1
|
Thirugnanasampanthar M, Kvitka E, Gomez M, Jackson K, Bayat F, Rhem RG, Dolovich MB, Hosseinidoust Z. Protocol for bacterial filtration efficiency evaluations of facemask materials using viable bacteria-laden aerosol droplets. STAR Protoc 2024; 6:103506. [PMID: 39708329 PMCID: PMC11729654 DOI: 10.1016/j.xpro.2024.103506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Here, we present a protocol for determining the bacterial filtration efficiencies of facemask materials according to the American Society for Testing and Materials (ASTM) standard F2101-19. We describe steps for reproducibly generating, collecting, and enumerating viable bacteria-laden aerosols containing the bacterial pathogen Staphylococcus aureus. The optimized operating parameters generate 1,700 to 3,000 viable bacteria-laden aerosol droplets between 2.7 and 3.3 μm. For complete details on the use and execution of this protocol, please refer to Thirugnanasampanthar et al.1.
Collapse
Affiliation(s)
| | - Ekaterina Kvitka
- McMaster University, Department of Chemical Engineering, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Mellissa Gomez
- McMaster University, Department of Chemical Engineering, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Kyle Jackson
- McMaster University, Department of Chemical Engineering, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada; McMaster University, Farncombe Family Digestive Health Research Institute, Hamilton, ON L8S 4K1, Canada
| | - Fereshteh Bayat
- McMaster University, School of Biomedical Engineering, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Rod G Rhem
- Affiliate, Research Institute of St Joseph's Hospital and Firestone Institute for Respiratory Health, 50 Charlton Avenue East, Hamilton, ON L8N 4A6, Canada
| | - Myrna B Dolovich
- Affiliate, Research Institute of St Joseph's Hospital and Firestone Institute for Respiratory Health, 50 Charlton Avenue East, Hamilton, ON L8N 4A6, Canada; McMaster University, Faculty of Health Sciences, Department of Medicine, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada; McMaster University, Centre of Excellence in Protective Equipment and Materials, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada.
| | - Zeinab Hosseinidoust
- McMaster University, Department of Chemical Engineering, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada; McMaster University, Farncombe Family Digestive Health Research Institute, Hamilton, ON L8S 4K1, Canada; McMaster University, School of Biomedical Engineering, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada; McMaster University, Centre of Excellence in Protective Equipment and Materials, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada; McMaster University, Michael DeGroote Institute for Infectious Disease Research, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
2
|
Thirugnanasampanthar M, Tian L, Rhem RG, Libera DD, Gomez M, Jackson K, Fox-Robichaud AE, Dolovich MB, Hosseinidoust Z. Unraveling the impact of operational parameters and environmental conditions on the quality of viable bacterial aerosols. PNAS NEXUS 2024; 3:pgae473. [PMID: 39529911 PMCID: PMC11551483 DOI: 10.1093/pnasnexus/pgae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Viable pathogen-laden droplets of consistent quality are essential for reliably assessing the protection offered by facemasks against airborne infections. We identified a significant gap in guidance within standardized tests for evaluating the filtration efficiencies of facemask materials using viable bacteria-laden aerosol droplets. An aerosol platform, built according to the American Society for Testing and Materials standard F2101-19, was used to validate and standardize facemask filtration test procedures. We utilized this platform to investigate the impact of varying five operating parameters, namely suspension media composition, relative humidity, pathogen concentration, and atomizer airflow and feed flow rates, on the aerosol quality of viable bacteria-laden aerosols. We achieved consistent generation of 1,700 to 3,000 viable bacteria-laden droplets sized between 2.7 and 3.3 µm under the following optimized test conditions: 1.5% w/v peptone water concentration, ≥80% relative humidity at 24 ± 2 °C, 1 × 105 CFU/mL bacterial concentration, 1.5 L/min atomizer airflow rate, and 170 μL/min feed flow rate. We also explored the consequence of deviating from these optimized test parameters on viable bacteria-laden aerosol quality. These results highlight the importance of controlling these parameters when studying airborne transmission and control.
