1
|
Estill CF, Mayer AC, Chen IC, Slone J, LaGuardia MJ, Jayatilaka N, Ospina M, Sjodin A, Calafat AM. Biomarkers of Organophosphate and Polybrominated Diphenyl Ether (PBDE) Flame Retardants of American Workers and Associations with Inhalation and Dermal Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8417-8431. [PMID: 38701378 PMCID: PMC11093711 DOI: 10.1021/acs.est.3c09342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
This study evaluated workers' exposures to flame retardants, including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and other brominated flame retardants (BFRs), in various industries. The study aimed to characterize OPE metabolite urinary concentrations and PBDE serum concentrations among workers from different industries, compare these concentrations between industries and the general population, and evaluate the likely route of exposure (dermal or inhalation). The results showed that workers from chemical manufacturing had significantly higher (p <0.05) urinary concentrations of OPE metabolites compared to other industries. Spray polyurethane foam workers had significantly higher (p <0.05) urinary concentrations of bis(1-chloro-2-propyl) phosphate (BCPP) compared to other industries. Electronic scrap workers had higher serum concentrations of certain PBDE congeners compared to the general population. Correlations were observed between hand wipe samples and air samples containing specific flame-retardant parent chemicals and urinary metabolite concentrations for some industries, suggesting both dermal absorption and inhalation as primary routes of exposure for OPEs. Overall, this study provides insights into occupational exposure to flame retardants in different industries and highlights the need for further research on emerging flame retardants and exposure reduction interventions.
Collapse
Affiliation(s)
| | - Alexander C. Mayer
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, 45226, USA
| | - I-Chen Chen
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, 45226, USA
| | | | - Mark J. LaGuardia
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA,23062, USA
| | - Nayana Jayatilaka
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Maria Ospina
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Andreas Sjodin
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| |
Collapse
|
2
|
Coelho SD, Maricoto T, Taborda-Barata L, Annesi-Maesano I, Isobe T, Sousa ACA. Relationship between flame retardants and respiratory health- A systematic review and meta-analysis of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123733. [PMID: 38458527 DOI: 10.1016/j.envpol.2024.123733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Chronic respiratory diseases are a dealing cause of death and disability worldwide. Their prevalence is steadily increasing and the exposure to environmental contaminants, including Flame Retardants (FRs), is being considered as a possible risk factor. Despite the widespread and continuous exposure to FRs, the role of these contaminants in chronic respiratory diseases is yet not clear. This study aims to systematically review the association between the exposure to FRs and chronic respiratory diseases. Searches were performed using the Cochrane Library, MEDLINE, EMBASE, PUBMED, SCOPUS, ISI Web of Science (Science and Social Science Index), WHO Global Health Library and CINAHL EBSCO. Among the initial 353 articles found, only 9 fulfilled the inclusion criteria and were included. No statistically significant increase in the risk for chronic respiratory diseases with exposure to FRs was found and therefore there is not enough evidence to support that FRs pose a significantly higher risk for the development or worsening of respiratory diseases. However, a non-significant trend for potential hazard was found for asthma and rhinitis/rhinoconjunctivitis, particularly considering urinary organophosphate esters (OPEs) including TNBP, TPHP, TCEP and TCIPP congeners/compounds. Most studies showed a predominance of moderate risk of bias, therefore the global strength of the evidence is low. The limitations of the studies here reviewed, and the potential hazardous effects herein identified highlights the need for good quality large-scale cohort studies in which biomarkers of exposure should be quantified in biological samples.
