1
|
Guo X, Li X, Wang S, Shi Y, Huang J, Liu X, Lu Y, Zhang J, Luo L, You J. Optimizing Adoptive Cell Therapy for Solid Tumors via Epigenetic Regulation of T-cell Destiny. Adv Healthc Mater 2024:e2402209. [PMID: 39301920 DOI: 10.1002/adhm.202402209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Indexed: 09/22/2024]
Abstract
Adoptive cell therapy (ACT) emerged as a promising approach for cancer treatment, yet its application in solid tumors faced challenges such as inadequate tumor infiltration and cellular dysfunction. Histone acetylation is reported to play a crucial role in restoring T-cell function within tumor tissues. Building upon previous research, a novel strategy involving the co-loading of two drugs, G3C12 and vorinostat (SAHA), into PLGA microspheres to form G3C12+SAHA@PLGA is developed for intratumoral injection. The G3C12 peptide enhances adoptive T-cell recruitment to the tumor site by modulating the binding state of IFN-γ. While SAHA, a histone deacetylase inhibitor, promotes memory phenotypes of infiltrating T-cells and prevents their transition to an exhausted state. This synergistic approach effectively augmentes the efficacy of ACT in the "cold" tumor model (4T1) or the "hot" tumor model (CT26). These findings highlight the potential of combining epigenetic regulation with recruitment signaling as a means to enhance the therapeutic impact of ACT in treating solid tumors.
Collapse
Affiliation(s)
- Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, P. R. China
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, P. R. China
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, P. R. China
| |
Collapse
|
2
|
Skálová A, Agaimy A, Bradova M, Poorten VV, Hanna E, Guntinas-Lichius O, Franchi A, Hellquist H, Simpson RHW, Lopéz F, Nuyts S, Chiesa-Estomba C, Ng SP, Homma A, Teng Y, Leivo I, Ferlito A. Molecularly defined sinonasal malignancies: an overview with focus on the current WHO classification and recently described provisional entities. Virchows Arch 2024; 484:885-900. [PMID: 38491228 PMCID: PMC11186917 DOI: 10.1007/s00428-024-03775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Classification of tumors of the head and neck has evolved in recent decades including a widespread application of molecular testing in tumors of the sinonasal tract, salivary glands, and soft tissues with a predilection for the head and neck. The availability of new molecular techniques has allowed for the definition of multiple novel tumor types unique to head and neck sites. Moreover, an expanding spectrum of immunohistochemical markers specific to genetic alterations facilitates rapid identification of diagnostic molecular abnormalities. As such, it is currently possible for head and neck pathologists to benefit from a molecularly defined tumor classification while making diagnoses that are still based largely on histopathology and immunohistochemistry. This review covers the principal molecular alterations in sinonasal malignancies, such as alterations in DEK, AFF2, NUTM1, IDH1-2, and SWI/SNF genes in particular, that are important from a practical standpoint for diagnosis, prognosis, and prediction of response to treatment.
Collapse
Affiliation(s)
- Alena Skálová
- Sikl's Department of Pathology, Faculty of Medicine in Pilsen, Charles University, E. Benese 13, 305 99, Pilsen, Czech Republic.
- Bioptic Laboratory, Ltd., Pilsen, Czech Republic.
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martina Bradova
- Sikl's Department of Pathology, Faculty of Medicine in Pilsen, Charles University, E. Benese 13, 305 99, Pilsen, Czech Republic
- Bioptic Laboratory, Ltd., Pilsen, Czech Republic
| | - Vincent Vander Poorten
- Department of Otorhinolaryngology-Head and Neck Surgery, Leuven Cancer Institute, University Hospitals Leuven, 3000, Louvain, Belgium
- Department of Oncology, Section Head and Neck Oncology, Leuven Cancer Institute, KU Leuven, Louvain, Belgium
| | - Ehab Hanna
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alessandro Franchi
- Department of Translational Research, School of Medicine, University of Pisa, Pisa, Italy
| | - Henrik Hellquist
- Faculty of Medicine and Biomedical Sciences (FMCB), Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
| | | | - Fernando Lopéz
- Department of Otolaryngology, ISPA, IUOPA, CIBERONC, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo, Spain
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000, Louvain, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000, Louvain, Belgium
| | - Carlos Chiesa-Estomba
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Universitario Donostia, Donostia-San Sebastian, Guipuzkoa-Basque Country, Spain
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Australia
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
3
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
4
|
Skálová A, Bradová M, Michal M, Mosaieby E, Klubíčková N, Vaněček T, Leivo I. Molecular pathology in diagnosis and prognostication of head and neck tumors. Virchows Arch 2024; 484:215-231. [PMID: 38217715 PMCID: PMC10948559 DOI: 10.1007/s00428-023-03731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
Classification of head and neck tumors has evolved in recent decades including a widespread application of molecular testing in tumors of the salivary glands, sinonasal tract, oropharynx, nasopharynx, and soft tissue. Availability of new molecular techniques allowed for the definition of multiple novel tumor types unique to head and neck sites. Moreover, the expanding spectrum of immunohistochemical markers facilitates a rapid identification of diagnostic molecular abnormalities. As such, it is currently possible for head and neck pathologists to benefit from a molecularly defined classifications, while making diagnoses that are still based largely on histopathology and immunohistochemistry. This review highlights some principal molecular alterations in head and neck neoplasms presently available to assist pathologists in the practice of diagnosis, prognostication and prediction of response to treatment.
Collapse
Affiliation(s)
- Alena Skálová
- Sikl's Department of Pathology, Faculty of Medicine in Pilsen, Charles University, E. Benese 13, 305 99, Pilsen, Czech Republic.
- Bioptic Laboratory, Ltd, Pilsen, Czech Republic.
| | - Martina Bradová
- Sikl's Department of Pathology, Faculty of Medicine in Pilsen, Charles University, E. Benese 13, 305 99, Pilsen, Czech Republic
- Bioptic Laboratory, Ltd, Pilsen, Czech Republic
| | - Michael Michal
- Sikl's Department of Pathology, Faculty of Medicine in Pilsen, Charles University, E. Benese 13, 305 99, Pilsen, Czech Republic
- Bioptic Laboratory, Ltd, Pilsen, Czech Republic
| | - Elaheh Mosaieby
- Molecular and Genetic Laboratory, Bioptic Laboratory, Ltd, Pilsen, Czech Republic
| | - Natálie Klubíčková
- Sikl's Department of Pathology, Faculty of Medicine in Pilsen, Charles University, E. Benese 13, 305 99, Pilsen, Czech Republic
- Bioptic Laboratory, Ltd, Pilsen, Czech Republic
| | - Tomáš Vaněček
- Molecular and Genetic Laboratory, Bioptic Laboratory, Ltd, Pilsen, Czech Republic
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku and Department of Pathology, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Sun B, Chen H, Lao J, Tan C, Zhang Y, Shao Z, Xu D. The epigenetic modifier lysine methyltransferase 2C is frequently mutated in gastric remnant carcinoma. J Pathol Clin Res 2023; 9:409-422. [PMID: 37395342 PMCID: PMC10397379 DOI: 10.1002/cjp2.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023]
Abstract
Gastric remnant carcinoma (GRC), which occurs in the stomach after partial gastrectomy, is a rare and aggressive form of gastric adenocarcinoma (GAC). Comprehensive profiling of genomic mutations in GRC could provide the basis for elucidating the origin and characteristics of this cancer. Herein, whole-exome sequencing (WES) was performed on 36 matched tumor-normal samples from patients with GRC and identified recurrent mutations in epigenetic modifiers, notably KMT2C, ARID1A, NSD1, and KMT2D, in 61.11% of cases. Mutational signature analysis revealed a low frequency of microsatellite instability (MSI) in GRC, which was further identified by MSIsensor, MSI-polymerase chain reaction, and immunohistochemistry analysis. Comparative analysis demonstrated that GRC had a distinct mutation spectrum compared to that of GAC in The Cancer Genome Atlas samples, with a significantly higher mutation rate of KMT2C. Targeted deep sequencing (Target-seq) of an additional 25 paired tumor-normal samples verified the high mutation frequency (48%) of KMT2C in GRC. KMT2C mutations correlated with poor overall survival in both WES and Target-seq cohorts and were independent prognosticators in GRC. In addition, KMT2C mutations were positively correlated with favorable outcomes in immune checkpoint inhibitor-treated pan-cancer patients and associated with higher intratumoral CD3+ , CD8+ tumor-infiltrating lymphocyte counts, and PD-L1 expression in GRC samples (p = 0.018, 0.092, 0.047, 0.010, and 0.034, respectively). Our dataset provides a platform for information and knowledge mining of the genomic characteristics of GRC and helps to frame new therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Bo Sun
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiPR China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiPR China
| | - Haojie Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiPR China
| | - Jiawen Lao
- Department of Gastric SurgerySun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Cong Tan
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiPR China
| | - Yue Zhang
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiPR China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiPR China
| | - Dazhi Xu
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiPR China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiPR China
| |
Collapse
|
6
|
Lanzi C, Arrighetti N, Pasquali S, Cassinelli G. Targeting EZH2 in SMARCB1-deficient sarcomas: Advances and opportunities to potentiate the efficacy of EZH2 inhibitors. Biochem Pharmacol 2023; 215:115727. [PMID: 37541451 DOI: 10.1016/j.bcp.2023.115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Soft tissue sarcomas (STSs) are rare mesechymal malignancies characterized by distintive molecular, histological and clinical features. Many STSs are considered as predominatly epigenetic diseases due to underlying chromatin deregulation. Discovery of deregulated functional antagonism between the chromatin remodeling BRG1/BRM-associated (BAFs) and the histone modifying Polycomb repressor complexes (PRCs) has provided novel actionable targets. In epithelioid sarcoma (ES), extracranial, extrarenal malignant rhabdoid tumors (eMRTs) and synovial sarcoma (SS), the total or partial loss of the BAF core subunit SMARCB1, driven by different alterations, is associated with PRC2 deregulation and dependency on its enzymatic subunit, EZH2. In these SMARCB1-deficient STSs, aberrant EZH2 expression and/or activity emerged as a druggable vulnerability. Although preclinical investigation supported EZH2 targeting as a promising therapeutic option, clinical studies demonstrated a variable response to EZH2 inhibitors. Actually, whereas the clinical benefit recorded in ES patients prompted the FDA approval of the EZH2 inhibitor tazemetostat, the modest and sporadic responses observed in eMRT and SS patients highlighted the need to deepen mechanistic as well as pharmacological investigations to improve drug effectiveness. We summarize the current knowledge of different mechanisms driving SMARCB1 deficiency and EZH2 deregulation in ES, eMRT and SS along with preclinical and clinical studies of EZH2-targeting agents. Possible implication of the PRC2- and enzymatic-independent functions of EZH2 and of its homolog, EZH1, in the response to anti-EZH2 agents will be discussed together with combinatorial strategies under investigation to improve the efficacy of EZH2 targeting in these tumors.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
7
|
Xiao C, Fan T, Zheng Y, Tian H, Deng Z, Liu J, Li C, He J. H3K4 trimethylation regulates cancer immunity: a promising therapeutic target in combination with immunotherapy. J Immunother Cancer 2023; 11:e005693. [PMID: 37553181 PMCID: PMC10414074 DOI: 10.1136/jitc-2022-005693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 08/10/2023] Open
Abstract
With the advances in cancer immunity regulation and immunotherapy, the effects of histone modifications on establishing antitumor immunological ability are constantly being uncovered. Developing combination therapies involving epigenetic drugs (epi-drugs) and immune checkpoint blockades or chimeric antigen receptor-T cell therapies are promising to improve the benefits of immunotherapy. Histone H3 lysine 4 trimethylation (H3K4me3) is a pivotal epigenetic modification in cancer immunity regulation, deeply involved in modulating tumor immunogenicity, reshaping tumor immune microenvironment, and regulating immune cell functions. However, how to integrate these theoretical foundations to create novel H3K4 trimethylation-based therapeutic strategies and optimize available therapies remains uncertain. In this review, we delineate the mechanisms by which H3K4me3 and its modifiers regulate antitumor immunity, and explore the therapeutic potential of the H3K4me3-related agents combined with immunotherapies. Understanding the role of H3K4me3 in cancer immunity will be instrumental in developing novel epigenetic therapies and advancing immunotherapy-based combination regimens.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Meissner M, Napolitano A, Thway K, Huang P, Jones RL. Pharmacotherapeutic strategies for epithelioid sarcoma: are we any closer to a non-surgical cure? Expert Opin Pharmacother 2023; 24:1395-1401. [PMID: 37326105 DOI: 10.1080/14656566.2023.2224500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Epithelioid sarcoma (ES) is a rare soft tissue sarcoma subtype, predominantly occurring in children and young adults. Despite optimal management of localized disease, approximately 50% of patients develop advanced disease. The management of advanced ES remains challenging due to limited response to conventional chemotherapy and despite novel oral EZH2 inhibitors that have better tolerability but similar efficacy to chemotherapy. AREAS COVERED We performed a literature review using the PubMed (MEDLINE) and Web of Science databases. We have focused on the role of chemotherapy, targeted agents such as EZH2 inhibitors, potential new targets and immune checkpoint inhibitors and combinations of therapies currently undergoing clinical investigation. EXPERT OPINION ES is a soft tissue sarcoma with a heterogeneous pathological, clinical, and molecular presentation. In the current era of precision medicine, more trials with targeted therapies and a combination of chemotherapy or immunotherapy with targeted therapies are required to establish optimal treatment for ES.
