mediated induction of apoptosis. Blockage of Hsp27 could enhance the cytotoxic effect of well-established chemotherapeutic drugs, especially in difficult-to-treat cancer types, ultimately improving patients' outcomes.
Collapse
Affiliation(s)
| | | | | | - George A. Alexiou
- Department of Neurosurgery, University Hospital of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| |
Collapse
|
18
|
Zogg H, Singh R, Ro S. Current Advances in RNA Therapeutics for Human Diseases. Int J Mol Sci 2022; 23:ijms23052736. [PMID: 35269876 PMCID: PMC8911101 DOI: 10.3390/ijms23052736] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Following the discovery of nucleic acids by Friedrich Miescher in 1868, DNA and RNA were recognized as the genetic code containing the necessary information for proper cell functioning. In the years following these discoveries, vast knowledge of the seemingly endless roles of RNA have become better understood. Additionally, many new types of RNAs were discovered that seemed to have no coding properties (non-coding RNAs), such as microRNAs (miRNAs). The discovery of these new RNAs created a new avenue for treating various human diseases. However, RNA is relatively unstable and is degraded fairly rapidly once administered; this has led to the development of novel delivery mechanisms, such as nanoparticles to increase stability as well as to prevent off-target effects of these molecules. Current advances in RNA-based therapies have substantial promise in treating and preventing many human diseases and disorders through fixing the pathology instead of merely treating the symptomology similarly to traditional therapeutics. Although many RNA therapeutics have made it to clinical trials, only a few have been FDA approved thus far. Additionally, the results of clinical trials for RNA therapeutics have been ambivalent to date, with some studies demonstrating potent efficacy, whereas others have limited effectiveness and/or toxicity. Momentum is building in the clinic for RNA therapeutics; future clinical care of human diseases will likely comprise promising RNA therapeutics. This review focuses on the current advances of RNA therapeutics and addresses current challenges with their development.
Collapse
|
19
|
Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater 2022; 7:292-323. [PMID: 34466734 PMCID: PMC8379367 DOI: 10.1016/j.bioactmat.2021.05.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/28/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides (TOs) represent one of the most promising drug candidates in the targeted cancer treatment due to their high specificity and capability of modulating cellular pathways that are not readily druggable. However, efficiently delivering of TOs to cancer cellular targets is still the biggest challenge in promoting their clinical translations. Emerging as a significant drug delivery vector, nanoparticles (NPs) can not only protect TOs from nuclease degradation and enhance their tumor accumulation, but also can improve the cell uptake efficiency of TOs as well as the following endosomal escape to increase the therapeutic index. Furthermore, targeted and on-demand drug release of TOs can also be approached to minimize the risk of toxicity towards normal tissues using stimuli-responsive NPs. In the past decades, remarkable progresses have been made on the TOs delivery based on various NPs with specific purposes. In this review, we will first give a brief introduction on the basis of TOs as well as the action mechanisms of several typical TOs, and then describe the obstacles that prevent the clinical translation of TOs, followed by a comprehensive overview of the recent progresses on TOs delivery based on several various types of nanocarriers containing lipid-based nanoparticles, polymeric nanoparticles, gold nanoparticles, porous nanoparticles, DNA/RNA nanoassembly, extracellular vesicles, and imaging-guided drug delivery nanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Wenhui Zhou
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Lihua Lin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Anhong Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jing Feng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Xiangmeng Qu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Jun Yue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
20
|
Raguraman P, Balachandran AA, Chen S, Diermeier SD, Veedu RN. Antisense Oligonucleotide-Mediated Splice Switching: Potential Therapeutic Approach for Cancer Mitigation. Cancers (Basel) 2021; 13:5555. [PMID: 34771719 PMCID: PMC8583451 DOI: 10.3390/cancers13215555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Splicing is an essential process wherein precursor messenger RNA (pre-mRNA) is reshaped into mature mRNA. In alternative splicing, exons of any pre-mRNA get rearranged to form mRNA variants and subsequently protein isoforms, which are distinct both by structure and function. On the other hand, aberrant splicing is the cause of many disorders, including cancer. In the past few decades, developments in the understanding of the underlying biological basis for cancer progression and therapeutic resistance have identified many oncogenes as well as carcinogenic splice variants of essential genes. These transcripts are involved in various cellular processes, such as apoptosis, cell signaling and proliferation. Strategies to inhibit these carcinogenic isoforms at the mRNA level are promising. Antisense oligonucleotides (AOs) have been developed to inhibit the production of alternatively spliced carcinogenic isoforms through splice modulation or mRNA degradation. AOs can also be used to induce splice switching, where the expression of an oncogenic protein can be inhibited by the induction of a premature stop codon. In general, AOs are modified chemically to increase their stability and binding affinity. One of the major concerns with AOs is efficient delivery. Strategies for the delivery of AOs are constantly being evolved to facilitate the entry of AOs into cells. In this review, the different chemical modifications employed and delivery strategies applied are discussed. In addition to that various AOs in clinical trials and their efficacy are discussed herein with a focus on six distinct studies that use AO-mediated exon skipping as a therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Akilandeswari Ashwini Balachandran
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
21
|
Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021; 81:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The functional and structural versatility of Ribonucleic acids (RNAs) makes them ideal candidates for overcoming the limitations imposed by small molecule-based drugs. Hence, RNA-based biopharmaceuticals such as messenger RNA (mRNA) vaccines, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNA mimics, anti-miRNA oligonucleotides (AMOs), aptamers, riboswitches, and CRISPR-Cas9 are emerging as vital tools for the treatment and prophylaxis of many infectious diseases. Some of the major challenges to overcome in the area of RNA-based therapeutics have been the instability of single-stranded RNAs, delivery to the diseased cell, and immunogenicity. However, recent advancements in the delivery systems of in vitro transcribed mRNA and chemical modifications for protection against nucleases and reducing the toxicity of RNA have facilitated the entry of several exogenous RNAs into clinical trials. In this review, we provide an overview of RNA-based vaccines and therapeutics, their production, delivery, current advancements, and future translational potential in treating infectious diseases.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Divya Ojha
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sakshi Bansal
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India.