Collapse
Affiliation(s)
| | - Lei Tian
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Rod G Rhem
- Affiliate, Research Institute of St Joseph's Hospital and Firestone Institute for Respiratory Health, 50 Charlton Ave East, Hamilton, ON, L8N 4A6, Canada
| | - Danielle D Libera
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Mellissa Gomez
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Kyle Jackson
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Alison E Fox-Robichaud
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
- Centre of Excellence in Protective Equipment and Materials, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Myrna B Dolovich
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
- Centre of Excellence in Protective Equipment and Materials, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Centre of Excellence in Protective Equipment and Materials, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
3
|
Han S, Oh E, Shin H, Kumaran S, Ko DH, Choi HJ. Antimicrobial Face Masks and Mask Covers with a Salt-Coated Stacked Spunbond Polypropylene Fabric: Effective Inactivation of Resilient Pathogens and Prevention of Contact Transmission. ACS APPLIED BIO MATERIALS 2024; 7:5171-5187. [PMID: 39008660 DOI: 10.1021/acsabm.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In response to the ongoing threat posed by respiratory diseases, ensuring effective transmission protection is crucial for public health. To address the drawbacks of single-use face masks/respirators, which can be a potential source of contact-based transmission, we have designed an antimicrobial face mask and mask covering utilizing a stack of salt-coated spunbond (SB) fabric. This fabric acts as an outer layer for the face mask and as a covering over a conventional mask, respectively. We evaluated the universal antimicrobial performance of the salt-coated three-stacked SB fabric against enveloped/nonenveloped viruses and spore-forming/nonspore-forming bacteria. The distinctive pathogen inactivation efficiency was confirmed, including resistant pathogens such as human rhinovirus and Clostridium difficile. In addition, we tested other filter attributes, such as filtration efficiency and breathability, to determine the optimal layer for salt coating and its effects on performance. Our findings revealed that the outer layer of a conventional face mask plays a crucial role in contact transmission through contaminated face masks and respirators. Through contact transmission experiments using droplets involving three types of contaminants (fluorescent dyes, bacteria, and viruses), the salt-coated stacked SB fabric demonstrated a superior effect in preventing contact transmission compared to SB or meltblown polypropylene fabrics─an issue challenging to existing masks. Our results demonstrate that the use of salt-coated stacked SB fabrics as (i) the outer layer of a mask and (ii) a mask cover over a mask enhances overall filter performance against infectious droplets, achieving high pathogen inactivation and low contact-based transmission while maintaining breathability.
Collapse
Affiliation(s)
- Sumin Han
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Euna Oh
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Hyerin Shin
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Surjith Kumaran
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Dae-Hong Ko
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
4
|
Greenhalgh T, MacIntyre CR, Baker MG, Bhattacharjee S, Chughtai AA, Fisman D, Kunasekaran M, Kvalsvig A, Lupton D, Oliver M, Tawfiq E, Ungrin M, Vipond J. Masks and respirators for prevention of respiratory infections: a state of the science review. Clin Microbiol Rev 2024; 37:e0012423. [PMID: 38775460 PMCID: PMC11326136 DOI: 10.1128/cmr.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThis narrative review and meta-analysis summarizes a broad evidence base on the benefits-and also the practicalities, disbenefits, harms and personal, sociocultural and environmental impacts-of masks and masking. Our synthesis of evidence from over 100 published reviews and selected primary studies, including re-analyzing contested meta-analyses of key clinical trials, produced seven key findings. First, there is strong and consistent evidence for airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory pathogens. Second, masks are, if correctly and consistently worn, effective in reducing transmission of respiratory diseases and show a dose-response effect. Third, respirators are significantly more effective than medical or cloth masks. Fourth, mask mandates are, overall, effective in reducing community transmission of respiratory pathogens. Fifth, masks are important sociocultural symbols; non-adherence to masking is sometimes linked to political and ideological beliefs and to widely circulated mis- or disinformation. Sixth, while there is much evidence that masks are not generally harmful to the general population, masking may be relatively contraindicated in individuals with certain medical conditions, who may require exemption. Furthermore, certain groups (notably D/deaf people) are disadvantaged when others are masked. Finally, there are risks to the environment from single-use masks and respirators. We propose an agenda for future research, including improved characterization of the situations in which masking should be recommended or mandated; attention to comfort and acceptability; generalized and disability-focused communication support in settings where masks are worn; and development and testing of novel materials and designs for improved filtration, breathability, and environmental impact.