Collapse
Affiliation(s)
- Magdalena Meissner
- Velindre Cancer Centre, Cardiff, UK
- Department of Cancer and Genetics, Cardiff University, Cardiff, UK
| | | | - Khin Thway
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Paul Huang
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| |
Collapse
|
9
|
Akce M, El-Rayes BF, Wajapeyee N. Combinatorial targeting of immune checkpoints and epigenetic regulators for hepatocellular carcinoma therapy. Oncogene 2023; 42:1051-1057. [PMID: 36854723 DOI: 10.1038/s41388-023-02646-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. The five-year survival rate of patients with unresectable HCC is about 12%. The liver tumor microenvironment (TME) is immune tolerant and heavily infiltrated with immunosuppressive cells. Immune checkpoint inhibitors (ICIs), in some cases, can reverse tumor cell immune evasion and enhance antitumor immunity. Rapidly evolving ICIs have expanded systemic treatment options in advanced HCC; however, single-agent ICIs achieve a limited 15-20% objective response rate in advanced HCC. Therefore, other combinatorial approaches that amplify the efficacy of ICIs or suppress other tumor-promoting pathways may enhance clinical outcomes. Epigenetic alterations (e.g., changes in chromatin states and non-genetic DNA modifications) have been shown to drive HCC tumor growth and progression as well as their response to ICIs. Recent studies have combined ICIs and epigenetic inhibitors in preclinical and clinical settings to contain several cancers, including HCC. In this review, we outline current ICI treatments for HCC, the mechanism behind their successes and failures, and how ICIs can be combined with distinct epigenetic inhibitors to increase the durability of ICIs and potentially treat "immune-cold" HCC.
Collapse
Affiliation(s)
- Mehmet Akce
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, 35233, USA.
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, 35233, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, O'Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, 35233, USA.
| |
Collapse
|
10
|
Kato S, Maeda Y, Sugiyama D, Watanabe K, Nishikawa H, Hinohara K. The cancer epigenome: Non-cell autonomous player in tumor immunity. Cancer Sci 2023; 114:730-740. [PMID: 36468774 PMCID: PMC9986067 DOI: 10.1111/cas.15681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of the tumor-intrinsic epigenetic circuit is a key driver event for the development of cancer. Accumulating evidence suggests that epigenetic and/or genetic drivers stimulate intrinsic oncogenic pathways as well as extrinsic factors that modulate the immune system. These modulations indeed shape the tumor microenvironment (TME), allowing pro-oncogenic factors to become oncogenic, thereby contributing to cancer development and progression. Here we review the epigenetic dysregulation arising in cancer cells that disseminates throughout the TME and beyond. Recent CRISPR screening has elucidated key epigenetic drivers that play important roles in the proliferation of cancer cells (intrinsic) and inhibition of antitumor immunity (extrinsic), which lead to the development and progression of cancer. These epigenetic players can serve as promising targets for cancer therapy as a dual (two-in-one)-targeted approach. Considering the interplay between cancer and the immune system as a key determinant of immunotherapy, we discuss a novel lineage-tracing technology that enables longitudinal monitoring of cancer and immune phenotypic heterogeneity and fate paths during cancer development, progression, and therapeutic interventions.
Collapse
Affiliation(s)
- Shinichiro Kato
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Maeda
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Research Institute, Tokyo, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Watanabe
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Research Institute, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Research Institute, Tokyo, Japan.,Institute for Advanced Study, Nagoya University, Nagoya, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Study, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T, Huang C. Protein degradation: expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol 2023; 16:6. [PMID: 36694209 PMCID: PMC9872387 DOI: 10.1186/s13045-023-01398-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/01/2023] [Indexed: 01/25/2023] Open
Abstract
Despite significant progress in clinical management, drug resistance remains a major obstacle. Recent research based on protein degradation to restrain drug resistance has attracted wide attention, and several therapeutic strategies such as inhibition of proteasome with bortezomib and proteolysis-targeting chimeric have been developed. Compared with intervention at the transcriptional level, targeting the degradation process seems to be a more rapid and direct strategy. Proteasomal proteolysis and lysosomal proteolysis are the most critical quality control systems responsible for the degradation of proteins or organelles. Although proteasomal and lysosomal inhibitors (e.g., bortezomib and chloroquine) have achieved certain improvements in some clinical application scenarios, their routine application in practice is still a long way off, which is due to the lack of precise targeting capabilities and inevitable side effects. In-depth studies on the regulatory mechanism of critical protein degradation regulators, including E3 ubiquitin ligases, deubiquitylating enzymes (DUBs), and chaperones, are expected to provide precise clues for developing targeting strategies and reducing side effects. Here, we discuss the underlying mechanisms of protein degradation in regulating drug efflux, drug metabolism, DNA repair, drug target alteration, downstream bypass signaling, sustaining of stemness, and tumor microenvironment remodeling to delineate the functional roles of protein degradation in drug resistance. We also highlight specific E3 ligases, DUBs, and chaperones, discussing possible strategies modulating protein degradation to target cancer drug resistance. A systematic summary of the molecular basis by which protein degradation regulates tumor drug resistance will help facilitate the development of appropriate clinical strategies.
Collapse
Affiliation(s)
- Hui Ming
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China. .,Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
12
|
Balance Cell Apoptosis and Pyroptosis of Caspase-3-Activating Chemotherapy for Better Antitumor Therapy. Cancers (Basel) 2022; 15:cancers15010026. [PMID: 36612023 PMCID: PMC9817729 DOI: 10.3390/cancers15010026] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is a standard treatment modality in clinic that exerts an antitumor effect via the activation of the caspase-3 pathway, inducing cell death. While a number of chemotherapeutic drugs have been developed to combat various types of tumors, severe side effects have been their common limitation, due to the nonspecific drug biodistribution, bringing significant pain to cancer patients. Recently, scientists found that, besides apoptosis, chemotherapy could also cause cell pyroptosis, both of which have great influence on the therapeutic index. For example, cell apoptosis is, generally, regarded as the main mechanism of killing tumor cells, while cell pyroptosis in tumors promotes treatment efficacy, but in normal tissue results in toxicity. Therefore, significant research efforts have been paid to exploring the rational modulation mode of cell death induced by chemotherapy. This critical review aims to summarize recent progress in the field, focusing on how to balance cell apoptosis and pyroptosis for better tumor chemotherapy. We first reviewed the mechanisms of chemotherapy-induced cell apoptosis and pyroptosis, in which the activated caspase-3 is the key signaling molecule for regulating both types of cell deaths. Then, we systematically discussed the rationale and methods of switching apoptosis to pyroptosis for enhanced antitumor efficacy, as well as the blockage of pyroptosis to decrease side effects. To balance cell pyroptosis in tumor and normal tissues, the level of GSDME expression and tumor-targeting drug delivery are two important factors. Finally, we proposed potential future research directions, which may provide guidance for researchers in the field.
Collapse
|
13
|
Novel epigenetic therapeutic strategies and targets in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166552. [PMID: 36126898 DOI: 10.1016/j.bbadis.2022.166552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The critical role of dysregulated epigenetic pathways in cancer genesis, development, and therapy has typically been established as a result of scientific and technical innovations in next generation sequencing. RNA interference, histone modification, DNA methylation and chromatin remodelling are epigenetic processes that control gene expression without causing mutations in the DNA. Although epigenetic abnormalities are thought to be a symptom of cell tumorigenesis and malignant events that impact tumor growth and drug resistance, physicians believe that related processes might be a key therapeutic target for cancer treatment and prevention due to the reversible nature of these processes. A plethora of novel strategies for addressing epigenetics in cancer therapy for immuno-oncological complications are currently available - ranging from basic treatment to epigenetic editing. - and they will be the subject of this comprehensive review. In this review, we cover most of the advancements made in the field of targeting epigenetics with special emphasis on microbiology, plasma science, biophysics, pharmacology, molecular biology, phytochemistry, and nanoscience.