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
22
|
Yin X, Ge J, Ge X, Gao J, Su X, Wang X, Zhang Q, Wang Z. MiR-363-5p modulates regulatory T cells through STAT4-HSPB1-Notch1 axis and is associated with the immunological abnormality in Graves' disease. J Cell Mol Med 2021; 25:9364-9377. [PMID: 34431214 PMCID: PMC8500983 DOI: 10.1111/jcmm.16876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/24/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
MiRNAs are a class of small non-coding RNAs with ability to regulate function of Treg cells and are involved in many autoimmune diseases. Our previous study found that miR-363-5p expression was significantly upregulated in peripheral Treg cells of GD patients. Herein, we aimed to investigate its effect and mechanism on Treg cell dysfunction in GD patients. The results showed that miR-363-5p upregulation was significantly associated with the Treg cell dysfunction and inflammatory factors levels in GD patients. Transcriptome sequencing revealed that 883 genes were significantly regulated by miR-363-5p in Treg cells. These genes with significant differential expression were primarily involved in lymphocyte differentiation, immunity, as well as Notch1 and various interleukin signalling pathways. Moreover, miR-363-5p can regulate HSPB1 and Notch1 through the target gene STAT4, thereby regulating Notch1 signalling pathway and inhibiting Treg cells. The effects of miR-363-5p on Treg cell function and STAT4-HSPB1-Notch1 axis were also verified in GD patients. In conclusion, our results indicated that miR-363 could inhibit the proliferation, differentiation and function of Treg cells by regulating the STAT4-HSPB1-Notch1 axis through target gene STAT4. MiR-363-5p may play an important role in Treg cell dysfunction and immune tolerance abnormalities in GD patients.
Collapse
Affiliation(s)
- Xianlun Yin
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Junfeng Ge
- Department of AnesthesiologyJinan Second People's HospitalJinanShandongChina
| | - Xiurong Ge
- Division of Endocrinology and MetabolismDivision of GeriatricsShandong Provincial HospitalCheeloo College of MedicineShandong Provincial Key Laboratory of Endocrinology and Lipid MetabolismShandong Institute of Endocrine and Metabolic DiseaseShandong UniversityJinanChina
| | - Jing Gao
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Xinhuan Su
- Division of Endocrinology and MetabolismDivision of GeriatricsShandong Provincial HospitalCheeloo College of MedicineShandong Provincial Key Laboratory of Endocrinology and Lipid MetabolismShandong Institute of Endocrine and Metabolic DiseaseShandong UniversityJinanChina
| | - Xiaowei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Zhe Wang
- Division of Endocrinology and MetabolismDivision of GeriatricsShandong Provincial HospitalCheeloo College of MedicineShandong Provincial Key Laboratory of Endocrinology and Lipid MetabolismShandong Institute of Endocrine and Metabolic DiseaseShandong UniversityJinanChina
| |
Collapse
|
23
|
Efficient Heat Shock Response Affects Hyperthermia-Induced Radiosensitization in a Tumor Spheroid Control Probability Assay. Cancers (Basel) 2021; 13:cancers13133168. [PMID: 34201993 PMCID: PMC8269038 DOI: 10.3390/cancers13133168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Hyperthermia (HT) combined with irradiation is a well-known concept to improve the curative potential of radiotherapy. Technological progress has opened new avenues for thermoradiotherapy, even for recurrent head and neck squamous cell carcinomas (HNSCC). Preclinical evaluation of the curative radiosensitizing potential of various HT regimens remains ethically, economically, and technically challenging. One key objective of our study was to refine an advanced 3-D assay setup for HT + RT research and treatment testing. For the first time, HT-induced radiosensitization was systematically examined in two differently radioresponsive HNSCC spheroid models using the unique in vitro "curative" analytical endpoint of spheroid control probability. We further investigated the cellular stress response mechanisms underlying the HT-related radiosensitization process with the aim to unravel the impact of HT-induced proteotoxic stress on the overall radioresponse. HT disrupted the proteome's thermal stability, causing severe proteotoxic stress. It strongly enhanced radiation efficacy and affected paramount survival and stress response signaling networks. Transcriptomics, q-PCR, and western blotting data revealed that HT + RT co-treatment critically triggers the heat shock response (HSR). Pre-treatment with chemical chaperones intensified the radiosensitizing effect, thereby suppressing HT-induced Hsp27 expression. Our data suggest that HT-induced radiosensitization is adversely affected by the proteotoxic stress response. Hence, we propose the inhibition of particular heat shock proteins as a targeting strategy to improve the outcome of combinatorial HT + RT.
Collapse
|
24
|
Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Discov 2021; 20:427-453. [PMID: 33762737 DOI: 10.1038/s41573-021-00162-z] [Citation(s) in RCA: 330] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Antisense technology is now beginning to deliver on its promise to treat diseases by targeting RNA. Nine single-stranded antisense oligonucleotide (ASO) drugs representing four chemical classes, two mechanisms of action and four routes of administration have been approved for commercial use, including the first RNA-targeted drug to be a major commercial success, nusinersen. Although all the approved drugs are for use in patients with rare diseases, many of the ASOs in late- and middle-stage clinical development are intended to treat patients with very common diseases. ASOs in development are showing substantial improvements in potency and performance based on advances in medicinal chemistry, understanding of molecular mechanisms and targeted delivery. Moreover, the ASOs in development include additional mechanisms of action and routes of administration such as aerosol and oral formulations. Here, we describe the key technological advances that have enabled this progress and discuss recent clinical trials that illustrate the impact of these advances on the performance of ASOs in a wide range of therapeutic applications. We also consider strategic issues such as target selection and provide perspectives on the future of the field.
Collapse
|
25
|
Kho J, Pham PC, Kwon S, Huang AY, Rivers JP, Wang H, Ecroyd H, Donald WA, McAlpine SR. De Novo Design, Synthesis, and Mechanistic Evaluation of Short Peptides That Mimic Heat Shock Protein 27 Activity. ACS Med Chem Lett 2021; 12:713-719. [PMID: 34055216 DOI: 10.1021/acsmedchemlett.0c00609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/01/2021] [Indexed: 01/17/2023] Open
Abstract
We report the first small molecule peptides based on the N-terminal sequence of heat shock protein 27 (Hsp27, gene HSPB1) that demonstrates chaperone-like activity. The peptide, comprising the SWDPF sequence located at Hsp27's amino (N)-terminal domain, directly regulates protein aggregation events, maintaining the disaggregated state of the model protein, citrate synthase. While traditional inhibitors of protein aggregation act via regulation of a protein that facilitates aggregation or disaggregation, our molecules are the first small peptides between 5 and 8 amino acids in length that are based on the N-terminus of Hsp27 and directly control protein aggregation. The presented strategy showcases a new approach for developing small peptides that control protein aggregation in proteins with high aggregate levels, making them a useful approach in developing new drugs.