Collapse
Affiliation(s)
- Trisha Greenhalgh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - C Raina MacIntyre
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Shovon Bhattacharjee
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| | - Abrar A Chughtai
- School of Population Health, University of New South Wales, Sydney, Australia
| | - David Fisman
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mohana Kunasekaran
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Amanda Kvalsvig
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Deborah Lupton
- Centre for Social Research in Health and Social Policy Research Centre, Faculty of Arts, Design and Architecture, University of New South Wales, Sydney, Australia
| | - Matt Oliver
- Professional Standards Advocate, Edmonton, Canada
| | - Essa Tawfiq
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Mark Ungrin
- Faculty of Veterinary Medicine; Department of Biomedical Engineering, Schulich School of Engineering; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joe Vipond
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Emam MH, Elezaby RS, Swidan SA, Hathout RM. Nanofiberous facemasks as protectives against pandemic respiratory viruses. Expert Rev Respir Med 2024; 18:127-143. [PMID: 38753449 DOI: 10.1080/17476348.2024.2356601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Wearing protective face masks and respirators has been a necessity to reduce the transmission rate of respiratory viruses since the outbreak of the coronavirus (COVID-19) disease. Nevertheless, the outbreak has revealed the need to develop efficient air filter materials and innovative anti-microbial protectives. Nanofibrous facemasks, either loaded with antiviral nanoparticles or not, are very promising personal protective equipment (PPE) against pandemic respiratory viruses. AREAS COVERED In this review, multiple types of face masks and respirators are discussed as well as filtration mechanisms of particulates. In this regard, the limitations of traditional face masks were summarized and the advancement of nanotechnology in developing nanofibrous masks and air filters was discussed. Different methods of preparing nanofibers were explained. The various approaches used for enhancing nanofibrous face masks were covered. EXPERT OPINION Although wearing conventional face masks can limit viral infection spread to some extent, the world is in great need for more protective face masks. Nanofibers can block viral particles efficiently and can be incorporated into face masks in order to enhance their filtration efficiency. Also, we believe that other modifications such as addition of antiviral nanoparticles can significantly increase the protection power of facemasks.
Collapse
Affiliation(s)
- Merna H Emam
- Nanotechnology Research Center (NTRC), The British University in Egypt, Cairo, Egypt
| | - Reham S Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shady A Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Zhou G, Xu Z, Zhang Y, Liu J, Jiang L, Liu R, Wang Y. Effect of different antibacterial agents doping in PET-based electrospun nanofibrous membranes on air filtration and antibacterial performance. ENVIRONMENTAL RESEARCH 2024; 243:117877. [PMID: 38070855 DOI: 10.1016/j.envres.2023.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024]
Abstract
In order to reduce the particulate matter pollution to human health in producing environments, series of polyethylene terephthalate/polyvinyl alcohol (PET/PVA) based nanofibrous membranes were fabricated and investigated the dust collection and antibacterial activity. Silver nanoparticles (AgNPs), berberine (Ber) and titanium oxide nanoparticles (TiO2NPs) were selected as antibacterial agents. These novel membranes were well-characterized using SEM, FTIR, TG, etc. techniques. Results of the dust filtration showed that PET/PVA/Ag membrane had the best filtration efficiency of 99.87% for sodium chloride (NaCl) and 99.89% for dioctyl sebacate (DEHS), held low pressure drop of 160.1 Pa for NaCl and 165.3 Pa for DEHS, and posed a high tensile strength of 4.91 MPa. The bacteriostasis studies exhibited that PET/PVA/TiO2 and PET/PVA/Ag membrane showed the highest bacteriological effect on Escherichia coli (98.7%) and Staphylococcus aureus (95.9%), respectively. Meanwhile, in vitro cytotoxicity test indicated no potential cytotoxicity existed in the cell culture process of these two antibacterial membranes. Moreover, the charge distribution in the nanofibers was increased by these antibacterial agents to improve the filtration performance. The dust filtration process synergistically promoted with the antibacterial process in the antibacterial membranes. It was expected that these membranes could be efficient filter medias with broad application prospects in the field of individual protection.