Collapse
|
14
|
Brouwer TP, van der Zanden SY, van der Ploeg M, van Eendenburg JDH, Bonsing BA, de Miranda NFCC, Neefjes JJ, Vahrmeijer AL. The identification of the anthracycline aclarubicin as an effective cytotoxic agent for pancreatic cancer. Anticancer Drugs 2022; 33:614-621. [PMID: 35324522 PMCID: PMC9281511 DOI: 10.1097/cad.0000000000001283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer, mainly due to its delayed diagnosis and lack of effective therapeutic options. Therefore, it is imperative to find novel treatment options for PDAC. Here, we tested a series of conventional chemotherapeutics together with anthracycline compounds as single agents or in combination, determining their effectivity against established commercial and patient-derived, low-passage PDAC cell lines. Proliferation and colony formation assays were performed to determine the anticancer activity of anthracyclines; aclarubicin and doxorubicin, on commercial and patient-derived, low-passage PDAC cell lines. In addition, the effect of standard-of-care drugs gemcitabine and individual components of FOLFIRINOX were also investigated. To evaluate which mechanisms of cell death were involved in drug response, cleavage of poly(ADP-ribose)polymerase was evaluated by western blot. Aclarubicin showed superior antitumor activity compared to other anthracyclines and standard of care drugs (gemcitabine and individual components of FOLFIRINOX) in a patient-derived, low-passage PDAC cell line and in commercial cell lines. Importantly, the combination of gemcitabine and aclarubicin showed a synergistic effect at a dose range where the single agents by themselves were ineffective. In parallel, evaluation of the antitumor activity of aclarubicin demonstrated an apoptotic effect in all PDAC cell lines. Aclarubicin is cytotoxic for commercial and patient-derived low-passage PDAC cell lines, at doses lower than peak serum concentrations for patient treatment. Our findings support a (re)consideration of aclarubicin as a backbone of new combination regimens for pancreatic cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jacques J Neefjes
- Cell and Chemical Biology, Leiden University Medical Center, Leiden
- Oncode Institute, The Netherlands
| | | |
Collapse
|
15
|
Lüke F, Harrer DC, Pantziarka P, Pukrop T, Ghibelli L, Gerner C, Reichle A, Heudobler D. Drug Repurposing by Tumor Tissue Editing. Front Oncol 2022; 12:900985. [PMID: 35814409 PMCID: PMC9270020 DOI: 10.3389/fonc.2022.900985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The combinatory use of drugs for systemic cancer therapy commonly aims at the direct elimination of tumor cells through induction of apoptosis. An alternative approach becomes the focus of attention if biological changes in tumor tissues following combinatory administration of regulatorily active drugs are considered as a therapeutic aim, e.g., differentiation, transdifferentiation induction, reconstitution of immunosurveillance, the use of alternative cell death mechanisms. Editing of the tumor tissue establishes new biological 'hallmarks' as a 'pressure point' to attenuate tumor growth. This may be achieved with repurposed, regulatorily active drug combinations, often simultaneously targeting different cell compartments of the tumor tissue. Moreover, tissue editing is paralleled by decisive functional changes in tumor tissues providing novel patterns of target sites for approved drugs. Thus, agents with poor activity in non-edited tissue may reveal new clinically meaningful outcomes. For tissue editing and targeting edited tissue novel requirements concerning drug selection and administration can be summarized according to available clinical and pre-clinical data. Monoactivity is no pre-requisite, but combinatory bio-regulatory activity. The regulatorily active dose may be far below the maximum tolerable dose, and besides inhibitory active drugs stimulatory drug activities may be integrated. Metronomic scheduling often seems to be of advantage. Novel preclinical approaches like functional assays testing drug combinations in tumor tissue are needed to select potential drugs for repurposing. The two-step drug repurposing procedure, namely establishing novel functional systems states in tumor tissues and consecutively providing novel target sites for approved drugs, facilitates the systematic identification of drug activities outside the scope of any original clinical drug approvals.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Salmon JM, Todorovski I, Stanley KL, Bruedigam C, Kearney CJ, Martelotto LG, Rossello F, Semple T, Arnau GM, Zethoven M, Bots M, Bjelosevic S, Cluse LA, Fraser PJ, Litalien V, Vidacs E, McArthur K, Matthews AY, Gressier E, de Weerd NA, Lichte J, Kelly MJ, Hogg SJ, Hertzog PJ, Kats LM, Vervoort SJ, De Carvalho DD, Scheu S, Bedoui S, Kile BT, Lane SW, Perkins AC, Wei AH, Dominguez PM, Johnstone RW. Epigenetic Activation of Plasmacytoid DCs Drives IFNAR-Dependent Therapeutic Differentiation of AML. Cancer Discov 2022; 12:1560-1579. [PMID: 35311997 PMCID: PMC9355625 DOI: 10.1158/2159-8290.cd-20-1145] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2021] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Pharmacologic inhibition of epigenetic enzymes can have therapeutic benefit against hematologic malignancies. In addition to affecting tumor cell growth and proliferation, these epigenetic agents may induce antitumor immunity. Here, we discovered a novel immunoregulatory mechanism through inhibition of histone deacetylases (HDAC). In models of acute myeloid leukemia (AML), leukemia cell differentiation and therapeutic benefit mediated by the HDAC inhibitor (HDACi) panobinostat required activation of the type I interferon (IFN) pathway. Plasmacytoid dendritic cells (pDC) produced type I IFN after panobinostat treatment, through transcriptional activation of IFN genes concomitant with increased H3K27 acetylation at these loci. Depletion of pDCs abrogated panobinostat-mediated induction of type I IFN signaling in leukemia cells and impaired therapeutic efficacy, whereas combined treatment with panobinostat and IFNα improved outcomes in preclinical models. These discoveries offer a new therapeutic approach for AML and demonstrate that epigenetic rewiring of pDCs enhances antitumor immunity, opening the possibility of exploiting this approach for immunotherapies. SIGNIFICANCE We demonstrate that HDACis induce terminal differentiation of AML through epigenetic remodeling of pDCs, resulting in production of type I IFN that is important for the therapeutic effects of HDACis. The study demonstrates the important functional interplay between the immune system and leukemias in response to HDAC inhibition. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Jessica M. Salmon
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Australian Centre for Blood Diseases, Monash University and The Alfred Hospital, Melbourne, Australia
| | - Izabela Todorovski
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Kym L. Stanley
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Claudia Bruedigam
- Cancer Program, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Conor J. Kearney
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Luciano G. Martelotto
- Single Cell Innovation Lab, Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Fernando Rossello
- Single Cell Innovation Lab, Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy Semple
- Molecular Genomics Core, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Gisela Mir Arnau
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Molecular Genomics Core, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Magnus Zethoven
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael Bots
- Laboratory of Clinical Chemistry, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Stefan Bjelosevic
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Leonie A. Cluse
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter J. Fraser
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Veronique Litalien
- Australian Centre for Blood Diseases, Monash University and The Alfred Hospital, Melbourne, Australia
| | - Eva Vidacs
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Antony Y. Matthews
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia
| | - Elise Gressier
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Nicole A. de Weerd
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia
| | - Jens Lichte
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Madison J. Kelly
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simon J. Hogg
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Paul J. Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia
| | - Lev M. Kats
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephin J. Vervoort
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Sammy Bedoui
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin T. Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Steven W. Lane
- Cancer Program, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Andrew C. Perkins
- Australian Centre for Blood Diseases, Monash University and The Alfred Hospital, Melbourne, Australia
| | - Andrew H. Wei
- Australian Centre for Blood Diseases, Monash University and The Alfred Hospital, Melbourne, Australia
| | - Pilar M. Dominguez
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Corresponding Authors: Ricky W. Johnstone, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia. Phone: 61-855-97133; E-mail: ; and Pilar M. Dominguez, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia. Phone: 61-481-880-373; E-mail:
| | - Ricky W. Johnstone
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Corresponding Authors: Ricky W. Johnstone, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia. Phone: 61-855-97133; E-mail: ; and Pilar M. Dominguez, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia. Phone: 61-481-880-373; E-mail:
| |
Collapse
|
17
|
Xu Y, Li P, Liu Y, Xin D, Lei W, Liang A, Han W, Qian W. Epi-immunotherapy for cancers: rationales of epi-drugs in combination with immunotherapy and advances in clinical trials. Cancer Commun (Lond) 2022; 42:493-516. [PMID: 35642676 PMCID: PMC9198339 DOI: 10.1002/cac2.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
Over the last two decades, several epi-drugs, immune checkpoint inhibitors (ICIs) and adoptive cell therapies have received clinical approval for use in certain types of cancer. However, monotherapy with epi-drugs or ICIs has shown limited efficacy in most cancer patients. Epigenetic agents have been shown to regulate the crosstalk between the tumor and host immunity to alleviate immune evasion, suggesting that epi-drugs can potentially synergize with immunotherapy. In this review, we discuss recent insights into the rationales of incorporating epigenetic therapy into immunotherapy, called epi-immunotherapy, and focus on an update of current clinical trials in both hematological and solid malignancies. Furthermore, we outline the future challenges and strategies in the field of cancer epi-immunotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ping Li
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Yang Liu
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Dijia Xin
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Wen Lei
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Aibin Liang
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Weidong Han
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Wenbin Qian
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
| |
Collapse
|
18
|
Durvalumab as Consolidation Therapy in Post-Multimodal Interventional Treatment for Patients with Advanced Solid Tumors: A Preliminary Study. JOURNAL OF ONCOLOGY 2022; 2022:7794840. [PMID: 35342409 PMCID: PMC8941551 DOI: 10.1155/2022/7794840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
With 2.1 million unique cases of lung tumors and 1.8 million mortalities in China, advanced solid tumors continue to be the primary source of cancer mortality rates. Nearly two-thirds of lung cancer individuals display advanced-stage tumors at the time of testing, with a 5-year survival ratio of 7%. People with advanced solid tumors have an appalling outcome, with a 5-year total survival ratio of roughly 15%. Immunotherapy inhibitors, like those for programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1), have ushered in a novel period in cancer diagnosis and therapy. Three resistant medications were authorized for advanced solid tumors: nivolumab, pembrolizumab, and atezolizumab. Durvalumab, an anti-PD-L1 antigen, is currently being researched. Durvalumab's pharmacologic characteristics, clinical efficacy, and security as consolidation therapy in post-multimodal interventional therapies for people with advanced solid tumors are discussed in this paper. We have also shared details of two patients who were identified with advanced solid tumors and were provided with durvalumab medication. The performance measures like Progression-Free Survival (PFS), Overall Survival (OS), and Overall Response Rate (ORR) are also contrasted for different antibodies. The research findings imply that durvalumab consolidation therapy is a cost-efficient therapy, while health policymakers should address the financial consequences.
Collapse
|
19
|
Immunotherapy for SMARCB1-Deficient Sarcomas: Current Evidence and Future Developments. Biomedicines 2022; 10:biomedicines10030650. [PMID: 35327458 PMCID: PMC8945563 DOI: 10.3390/biomedicines10030650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Mutations in subunits of the SWItch Sucrose Non-Fermentable (SWI/SNF) complex occur in 20% of all human tumors. Among these, the core subunit SMARCB1 is the most frequently mutated, and SMARCB1 loss represents a founder driver event in several malignancies, such as malignant rhabdoid tumors (MRT), epithelioid sarcoma, poorly differentiated chordoma, and renal medullary carcinoma (RMC). Intriguingly, SMARCB1-deficient pediatric MRT and RMC have recently been reported to be immunogenic, despite their very simple genome and low tumor mutational burden. Responses to immune checkpoint inhibitors have further been reported in some SMARCB1-deficient diseases. Here, we will review the preclinical data and clinical data that suggest that immunotherapy, including immune checkpoint inhibitors, may represent a promising therapeutic strategy for SMARCB1-defective tumors. We notably discuss the heterogeneity that exists among the spectrum of malignancies driven by SMARCB1-loss, and highlight challenges that are at stake for developing a personalized immunotherapy for these tumors, notably using molecular profiling of the tumor and of its microenvironment.