Collapse
Affiliation(s)
- Jessica Kho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - P. Chi Pham
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Suhyeon Kwon
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alana Y. Huang
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joel P. Rivers
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Huixin Wang
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Heath Ecroyd
- Department of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - W. Alexander Donald
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shelli R. McAlpine
- School of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
26
|
Chan L, Yokota T. Development and Clinical Applications of Antisense Oligonucleotide Gapmers. Methods Mol Biol 2021; 2176:21-47. [PMID: 32865780 DOI: 10.1007/978-1-0716-0771-8_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA-like molecules called antisense oligonucleotides have opened new treatment possibilities for genetic diseases by offering a method of regulating gene expression. Antisense oligonucleotides are often used to suppress the expression of mutated genes which may interfere with essential downstream pathways. Since antisense oligonucleotides have been introduced for clinical use, different chemistries have been developed to further improve efficacy, potency, and safety. One such chemistry is a chimeric structure of a central block of deoxyribonucleotides flanked by sequences of modified nucleotides. Referred to as a gapmer, this chemistry produced promising results in the treatment of genetic diseases. Mipomersen and inotersen are examples of recent FDA-approved antisense oligonucleotide gapmers used for the treatment of familial hypercholesterolemia and hereditary transthyretin amyloidosis, respectively. In addition, volanesorsen was conditionally approved in the EU for the treatment of adult patients with familial chylomicronemia syndrome (FCS) in 2019. Many others are being tested in clinical trials or under preclinical development. This chapter will cover the development of mipomersen and inotersen in clinical trials, along with advancement in gapmer treatments for cancer, triglyceride-elevating genetic diseases, Huntington's disease, myotonic dystrophy, and prion diseases.
Collapse
Affiliation(s)
- Leanna Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
27
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
28
|
Crooke ST, Liang XH, Baker BF, Crooke RM. Antisense technology: A review. J Biol Chem 2021; 296:100416. [PMID: 33600796 PMCID: PMC8005817 DOI: 10.1016/j.jbc.2021.100416] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Antisense technology is beginning to deliver on the broad promise of the technology. Ten RNA-targeted drugs including eight single-strand antisense drugs (ASOs) and two double-strand ASOs (siRNAs) have now been approved for commercial use, and the ASOs in phase 2/3 trials are innovative, delivered by multiple routes of administration and focused on both rare and common diseases. In fact, two ASOs are used in cardiovascular outcome studies and several others in very large trials. Interest in the technology continues to grow, and the field has been subject to a significant number of reviews. In this review, we focus on the molecular events that result in the effects observed and use recent clinical results involving several different ASOs to exemplify specific molecular mechanisms and specific issues. We conclude with the prospective on the technology.
Collapse
Affiliation(s)
- Stanley T Crooke
- Core Antisense Research, Ionis Pharmaceuticals, Inc, Carlsbad, California, USA.
| | - Xue-Hai Liang
- Core Antisense Research, Ionis Pharmaceuticals, Inc, Carlsbad, California, USA
| | - Brenda F Baker
- Development Communication, Ionis Pharmaceuticals, Inc, Carlsbad, California, USA
| | - Rosanne M Crooke
- Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, California, USA
| |
Collapse
|
29
|
Okada S, Furuya M, Fukui-Kaneshige A, Nakanishi H, Tani H, Sasai K. HSP110 expression in canine mammary gland tumor and its correlation with histopathological classification and grade. Vet Immunol Immunopathol 2020; 232:110171. [PMID: 33385709 DOI: 10.1016/j.vetimm.2020.110171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/07/2020] [Accepted: 12/16/2020] [Indexed: 12/28/2022]
Abstract
Heat shock proteins (HSPs) play critical roles as molecular chaperones, thereby promoting cellular homeostasis. HSPs are overexpressed in many types of human tumors and their serum concentration is elevated in cancer patients. Recent studies have suggested that HSPs may promote tumorigenesis via interactions with tumor-related proteins. There are only a few studies that address the expression of HSPs in canine tumors. In our previous study, we identified elevated levels of HSP110 expression in canine mammary gland tumors (cMGTs). In this study, we examined both serum concentrations and tissue expression of HSP110 in dogs with cMGT. We found that serum HSP110 concentrations were not significantly different in a comparison between dogs with cMGT (3.44 ± 1.27 μg/mL) and healthy controls (3.23 ± 1.18 μg/mL). By contrast, significant differences in levels of HSP110 expression were identified in comparisons between simple carcinoma and benign mixed tumor (p = 0.001), simple carcinoma and non-neoplastic lesions (p < 0.001), complex carcinoma and benign mixed tumor (p = 0.015), complex carcinoma and non-neoplastic lesions (p < 0.001), simple adenoma and benign mixed tumor (p = 0.041), and simple adenoma and non-neoplastic lesions (p = 0.007). Similarly, significantly different levels of HSP110 expression were identified when comparing grade Ⅲ with non-neoplastic lesion (p = 0.026), grade Ⅱ with benign tumor (p = 0.015), grade Ⅱ with non-neoplastic lesion (p < 0.001), and grade Ⅰ with non-neoplastic lesion (p < 0.001). Taken together, our results indicate that expression of HSP110 correlates with the malignancy in this cohort of dogs diagnosed with cMGT. These findings also suggest that HSP110 is associated with tumorigenesis and the relative malignancy of cMGT.
Collapse
Affiliation(s)
- Satoru Okada
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Masaru Furuya
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan.
| | - Ayano Fukui-Kaneshige
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Hitoshi Nakanishi
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Hiroyuki Tani
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Kazumi Sasai
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
30
|
Albakova Z, Siam MKS, Sacitharan PK, Ziganshin RH, Ryazantsev DY, Sapozhnikov AM. Extracellular heat shock proteins and cancer: New perspectives. Transl Oncol 2020; 14:100995. [PMID: 33338880 PMCID: PMC7749402 DOI: 10.1016/j.tranon.2020.100995] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
High expression of extracellular heat shock proteins (HSPs) indicates highly aggressive tumors. HSP profiling of extracellular vesicles (EVs) derived from various biological fluids and released by immune cells may open new perspectives for an identification of diagnostic, prognostic and predictive biomarkers of cancer. Identification of specific microRNAs targeting HSPs in EVs may be a promising strategy for the discovery of novel biomarkers of cancer.