Collapse
Affiliation(s)
- Sónia D Coelho
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Portugal
| | - Tiago Maricoto
- Beira Ria Health Unit, Aveiro Health Center, Ílhavo, Portugal; GRUBI - Systematic Reviews Group, Faculty of Health Sciences & UBIAir - Clinical & Experimental Lung Centre, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Luís Taborda-Barata
- GRUBI - Systematic Reviews Group, Faculty of Health Sciences & UBIAir - Clinical & Experimental Lung Centre, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Immunoallergology, Cova da Beira University Hospital Center, Covilhã, Portugal
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, INSERM and Montpellier University, Department of Allergology and Respiratory Medicine, Montpellier University Hospital, Montpellier, France
| | - Tomohiko Isobe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ana C A Sousa
- Comprehensive Health Research Centre (CHRC) and Department of Biology, School of Science and Technology, University of Évora, Portugal
| |
Collapse
|
3
|
Lovén K, Isaxon C, Ahlberg E, Bermeo M, Messing ME, Kåredal M, Hedmer M, Rissler J. Size-resolved characterization of particles >10 nm emitted to air during metal recycling. ENVIRONMENT INTERNATIONAL 2023; 174:107874. [PMID: 36934572 DOI: 10.1016/j.envint.2023.107874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In the strive towards a circular economy, metal waste recycling is a growing industry. During the recycling process, particulate matter containing toxic and allergenic metals will be emitted to the air causing unintentional exposure to humans and environment. OBJECTIVE In this study detailed characterization of particle emissions and workplace exposures were performed, covering the full size range from 10 nm to 10 µm, during recycling of three different material flows: Waste of electrical and electronic equipment (WEEE), metal scrap, and cables. METHODS Both direct-reading instruments (minute resolution), and time-integrated filter measurements for gravimetric and chemical analysis were used. Additionally, optical sensors were applied and evaluated for long-term online monitoring of air quality in industrial settings. RESULTS The highest concentrations, in all particle sizes, and with respect both to particle mass and number, were measured in the WEEE flow, followed by the metal scrap flow. The number fraction of nanoparticles was high for all material flows (0.66-0.86). The most abundant metals were Fe, Al, Zn, Pb and Cu. Other elements of toxicological interest were Mn, Ba and Co. SIGNIFICANCE The large fraction of nanoparticles, and the fact that their chemical composition deviate from that of the coarse particles, raises questions that needs to be further addressed including toxicological implications, both for humans and for the environment.
Collapse
Affiliation(s)
- Karin Lovén
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22100 Lund, Sweden; Department of Occupation and Environmental Medicine, Region Skåne, SE-22381 Lund, Sweden.
| | - Christina Isaxon
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Erik Ahlberg
- Division of Nuclear Physics, Department of Physics, Lund University, SE-22100 Lund, Sweden
| | - Marie Bermeo
- NanoLund, Lund University, SE-22100 Lund, Sweden; Solid State Physics, Department of Physics, Lund University, SE-22100 Lund, Sweden
| | - Maria E Messing
- NanoLund, Lund University, SE-22100 Lund, Sweden; Solid State Physics, Department of Physics, Lund University, SE-22100 Lund, Sweden
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22100 Lund, Sweden; Department of Occupation and Environmental Medicine, Region Skåne, SE-22381 Lund, Sweden; NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Maria Hedmer
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22100 Lund, Sweden; Department of Occupation and Environmental Medicine, Region Skåne, SE-22381 Lund, Sweden; NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Jenny Rissler
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; NanoLund, Lund University, SE-22100 Lund, Sweden; Division of Bioeconomy and Health, RISE Research Institute of Sweden, SE-22370 Lund, Sweden.
| |
Collapse
|
4
|
Yan Y, Guo F, Liu K, Ding R, Wang Y. The effect of endocrine-disrupting chemicals on placental development. Front Endocrinol (Lausanne) 2023; 14:1059854. [PMID: 36896182 PMCID: PMC9989293 DOI: 10.3389/fendo.2023.1059854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) or endocrine disruptors are substances that are either naturally occurring or artificial and are released into the natural environment. Humans are exposed to EDCs through ingestion, inhalation, and skin contact. Many everyday household items, such as plastic bottles and containers, the liners of metal food cans, detergents, flame retardants, food, gadgets, cosmetics, and pesticides, contain endocrine disruptors. Each hormone has a unique chemical makeup and structural attributes. The way that endocrine hormones connect to receptors is described as a "lock and key" mechanism, with each hormone serving as the key (lock). This mechanism is enabled by the complementary shape of receptors to their hormone, which allows the hormone to activate the receptors. EDCs are described as exogenous chemicals or compounds that have a negative impact on organisms' health by interacting with the functioning of the endocrine system. EDCs are associated with cancer, cardiovascular risk, behavioural disorders, autoimmune abnormalities, and reproductive disorders. EDCs exposure in humans is highly harmful during critical life stages. Nonetheless, the effect of EDCs on the placenta is often underestimated. The placenta is especially sensitive to EDCs due to its abundance of hormone receptors. In this review, we evaluated the most recent data on the effects of EDCs on placental development and function, including heavy metals, plasticizers, pesticides, flame retardants, UV filters and preservatives. The EDCs under evaluation have evidence from human biomonitoring and are found in nature. Additionally, this study indicates important knowledge gaps that will direct future research on the topic.