Collapse
|
20
|
Tarantelli C, Cannas E, Ekeh H, Moscatello C, Gaudio E, Cascione L, Napoli S, Rech C, Testa A, Maniaci C, Rinaldi A, Zucca E, Stathis A, Ciulli A, Bertoni F. The bromodomain and extra-terminal domain degrader MZ1 exhibits preclinical anti-tumoral activity in diffuse large B-cell lymphoma of the activated B cell-like type. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:586-601. [PMID: 36046113 PMCID: PMC9400774 DOI: 10.37349/etat.2021.00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
Aim Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that play a fundamental role in transcription regulation. Preclinical and early clinical evidence sustain BET targeting as an anti-cancer approach. BET degraders are chimeric compounds comprising of a BET inhibitor, which allows the binding to BET bromodomains, linked to a small molecule, binder for an E3 ubiquitin ligase complex, triggering BET proteins degradation via the proteasome. These degraders, called proteolysis-targeting chimeras (PROTACs), can exhibit greater target specificity compared to BET inhibitors and overcome some of their limitations, such as the upregulation of the BET proteins themselves. Here are presented data on the anti-tumor activity and the mechanism of action of the BET degrader MZ1 in diffuse large B cell lymphoma (DLBCL) of the activated B-cell like (ABC, ABC DLBCL), using a BET inhibitor as a comparison. Methods Established lymphoma cell lines were exposed for 72 h to increasing doses of the compounds. Cell proliferation was evaluated by using an 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide (MTT) assay. Fluorescent-Activated Cell Sorter (FACS) analysis was performed to measure apoptotic activation and RNA sequencing (RNA-Seq) to study the transcriptional changes induced by the compounds. Results MZ1, and not its negative control epimer cisMZ1, was very active with a median half maximal inhibitory concentration (IC50) of 49 nmol/L. MZ1 was more in vitro active than the BET inhibitor birabresib (OTX015). Importantly, MZ1 induced cell death in all the ABC DLBCL cell lines, while the BET inhibitor was cytotoxic only in a fraction of them. BET degrader and inhibitor shared partially similar changes at transcriptome level but the MZ1 effect was stronger and overlapped with that caused cyclin-dependent kinase 9 (CDK9) inhibition. Conclusions The BET degrader MZ1 had strong cytotoxic activity in all the ABC DLBCL cell lines that were tested, and, at least in vitro, it elicited more profound effects than BET inhibitors, and encourages further investigations.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Eleonora Cannas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Hillarie Ekeh
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Carmelo Moscatello
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, 1000 Lausanne, Switzerland
| | - Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Cesare Rech
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Andrea Testa
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Chiara Maniaci
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, USI, 6900 Lugano, Switzerland
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|
21
|
Lofiego MF, Cannito S, Fazio C, Piazzini F, Cutaia O, Solmonese L, Marzani F, Chiarucci C, Di Giacomo AM, Calabrò L, Coral S, Maio M, Covre A. Epigenetic Immune Remodeling of Mesothelioma Cells: A New Strategy to Improve the Efficacy of Immunotherapy. EPIGENOMES 2021; 5:epigenomes5040027. [PMID: 34968251 PMCID: PMC8715476 DOI: 10.3390/epigenomes5040027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy with a severe prognosis, and with a long-standing need for more effective therapeutic approaches. However, treatment with immune checkpoint inhibitors is becoming an increasingly effective strategy for MPM patients. In this scenario, epigenetic modifications may negatively regulate the interplay between immune and malignant cells within the tumor microenvironment, thus contributing to the highly immunosuppressive contexture of MPM that may limit the efficacy of immunotherapy. Aiming to further improve prospectively the clinical efficacy of immunotherapeutic approaches in MPM, we investigated the immunomodulatory potential of different classes of epigenetic drugs (i.e., DNA hypomethylating agent (DHA) guadecitabine, histone deacetylase inhibitors VPA and SAHA, or EZH2 inhibitors EPZ-6438) in epithelioid, biphasic, and sarcomatoid MPM cell lines, by cytofluorimetric and real-time PCR analyses. We also characterized the effects of the DHA, guadecitabine, on the gene expression profiles (GEP) of the investigated MPM cell lines by the nCounter platform. Among investigated drugs, exposure of MPM cells to guadecitabine, either alone or in combination with VPA, SAHA and EPZ-6438 demonstrated to be the main driver of the induction/upregulation of immune molecules functionally crucial in host-tumor interaction (i.e., HLA class I, ICAM-1 and cancer testis antigens) in all three MPM subtypes investigated. Additionally, GEP demonstrated that treatment with guadecitabine led to the activation of genes involved in several immune-related functional classes mainly in the sarcomatoid subtype. Furthermore, among investigated MPM subtypes, DHA-induced CDH1 expression that contributes to restoring the epithelial phenotype was highest in sarcomatoid cells. Altogether, our results contribute to providing the rationale to develop new epigenetically-based immunotherapeutic approaches for MPM patients, potentially tailored to the specific histologic subtypes.
Collapse
Affiliation(s)
- Maria Fortunata Lofiego
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Epigen Therapeutics S.R.L., 53100 Siena, Italy;
| | - Sara Cannito
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Carolina Fazio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Francesca Piazzini
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Ornella Cutaia
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Laura Solmonese
- Epigen Therapeutics S.R.L., 53100 Siena, Italy;
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Francesco Marzani
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Carla Chiarucci
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Luana Calabrò
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Sandra Coral
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Epigen Therapeutics S.R.L., 53100 Siena, Italy;
| | - Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Alessia Covre
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Correspondence:
| | | |
Collapse
|
22
|
Roulleaux Dugage M, Nassif EF, Italiano A, Bahleda R. Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review. Front Immunol 2021; 12:775761. [PMID: 34925348 PMCID: PMC8678134 DOI: 10.3389/fimmu.2021.775761] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Anti-PD-(L)1 therapies yield a disappointing response rate of 15% across soft-tissue sarcomas, even if some subtypes benefit more than others. The proportions of TAMs and TILs in their tumor microenvironment are variable, and this heterogeneity correlates to histotype. Tumors with a richer CD8+ T cell, M1 macrophage, and CD20+ cells infiltrate have a better prognosis than those infiltrated by M0/M2 macrophages and a high immune checkpoint protein expression. PD-L1 and CD8+ infiltrate seem correlated to response to immune checkpoint inhibitors (ICI), but tertiary lymphoid structures have the best predictive value and have been validated prospectively. Trials for combination therapies are ongoing and focus on the association of ICI with chemotherapy, achieving encouraging results especially with pembrolizumab and doxorubicin at an early stage, or ICI with antiangiogenics. A synergy with oncolytic viruses is seen and intratumoral talimogene laherpavec yields an impressive 35% ORR when associated to pembrolizumab. Adoptive cellular therapies are also of great interest in tumors with a high expression of cancer-testis antigens (CTA), such as synovial sarcomas or myxoid round cell liposarcomas with an ORR ranging from 20 to 50%. It seems crucial to adapt the design of clinical trials to histology. Leiomyosarcomas are characterized by complex genomics but are poorly infiltrated by immune cells and do not benefit from ICI. They should be tested with PIK3CA/AKT inhibition, IDO blockade, or treatments aiming at increasing antigenicity (radiotherapy, PARP inhibitors). DDLPS are more infiltrated and have higher PD-L1 expression, but responses to ICI remain variable across clinical studies. Combinations with MDM2 antagonists or CDK4/6 inhibitors may improve responses for DDLPS. UPS harbor the highest copy number alterations (CNA) and mutation rates, with a rich immune infiltrate containing TLS. They have a promising 15-40% ORR to ICI. Trials for ICB should focus on immune-high UPS. Association of ICI with FGFR inhibitors warrants further exploration in the immune-low group of UPS. Finally translocation-related sarcomas are heterogeneous, and although synovial sarcomas a poorly infiltrated and have a poor response rate to ICI, ASPS largely benefit from ICB monotherapy or its association with antiangiogenics agents. Targeting specific neoantigens through vaccine or adoptive cellular therapies is probably the most promising approach in synovial sarcomas.
Collapse
Affiliation(s)
- Matthieu Roulleaux Dugage
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Elise F. Nassif
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antoine Italiano
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
- Département d’Oncologie Médicale, Institut Bergonié, Bordeaux, France
| | - Rastislav Bahleda
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
23
|
Hernando-Calvo A, Cescon DW, Bedard PL. Novel classes of immunotherapy for breast cancer. Breast Cancer Res Treat 2021; 191:15-29. [PMID: 34623509 DOI: 10.1007/s10549-021-06405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Immune-checkpoint inhibitors have profoundly changed the treatment landscape for many tumor types. Despite marked improvements in disease control for highly immunogenic cancers, the clinical impact of checkpoint inhibitors in breast cancers to date is limited. Breast cancer is a heterogeneous disease with different levels of PD-L1 expression and variable tumor microenvironment (TME) composition according to molecular subtype. With emerging evidence of the role of different factors involved in immune evasion, there are promising new immunotherapy targets that will reshape early drug development for metastatic breast cancer. This review examines the available evidence for existing and emerging immuno-oncology (IO) approaches including small molecules targeting different regulators of the cancer-immunity cycle.
Collapse
Affiliation(s)
- Alberto Hernando-Calvo
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre - University Health Network, University of Toronto, Toronto, Canada.
| | - David W Cescon
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre - University Health Network, University of Toronto, Toronto, Canada
| | - Philippe L Bedard
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre - University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Yu B, Luo F, Sun B, Liu W, Shi Q, Cheng S, Chen C, Chen G, Li Y, Feng H. KAT6A Acetylation of SMAD3 Regulates Myeloid-Derived Suppressor Cell Recruitment, Metastasis, and Immunotherapy in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100014. [PMID: 34392614 PMCID: PMC8529494 DOI: 10.1002/advs.202100014] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Aberrant SMAD3 activation has been implicated as a driving event in cancer metastasis, yet the underlying mechanisms are still elusive. Here, SMAD3 is identified as a nonhistone substrate of lysine acetyltransferase 6A (KAT6A). The acetylation of SMAD3 at K20 and K117 by KAT6A promotes SMAD3 association with oncogenic chromatin modifier tripartite motif-containing 24 (TRIM24) and disrupts SMAD3 interaction with tumor suppressor TRIM33. This event in turn promotes KAT6A-acetylated H3K23-mediated recruitment of TRIM24-SMAD3 complex to chromatin and thereby increases SMAD3 activation and immune response-related cytokine expression, leading to enhanced breast cancer stem-like cell stemness, myeloid-derived suppressor cell (MDSC) recruitment, and triple-negative breast cancer (TNBC) metastasis. Inhibiting KAT6A in combination with anti-PD-L1 therapy in treating TNBC xenograft-bearing animals markedly attenuates metastasis and provides a significant survival benefit. Thus, the work presents a KAT6A acetylation-dependent regulatory mechanism governing SMAD3 oncogenic function and provides insight into how targeting an epigenetic factor with immunotherapies enhances the antimetastasis efficacy.