Heat shock proteins (HSPs) are a large family of molecular chaperones aberrantly expressed in cancer. The expression of HSPs in tumor cells has been shown to be implicated in the regulation of apoptosis, immune responses, angiogenesis and metastasis. Given that extracellular vesicles (EVs) can serve as potential source for the discovery of clinically useful biomarkers and therapeutic targets, it is of particular interest to study proteomic profiling of HSPs in EVs derived from various biological fluids of cancer patients. Furthermore, a divergent expression of circulating microRNAs (miRNAs) in patient samples has opened new opportunities in exploiting miRNAs as diagnostic tools. Herein, we address the current literature on the expression of extracellular HSPs with particular interest in HSPs in EVs derived from various biological fluids of cancer patients and different types of immune cells as promising targets for identification of clinical biomarkers of cancer. We also discuss the emerging role of miRNAs in HSP regulation for the discovery of blood-based biomarkers of cancer. We outline the importance of understanding relationships between various HSP networks and co-chaperones and propose the model for identification of HSP signatures in cancer. Elucidating the role of HSPs in EVs from the proteomic and miRNAs perspectives may provide new opportunities for the discovery of novel biomarkers of cancer.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, 199192 Moscow, Russia.
| | | | - Pradeep Kumar Sacitharan
- The Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Rustam H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitriy Y Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander M Sapozhnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
31
|
Theil G, Fornara P, Bialek J. Position of Circulating Tumor Cells in the Clinical Routine in Prostate Cancer and Breast Cancer Patients. Cancers (Basel) 2020; 12:cancers12123782. [PMID: 33333999 PMCID: PMC7765455 DOI: 10.3390/cancers12123782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Many different therapies are applied to fight tumor disease. Blood-based biosources, like circulating tumor cells (CTCs), offer the opportunity to monitor the healing progression and the real-time response to the therapy. In this review, we analyze the outcomes of the clinical trials and scientific studies of prostate and breast cancer performed in the decade between April 2010 and April 2020. Additionally, we describe the abstracts from the 4th Advances in Circulating Tumor Cells (ACTC) meeting in 2019. We discuss the potential therapeutic opportunities related to the CTCs and the challenges ahead in the routine treatment of cancer. Abstract Prostate cancer and breast cancer are the most common cancers worldwide. Anti-tumor therapies are long and exhaustive for the patients. The real-time monitoring of the healing progression could be a useful tool to evaluate therapeutic response. Blood-based biosources like circulating tumor cells (CTCs) may offer this opportunity. Application of CTCs for the clinical diagnostics could improve the sequenced screening, provide additional valuable information of tumor dynamics, and help personalized management for the patients. In the past decade, CTCs as liquid biopsy (LB) has received tremendous attention. Many different isolation and characterization platforms are developed but the clinical validation is still missing. In this review, we focus on the clinical trials of circulating tumor cells that have the potential to monitor and stratify patients and lead to implementation into clinical practice.
Collapse
|
32
|
Small Heat Shock Proteins in Cancers: Functions and Therapeutic Potential for Cancer Therapy. Int J Mol Sci 2020; 21:ijms21186611. [PMID: 32927696 PMCID: PMC7555140 DOI: 10.3390/ijms21186611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Small heat shock proteins (sHSPs) are ubiquitous ATP-independent chaperones that play essential roles in response to cellular stresses and protein homeostasis. Investigations of sHSPs reveal that sHSPs are ubiquitously expressed in numerous types of tumors, and their expression is closely associated with cancer progression. sHSPs have been suggested to control a diverse range of cancer functions, including tumorigenesis, cell growth, apoptosis, metastasis, and chemoresistance, as well as regulation of cancer stem cell properties. Recent advances in the field indicate that some sHSPs have been validated as a powerful target in cancer therapy. In this review, we present and highlight current understanding, recent progress, and future challenges of sHSPs in cancer development and therapy.
Collapse
|
33
|
Crooke ST, Seth PP, Vickers TA, Liang XH. The Interaction of Phosphorothioate-Containing RNA Targeted Drugs with Proteins Is a Critical Determinant of the Therapeutic Effects of These Agents. J Am Chem Soc 2020; 142:14754-14771. [PMID: 32786803 DOI: 10.1021/jacs.0c04928] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent progress in understanding phosphorothioate antisense oligonucleotide (PS-ASO) interactions with proteins has revealed that proteins play deterministic roles in the absorption, distribution, cellular uptake, subcellular distribution, molecular mechanisms of action, and toxicity of PS-ASOs. Similarly, such interactions can alter the fates of many intracellular proteins. These and other advances have opened new avenues for the medicinal chemistry of PS-ASOs and research on all elements of the molecular pharmacology of these molecules. These advances have recently been reviewed. In this Perspective article, we summarize some of those learnings, the general principles that have emerged, and a few of the exciting new questions that can now be addressed.