Collapse
Affiliation(s)
- Yan Yan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Fengjun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rixin Ding
- Department of Cardiovascular Medicine, Changchun Central Hospital, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Yichao Wang,
| |
Collapse
|
5
|
Recycling Plastics from WEEE: A Review of the Environmental and Human Health Challenges Associated with Brominated Flame Retardants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020766. [PMID: 35055588 PMCID: PMC8775953 DOI: 10.3390/ijerph19020766] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023]
Abstract
Waste electrical and electronic equipment (WEEE) presents the dual characteristic of containing both hazardous substances and valuable recoverable materials. Mainly found in WEEE plastics, brominated flame retardants (BFRs) are a component of particular interest. Several actions have been taken worldwide to regulate their use and disposal, however, in countries where no regulation is in place, the recovery of highly valuable materials has promoted the development of informal treatment facilities, with serious consequences for the environment and the health of the workers and communities involved. Hence, in this review we examine a wide spectrum of aspects related to WEEE plastic management. A search of legislation and the literature was made to determine the current legal framework by region/country. Additionally, we focused on identifying the most relevant methods of existing industrial processes for determining BFRs and their challenges. BFR occurrence and substitution by novel BFRs (NBFRs) was reviewed. An emphasis was given to review the health and environmental impacts associated with BFR/NBFR presence in waste, consumer products, and WEEE recycling facilities. Knowledge and research gaps of this topic were highlighted. Finally, the discussion on current trends and proposals to attend to this relevant issue were outlined.
Collapse
|
6
|
Mayer AC, Fent KW, Chen IC, Sammons D, Toennis C, Robertson S, Kerber S, Horn GP, Smith DL, Calafat AM, Ospina M, Sjodin A. Characterizing exposures to flame retardants, dioxins, and furans among firefighters responding to controlled residential fires. Int J Hyg Environ Health 2021; 236:113782. [PMID: 34119852 PMCID: PMC8325627 DOI: 10.1016/j.ijheh.2021.113782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 01/14/2023]
Abstract
Firefighters may encounter items containing flame retardants (FRs), including organophosphate flame retardants (OPFRs) and polybrominated diphenyl ethers (PBDEs), during structure fires. This study utilized biological monitoring to characterize FR exposures in 36 firefighters assigned to interior, exterior, and overhaul job assignments, before and after responding to controlled residential fire scenarios. Firefighters provided four urine samples (pre-fire and 3-h, 6-h, and 12-h post-fire) and two serum samples (pre-fire and approximately 23-h post-fire). Urine samples were analyzed for OPFR metabolites, while serum samples were analyzed for PBDEs, brominated and chlorinated furans, and chlorinated dioxins. Urinary concentrations of diphenyl phosphate (DPhP), a metabolite of triphenyl phosphate (TPhP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), a metabolite of tris(1,3-dichloro-2-propyl) phosphate (TDCPP), and bis(2-chloroethyl) phosphate (BCEtP), a metabolite of tris(2-chloroethyl) phosphate (TCEP), increased from pre-fire to 3-hr and 6-hr post-fire collection, but only the DPhP increase was statistically significant at a 0.05 level. The 3-hr and 6-hr post-fire concentrations of DPhP and BDCPP, as well as the pre-fire concentration of BDCPP, were statistically significantly higher than general population levels. BDCPP pre-fire concentrations were statistically significantly higher in firefighters who previously participated in a scenario (within the past 12 days) than those who were responding to their first scenario as part of the study. Similarly, firefighters previously assigned to interior job assignments had higher pre-fire concentrations of BDCPP than those previously assigned to exterior job assignments. Pre-fire serum concentrations of 2,3,4,7,8-pentachlorodibenzofuran (23478-PeCDF), a known human carcinogen, were also statistically significantly above the general population levels. Of the PBDEs quantified, only decabromodiphenyl ether (BDE-209) pre- and post-fire serum concentrations were statistically significantly higher than the general population. These results suggest firefighters absorbed certain FRs while responding to fire scenarios.