Collapse
Affiliation(s)
- Bo Yu
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Fei Luo
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Bowen Sun
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Wenxue Liu
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qiqi Shi
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Shi‐Yuan Cheng
- Department of NeurologyLou and Jean Malnati Brain Tumor InstituteThe Robert H. Lurie Comprehensive Cancer CenterSimpson Querrey Institute for EpigeneticsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunming650223China
| | - Guoqiang Chen
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yanxin Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of HealthDepartment of Hematology and OncologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
25
|
Interplay between Epigenetics and Cellular Metabolism in Colorectal Cancer. Biomolecules 2021; 11:biom11101406. [PMID: 34680038 PMCID: PMC8533383 DOI: 10.3390/biom11101406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/30/2023] Open
Abstract
Cellular metabolism alterations have been recognized as one of the most predominant hallmarks of colorectal cancers (CRCs). It is precisely regulated by many oncogenic signaling pathways in all kinds of regulatory levels, including transcriptional, post-transcriptional, translational and post-translational levels. Among these regulatory factors, epigenetics play an essential role in the modulation of cellular metabolism. On the one hand, epigenetics can regulate cellular metabolism via directly controlling the transcription of genes encoding metabolic enzymes of transporters. On the other hand, epigenetics can regulate major transcriptional factors and signaling pathways that control the transcription of genes encoding metabolic enzymes or transporters, or affecting the translation, activation, stabilization, or translocation of metabolic enzymes or transporters. Interestingly, epigenetics can also be controlled by cellular metabolism. Metabolites not only directly influence epigenetic processes, but also affect the activity of epigenetic enzymes. Actually, both cellular metabolism pathways and epigenetic processes are controlled by enzymes. They are highly intertwined and are essential for oncogenesis and tumor development of CRCs. Therefore, they are potential therapeutic targets for the treatment of CRCs. In recent years, both epigenetic and metabolism inhibitors are studied for clinical use to treat CRCs. In this review, we depict the interplay between epigenetics and cellular metabolism in CRCs and summarize the underlying molecular mechanisms and their potential applications for clinical therapy.
Collapse
|
26
|
Ma J. Bioinformatics-guided analysis uncovers TIGIT as an epigenetically regulated immunomodulator affecting immunotherapeutic sensitivity of gastric cancer. Cancer Biomark 2021; 33:349-358. [PMID: 34511485 DOI: 10.3233/cbm-210159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Immunomodulatory genes play significant roles in the regulation of immunological properties of gastric cancer, but the effect of epigenetic regulation of these genes on the immune properties is unknown. METHOD I analyzed the methylation-expression correlation among all immunomodulators and compared with the non-immunomodulators. The association between epigenetically regulated immunomodulators (ERI) and tumor microenvironment is evaluated. A key immunomodulator TIGIT is further selected to investigate the potential value in the regulation of immunologic properties. Furthermore, the prognostic value and the immunotherapeutic potential of TIGIT are also explored. RESULT Four genes are identified as ERIs based on the negative correlation between expression and methylation. Association analysis shows that three ERIs participate in the regulation of the immune microenvironment of gastric cancer. Among these ERIs, TIGIT is identified as a key immunomodulator. TIGIT is found to be significantly associated with immune properties. The high TIGIT expression group tends to display an active immune landscape. TIGIT expression is also found to be associated with survival and immunotherapeutic sensitivity. High TIGIT expression group has a favorable prognosis and is more likely to respond to immunotherapy than the low expression group. CONCLUSION TIGIT is an epigenetically regulated immunomodulator of gastric cancer which can modify the immune activity and affect immunotherapeutic sensitivity. These findings can promote the research of epigenetic therapies and improve the survival of cancer patients by sensitizing tumors to immune therapies.
Collapse
|
27
|
Baretti M, Yarchoan M. Epigenetic modifiers synergize with immune-checkpoint blockade to enhance long-lasting antitumor efficacy. J Clin Invest 2021; 131:151002. [PMID: 34396984 PMCID: PMC8363265 DOI: 10.1172/jci151002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Immune-checkpoint inhibitors are firmly established as pillars of cancer therapy, but only a minority of cancer patients currently benefit from these therapies, and therapeutic combinations that can enhance responses are urgently needed. Recently, histone deacetylases (HDACs) have emerged as potential targets for immune modulation, but critical questions remain about their mechanisms of action. In this issue of the JCI, Truong et al. assess whether the HDAC inhibitor entinostat can enhance anti-PD-1 treatment in a bladder cancer model. Entinostat promoted a T cell-inflamed phenotype and had substantial antitumor efficacy when used in combination with anti-PD-1 therapy. In addition, the authors showed that HDAC inhibition augmented tumor neoantigen presentation, resulting in the immune editing of tumor antigens. This study highlights a mechanism by which epigenetic modifier agents can synergize with immune-checkpoint blockade for enhanced and long-lasting antitumor activity.
Collapse
|
28
|
Karagiannis D, Rampias T. HDAC Inhibitors: Dissecting Mechanisms of Action to Counter Tumor Heterogeneity. Cancers (Basel) 2021; 13:3575. [PMID: 34298787 PMCID: PMC8307174 DOI: 10.3390/cancers13143575] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Intra-tumoral heterogeneity presents a major obstacle to cancer therapeutics, including conventional chemotherapy, immunotherapy, and targeted therapies. Stochastic events such as mutations, chromosomal aberrations, and epigenetic dysregulation, as well as micro-environmental selection pressures related to nutrient and oxygen availability, immune infiltration, and immunoediting processes can drive immense phenotypic variability in tumor cells. Here, we discuss how histone deacetylase inhibitors, a prominent class of epigenetic drugs, can be leveraged to counter tumor heterogeneity. We examine their effects on cellular processes that contribute to heterogeneity and provide insights on their mechanisms of action that could assist in the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
29
|
Yang H, Sun B, Xu K, He Y, Zhang T, Hall SRR, Tan ST, Schmid RA, Peng RW, Hu G, Yao F. Pharmaco-transcriptomic correlation analysis reveals novel responsive signatures to HDAC inhibitors and identifies Dasatinib as a synergistic interactor in small-cell lung cancer. EBioMedicine 2021; 69:103457. [PMID: 34224975 PMCID: PMC8264109 DOI: 10.1016/j.ebiom.2021.103457] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Histone acetylation/deacetylase process is one of the most studied epigenetic modifications. Histone deacetylase inhibitors (HDACis) have shown clinical benefits in haematological malignancies but failed in solid tumours due to the lack of biomarker-driven stratification. METHODS We perform integrative pharmaco-transcriptomic analysis by correlating drug response profiles of five pan-HDACis with transcriptomes of solid cancer cell lines (n=659) to systematically identify generalizable gene signatures associated with HDACis sensitivity and resistance. The established signatures are then applied to identify cancer subtypes that are potentially sensitive or resistant to HDACis, and drugs that enhance the efficacy of HDACis. Finally, the reproductivity of the established HDACis signatures is evaluated by multiple independent drug response datasets and experimental assays. FINDINGS We successfully delineate generalizable gene signatures predicting sensitivity (containing 46 genes) and resistance (containing 53 genes) to all five HDACis, with their reproductivity confirmed by multiple external sources and independent internal assays. Using the gene signatures, we identify low-grade glioma harbouring isocitrate dehydrogenase 1/2 (IDH1/2) mutation and non-YAP1-driven subsets of small-cell lung cancer (SCLC) that particularly benefit from HDACis monotherapy. Further, based on the resistance gene signature, we identify clinically-approved Dasatinib as a synthetic lethal drug with HDACi, synergizing in inducing apoptosis and reactive oxygen species on a panel of SCLC. Finally, Dasatinib significantly enhances the therapeutic efficacy of Vorinostat in SCLC xenografts. INTERPRETATION Our work establishes robust gene signatures predicting HDACis sensitivity/resistance in solid cancer and uncovers combined Dasatinib/HDACi as a synthetic lethal combination therapy for SCLC. FUNDING This work was supported by the National Natural Science Foundation of China (82072570 to F. Yao; 82002941 to B. Sun).
Collapse
Affiliation(s)
- Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| | - Beibei Sun
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yunfei He
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, Shanghai, 200030, People's Republic of China
| | - Tuo Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Sean R R Hall
- Gillies McIndoe Research Institute, Wellington, 6242, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, 6242, New Zealand
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, 3008, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, 3008, Switzerland
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, Shanghai, 200030, People's Republic of China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
30
|
Abstract
The success of checkpoint immunotherapy has created optimism that cancer may be curable. However, not all patients respond, resistance is common and many patients relapse owing to immune escape. We demonstrate that HDAC inhibition not only decreases the trafficking of myeloid-derived suppressor cells (MDSCs) into tumors but also potentiates tumor-associated macrophages (TAMs) to specify anti-tumoral phenotype and bolster T cells activation within the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
de Guillebon E, Jimenez M, Mazzarella L, Betsou F, Stadler P, Peták I, Jeannot E, Chanas L, Servant N, Marret G, Duso BA, Legrand F, Kornerup KN, Bernhart SH, Balogh G, Dóczi R, Filotás P, Curigliano G, Bièche I, Guérin J, Dirner A, Neuzillet C, Girard N, Borcoman E, Larbi Chérif L, Tresca P, Roufai DB, Dupain C, Scholl S, André F, Fernandez X, Filleron T, Kamal M, Le Tourneau C. Combining immunotherapy with an epidrug in squamous cell carcinomas of different locations: rationale and design of the PEVO basket trial. ESMO Open 2021; 6:100106. [PMID: 33865192 PMCID: PMC8066350 DOI: 10.1016/j.esmoop.2021.100106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/12/2021] [Accepted: 03/06/2021] [Indexed: 12/25/2022] Open
Abstract
Squamous cell carcinomas (SCCs) are among the most frequent solid tumors in humans. SCCs, related or not to the human papillomavirus, share common molecular features. Immunotherapies, and specifically immune checkpoint inhibitors, have been shown to improve overall survival in multiple cancer types, including SCCs. However, only a minority of patients experience a durable response with immunotherapy. Epigenetic modulation plays a major role in escaping tumor immunosurveillance and confers resistance to immune checkpoint inhibitors. Preclinical evidence suggests that modulating the epigenome might improve the efficacy of immunotherapy. We herein review the preclinical and the clinical rationale for combining immunotherapy with an epidrug, and detail the design of PEVOsq, a basket clinical trial combining pembrolizumab with vorinostat, a histone deacetylase inhibitor, in patients with SCCs of different locations. Sequential blood and tumor sampling will be collected in order to identify predictive and pharmacodynamics biomarkers of efficacy of the combination. We also present how clinical and biological data will be managed with the aim to enable the development of a prospective integrative platform to allow secure and controlled access to the project data as well as further exploitations.