Collapse
Affiliation(s)
- Stanley T Crooke
- Ionis Pharmaceuticals, Inc., Carlsbad, California 92010-6670, United States
| | - Punit P Seth
- Ionis Pharmaceuticals, Inc., Carlsbad, California 92010-6670, United States
| | - Timothy A Vickers
- Ionis Pharmaceuticals, Inc., Carlsbad, California 92010-6670, United States
| | - Xue-Hai Liang
- Ionis Pharmaceuticals, Inc., Carlsbad, California 92010-6670, United States
| |
Collapse
|
34
|
Matos B, Howl J, Jerónimo C, Fardilha M. The disruption of protein-protein interactions as a therapeutic strategy for prostate cancer. Pharmacol Res 2020; 161:105145. [PMID: 32814172 DOI: 10.1016/j.phrs.2020.105145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common male-specific cancers worldwide, with high morbidity and mortality rates associated with advanced disease stages. The current treatment options of PCa are prostatectomy, hormonal therapy, chemotherapy or radiotherapy, the selection of which is usually dependent upon the stage of the disease. The development of PCa to a castration-resistant phenotype (CRPC) is associated with a more severe prognosis requiring the development of a new and effective therapy. Protein-protein interactions (PPIs) have been recognised as an emerging drug modality and targeting PPIs is a promising therapeutic approach for several diseases, including cancer. The efficacy of several compounds in which target PPIs and consequently impair disease progression were validated in phase I/II clinical trials for different types of cancer. In PCa, various small molecules and peptides proved successful in inhibiting important PPIs, mainly associated with the androgen receptor (AR), Bcl-2 family proteins, and kinases/phosphatases, thus impairing the growth of PCa cells in vitro. Moreover, a majority of these compounds require further validation in vivo and, preferably, in clinical trials. In addition, several other PPIs associated with PCa progression have been identified and now require experimental validation as potential therapeutic loci. In conclusion, we consider the disruption of PPIs to be a promising though challenging therapeutic strategy for PCa. Agents which modulate PPIs might be employed as a monotherapy or as an adjunct to classical chemotherapeutics to overcome drug resistance and improve efficacy. The discovery of new PPIs with important roles in disease progression, and of novel optimized strategies to target them are major challenges for the scientific and pharmacological communities.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), Research Center-LAB 3, F Bdg., 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto (ICBAS-UP), Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
35
|
Antisense drug discovery and development technology considered in a pharmacological context. Biochem Pharmacol 2020; 189:114196. [PMID: 32800852 DOI: 10.1016/j.bcp.2020.114196] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
When coined, the term "antisense" included oligonucleotides of any structure, with any chemical modification and designed to work through any post-RNA hybridization mechanism. However, in practice the term "antisense" has been used to describe single stranded oligonucleotides (ss ASOs) designed to hybridize to RNAswhile the term "siRNA" has come to mean double stranded oligonucleotides designed to activate Ago2. However, the two approaches share many common features. The medicinal chemistry developed for ASOs greatly facilitated the development of siRNA technology and remains the chemical basis for both approaches. Many of challenges faced and solutions achieved share many common features. In fact, because ss ASOs can be designed to activate Ago2, the two approaches intersect at this remarkably important protein. There are also meaningful differences. The pharmacokinetic properties are quite different and thus potential routes of delivery differ. ASOs may be designedto use a variety of post-RNA binding mechanismswhile siRNAs depend solely on the robust activity of Ago2. However, siRNAs and ASOs are both used for therapeutic purposes and both must be and can be understood in a pharmacological context. Thus, the goals of this review are to put ASOs in pharmacological context and compare their behavior as pharmacological agents to the those of siRNAs.
Collapse
|
36
|
Jego G, Hermetet F, Girodon F, Garrido C. Chaperoning STAT3/5 by Heat Shock Proteins: Interest of Their Targeting in Cancer Therapy. Cancers (Basel) 2019; 12:cancers12010021. [PMID: 31861612 PMCID: PMC7017265 DOI: 10.3390/cancers12010021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/16/2023] Open
Abstract
While cells from multicellular organisms are dependent upon exogenous signals for their survival, growth, and proliferation, commitment to a specific cell fate requires the correct folding and maturation of proteins, as well as the degradation of misfolded or aggregated proteins within the cell. This general control of protein quality involves the expression and the activity of molecular chaperones such as heat shock proteins (HSPs). HSPs, through their interaction with the STAT3/STAT5 transcription factor pathway, can be crucial both for the tumorigenic properties of cancer cells (cell proliferation, survival) and for the microenvironmental immune cell compartment (differentiation, activation, cytokine secretion) that contributes to immunosuppression, which, in turn, potentially promotes tumor progression. Understanding the contribution of chaperones such as HSP27, HSP70, HSP90, and HSP110 to the STAT3/5 signaling pathway has raised the possibility of targeting such HSPs to specifically restrain STAT3/5 oncogenic functions. In this review, we present how HSPs control STAT3 and STAT5 activation, and vice versa, how the STAT signaling pathways modulate HSP expression. We also discuss whether targeting HSPs is a valid therapeutic option and which HSP would be the best candidate for such a strategy.
Collapse
Affiliation(s)
- Gaëtan Jego
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Correspondence: (C.G.); (G.J.); Tel.: +33-3-8039-3345 (G.J.); Fax: +33-3-8039-3434 (C.G. & G.J.)
| | - François Hermetet
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
| | - François Girodon
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Haematology laboratory, Dijon University Hospital, F-21000 Dijon, France
| | - Carmen Garrido
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Centre Georges François Leclerc, 21000 Dijon, France
- Correspondence: (C.G.); (G.J.); Tel.: +33-3-8039-3345 (G.J.); Fax: +33-3-8039-3434 (C.G. & G.J.)
| |
Collapse
|
37
|
Hua JT, Chen S, He HH. Landscape of Noncoding RNA in Prostate Cancer. Trends Genet 2019; 35:840-851. [DOI: 10.1016/j.tig.2019.08.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022]
|
38
|
Hoter A, Naim HY. Heat Shock Proteins and Ovarian Cancer: Important Roles and Therapeutic Opportunities. Cancers (Basel) 2019; 11:E1389. [PMID: 31540420 PMCID: PMC6769485 DOI: 10.3390/cancers11091389] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is a serious cause of death in gynecological oncology. Delayed diagnosis and poor survival rates associated with late stages of the disease are major obstacles against treatment efforts. Heat shock proteins (HSPs) are stress responsive molecules known to be crucial in many cancer types including ovarian cancer. Clusterin (CLU), a unique chaperone protein with analogous oncogenic criteria to HSPs, has also been proven to confer resistance to anti-cancer drugs. Indeed, these chaperone molecules have been implicated in diagnosis, prognosis, metastasis and aggressiveness of various cancers. However, relative to other cancers, there is limited body of knowledge about the molecular roles of these chaperones in ovarian cancer. In the current review, we shed light on the diverse roles of HSPs as well as related chaperone proteins like CLU in the pathogenesis of ovarian cancer and elucidate their potential as effective drug targets.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
39
|
Coutinho MF, Matos L, Santos JI, Alves S. RNA Therapeutics: How Far Have We Gone? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:133-177. [PMID: 31342441 DOI: 10.1007/978-3-030-19966-1_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years, the RNA molecule became one of the most promising targets for therapeutic intervention. Currently, a large number of RNA-based therapeutics are being investigated both at the basic research level and in late-stage clinical trials. Some of them are even already approved for treatment. RNA-based approaches can act at pre-mRNA level (by splicing modulation/correction using antisense oligonucleotides or U1snRNA vectors), at mRNA level (inhibiting gene expression by siRNAs and antisense oligonucleotides) or at DNA level (by editing mutated sequences through the use of CRISPR/Cas). Other RNA approaches include the delivery of in vitro transcribed (IVT) mRNA or the use of oligonucleotides aptamers. Here we review these approaches and their translation into clinics trying to give a brief overview also on the difficulties to its application as well as the research that is being done to overcome them.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Liliana Matos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Juliana Inês Santos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Sandra Alves
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.