Collapse
Affiliation(s)
- Gang Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhuo Xu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yongliang Zhang
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jianguo Liu
- Key Laboratory of High-Efficient Mining and Safety of Metal Mines, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Liwei Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Rulin Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yongmei Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
7
|
Landim MG, Carneiro MLB, Joanitti GA, Anflor CTM, Marinho DD, Rodrigues JFB, de Sousa WJB, Fernandes DDO, Souza BF, Ombredane AS, do Nascimento JCF, Felice GDJ, Kubota AMA, Barbosa JSC, Ohno JH, Amoah SKS, Pena LJ, Luz GVDS, de Andrade LR, Pinheiro WO, Ribeiro BM, Formiga FR, Fook MVL, Rosa MFF, Peixoto HM, Luiz Carregaro R, Rosa SDSRF. A novel N95 respirator with chitosan nanoparticles: mechanical, antiviral, microbiological and cytotoxicity evaluations. DISCOVER NANO 2023; 18:118. [PMID: 37733165 PMCID: PMC10514013 DOI: 10.1186/s11671-023-03892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | - José Filipe Bacalhau Rodrigues
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | | | | | - John Hideki Ohno
- MCI Ultrasonica LTDA, Av. Campinas, 367 - Arraial Paulista, Taboão da Serra, São Paulo, Brazil
| | - Solomon Kweku Sagoe Amoah
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | - Marcus Vinícius Lia Fook
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | |
Collapse
|
8
|
Cimini A, Imperi E, Picano A, Rossi M. Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up. APPLIED MATERIALS TODAY 2023; 32:101833. [PMID: 37152683 PMCID: PMC10151159 DOI: 10.1016/j.apmt.2023.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Face masks have proven to be a useful protection from airborne viruses and bacteria, especially in the recent years pandemic outbreak when they effectively lowered the risk of infection from Coronavirus disease (COVID-19) or Omicron variants, being recognized as one of the main protective measures adopted by the World Health Organization (WHO). The need for improving the filtering efficiency performance to prevent penetration of fine particulate matter (PM), which can be potential bacteria or virus carriers, has led the research into developing new methods and techniques for face mask fabrication. In this perspective, Electrospinning has shown to be the most efficient technique to get either synthetic or natural polymers-based fibers with size down to the nanoscale providing remarkable performance in terms of both particle filtration and breathability. The aim of this Review is to give further insight into the implementation of electrospun nanofibers for the realization of the next generation of face masks, with functionalized membranes via addiction of active material to the polymer solutions that can give optimal features about antibacterial, antiviral, self-sterilization, and electrical energy storage capabilities. Furthermore, the recent advances regarding the use of renewable materials and green solvent strategies to improve the sustainability of electrospun membranes and to fabricate eco-friendly filters are here discussed, especially in view of the large-scale nanofiber production where traditional membrane manufacturing may result in a high environmental and health risk.