Collapse
Affiliation(s)
- E de Guillebon
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France; Inserm U932 Research Unit - Immunite et cancer, Paris, France
| | | | - L Mazzarella
- Department of Experimental Oncology, European Institute of Oncology - IRCCS, Milan, Italy; Division of Innovative Therapies, European Institute of Oncology - IRCCS, Milan, Italy
| | - F Betsou
- Integrated Biobank of Luxembourg, Dudelange, Luxembourg
| | - P Stadler
- Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany
| | - I Peták
- Oncompass Medicine Ltd, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, USA
| | - E Jeannot
- Department of Genetics, Institut Curie, Paris, France; Department of Pathology, Institut Curie, Paris, France
| | - L Chanas
- Data Direction, Institut Curie, Paris, France
| | - N Servant
- Inserm U900 Research Unit, Saint Cloud, France
| | - G Marret
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - B A Duso
- Department of Experimental Oncology, European Institute of Oncology - IRCCS, Milan, Italy
| | | | - K N Kornerup
- Integrated Biobank of Luxembourg, Dudelange, Luxembourg
| | - S H Bernhart
- Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany
| | - G Balogh
- Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany
| | - R Dóczi
- Oncompass Medicine Ltd, Budapest, Hungary
| | - P Filotás
- Oncompass Medicine Ltd, Budapest, Hungary
| | - G Curigliano
- Division of Innovative Therapies, European Institute of Oncology - IRCCS, Milan, Italy; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; University of Milano, Milan, Italy
| | - I Bièche
- Department of Genetics, Institut Curie, Paris, France
| | - J Guérin
- Data Direction, Institut Curie, Paris, France
| | - A Dirner
- Oncompass Medicine Ltd, Budapest, Hungary
| | - C Neuzillet
- Department of Medical Oncology, Institut Curie, Paris, France; Paris-Saclay University, Paris, France
| | - N Girard
- Department of Medical Oncology, Institut Curie, Paris, France; Paris-Saclay University, Paris, France
| | - E Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - L Larbi Chérif
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - P Tresca
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - D B Roufai
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - C Dupain
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - S Scholl
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - F André
- Department of Medical Oncology, Gustave Roussy, Villejuif; INSERM, Gustave Roussy Cancer Campus, UMR981, Villejuif; University of Paris-Sud, Orsay, France
| | - X Fernandez
- Data Direction, Institut Curie, Paris, France
| | - T Filleron
- Biostatistics Unit, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - M Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France.
| | - C Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France; Inserm U900 Research Unit, Saint Cloud, France; Paris-Saclay University, Paris, France.
| |
Collapse
|
32
|
Borowsky J, Haruki K, Lau MC, Dias Costa A, Väyrynen JP, Ugai T, Arima K, da Silva A, Felt KD, Zhao M, Gurjao C, Twombly TS, Fujiyoshi K, Väyrynen SA, Hamada T, Mima K, Bullman S, Harrison TA, Phipps AI, Peters U, Ng K, Meyerhardt JA, Song M, Giovannucci EL, Wu K, Zhang X, Freeman GJ, Huttenhower C, Garrett WS, Chan AT, Leggett BA, Whitehall VLJ, Walker N, Brown I, Bettington M, Nishihara R, Fuchs CS, Lennerz JK, Giannakis M, Nowak JA, Ogino S. Association of Fusobacterium nucleatum with Specific T-cell Subsets in the Colorectal Carcinoma Microenvironment. Clin Cancer Res 2021; 27:2816-2826. [PMID: 33632927 PMCID: PMC8127352 DOI: 10.1158/1078-0432.ccr-20-4009] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/09/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE While evidence indicates that Fusobacterium nucleatum (F. nucleatum) may promote colorectal carcinogenesis through its suppressive effect on T-cell-mediated antitumor immunity, the specific T-cell subsets involved remain uncertain. EXPERIMENTAL DESIGN We measured F. nucleatum DNA within tumor tissue by quantitative PCR on 933 cases (including 128 F. nucleatum-positive cases) among 4,465 incident colorectal carcinoma cases in two prospective cohorts. Multiplex immunofluorescence combined with digital image analysis and machine learning algorithms for CD3, CD4, CD8, CD45RO (PTPRC isoform), and FOXP3 measured various T-cell subsets. We leveraged data on Bifidobacterium, microsatellite instability (MSI), tumor whole-exome sequencing, and M1/M2-type tumor-associated macrophages [TAM; by CD68, CD86, IRF5, MAF, and MRC1 (CD206) multimarker assay]. Using the 4,465 cancer cases and inverse probability weighting method to control for selection bias due to tissue availability, multivariable-adjusted logistic regression analysis assessed the association between F. nucleatum and T-cell subsets. RESULTS The amount of F. nucleatum was inversely associated with tumor stromal CD3+ lymphocytes [multivariable OR, 0.47; 95% confidence interval (CI), 0.28-0.79, for F. nucleatum-high vs. -negative category; P trend = 0.0004] and specifically stromal CD3+CD4+CD45RO+ cells (corresponding multivariable OR, 0.52; 95% CI, 0.32-0.85; P trend = 0.003). These relationships did not substantially differ by MSI status, neoantigen load, or exome-wide tumor mutational burden. F. nucleatum was not significantly associated with tumor intraepithelial T cells or with M1 or M2 TAMs. CONCLUSIONS The amount of tissue F. nucleatum is associated with lower density of stromal memory helper T cells. Our findings provide evidence for the interactive pathogenic roles of microbiota and specific immune cells.
Collapse
Affiliation(s)
- Jennifer Borowsky
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Koichiro Haruki
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mai Chan Lau
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Juha P Väyrynen
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Tomotaka Ugai
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kota Arima
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Annacarolina da Silva
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kristen D Felt
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Carino Gurjao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Tyler S Twombly
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kenji Fujiyoshi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sara A Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kosuke Mima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Susan Bullman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Tabitha A Harrison
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Amanda I Phipps
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kana Wu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Wendy S Garrett
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Barbara A Leggett
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Vicki L J Whitehall
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Conjoint Internal Medicine Laboratory, Pathology Queensland, Queensland Health, Brisbane, Queensland, Australia
| | - Neal Walker
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Ian Brown
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Mark Bettington
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Smilow Cancer Hospital, New Haven, Connecticut
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts
| |
Collapse
|
33
|
Xue J, Chen K, Hu H, Gopinath SCB. Progress in gene therapy treatments for prostate cancer. Biotechnol Appl Biochem 2021; 69:1166-1175. [PMID: 33988271 DOI: 10.1002/bab.2193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/12/2021] [Indexed: 01/17/2023]
Abstract
Prostate cancer is one of the predominant cancers affecting men and has been widely reported. In the past, various therapies and drugs have been proposed to treat prostate cancer. Among these treatments, gene therapy has been considered to be an optimal and widely applicable treatment. Furthermore, due to the increased specificity of gene sequence complementation, the targeted delivery of complementary gene sequences may represent a useful treatment in certain instances. Various gene therapies, including tumor-suppressor gene therapy, suicide gene therapy, immunomodulation gene therapy and anti-oncogene therapies, have been established to treat a wide range of diseases, such as cardiac disease, cystic fibrosis, HIV/AIDS, diabetes, hemophilia, and cancers. To this end, several gene therapy clinical trials at various phases are underway. This overview describes the developments and progress in gene therapy, with a special focus being placed on prostate cancer.
Collapse
Affiliation(s)
- Jingxin Xue
- Department of Urology, Affiliated Jinan Third Hospital of Jining Medical University, Jining Medical University, Jinan, Shandong, China
| | - Keming Chen
- Department of Urology, Affiliated Jinan Third Hospital of Jining Medical University, Jining Medical University, Jinan, Shandong, China
| | - Heyi Hu
- Department of Urology, Affiliated Jinan Third Hospital of Jining Medical University, Jining Medical University, Jinan, Shandong, China
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| |
Collapse
|
34
|
Rosenthal R, Swanton C, McGranahan N. Understanding the impact of immune-mediated selection on lung cancer evolution. Br J Cancer 2021; 124:1615-1617. [PMID: 33623078 PMCID: PMC8110793 DOI: 10.1038/s41416-020-01232-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 01/31/2023] Open
Abstract
Understanding how a tumour evolves and avoids immune recognition is paramount to improving cancer immunotherapy and patient outcome. Here we examine our recent integration of multi-region genomic, transcriptomic, epigenomic, pathology, and clinical data, highlight the need for a systematic examination of immune escape mechanisms, and discuss implications for immunotherapy approaches.
Collapse
Affiliation(s)
- Rachel Rosenthal
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| |
Collapse
|
35
|
Li Y, Wu Y, Hu Y. Metabolites in the Tumor Microenvironment Reprogram Functions of Immune Effector Cells Through Epigenetic Modifications. Front Immunol 2021; 12:641883. [PMID: 33927716 PMCID: PMC8078775 DOI: 10.3389/fimmu.2021.641883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 12/29/2022] Open
Abstract
Cellular metabolism of both cancer and immune cells in the acidic, hypoxic, and nutrient-depleted tumor microenvironment (TME) has attracted increasing attention in recent years. Accumulating evidence has shown that cancer cells in TME could outcompete immune cells for nutrients and at the same time, producing inhibitory products that suppress immune effector cell functions. Recent progress revealed that metabolites in the TME could dysregulate gene expression patterns in the differentiation, proliferation, and activation of immune effector cells by interfering with the epigenetic programs and signal transduction networks. Nevertheless, encouraging studies indicated that metabolic plasticity and heterogeneity between cancer and immune effector cells could provide us the opportunity to discover and target the metabolic vulnerabilities of cancer cells while potentiating the anti-tumor functions of immune effector cells. In this review, we will discuss the metabolic impacts on the immune effector cells in TME and explore the therapeutic opportunities for metabolically enhanced immunotherapy.
Collapse
Affiliation(s)
- Yijia Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China.,Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Yangzhe Wu
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China.,Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Yi Hu
- Microbiology and Immunology Department, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
36
|
Baird AM, Finn SP, Gray SG, Sheils O. Epigenetic Modifier UHRF1 May Be a Potential Target in Malignant Pleural Mesothelioma. J Thorac Oncol 2021; 16:14-16. [PMID: 33384056 DOI: 10.1016/j.jtho.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Anne-Marie Baird
- School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Dublin, Ireland.
| | - Stephen P Finn
- School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Dublin, Ireland; Department of Histopathology. St. James's Hospital, Dublin, Ireland
| | - Steven G Gray
- School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Dublin, Ireland; LabMed Directorate, St. James's Hospital, Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Dublin, Ireland
| |
Collapse
|
37
|
Upreti D, Bakhshinyan D, Bloemberg D, Vora P, Venugopal C, Singh SK. Strategies to Enhance the Efficacy of T-Cell Therapy for Central Nervous System Tumors. Front Immunol 2020; 11:599253. [PMID: 33281826 PMCID: PMC7689359 DOI: 10.3389/fimmu.2020.599253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mortality rates in patients diagnosed with central nervous system (CNS) tumors, originating in the brain or spinal cord, continue to remain high despite the advances in multimodal treatment regimens, including surgery, radiation, and chemotherapy. Recent success of adoptive cell transfer immunotherapy treatments using chimeric antigen receptor (CAR) engineered T cells against in chemotherapy resistant CD19 expressing B-cell lymphomas, has provided the foundation for investigating efficacy of CAR T immunotherapies in the context of brain tumor. Although significant efforts have been made in developing and translating the novel CAR T therapies for CNS tumors, including glioblastoma (GBM), researchers are yet to achieve a similar level of success as with liquid malignancies. In this review, we discuss strategies and considerations essential for developing robust preclinical models for the translation of T cell-based therapies for CNS tumors. Some of the key considerations include route of delivery, increasing persistence of T cells in tumor environment, remodeling of myeloid environment, establishing the window of treatment opportunity, harnessing endogenous immune system, designing multiple antigen targeting T cells, and rational combination of immunotherapy with the current standard of care. Although this review focuses primarily on CAR T therapies for GBM, similar strategies, and considerations are applicable to all CNS tumors in general.