| |
Collapse
|
40
|
Zarrabi K, Paroya A, Wu S. Emerging therapeutic agents for genitourinary cancers. J Hematol Oncol 2019; 12:89. [PMID: 31484560 PMCID: PMC6727406 DOI: 10.1186/s13045-019-0780-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
The treatment of genitourinary malignancies has dramatically evolved over recent years. Renal cell carcinoma, urothelial carcinoma of the bladder, and prostate adenocarcinoma are the most commonly encountered genitourinary malignancies and represent a heterogeneous population of cancers, in both histology and approach to treatment. However, all three cancers have undergone paradigm shifts in their respective therapeutic landscapes due to a greater understanding of their underlying molecular mechanisms and oncogenic drivers. The advance that has gained the most recent traction has been the advent of immunotherapies, particularly immune checkpoint inhibitors. Immunotherapy has increased overall survival and even provided durable responses in the metastatic setting in some patients. The early success of immune checkpoint inhibitors has led to further drug development with the emergence of novel agents which modulate the immune system within the tumor microenvironment. Notwithstanding immunotherapy, investigators are also developing novel agents tailored to a variety of targets including small-molecule tyrosine kinase inhibitors, mTOR inhibitors, and novel fusion proteins to name a few. Erdafitinib has become the first targeted therapy approved for metastatic bladder cancer. Moreover, the combination therapy of immune checkpoint inhibitors with targeted agents such as pembrolizumab or avelumab with axitinib has demonstrated both safety and efficacy and just received FDA approval for their use. We are in an era of rapid progression in drug development with multiple exciting trials and ongoing pre-clinical studies. We highlight many of the promising new emerging therapies that will likely continue to improve outcomes in patients with genitourinary malignancies.
Collapse
Affiliation(s)
- Kevin Zarrabi
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
| | - Azzam Paroya
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
| | - Shenhong Wu
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
- Division of Hematology/Oncology, Department of Medicine, Northport VA Medical Center, Northport, NY USA
| |
Collapse
|
41
|
Hoter A, Rizk S, Naim HY. The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11081194. [PMID: 31426412 PMCID: PMC6721600 DOI: 10.3390/cancers11081194] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancer types in men worldwide. Heat shock proteins (HSPs) are molecular chaperones that are widely implicated in the pathogenesis, diagnosis, prognosis, and treatment of many cancers. The role of HSPs in PCa is complex and their expression has been linked to the progression and aggressiveness of the tumor. Prominent chaperones, including HSP90 and HSP70, are involved in the folding and trafficking of critical cancer-related proteins. Other members of HSPs, including HSP27 and HSP60, have been considered as promising biomarkers, similar to prostate-specific membrane antigen (PSMA), for PCa screening in order to evaluate and monitor the progression or recurrence of the disease. Moreover, expression level of chaperones like clusterin has been shown to correlate directly with the prostate tumor grade. Hence, targeting HSPs in PCa has been suggested as a promising strategy for cancer therapy. In the current review, we discuss the functions as well as the role of HSPs in PCa progression and further evaluate the approach of inhibiting HSPs as a cancer treatment strategy.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
42
|
Spigel DR, Shipley DL, Waterhouse DM, Jones SF, Ward PJ, Shih KC, Hemphill B, McCleod M, Whorf RC, Page RD, Stilwill J, Mekhail T, Jacobs C, Burris HA, Hainsworth JD. A Randomized, Double-Blinded, Phase II Trial of Carboplatin and Pemetrexed with or without Apatorsen (OGX-427) in Patients with Previously Untreated Stage IV Non-Squamous-Non-Small-Cell Lung Cancer: The SPRUCE Trial. Oncologist 2019; 24:e1409-e1416. [PMID: 31420467 DOI: 10.1634/theoncologist.2018-0518] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/20/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND This randomized, double-blinded, phase II trial evaluated the efficacy of carboplatin and pemetrexed plus either apatorsen, an antisense oligonucleotide targeting heat shock protein (Hsp) 27 mRNA, or placebo in patients with previously untreated metastatic nonsquamous non-small cell lung cancer (NSCLC). METHODS Patients were randomized 1:1 to Arm A (carboplatin/pemetrexed plus apatorsen) or Arm B (carboplatin/pemetrexed plus placebo). Treatment was administered in 21-day cycles, with restaging every two cycles, until progression or intolerable toxicity. Serum Hsp27 levels were analyzed at baseline and during treatment. The primary endpoint was progression-free survival (PFS); secondary endpoints included overall survival (OS), objective response rate, and toxicity. RESULTS The trial enrolled 155 patients (median age 66 years; 44% Eastern Cooperative Oncology Group performance status 0). Toxicities were similar in the 2 treatment arms; cytopenias, nausea, vomiting, and fatigue were the most frequent treatment-related adverse events. Median PFS and OS were 6.0 and 10.8 months, respectively, for Arm A, and 4.9 and 11.8 months for Arm B (differences not statistically significant). Overall response rates were 27% for Arm A and 32% for Arm B. Sixteen patients (12%) had high serum levels of Hsp27 at baseline. In this small group, patients who received apatorsen had median PFS of 10.8 months, and those who received placebo had median PFS 4.8 months. CONCLUSION The addition of apatorsen to carboplatin and pemetrexed was well tolerated but did not improve outcomes in patients with metastatic nonsquamous NSCLC cancer in the first-line setting. IMPLICATIONS FOR PRACTICE This randomized, double-blinded, phase II trial evaluated the efficacy of carboplatin and pemetrexed plus either apatorsen, an antisense oligonucleotide targeting heat shock protein 27 mRNA, or placebo in patients with previously untreated metastatic nonsquamous non-small cell lung cancer (NSCLC). The addition of apatorsen to carboplatin and pemetrexed was well tolerated but did not improve outcomes in patients with metastatic nonsquamous NSCLC cancer in the first-line setting.