Collapse
Affiliation(s)
- A Cimini
- Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Rome 00161, Italy
- LABOR s.r.l., Industrial Research Laboratory, Via Giacomo Peroni, 386, Rome, Italy
| | - E Imperi
- LABOR s.r.l., Industrial Research Laboratory, Via Giacomo Peroni, 386, Rome, Italy
| | - A Picano
- LABOR s.r.l., Industrial Research Laboratory, Via Giacomo Peroni, 386, Rome, Italy
| | - M Rossi
- Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Rome 00161, Italy
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), University of Rome Sapienza, Rome 00185, Italy
| |
Collapse
|
9
|
Zhou G, Xu Z, Chen G, Liu R, Wang Y. Hydrophobic/oleophobic nanofibrous filter media with bead-on-string structure for efficient personal protection of dust in mines. ENVIRONMENTAL RESEARCH 2023; 226:115699. [PMID: 36933635 DOI: 10.1016/j.envres.2023.115699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Pneumoconiosis in mines occupied more than 90% of the total number of occupational diseases, poses tremendous pressure and challenges on the development of personal protection materials with high dust filtration efficiency and long-lasting comfortable wearing. In this study, a kind of polyethylene terephthalate (PET) based filter media with the bead-on-string structure and hydrophobic/oleophobic property was designed and fabricated by electrospinning technology. Nanoscale silicon dioxide (SiO2NPs) and fluorinated polyurethane (PU) used in this work were benefited for the microstructure, surface energy and hydrophobic/oleophobic property, respectively. The morphology and composition of the membranes were conducted by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and fourier transform infrared spectroscopy (FTIR). Furthermore, the filtration performance, pressure drop, moisture permeability and breathing comfortable performance were measured for the study of personal protection of dust. The results showed that at the air flow of 85 L min-1, PET/SiO2/FPU double-layer nanofibrous membrane showed high filtration efficiency and low pressure drop with the filtration efficiency of 99.96%, pressure drop of 142.5 Pa and quality factor of 0.055 Pa-1, respectively. A long term of 24 h water vapor test had proved that this membrane held an outstanding moisture permeability ability of 5296.325 g (m2 24 h)-1. Compared with the commercial 3701CN filter media, the advantages of the regular breathing frequency and strong heart rate control ability indicated that this PET/SiO2/FPU double-layer membrane had the better wearing comfortable performance with broad application prospects in the personal protection of dust in mines.
Collapse
Affiliation(s)
- Gang Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhuo Xu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Guanshuang Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Rulin Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yongmei Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
10
|
Evaluation of the antibacterial activities of face masks coated with titanium dioxide nanoparticles. Sci Rep 2022; 12:18739. [PMID: 36333396 PMCID: PMC9636400 DOI: 10.1038/s41598-022-23615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
To control infectious diseases, various applications of nanotechnology have been used to enhance the self-cleaning and antibacterial properties of materials. This study aimed to evaluate the antibacterial properties of face masks coated with TiO2 nanoparticles. The antibacterial efficacies of cloth face masks coated with TiO2 were measured by inoculating them in bacterial suspensions (105 CFUs from both E. coli and S. aureus). The results showed that TiO2 nanoparticle solutions (at 2%) reduced the starting inoculum of 105 CFUs (5 log cfu/cm2) of E. coli and S. aureus to 1.3 and 1.68 log, respectively, with antibacterial activities of 3.7 and 3.34 log, respectively. Furthermore, at a 1% concentration, the antibacterial activities against E. coli and S. aureus were 2.1 and 2.01 log, respectively, while at a low concentration (0.5%), the antibacterial activities against E. coli and S. aureus were 1.8 and 1.72 log, respectively. The CFUs in all the experimental groups were significantly lower than those in the control group (saline). In conclusion, TiO2 nanoparticle solutions with a high concentration (2%) demonstrated a strong antibacterial effect on E. coli and S. aureus, and the difference was statistically significant, while a significant antibacterial activity was demonstrated with lower concentration (0.5% and 1%) nanoparticle solutions of TiO2 after 18 h. There was a statistically significant difference regarding colony reduction between E. coli and S. aureus even at 3 h. The antibacterial activities of TiO2 in face masks could be promising for reducing the risk of bacterial infections.
Collapse
|
11
|
Sahebi A, Hasheminejad N, Shohani M, Yousefi A, Tahernejad S, Tahernejad A. Personal protective equipment-associated headaches in health care workers during COVID-19: A systematic review and meta-analysis. Front Public Health 2022; 10:942046. [PMID: 36311638 PMCID: PMC9605797 DOI: 10.3389/fpubh.2022.942046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023] Open
Abstract
Introduction Health Care Workers (HCWs) use Personal Protective Equipment (PPE) during the COVID-19 pandemic to protect themselves and prevent the transmission of the disease. The use of PPE, especially respiratory masks, has adverse consequences, including headaches, which have been secondary and unusual. The aim of the present systematic review and meta-analysis study was to investigate the prevalence of PPE-associated headaches in HCWs during COVID-19 pandemic. Methods The present review study was performed based on the PRISMA guideline. The protocol of the present study was registered in PROSPERO with the code CRD42022304437. Valid data resources such as Scopus, PubMed, Web of Science, Science Direct, Google Scholar, Embase were used to identify and extract relevant studies. The searches were conducted between the beginning of 2020 and the end of January 2022. A random effects model was used for meta-analysis and I 2 index was used to investigate between-study heterogeneity. Data were analyzed using STATA ver. 14. Results A total of 539 articles were first identified through initial search and finally 26 final studies were selected to undergo the meta-analysis phase. According to the results of meta-analysis, the prevalence of headache after and before the use of PPE was 48.27% (95% CI: 40.20-56.34, I 2 = 99.3%, p = 0 < 001) and 30.47% (95% CI: 20.47-40.47, I 2 = 97.3%, p = 0 < 001), respectively. Conclusion The results of the present study showed that the prevalence of PPE-associated headache in HCWs was relatively high, so, the use of PPE during COVID-19 pandemic can be considered as one of the causes of headache. Therefore, management strategies such as regular screening of HCWs for headaches and regular rest periods without the use of PPE can be effective in reducing the prevalence of headaches.