Collapse
Affiliation(s)
- Deepak Upreti
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Darin Bloemberg
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Parvez Vora
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
38
|
Han J, Xu X, Liu Z, Li Z, Wu Y, Zuo D. Recent advances of molecular mechanisms of regulating PD-L1 expression in melanoma. Int Immunopharmacol 2020; 88:106971. [DOI: 10.1016/j.intimp.2020.106971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
|
39
|
Sabbatino F, Liguori L, Polcaro G, Salvato I, Caramori G, Salzano FA, Casolaro V, Stellato C, Dal Col J, Pepe S. Role of Human Leukocyte Antigen System as A Predictive Biomarker for Checkpoint-Based Immunotherapy in Cancer Patients. Int J Mol Sci 2020; 21:ijms21197295. [PMID: 33023239 PMCID: PMC7582904 DOI: 10.3390/ijms21197295] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in cancer immunotherapy have clearly shown that checkpoint-based immunotherapy is effective in a small subgroup of cancer patients. However, no effective predictive biomarker has been identified so far. The major histocompatibility complex, better known in humans as human leukocyte antigen (HLA), is a very polymorphic gene complex consisting of more than 200 genes. It has a crucial role in activating an appropriate host immune response against pathogens and tumor cells by discriminating self and non-self peptides. Several lines of evidence have shown that down-regulation of expression of HLA class I antigen derived peptide complexes by cancer cells is a mechanism of tumor immune escape and is often associated to poor prognosis in cancer patients. In addition, it has also been shown that HLA class I and II antigen expression, as well as defects in the antigen processing machinery complex, may predict tumor responses in cancer immunotherapy. Nevertheless, the role of HLA in predicting tumor responses to checkpoint-based immunotherapy is still debated. In this review, firstly, we will describe the structure and function of the HLA system. Secondly, we will summarize the HLA defects and their clinical significance in cancer patients. Thirdly, we will review the potential role of the HLA as a predictive biomarker for checkpoint-based immunotherapy in cancer patients. Lastly, we will discuss the potential strategies that may restore HLA function to implement novel therapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Giovanna Polcaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Gaetano Caramori
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Francesco A. Salzano
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Correspondence: ; Tel.: +39-08996-5210
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| |
Collapse
|
40
|
Understanding genetic determinants of resistance to immune checkpoint blockers. Semin Cancer Biol 2020; 65:123-139. [DOI: 10.1016/j.semcancer.2019.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
|
41
|
Abstract
PURPOSE OF REVIEW Lung cancer is still the first cause of cancer-related deaths worldwide. The development of immune checkpoint inhibitors (ICI) has drastically changed the prognosis of some patients, but the rate of long responders does not exceed 20%. Moreover, ICIs are not adverse events-free and remain expensive. Therefore, predictive biomarkers of long-term benefit to ICI are required. RECENT FINDINGS The two main fields being evaluated currently are PD-L1 expression and tumor mutational burden (TMB). The first one is the only one used in routine practice, and the second is being evaluated in phase 3 clinical trials. In addition, other biomarkers are being assessed as complex signatures, tumor-infiltrated lymphocytes, T cell receptor repertoire, or molecular profiling. The aim of this review is to summarize the current validated or promising biomarkers in lung cancer which could help to better select patients who will respond to ICI.
Collapse
Affiliation(s)
- Camille Travert
- CNRS, INSERM, CRCM, APHM, Multidisciplinary Oncology & Therapeutic Innovations Department, Aix Marseille University, Marseille, France
| | - Fabrice Barlesi
- CNRS, INSERM, CRCM, APHM, Multidisciplinary Oncology & Therapeutic Innovations Department, Aix Marseille University, Marseille, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurent Greillier
- CNRS, INSERM, CRCM, APHM, Multidisciplinary Oncology & Therapeutic Innovations Department, Aix Marseille University, Marseille, France
| | - Pascale Tomasini
- CNRS, INSERM, CRCM, APHM, Multidisciplinary Oncology & Therapeutic Innovations Department, Aix Marseille University, Marseille, France.
- Service d'Oncologie multidisciplinaire et Innovations thérapeutiques, Hôpital Nord APHM, chemin des Bourrely, 13015, Marseille, France.
| |
Collapse
|
42
|
Testori AAE, Chiellino S, van Akkooi AC. Adjuvant Therapy for Melanoma: Past, Current, and Future Developments. Cancers (Basel) 2020; 12:cancers12071994. [PMID: 32708268 PMCID: PMC7409361 DOI: 10.3390/cancers12071994] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
This review describes the progress that the concept of adjuvant therapies has undergone in the last 50 years and focuses on the most recent development where an adjuvant approach has been scientifically evaluated in melanoma clinical trials. Over the past decade the development of immunotherapies and targeted therapies has drastically changed the treatment of stage IV melanoma patients. These successes led to trials studying the same therapies in the adjuvant setting, in high risk resected stage III and IV melanoma patients. Adjuvant immune checkpoint blockade with anti-CTLA-4 antibody ipilimumab was the first drug to show an improvement in recurrence-free and overall survival but this was accompanied by high severe toxicity rates. Therefore, these results were bypassed by adjuvant treatment with anti-PD-1 agents nivolumab and pembrolizumab and BRAF-directed target therapy, which showed even better recurrence-free survival rates with more favorable toxicity rates. The whole concept of adjuvant therapy may be integrated with the new neoadjuvant approaches that are under investigation through several clinical trials. However, there is still no data available on whether the effective adjuvant therapy that patients finally have at their disposal could be offered to them while waiting for recurrence, sparing at least 50% of them a potentially long-term toxic side effect but with the same rate of overall survival (OS). Adjuvant therapy for melanoma has radically changed over the past few years—anti-PD-1 or BRAF-directed therapy is the new standard of care.
Collapse
Affiliation(s)
- Alessandro A. E. Testori
- Department of Dermatology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Correspondence: or
| | - Silvia Chiellino
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Alexander C.J. van Akkooi
- Department of Surgical Oncology, Netherlands Cancer Institute–Antoni van Leeuwenhoek, 1066cx Amsterdam, The Netherlands;
| |
Collapse
|
43
|
Spriano F, Stathis A, Bertoni F. Targeting BET bromodomain proteins in cancer: The example of lymphomas. Pharmacol Ther 2020; 215:107631. [PMID: 32693114 DOI: 10.1016/j.pharmthera.2020.107631] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
The Bromo- and Extra-Terminal domain (BET) family proteins act as "readers" of acetylated histones and they are important transcription regulators. BRD2, BRD3, BRD4 and BRDT, part of the BET family, are important in different tumors, where upregulation or translocation often occurs. The potential of targeting BET proteins as anti-cancer treatment originated with data obtained with a first series of compounds, and there are now several data supporting BET inhibition in both solid tumors and hematological malignancies. Despite very positive preclinical data in different tumor types, the clinical results have been so far moderate. Using lymphoma as an example to review the data produced in the laboratory and in the context of the early clinical trials, we discuss the modalities to make BET targeting more efficient both generating novel generation of compounds and by exploring the combination with small molecules affecting various signaling pathways, BCL2, or DNA damage response signaling, but also with additional epigenetic agents and with immunotherapy. We also discuss the mechanisms of resistance and the toxicity profiles so far reported.
Collapse
Affiliation(s)
- Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| |
Collapse
|
44
|
Gan LL, Hii LW, Wong SF, Leong CO, Mai CW. Molecular Mechanisms and Potential Therapeutic Reversal of Pancreatic Cancer-Induced Immune Evasion. Cancers (Basel) 2020; 12:cancers12071872. [PMID: 32664564 PMCID: PMC7408947 DOI: 10.3390/cancers12071872] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer ranks high among the causes of cancer-related mortality. The prognosis of this grim condition has not improved significantly over the past 50 years, despite advancement in imaging techniques, cancer genetics and treatment modalities. Due to the relative difficulty in the early detection of pancreatic tumors, as low as 20% of patients are eligible for potentially curative surgery; moreover, chemotherapy and radiotherapy (RT) do not confer a great benefit in the overall survival of the patients. Currently, emerging developments in immunotherapy have yet to bring a significant clinical advantage among pancreatic cancer patients. In fact, pancreatic tumor-driven immune evasion possesses one of the greatest challenges leading to immunotherapeutic resistance. Most of the immune escape pathways are innate, while poor priming of hosts' immune response and immunoediting constitute the adaptive immunosuppressive machinery. In this review, we extensively discuss the pathway perturbations undermining the anti-tumor immunity specific to pancreatic cancer. We also explore feasible up-and-coming therapeutic strategies that may restore immunity and address therapeutic resistance, bringing hope to eliminate the status quo in pancreatic cancer prognosis.
Collapse
Affiliation(s)
- Li-Lian Gan
- School of Postgraduate Study, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-L.G.); (L.-W.H.)
| | - Ling-Wei Hii
- School of Postgraduate Study, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-L.G.); (L.-W.H.)
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Shew-Fung Wong
- School of Medicine, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Environmental and Population Health, Institute for Research, Development and Innovation (IRDI), International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence: ; Tel.: +60-3-2731-7596
| |
Collapse
|
45
|
Pearson ADJ, Rossig C, Lesa G, Diede SJ, Weiner S, Anderson J, Gray J, Geoerger B, Minard-Colin V, Marshall LV, Smith M, Sondel P, Bajars M, Baldazzi C, Barry E, Blackman S, Blanc P, Capdeville R, Caron H, Cole PD, Jiménez JC, Demolis P, Donoghue M, Elgadi M, Gajewski T, Galluzzo S, Ilaria R, Jenkner A, Karres D, Kieran M, Ligas F, Lowy I, Meyers M, Oprea C, Peddareddigari VGR, Sterba J, Stockman PK, Suenaert P, Tabori U, van Tilburg C, Yancey T, Weigel B, Norga K, Reaman G, Vassal G. ACCELERATE and European Medicines Agency Paediatric Strategy Forum for medicinal product development of checkpoint inhibitors for use in combination therapy in paediatric patients. Eur J Cancer 2020; 127:52-66. [PMID: 31986450 DOI: 10.1016/j.ejca.2019.12.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
The third multistakeholder Paediatric Strategy Forum organised by ACCELERATE and the European Medicines Agency focused on immune checkpoint inhibitors for use in combination therapy in children and adolescents. As immune checkpoint inhibitors, both as monotherapy and in combinations have shown impressive success in some adult malignancies and early phase trials in children of single agent checkpoint inhibitors have now been completed, it seemed an appropriate time to consider opportunities for paediatric studies of checkpoint inhibitors used in combination. Among paediatric patients, early clinical studies of checkpoint inhibitors used as monotherapy have demonstrated a high rate of activity, including complete responses, in Hodgkin lymphoma and hypermutant paediatric tumours. Activity has been very limited, however, in more common malignancies of childhood and adolescence. Furthermore, apart from tumour mutational burden, no other predictive biomarker for monotherapy activity in paediatric tumours has been identified. Based on these observations, there is collective agreement that there is no scientific rationale for children to be enrolled in new monotherapy trials of additional checkpoint inhibitors with the same mechanism of action of agents already studied (e.g. anti-PD1, anti-PDL1 anti-CTLA-4) unless additional scientific knowledge supporting a different approach becomes available. This shared perspective, based on scientific evidence and supported by paediatric oncology cooperative groups, should inform companies on whether a paediatric development plan is justified. This could then be proposed to regulators through the available regulatory tools. Generally, an academic-industry consensus on the scientific merits of a proposal before submission of a paediatric investigational plan would be of great benefit to determine which studies have the highest probability of generating new insights. There is already a rationale for the evaluation of combinations of checkpoint inhibitors with other agents in paediatric Hodgkin lymphoma and hypermutated tumours in view of the activity shown as single agents. In paediatric tumours where no single agent activity has been observed in multiple clinical trials of anti-PD1, anti-PDL1 and anti-CTLA-4 agents as monotherapy, combinations of checkpoint inhibitors with other treatment modalities should be explored when a scientific rationale indicates that they could be efficacious in paediatric cancers and not because these combinations are being evaluated in adults. Immunotherapy in the form of engineered proteins (e.g. monoclonal antibodies and T cell engaging agents) and cellular products (e.g. CAR T cells) has great therapeutic potential for benefit in paediatric cancer. The major challenge for developing checkpoint inhibitors for paediatric cancers is the lack of neoantigens (based on mutations) and corresponding antigen-specific T cells. Progress critically depends on understanding the immune macroenvironment and microenvironment and the ability of the adaptive immune system to recognise paediatric cancers in the absence of high neoantigen burden. Future clinical studies of checkpoint inhibitors in children need to build upon strong biological hypotheses that take into account the distinctive immunobiology of childhood cancers in comparison to that of checkpoint inhibitor responsive adult cancers.