Collapse
Affiliation(s)
- Alexander C Mayer
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA.
| | - Kenneth W Fent
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA
| | - I-Chen Chen
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA
| | - Deborah Sammons
- Health Effects Laboratory Division, NIOSH, CDC, Cincinnati, OH, USA
| | | | | | - Steve Kerber
- Firefighter Safety Research Institute, Underwriters Laboratories, Columbia, MD, USA
| | - Gavin P Horn
- Firefighter Safety Research Institute, Underwriters Laboratories, Columbia, MD, USA; Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, USA
| | - Denise L Smith
- Skidmore College, Saratoga Springs, NY, USA; Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, USA
| | - Antonia M Calafat
- Division of Laboratory Services, National Center for Environmental Health, CDC, Atlanta, GA, USA
| | - Maria Ospina
- Division of Laboratory Services, National Center for Environmental Health, CDC, Atlanta, GA, USA
| | - Andreas Sjodin
- Division of Laboratory Services, National Center for Environmental Health, CDC, Atlanta, GA, USA
| |
Collapse
|
7
|
Negi CK, Khan S, Dirven H, Bajard L, Bláha L. Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms22084282. [PMID: 33924165 PMCID: PMC8074384 DOI: 10.3390/ijms22084282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system’s components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.
Collapse
Affiliation(s)
- Chander K. Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
- Correspondence: or
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Hubert Dirven
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, 0456 Oslo, Norway;
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| |
Collapse
|
8
|
Arvaniti OS, Kalantzi OI. Determinants of flame retardants in non-occupationally exposed individuals - A review. CHEMOSPHERE 2021; 263:127923. [PMID: 32835974 DOI: 10.1016/j.chemosphere.2020.127923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Flame retardants (FRs) constitute a large group of different substances, some of which have been phased out of the market due to health concerns, while others are still used in many common consumer products to prevent fire hazards. This review addressed the determinants of FRs in non-occupationally exposed individuals based on surveys and questionnaire data. For this literature review, three databases (Scopus, Pubmed and Web of Knowledge) were searched by applying suitable terms, inclusion and exclusion criteria, producing a final selection of 78 articles for review. Based on these surveys there is epidemiological evidence for a significant association (p < 0.05) among human exposure and demographic factors, as well as a significant correlation between exposure to FRs and behavioural and environmental factors. Age, gender, housing characteristics, electrical and electronic equipment and mouthing behaviour (in children) play a leading role in human exposure to FRs as published studies demonstrated. However, the methodological differences among studies such as population size, questionnaire design and statistical analysis did not reveal a complete pattern of human exposure routes. Risk perception and communication are also discussed based on limited available data. Knowledge gaps and future perspectives relating to standardized protocols, elucidation of contamination sources, and risk response of health information from different target groups were also identified.
Collapse
Affiliation(s)
- Olga S Arvaniti
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece
| | - Olga-Ioanna Kalantzi
- Department of Environment, University of the Aegean, University Hill, Mytilene, 81100, Greece.