Collapse
Affiliation(s)
- Ali Sahebi
- Non-Communicable Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Naser Hasheminejad
- Department of Occupational Health Engineering and Safety at Work, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Shohani
- Department of Nursing, School of Nursing and Midwifery, Ilam University of Medical Sciences, Ilam, Iran
| | - Atefeh Yousefi
- Department of Neurology, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Somayeh Tahernejad
- Health in Disasters and Emergencies Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Somayeh Tahernejad
| | - Azadeh Tahernejad
- Department of Health in Disasters and Emergencies, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Comparison of filtration efficiency and respiratory resistance of COVID-19 protective masks by multi-national standards. Am J Infect Control 2022; 50:516-524. [PMID: 35158009 PMCID: PMC8832847 DOI: 10.1016/j.ajic.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/20/2022]
Abstract
Background Face masks from worldwide satisfy different standards during the COVID-19 pandemic, which led to the public misunderstanding of the concepts. Methods We systematically evaluated the quality of face masks provided by different companies according to multi-national standards, including EN 149-2001+A1: 2009, GB 2626-2019 and NIOSH 42 CFR Part 84-2019, focusing particularly on the particulate filtration efficiency (PFE) and respiratory resistance performance. Results Three types of masks (planar, folding and cup type masks) were measured based on different standard protocols. The results indicated that the PFE of the mask decreased in sequence of folding mask ≈ cup type mask > planar mask. The respiratory resistance of the masks ranked as follows: cup type mask > folding mask> planar mask. Overall, when PFE was used as the quality indicator, all the masks have a higher chance of meeting criteria of the EN149-2001+A1:2009, followed by the stricter standard set by the GB2626-2019 and NIOSH 42 CFR Part84-2019. Conversely, the respiratory resistance of the masks fulfilled the highest requirement of the EN149-2001+A1:2009 standard, while it is easier to satisfied the standard of GB 2626-2019 and NIOSH 42 CFR Part 84-2019. Conclusions We believe that our study provides effective guidance for customers worldwide to choose proper face masks under different epidemic situations.
Collapse
|
13
|
Development of Monodispersed Polystyrene Particles as Thailand Reference Materials (TRM). MAPAN 2022. [PMCID: PMC9034692 DOI: 10.1007/s12647-022-00552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to develop monodispersed polystyrene particles as certified reference materials in accordance with the ISO 17034: 2016 and the ISO Guide 35. It can play a significant role especially during the COVID-19 pandemic since several covering items such as filtering facepiece respirators or medical masks must be investigated for the quality of operation by various sizes of polystyrene. The polystyrene particles were prepared in-house by National Nanotechnology Center (NANOTEC) using polymerization of styrene. Each batch was preliminary check for distribution, aggregation and averaged size by using dynamic light scattering. Then polystyrene particles were prepared to 1% solid suspension in deionized water for homogeneity testing, stability assessment and characterization using transmission electron microscope with ImageJ software. The 100 nm polystyrene as an example has been successfully synthesized fulfilled the criteria of size deviation from nominal value less than ± 10 nm and polydispersity index less than 0.05. Then, the particle size of polystyrene was statistically analyzed for screening test with the results of the coefficient of variation less than 10%. Stability assessment consisting of short-term stability testing with three different temperatures and long-term stability testing within 6 months observed was carried out. The results of short-term and long-term stability were presented within the maximum acceptable. The homogeneity tests for within bottle standard deviation and between bottle standard deviation were performed with randomly sampling. The results of homogeneity tests satisfied the criteria and therefore assigned the value as the certify value. Consequently, the certify value of 105.5 ± 4.6 nm of monodispersed polystyrene particles has been successfully developed as Thailand reference materials which were similar level of quality and accuracy to the standard commercial products.