Collapse
Affiliation(s)
- David R Spigel
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - Dianna L Shipley
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - David M Waterhouse
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Oncology Hematology Care, Cincinnati, Ohio, USA
| | | | - Patrick J Ward
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Oncology Hematology Care, Cincinnati, Ohio, USA
| | - Kent C Shih
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - Brian Hemphill
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - Michael McCleod
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Florida Cancer Specialists, Ft. Myers Florida, USA
| | - Robert C Whorf
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Florida Cancer Specialists, Bradenton, Florida, USA
| | - Ray D Page
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Center for Cancer and Blood Disorders, Ft. Worth, Texas, USA
| | - Joseph Stilwill
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Research Medical Center, Kansas City, Missouri, USA
| | - Tarek Mekhail
- Florida Hospital Cancer Institute, Orlando, Florida, USA
| | | | - Howard A Burris
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| | - John D Hainsworth
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
- Tennessee Oncology, PLLC, Nashville, Tennessee, USA
| |
Collapse
|
43
|
Shim G, Park J, Kim MG, Yang G, Lee Y, Oh YK. Noncovalent tethering of nucleic acid aptamer on DNA nanostructure for targeted photo/chemo/gene therapies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102053. [PMID: 31344502 DOI: 10.1016/j.nano.2019.102053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022]
Abstract
Here, we report various therapeutic cargo-loadable DNA nanostructures that are shelled in polydopamine and noncovalently tethered with cancer cell-targeting DNA aptamers. Initial DNA nanostructure was formed by rolling-circle amplification and condensation with Mu peptides. This DNA nanostructure was loaded with an antisense oligonucleotide, a photosensitizer, or an anticancer chemotherapeutic drug. Each therapeutic agent-loaded DNA nanostructure was then shelled with polydopamine (PDA), and noncovalently decorated with a poly adenine-tailed nucleic acid aptamer (PA) specific for PTK7 receptor, resulting in PA-tethered and PDA-shelled DNA nanostructure (PA/PDN). PDA coating shell enabled photothermal therapy. In the cells overexpressing PTK7 receptor, photosensitizer-loaded PA/PDN showed greater photodynamic activity. Doxorubicin-loaded PA/PDN exerted higher anticancer activity than the other groups. Antisense oligonucleotide-loaded PA/PDN provided selective reduction of target proteins compared with other groups. Our results suggest that the PA-tethered and PDA-shelled DNA nanostructures could enable the specific receptor-targeted phototherapy, chemotherapy, and gene therapy against cancer cells.
Collapse
Affiliation(s)
- Gayong Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Mi-Gyeong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Geon Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea..
| |
Collapse
|
44
|
Narayanankutty V, Narayanankutty A, Nair A. Heat Shock Proteins (HSPs): A Novel Target for Cancer Metastasis Prevention. Curr Drug Targets 2019; 20:727-737. [DOI: 10.2174/1389450120666181211111815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/11/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023]
Abstract
Background:
Heat shock proteins (HSPs) are predominant molecular chaperones which are
actively involved in the protein folding; which is essential in protecting the structure and functioning
of proteins during various stress conditions. Though HSPs have important physiological roles, they
have been well known for their roles in various pathogenic conditions such as carcinogenesis; however,
limited literature has consolidated its potential as an anti-metastatic drug target.
Objectives:
The present review outlines the role of different HSPs on cancer progression and metastasis;
possible role of HSP inhibitors as anti-neoplastic agents is also discussed.
Methods:
The data were collected from PubMed/Medline and other reputed journal databases. The literature
that was too old and had no significant role to the review was then omitted.
Results:
Despite their strong physiological functions, HSPs are considered as good markers for cancer
prognosis and diagnosis. They have control over survival, proliferation and progression events of cancer
including drug resistance, metastasis, and angiogenesis. Since, neoplastic cells are more dependent
on HSPs for survival and proliferation, the selectivity and specificity of HSP-targeted cancer drugs
remain high. This has made various HSPs potential clinical and experimental targets for cancer prevention.
An array of HSP inhibitors has been in trials and many others are in experimental conditions
as anticancer and anti-metastatic agents. Several natural products are also being investigated for their
efficacy for anticancer and anti-metastatic agents by modulating HSPs.
Conclusion:
Apart from their role as an anticancer drug target, HSPs have shown to be promising targets
for the prevention of cancer progression. Extensive studies are required for the use of these molecules
as anti-metastatic agents. Further studies in this line may yield specific and effective antimetastatic
agents.
Collapse
Affiliation(s)
| | - Arunaksharan Narayanankutty
- Postgraduate & Research Department of Zoology, St. Joseph’s College, Devagiri (Autonomous), Calicut, Kerala- 673 008, India
| | - Anusree Nair
- Cell and Tissue Culture Department, Micro labs, Bangalore, India
| |
Collapse
|
45
|
Shevtsov M, Multhoff G. Therapeutic Implications of Heat Shock Proteins in Cancer. HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-02254-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Huang CY, Wei PL, Chen WY, Chang WC, Chang YJ. Silencing Heat Shock Protein 27 Inhibits the Progression and Metastasis of Colorectal Cancer (CRC) by Maintaining the Stability of Stromal Interaction Molecule 1 (STIM1) Proteins. Cells 2018; 7:cells7120262. [PMID: 30544747 PMCID: PMC6315635 DOI: 10.3390/cells7120262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/02/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
The incidence of colorectal cancer (CRC) has significantly increased in recent decades, and this disease has become an important health issue worldwide. Currently, there is no useful prognostic or diagnostic biomarker for CRC. Heat shock protein 27 (HSP27) is a chaperone that interacts with many proteins. HSP27 has been shown to be overexpressed in many cancers, including colon cancer, and its overexpression is related to poor disease outcome. Although the importance of HSP27 as a biomarker cannot be underrated, its detailed mechanisms in colon cancer are still unclear. In vitro studies have indicated that silencing HSP27 reduces the proliferation, migration and invasion of colon cancer cells, and xenograft models have shown that silencing HSP27 decreases tumor progression. Tissue array results showed that colon cancer patients with high expression of HSP27 exhibited poor prognosis. In addition, we found a reduction of calcium influx through a decrease in STIM1 protein after HSP27 was abolished. The formation of puncta was decreased in HSP27 knockdown (HSP27KD) cells after thapsigargin (TG) treatment. Finally, we confirmed that the reduction of STIM1 after HSP27 silencing may be due to a loss of STIM1 stability instead of transcription. HSP27 may interact with STIM1 but not Orai1, as shown by immunoprecipitation assays. HSP27 and STIM1 were co-expressed in CRC specimens. Our study showed that HSP27 is a key mediator in the progression and metastasis of CRC by regulating the store-operated calcium entry. This novel pathway may provide a new direction for development of therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan.
| | - Po-Li Wei
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan.