| |
Collapse
|
9
|
Roth N, Sandström J, Wilks MF. A case study applying pathway-oriented thinking to problem formulation for planning a systematic review. ENVIRONMENT INTERNATIONAL 2020; 140:105768. [PMID: 32387853 DOI: 10.1016/j.envint.2020.105768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The use of evidence-based methods in chemical risk assessment (CRA) is still in its infancy. Novel approaches exploring how to implement Systematic Review (SR) principles and methods for evaluating human health risks from environmental chemical exposures are needed. This paper reports and comments on a conceptual model that was developed as part of a mapping exercise for planning a SR, using aluminium-containing antiperspirants (Al-AP) and female breast cancer risk as a case study. The work explores how knowledge-assembly tools and pathway-oriented thinking developed in systems toxicology can be applied to support problem formulation (PF) in the context of SR. A conceptual model was developed to map out key research questions, working hypotheses, routes of exposure, toxicity pathways and endpoints, and related health outcomes. The model draws on the analytic framework for screening topics of the U.S. Preventive Services Task Force and builds on the concept of a "source-to-outcome continuum", integrating knowledge gained from exposure pathway concepts such as the Aggregate Exposure Pathway and Adverse Outcome Pathways. The model can be used as a central decision and prioritization tool for scoping and framing Population, Exposure, Control, Outcome (PECO) questions in a transparent and iterative manner; as a supporting tool to guide the whole SR process; and to lay down the methodological foundation of a SR on the Al-AP breast cancer topic. Logic modelling can be easily combined with systems or pathway-oriented thinking, and allows for a more structured, objective and transparent approach to PF when applying SR methods to the CRA context.
Collapse
Affiliation(s)
- Nicolas Roth
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland.
| | - Jenny Sandström
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| | - Martin F Wilks
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| |
Collapse
|
10
|
Gravel S, Lavoué J, Bakhiyi B, Lavoie J, Roberge B, Patry L, Bouchard MF, Verner MA, Zayed J, Labrèche F. Multi-exposures to suspected endocrine disruptors in electronic waste recycling workers: Associations with thyroid and reproductive hormones. Int J Hyg Environ Health 2020; 225:113445. [DOI: 10.1016/j.ijheh.2019.113445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/10/2019] [Accepted: 12/21/2019] [Indexed: 12/19/2022]
|
11
|
Estill CF, Slone J, Mayer A, Chen IC, La Guardia MJ. Worker exposure to flame retardants in manufacturing, construction and service industries. ENVIRONMENT INTERNATIONAL 2020; 135:105349. [PMID: 31810010 PMCID: PMC6957722 DOI: 10.1016/j.envint.2019.105349] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 05/05/2023]
Abstract
Workers in several industries are occupationally exposed to flame retardants. This study characterizes flame retardant exposure for nine industries through air and hand wipe measures for 105 workers. Specifically, we analyzed 24 analytes from three chemical classes: organophosphate flame retardants (OFRs), polybrominated diphenyl ethers (PBDEs), and non-PBDE brominated flame retardants (NPBFRs). The industries were: carpet installation, chemical manufacturing, foam manufacturing, electronic scrap, gymnastics, rigid board installation, nail salons, roofing, and spray polyurethane foam. Workers wore personal air samplers for two entire workdays and provided hand wipe samples before and after the second work day. Bulk products were also analyzed. The air, hand wipe and bulk samples were evaluated for relevant flame retardants. Spray polyurethane foam workers' tris(1-chloro-2-propyl) phosphate air (geometric mean = 48,500 ng/m3) and hand wipe (geometric mean = 83,500 ng per sample) concentrations had the highest mean industry concentration of any flame retardant analyzed in this study, followed by triphenyl phosphate air concentration and tris(1,3-dichloro-2-propyl) phosphate hand wipe concentration from chemical manufacturers. Overall, OFR air and hand wipe concentrations were higher and more prevalent than PBDEs or non-PBDE brominated flame retardants. Some industries including spray polyurethane foam application, chemical manufacturing, foam manufacturing, nail salons, roofing, and rigid polyiso board installation had high potential for both air and hand exposure to OFRs. Carpet installers, electronic scrap workers, and gymnastic workers had exposures to all three classes of flame retardants including PBDEs, which were phased out of production in 2013. Air and dermal exposures to OFRs are prevalent in many industries and are replacing PBDEs in some industries.
Collapse
Affiliation(s)
| | | | - Alexander Mayer
- National Institute for Occupational Safety and Health (NIOSH), United States.
| | - I-Chen Chen
- National Institute for Occupational Safety and Health (NIOSH), United States
| | | |
Collapse
|