Collapse
|
14
|
Ayodeji OJ, Hilliard TA, Ramkumar S. Particle-Size-Dependent Filtration Efficiency, Breathability, and Flow Resistance of Face Coverings and Common Household Fabrics Used for Face Masks During the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2022; 16:11. [PMID: 35035493 PMCID: PMC8743850 DOI: 10.1007/s41742-021-00390-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 05/30/2023]
Abstract
UNLABELLED During the COVID-19 pandemic, the increase in demand for protective equipment caused a global shortage and homemade barrier face coverings were recommended as alternatives. However, filtration performances of homemade face coverings have not been fully evaluated. Test methods in the ASTM standard (F3502-21) were used to evaluate filtration efficiencies (FE) and breathability (pressure drop, Δp) of face coverings and home fabric materials commonly used during the pandemic. Submicron particulates FE was measured by particle transmission through face covering samples using a Condensation Particle Counter equipped with differential mobility analyzer and electronic manometer. Flow resistance of 0.1 μm-diameter fluorescent nanoparticles in droplets was determined by measuring fluorescence intensity of residual collected at the reverse side of samples. The size-dependent FE (3-94%) and Δp (0.8-72 mmH2O) varied considerably among fabrics. Of the 16 mask types, 31.25% and 81.25% met the minimum FE and breathability standards in the ASTM F3502-21, respectively. Overall performance (qF) was highest for velcro masks (max qF = 3.36, min qF = 2.80) and lowest for Dutch wax print fabrics (max qF = 0.12, min qF = 0.03). Most of the samples resisted the flow of 0.1 µm-diameter nanoparticles in droplets. Low flow resistance was observed in bandana, neck gaiter, t-shirt I, tank top and bedspread fabrics. GSM and fabric finishing seems to affect performance. Low performances can be improved by selecting optimum-performance fabrics in the design and manufacture of barrier face coverings. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s41742-021-00390-6.
Collapse
Affiliation(s)
- Olukayode James Ayodeji
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416 USA
| | - Terrell A. Hilliard
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416 USA
| | - Seshadri Ramkumar
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416 USA
| |
Collapse
|
15
|
Wilson AM, Sleeth DK, Schaefer C, Jones RM. Transmission of Respiratory Viral Diseases to Health Care Workers: COVID-19 as an Example. Annu Rev Public Health 2022; 43:311-330. [DOI: 10.1146/annurev-publhealth-052120-110009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Health care workers (HCWs) can acquire infectious diseases, including coronavirus disease 2019 (COVID-19), from patients. Herein, COVID-19 is used with the source–pathway–receptor framework as an example to assess evidence for the role of aerosol transmission and indirect contact transmission of viral respiratory infectious diseases. Evidence for both routes is strong for COVID-19 and other respiratory viruses, but aerosol transmission is likely dominant for COVID-19. Key knowledge gaps about transmission processes and control strategies include the distribution of viable virus among respiratory aerosols of different sizes, the mechanisms and efficiency by which virus deposited on the facial mucous membrane moves to infection sites inside the body, and the performance of source controls such as face coverings and aerosol containment devices. To ensure that HCWs are adequately protected from infection, guidelines and regulations must be updated to reflect the evidence that respiratory viruses are transmitted via aerosols. Expected final online publication date for the Annual Review of Public Health, Volume 43 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amanda M. Wilson
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA;, ,
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona, USA
| | - Darrah K. Sleeth
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA;, ,
| | - Camie Schaefer
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA;, ,
| | - Rachael M. Jones
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA;, ,
| |
Collapse
|
16
|
Margarucci LM, Gianfranceschi G, Romano Spica V, D’Ermo G, Refi C, Podico M, Vitali M, Romano F, Valeriani F. Photocatalytic Treatments for Personal Protective Equipment: Experimental Microbiological Investigations and Perspectives for the Enhancement of Antimicrobial Activity by Micrometric TiO 2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8662. [PMID: 34444411 PMCID: PMC8391258 DOI: 10.3390/ijerph18168662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023]