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan.
| | - Wei-Yu Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan.
| | - Wei-Chiao Chang
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Jia Chang
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
47
|
Centenera MM, Selth LA, Ebrahimie E, Butler LM, Tilley WD. New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030478. [PMID: 29530945 PMCID: PMC6280715 DOI: 10.1101/cshperspect.a030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent genomic analyses of metastatic prostate cancer have provided important insight into adaptive changes in androgen receptor (AR) signaling that underpin resistance to androgen deprivation therapies. Novel strategies are required to circumvent these AR-mediated resistance mechanisms and thereby improve prostate cancer survival. In this review, we present a summary of AR structure and function and discuss mechanisms of AR-mediated therapy resistance that represent important areas of focus for the development of new therapies.
Collapse
Affiliation(s)
- Margaret M Centenera
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Luke A Selth
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Wayne D Tilley
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
48
|
Dellis AE, Papatsoris AG. Perspectives on the current and emerging chemical androgen receptor antagonists for the treatment of prostate cancer. Expert Opin Pharmacother 2018; 20:163-172. [PMID: 30462924 DOI: 10.1080/14656566.2018.1548611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Prostate cancer is the most common cancer in men. Regardless of the initial treatment of localized disease, almost all patients develop castration resistant prostate cancer (CRPC). A better understanding of the molecular mechanisms behind castration resistance has led to the approval of novel oral androgen receptor (AR) antagonists, such as enzalutamide and apalutamide. Indeed, research has accelerated with numerous agents being studied for the management of CRPC. Areas covered: Herein, the authors present currently used and emerging AR antagonists for the treatment of CRPC. Emerging agents include darolutamide, EZN-4176, AZD-3514, and AZD-5312, apatorsen, galeterone, ODM-2014, TRC-253, BMS-641988, and proxalutamide. Expert opinion: Further understanding of the mechanisms leading to castration resistance in prostate cancer can reveal potential targets for the development of novel AR antagonists. Current novel agents are associated with modest clinical and survival benefit, while acquired resistance and safety issues are under continuous evaluation. The combination of AR antagonists used and ideal sequencing strategies are key tasks ahead, along with the investigation of molecular biomarkers for future personalized targeted therapies. In the future, the challenge will be to determine an AR antagonist with the best combination of outcome and tolerability.
Collapse
Affiliation(s)
- Athanasios E Dellis
- a 2nd Department of Surgery, Aretaieion Academic Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece.,b 1st Department of Urology, Laikon General Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece
| | - Athanasios G Papatsoris
- c 2nd Department of Urology, Sismanogleion General Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
49
|
Dependence of HSP27 cellular level on protein kinase CK2 discloses novel therapeutic strategies. Biochim Biophys Acta Gen Subj 2018; 1862:2902-2910. [PMID: 30279146 DOI: 10.1016/j.bbagen.2018.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/21/2018] [Accepted: 09/18/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND HSP27 plays a role in various diseases, including neurodegenerative diseases, ischemia, and atherosclerosis. It is particularly important in the regulation of the development, progression and metastasis of cancer as well as cell apoptosis and drug resistance. However, the absence of an ATP binding domain, that is, instead, present in other HSPs such as HSP90 and HSP70, hampers the development of small molecules as inhibitors of HSP27. METHODS Knockout cell lines generated by Crispr/Cas9 gene editing tool, specific kinase inhibitors and siRNA transfections were exploited to demonstrate that the expression of HSP27 is dependent on the integrity/activity of protein kinase CK2 holoenzyme. The interaction between these proteins has been confirmed by co-immunoprecipitation, confocal immunofluorescence microscopy, and by density gradient separation of protein complexes. Finally, using a proliferation assay this study demonstrates the potential efficacy of a combinatory therapy of heath shock and CK2 inhibitors in cancer treatment. RESULTS Our data demonstrate that CK2 is able to regulate HSP27 turnover by affecting the expression of its ubiquitin ligase SMURF2 (Smad ubiquitination regulatory factor 2). Moreover, for the first time we show an increased sensitivity of CK2-inhibited tumour cells to hyperthermia treatment. CONCLUSION Being HSP27 involved in several pathological conditions, including protein conformational diseases (i.e Cystic Fibrosis) and cancer, the need of drugs to modulate its activity is growing and CK2-targeting could represent a new strategy to reduce cellular HSP27 level. GENERAL SIGNIFICANCE This study identifies CK2 as a molecular target to control HSP27 cellular expression.
Collapse
|
50
|
Olotu F, Adeniji E, Agoni C, Bjij I, Khan S, Elrashedy A, Soliman M. An update on the discovery and development of selective heat shock protein inhibitors as anti-cancer therapy. Expert Opin Drug Discov 2018; 13:903-918. [PMID: 30207185 DOI: 10.1080/17460441.2018.1516035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Over the years, not a single HSP inhibitor has progressed into the post-market phase of drug development despite the success recorded in various pre-clinical and clinical studies. The inability of existing drugs to specifically target oncogenic HSPs has majorly accounted for these setbacks. Recent combinatorial strategies that incorporated computer-aided drug design (CADD) techniques are geared towards the development of highly specific HSP inhibitors with increased activities and minimal toxicities. Areas covered: In this review, strategic therapeutic approaches that have recently aided the development of selective HSP inhibitors were highlighted. Also, the significant contributions of CADD techniques over the years were discussed in detail. This article further describes promising computational paradigms and their applications towards the discovery of highly specific inhibitors of oncogenic HSPs. Expert opinion: The recent shift towards highly selective and specific HSP inhibition has shown great promise as evidenced by the development of paralog/isoform-selective HSP drugs. It could be further augmented with computer-aided drug design strategies, which incorporate reliable methods that would greatly enhance the design and optimization of novel inhibitors with improved activities and minimal toxicities.
Collapse
Affiliation(s)
- Fisayo Olotu
- a Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| | - Emmanuel Adeniji
- a Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| | - Clement Agoni
- a Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| | - Imane Bjij
- a Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| | - Shama Khan
- a Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| | | | - Mahmoud Soliman
- a Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| |
Collapse
|