Collapse
Affiliation(s)
| | - Claudia Rossig
- University Children´s Hospital Muenster, Pediatric Hematology and Oncology, Germany
| | - Giovanni Lesa
- Paediatric Medicines Office, Product Development Scientific Support Department, European Medicines Agency, Amsterdam, the Netherlands
| | | | | | - John Anderson
- UCL Great Ormond Street Institute of Child Health, UK
| | | | | | | | | | | | - Paul Sondel
- The University of Wisconsin, Madison WI, USA
| | | | | | | | | | | | | | | | | | - Jorge Camarero Jiménez
- Agencia Espanola de Medicamentos y Productos Sanitarios and European Medicines Agency, Committee for Medicinal Products for Human Use, Amsterdam, the Netherlands
| | - Pierre Demolis
- Agence Nationale de Sécurité du Médicament et des Produits de Santé and European Medicines Agency, Scientific Advice Working Party and Oncology Working Party, Amsterdam, the Netherlands
| | | | | | | | - Sara Galluzzo
- Agenzia Italiana del Farmaco and European Medicines Agency, Paediatric Committee, Amsterdam, the Netherlands
| | | | - Alessandro Jenkner
- Ospedale Pediatrico Bambino Gesù and European Medicines Agency, Paediatric Committee, Amsterdam, the Netherlands
| | - Dominik Karres
- Paediatric Medicines Office, Product Development Scientific Support Department, European Medicines Agency, Amsterdam, the Netherlands
| | | | - Franca Ligas
- Paediatric Medicines Office, Product Development Scientific Support Department, European Medicines Agency, Amsterdam, the Netherlands
| | | | | | | | | | - Jaroslav Sterba
- University Hospital Brno and European Medicines Agency, Paediatric Committee, Amsterdam, the Netherlands
| | | | | | - Uri Tabori
- Hospital for Sick Children, Toronto, Canada
| | - Cornelis van Tilburg
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Kowalczyk M, Szemraj J, Bliźniewska K, Maes M, Berk M, Su KP, Gałecki P. An immune gate of depression - Early neuroimmune development in the formation of the underlying depressive disorder. Pharmacol Rep 2019; 71:1299-1307. [PMID: 31706254 DOI: 10.1016/j.pharep.2019.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022]
Abstract
The prevalence of depression worldwide is increasing from year to year and constitutes a serious medical, economic and social problem. Currently, despite multifactorial risk factors and pathways contributing to depression development, a significant aspect is attributed to the inflammatory process. Cytokines are considered a factor activating the kynurenine pathway, which leads to the exhaustion of tryptophan in the tryptophan catabolite (TRYCAT) pathway. This results in the activation of potentially neuroprogressive processes and also affects the metabolism of many neurotransmitters. The immune system plays a coordinating role in mediating inflammatory process. Beginning from foetal life, dendritic cells have the ability to react to bacterial and viral antigens, stimulating T lymphocytes in a similar way to adult cells. Cytotoxicity in the prenatal period shapes the predisposition to the development of depression in adult life. Allostasis, i.e. the ability to maintain the body's balance in the face of environmental adversity through changes in its behaviour or physiology, allows the organism to survive but its consequences may be unfavourable if it lasts too long. As a result, Th lymphocytes, in particular T helper 17 cells, which play a central role in the immunity of the whole body, contribute to the development of both autoimmune diseases and psychiatric disorders including depression, as well as have an impact on the differentiation of T CD4+ cells into Th17 cells in the later development of the child's organism, which confirms the importance of the foetal period for the progression of depressive disorders.
Collapse
Affiliation(s)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Łódź, Poland
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kuan-Pin Su
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
47
|
Hason M, Bartůněk P. Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate. Genes (Basel) 2019; 10:genes10110935. [PMID: 31731811 PMCID: PMC6896156 DOI: 10.3390/genes10110935] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022] Open
Abstract
Zebrafish (Danio rerio) is a valuable non-mammalian vertebrate model widely used to study development and disease, including more recently cancer. The evolutionary conservation of cancer-related programs between human and zebrafish is striking and allows extrapolation of research outcomes obtained in fish back to humans. Zebrafish has gained attention as a robust model for cancer research mainly because of its high fecundity, cost-effective maintenance, dynamic visualization of tumor growth in vivo, and the possibility of chemical screening in large numbers of animals at reasonable costs. Novel approaches in modeling tumor growth, such as using transgene electroporation in adult zebrafish, could improve our knowledge about the spatial and temporal control of cancer formation and progression in vivo. Looking at genetic as well as epigenetic alterations could be important to explain the pathogenesis of a disease as complex as cancer. In this review, we highlight classic genetic and transplantation models of cancer in zebrafish as well as provide new insights on advances in cancer modeling. Recent progress in zebrafish xenotransplantation studies and drug screening has shown that zebrafish is a reliable model to study human cancer and could be suitable for evaluating patient-derived xenograft cell invasiveness. Rapid, large-scale evaluation of in vivo drug responses and kinetics in zebrafish could undoubtedly lead to new applications in personalized medicine and combination therapy. For all of the above-mentioned reasons, zebrafish is approaching a future of being a pre-clinical cancer model, alongside the mouse. However, the mouse will continue to be valuable in the last steps of pre-clinical drug screening, mostly because of the highly conserved mammalian genome and biological processes.
Collapse
|
48
|
Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise. Nat Rev Clin Oncol 2019; 17:91-107. [PMID: 31570827 DOI: 10.1038/s41571-019-0267-4] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic dysregulation has long been recognized as a key factor contributing to tumorigenesis and tumour maintenance that can influence all of the recognized hallmarks of cancer. Despite regulatory approvals for the treatment of certain haematological malignancies, the efficacy of the first generation of epigenetic drugs (epi-drugs) in patients with solid tumours has been disappointing; however, successes have now been achieved in selected solid tumour subtypes, thanks to the development of novel compounds and a better understanding of cancer biology that have enabled precision medicine approaches. Several lines of evidence support that, beyond their potential as monotherapies, epigenetic drugs could have important roles in synergy with other anticancer therapies or in reversing acquired therapy resistance. Herein, we review the mechanisms by which epi-drugs can modulate the sensitivity of cancer cells to other forms of anticancer therapy, including chemotherapy, radiation therapy, hormone therapy, molecularly targeted therapy and immunotherapy. We provide a critical appraisal of the preclinical rationale, completed clinical studies and ongoing clinical trials relating to combination therapies incorporating epi-drugs. Finally, we propose and discuss rational clinical trial designs and drug development strategies, considering key factors including patient selection, tumour biomarker evaluation, drug scheduling and response assessment and study end points, with the aim of optimizing the development of such combinations.
Collapse
Affiliation(s)
- Daphné Morel
- ATIP-Avenir Group, UMR981, INSERM (French National Institute of Health and Medical Research), Gustave Roussy Cancer Campus, Villejuif, France
| | - Daniel Jeffery
- Nuclear Dynamics Unit - UMR3664, National Centre for Scientific Research, Institut Curie, Paris, France
| | | | - Geneviève Almouzni
- Nuclear Dynamics Unit - UMR3664, National Centre for Scientific Research, Institut Curie, Paris, France.
| | - Sophie Postel-Vinay
- ATIP-Avenir Group, UMR981, INSERM (French National Institute of Health and Medical Research), Gustave Roussy Cancer Campus, Villejuif, France. .,Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France.
| |
Collapse
|
49
|
A disparate role of RP11-424C20.2/UHRF1 axis through control of tumor immune escape in liver hepatocellular carcinoma and thymoma. Aging (Albany NY) 2019; 11:6422-6439. [PMID: 31442209 PMCID: PMC6738438 DOI: 10.18632/aging.102197] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
Abstract
The immune system is critical in modulating cancer progression. Pseudogenes are a special type of long non-coding RNAs that regulate different tumorigenic processes. However, the potential roles of pseudogenes in tumor-immune interaction remain largely unclear. Here, we reported that pseudogene RP11-424C20.2 and its parental gene UHRF1 were frequently up-regulated and positively correlated in liver hepatocellular carcinoma (LIHC) and thymoma (THYM), but associated with distinct clinical outcomes. We further found that RP11-424C20.2 may act as a competing endogenous RNA (ceRNA) to increase UHRF1 expression through sponging miR-378a-3p. Functional enrichment analysis showed a strong association of UHRF1 with immune-related biological processes. We also observed that UHRF1 expression significantly correlated with immune infiltration, and different types of tumor-infiltrating immune cells displayed different impacts on clinical outcomes. Furthermore, UHRF1 expression in LIHC and THYM showed an opposite correlation with biomarkers from monocyte, dendritic cell, Th1 and T cell exhaustion. Mechanism investigations revealed that RP11-424C20.2/UHRF1 axis regulated immune escape of LIHC and THYM at least partly through IFN-γ-mediated CLTA-4 and PD-L1 pathway. These findings demonstrate a disparate role of RP11-424C20.2/UHRF1 axis in LIHC and THYM via regulating immune infiltrates, and also indicate a therapeutic value for UHRF1 inhibitors in combination with anti-PD-L1/CLTA-4 blockade.
Collapse
|
50
|
Schaer DA, Geeganage S, Amaladas N, Lu ZH, Rasmussen ER, Sonyi A, Chin D, Capen A, Li Y, Meyer CM, Jones BD, Huang X, Luo S, Carpenito C, Roth KD, Nikolayev A, Tan B, Brahmachary M, Chodavarapu K, Dorsey FC, Manro JR, Doman TN, Donoho GP, Surguladze D, Hall GE, Kalos M, Novosiadly RD. The Folate Pathway Inhibitor Pemetrexed Pleiotropically Enhances Effects of Cancer Immunotherapy. Clin Cancer Res 2019; 25:7175-7188. [DOI: 10.1158/1078-0432.ccr-19-0433] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/31/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
|