Abstract
The COVID-19 pandemic has led to countries enforcing the use of facial masks to prevent contagion. However, acquisition, reuse, and disposal of personal protective equipment (PPE) has generated problems, in regard to the safety of individuals and environmental sustainability. Effective strategies to reprocess and disinfect PPE are needed to improve the efficacy and durability of this equipment and to reduce waste load. Thus, the addition of photocatalytic materials to these materials, combined with light exposure at specific wavelengths, may represent promising solutions. To this aim, we prepared a series of masks by depositing micrometer-sized TiO2 on the external surfaces; the masks were then contaminated with droplets of bacteria suspensions and the coatings were activated by light radiation at different wavelengths. A significant reduction in the microbial load (over 90%, p < 0.01) was observed using both Gram negative (E. coli) and Gram positive (S. aureus) bacteria within 15 min of irradiation, with UV or visible light, including sunlight or artificial sources. Our results support the need for further investigations on self-disinfecting masks and other disposable PPE, which could positively impact (i) the safety of operators/workers, and (ii) environmental sustainability in different occupational or recreational settings.
Collapse
Affiliation(s)
- Lory Marika Margarucci
- Department of Movement, Human, and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome “Foro Italico”, 00135 Rome, Italy; (L.M.M.); (G.G.); (F.V.)
| | - Gianluca Gianfranceschi
- Department of Movement, Human, and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome “Foro Italico”, 00135 Rome, Italy; (L.M.M.); (G.G.); (F.V.)
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome “Foro Italico”, 00135 Rome, Italy; (L.M.M.); (G.G.); (F.V.)
| | - Giuseppe D’Ermo
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, 00185 Rome, Italy;
| | | | - Maurizio Podico
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.V.); (F.R.)
| | - Ferdinando Romano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.V.); (F.R.)
| | - Federica Valeriani
- Department of Movement, Human, and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome “Foro Italico”, 00135 Rome, Italy; (L.M.M.); (G.G.); (F.V.)
| |
Collapse
|
17
|
Kwong LH, Wilson R, Kumar S, Crider YS, Sanchez YR, Rempel D, Pillarisetti A. Review of the Breathability and Filtration Efficiency of Common Household Materials for Face Masks. ACS NANO 2021; 15:5904-5924. [PMID: 33822580 PMCID: PMC8900768 DOI: 10.1021/acsnano.0c10146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The World Health Organization and the United States Centers for Disease Control have recommended universal face masking by the general public to slow the spread of COVID-19. A number of recent studies have evaluated the filtration efficiency and pressure differential (an indicator of breathability) of various, widely available materials that the general public can use to make face masks at home. In this review, we summarize those studies to provide guidance for both the public to select the best materials for face masks and for future researchers to rigorously evaluate and report on mask material testing. Of the tested fabric materials and material combinations with adequate breathability, most single and multilayer combinations had a filtration efficiency of <30%. Most studies evaluating commonly available mask materials did not follow standard methods that would facilitate comparison across studies, and materials were often described with too few details to allow consumers to purchase equivalent materials to make their own masks. To improve the usability of future study results, researchers should use standard methods and report material characteristics in detail.
Collapse
Affiliation(s)
- Laura H. Kwong
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
- Corresponding author: Laura H Kwong, 650-332-4667,
| | | | - Shailabh Kumar
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yoshika Susan Crider
- Division of Epidemiology & Biostatistics, University of California, Berkeley 94720, USA
- Energy & Resources Group, University of California, Berkeley 94720, USA
| | - Yasmin Reyes Sanchez
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - David Rempel
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Ajay Pillarisetti
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University Atlanta, GA 30307, USA
| |
Collapse
|